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 بسم الله الرحمن الرحيم

 

َ مِنْ عِباَدِهِ الْعلُمََاءُ  إِنَّمَا يخَْشَى اللََّّ  

 

" 28سورة فاطر، آية:  "  

 

 صدق الله العلي العظيم
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 الاهداء

 إلى قائم آل محمد إمام العصر والزمان الحجة المنتظر )عج(.

إلى من افضالها على نفسي، ولم لا؟ فقد ضحت من أجلي ولم تدخر جهداً في سبيل 

 الحبيبة(.إسعادي على الدوام.........)أمي 

إلى صاحب الوجه الطيب، والأفعال الحسنة، الذي لم يبخل علي طيلة حياته.. 

 )والدي العزيز(.

إلى من اضاءوا لي طريق العلم، اساتذتي الأفاضل،.... إلى من تشرفت بمعرفتهم 

 أصدقائي الأعزاء اهدي لكم ثمرة جهدي المتواضع.
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 "الشكر وتقدير"

تستطع فكن معلماً، فإن لم تستطع فأحب العلماء، فإن لم تستطع فلا كن عالماً، فإن لم 

 .تبغضهم

أتقدم بخالص الشكر والتقدير إلى والدي العزيزين، اللذين كانا لي النور الذي أستنير به 

 .في حياتي، وزرعا في نفسي القيم والمبادئ السامية

في تعليمنا وتوجيهنا، كما أخص بالشكر أساتذتي الأفاضل، الذين لم يدخروا جهداً 

 .فكان لهم الفضل بعد الله فيما وصلنا إليه

ولا أنسى زملائي الأعزاء، الذين كانوا خير رفقاء في هذه المسيرة، فبالتعاون 

 .والمشاركة تحقق هذا الإنجاز

 ومن الله التوفيق والسداد
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 اقرار المشرف

( Euler's and Fermat's theorem )  :  المرسوم البحث هذا أن أشهد  

  

  أشرافي تحت جرى قد , (ملاك نزار حسن الطالبة )  به تقدم الذي  

  الرياضيات قسم/  التربية كلية/  ميسان جامعة في 

.... الراضيات قسم/   التربية كلية في البكالوريوس درجة نيل متطلبات من جزء وهو  

المشرف اقرار  

الكريم عبد تغريد:  المشـــرف أسم  

مدرس مساعد:  العلمية الدرجة  

للمناقشة البحث هذا ارشح المشرف توصيات على بناء  

 

مطشر كريم احمد. م  

الرياضيات قسم رئيس  
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Euler's Theorem 

 

1.1 Theorem 1: Let m >1 and gcd (a,m)=1.  

Then 

𝑎𝜙(𝑚)≡1     (mod m) 

 

Proof: Let {𝑟1 ,..., 𝑟𝜙(𝑚) } be a RSR modulo m. 

 Then {𝑎𝑟1 ,...,𝑎𝑟𝜙(𝑚) } is a RSR modulo m1, too. 

 Therefore, for all i, there is a unique j so   that 𝑟𝑖≡ 𝑎𝑟𝑗  (mod m). 

 Then    

𝑎𝜙(𝑚)   ∏ 𝑟𝑖
𝜙(𝑚)
𝑖=1 = ∏ (𝑎𝑟𝑖) 

𝜙(𝑚)
𝑖=1  ≡ ( ∏ 𝑟𝑖)      

𝜙(𝑚)
𝑖=1 (mod m).    

Since gcd (∏ 𝑟𝑖 , 𝑚 )
𝜙(𝑚)
𝑖=1 =1 , we can cancel and get𝑎𝜙(𝑚)≡1 (mod m).   

 

 

 

Example 1: Let m=13×23=299 , where 13 and 23 are primes. 

 Then    

ϕ(m)=ϕ(299)=(13−1)(23−1)=12×22=264. 

 Note that gcd(5,299)=1    , Euler's Theorem says 5264≡ 1 (mod 299), 

 that is,   299 | (5264−1).    
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Example 2 : of the use of Euler's theorem. 

Find the two low-order decimal digits of  33862513119442.  

First, 33862513≡13 (mod 100), so the answer is the same as the two low-order 

deci- mal digits of 13119442     

(because (100𝑘 + 13)𝑛≡13𝑛(mod 100) and the two low-order decimal digits             

of m are m mod 100). 

 Second,    

ϕ(100)=ϕ(22)ϕ(52)=2(2−1)⋅5(5−1)=40. 

 Now 119442≡2 (mod 40), so by Euler, 13119442≡132 (mod 100).  

Finally, 33862513119442≡13119442≡132= 169≡69 (mod 100),  

and the two low-order decimal digits of 33862513119442 are 69. 

 

1.2 A Corollary of Euler's Theorem  

Here is an alternate way to compute the mul- tiplicative inverse 𝑎−1of a modulo m: 

Recall that 𝑎−1is the residue class mod m such that 𝑎−1a≡𝑎𝑎−1 ≡1 (mod m). It is 

defined only when gcd(a,m)=1 In that situation we have 𝑎𝜙(𝑚)≡1 (mod m) by 

Euler's Theorem. 

Factoring out one a gives 

𝑎⋅𝑎𝜙(𝑚)−1 ≡1 (mod m) 

whence 𝑎−1≡𝑎𝜙(𝑚)−1 (mod m). For a prime modulus p we have 𝑎−1≡𝑎𝑝−2 (mod p). 

For large m, computing 𝑎−1mod m by this for- mula requires roughly the same 

number of bit operations as computing 𝑎−1mod m by the Ex- tended Euclidean 

Algorithm. (The latter must be used if one does not know ϕ(m).) 
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ler's generalization 

 

Theorem 2: The set 𝑍𝑛
𝑥of nonzero elements of 𝑍𝑛 that are not zero divis forms a 

group.    

Proof: 

closed: 

Suppose that a and b are not 0 nor zero divisors. We n to show that ab is            

neither 0 nor a zero divisor. 

Since a and b are not 0 nor zero divisors, ab ≠ 0. 

Now suppose that (ab) c=0.  

Then a(bc)=0. Since a is not 0 nor a zero divisors, bc=0. 

By the same token bc=0 implies c=0 Thus ab is nor zero divisor.    

 

1.3 Euler's Ø-function 

Definition : 

 The Euler's Ø-function Ø(n) is defined as the number of elements in 𝑍𝑛
𝑥              

(By Theorem 19.3,ϕ(n)={1≤ k ≤n:gcd(k,n)=1}.)    

Example 3 : 

1. 𝑍12
𝑥 ={1,5,7,11} .Thus ϕ(12)=4.  

2. 𝑍15
𝑥 ={1,2,4,7,8,11,13,14}, and ϕ(15)=8.    

Remark 

In general, ϕ(n)=n∏
𝑝 𝑛,𝑝 𝑝𝑟𝑖𝑚𝑒𝑠

 (1−1/p).   
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Euler's theorem 

 

1.3 Theorem 4: Euler's theorem 

Let n be a positive integer. Then for all integers a relatively prime to n, we have    

𝑎𝜙(𝑚)≡ 1 mod n. 

Proof: 

Similar to the proof of Fermat's theorem. (Apply the Lagrange theorem to the 

group 𝑍𝑛
𝑥)    

 

Example 4: 

Let us compute 499 mod 35. We have 4Ø(35)≡1 mod 35 

 i.e.. 424≡1 mod 35. Thus, 499≡43=64≡29 mod 35.    

 

Proof:  

 Let {𝑟1 ,...,𝑟𝜙(𝑚) } be a RSR modulo m. Then {𝑎𝑟1 ,...,𝑎𝑟𝜙(𝑚) } is a RSR modulo 

m too.  Therefore, for all i, there is a unique j so that 𝑟𝑖  ≡ 𝑎𝑟𝑗  (mod m) . 

Then 

𝒂𝝓(𝒎) ∏ 𝒓𝒊
𝝓(𝒎) 
𝒊=𝟏  =  ∏ (𝒂𝒓𝒊)

𝝓(𝒎) 
𝒊=𝟏  ≡(∏ 𝒓𝒊

𝝓(𝒎) 
𝒊=𝟏 )   (mod m) . 

Since gcd (∏ 𝑟𝑖 , 𝑚
𝜙(𝑚) 
𝑖=1 )=1 , we can cancel and get 𝑎𝜙(𝑚) ≡1  (mod m). 
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13 
 

 

Fermat's "Little" Theorem 

 

2.1 Theorem 1:  Let p be prime and a be an integer which is not a multiple of p. 

Then   

𝑎𝑝−1≡1 (mod p). 

Proof:   Since gcd (a,p)=1, the set 

{ai mod p;i =1,...,p−1} is the same as the set {1,...,p−1}. Therefore,    

𝒂𝒑−𝟏∏ 𝒊
𝒑−𝟏
𝒊=𝟏 = ∏ (𝒂𝒊)

𝒑−𝟏
𝒊=𝟏 ≡ (∏ 𝒊

𝒑−𝟏
𝒊=𝟏 ). 𝟏 (mod p).    

Since gcd (∏ 𝐢, 𝐩
𝐩−𝟏
𝐢=𝟏 )=1 , we can cancel and get 𝑎𝑝−1≡ 1 (mod p).    

Example 1:  97 is prime and 2 is not a multiple of 97, so 296 ≡ 1 (mod 97).    

 

2.1 Fermat's theorem 

Theorem 2:  (Little theorem of Fermat) 

Let p be a prime. Then for all integers a not divisible by p, we have    

𝑎𝑝−1≡ 1 mod p. 

Proof: 

The group  𝑍𝑝
𝑥 has p−1 elements. Then by the Lagrange theorem (Theorem 10.10), 

for all a ∈ 𝑍𝑝
𝑥 , 𝑎𝑝−1≡1 mod p.    
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2.3 Corollary and examples  

Corollary 1: Let p be a prime. Then 

𝑎𝑝 ≡ a mod p 

for all a ∈Z 

 

Example 1. Let us compute the remainder of 7103 when divided by 17. 

 

Solution: 

 By Fermat's theorem, we have 716≡1 mod 17. Thus,    

𝟕𝟏𝟎𝟑 = 𝟕𝟔×𝟏𝟔+𝟕 = (𝟕𝟏𝟔)𝟔(𝟕𝟕) ≡ 𝟕𝟕 = 𝟕(𝟕𝟑)𝟐 = 𝟕(𝟑𝟒𝟑)𝟐 ≡ 𝟕. 𝟗≡12 mod 17.   

  

Example 2 : Prove that 𝑛33−n is divisible by 15 for all n. 

 

 Solution: 

 We need to show that 𝑛33−n is divisible by bot and 5. Here we demonstrate 

𝑛33−n≡0 (mod 5), and learn 𝑛33−n≡0 mod 3 as an exercise. 

 If 5∣n, then 𝑛33is clearly congruent to n modulo 5. If 5∣n 

𝑛33 −n=n(𝑛32−1)=n((𝑛4)8)8−1)≡n(1−1)=0     

Finding 𝒂−𝟏modulo n using the Euclidean algorithm 
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Example 3 : Find the multiplicative inverse of 11 modulo 29. 

 Solution: We have 

29 = 2 × 11 + 7 

11 = 1 × 7 + 4 

7 = 1 × 4 + 3 

4 = 1× 3 + 1. 

Thus 

1 = 4 − 1×3 

=4−1×(7−1×4)=2×4−1×7 =2×(11−1×7)−1×7=2×11−3×7 

=2×11−3×(29−2×11)=8×11−3×29 

We see that the multiplicative inverse of 11 modulo 29 is 
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FERMAT'S LITTLE THEOREM AND EULER'S GENERALIZATION 

  

3.1: FERMAT'S LITTLE THEOREM 

Theorem 1 : 

One form of Fermat's Little Theorem states that if p is a prime and if a is an integer 

then  p∣𝑎𝑝 –a 

 

For example 3 : divides 23−2=6 and 33−3=24 and 43−4=60 and 53−5=120 

Similarly, 5 divides 25−2=30 and 35−3=240 et cetera. 

Obviously 𝑎𝑝−a factors as a(𝑎𝑝−1−1) So if p ł a then we have 

p∣𝑎𝑝−1 −1 

This gives another common form of Fermat's Little Theorem. For example, 3 

divides 52−1=24 and 42−1=15 and 22−1=3 Also, 5 divides 24−1=15 and 34−1=80 

and 44−1=255, and 7 divides26−1=63 et cetera. After Gauss introduced 

congruences, the theorem was typically written 

𝑎𝑝 ≡ a mod p 

or, equivalently, 

a≠0 mod p⇒𝑎𝑝−1 ≡ 1 mod p 

Exercise 1. Show that these two versions of Gauss's form of Fermat's Little 

Theorem are 

equivalent. In other words, show 

version 1<===> version 2 

Finally, using the more modern notion of a finite field 𝐹𝑝 with p elements, we can 

write the theorem as 



 

18 
 

a ∈ Fp⇒𝑎
𝑝 = a 

or, equivalently, 

a ∈ 𝐹𝑝
𝑥⇒𝑎𝑝−1 =1 

We will discuss three different proofs of Fermat's Little Theorem. The shortest is a 

proof using group theory: Suppose a is in the unit group 𝐹𝑝
𝑥. By a theorem of group 

theory, if ∣G∣ is the order of the group, then 𝑎∣𝐺∣ is the identity. The order of the 

unit group is p−1, so 𝑎𝑝−1=1. This proof is very economical, but will only appeal 

to readers who have studied group theory. Furthermore, it is a relatively late proof, 

and uses concepts that were not available to Fermat, Euler, and Gauss. 

3.2. INDUCTION BASED PROOF 

The first of the two highlighted proofs of Fermat's Little Theorem uses induction 

and binomial coefficients. 

 Theorem 1: (Fermat's Little Theorem). Let a be an integer, and let p be a prime. 

Then 

𝑎𝑝≡ a mod p 

Proof: Fix the prime p. First we prove the result for natural numbers n by 

induction. The base case is trivial: 

0𝑝≡0 mod p. 

       Now suppose 𝑛𝑝≡ n modulo p. By the binomial theorem 

(𝒏 + 𝟏)𝒑=𝒏𝒑 (𝒑
𝟏
)𝒏𝒑−𝟏 + (𝒑

𝟐
)𝒏𝒑−𝟐 +...+ ( 𝒑

𝒑−𝟐
)𝒏𝟐+ ( 𝒑

𝒑−𝟏
)n+1 

The formula for the binomial coefficients is 

(𝑝
𝑘
) =  

𝑝!

𝑘!(𝑝−𝑘)!
 

and when 1 ≤ k ≤ p−1 we have p dividing the numerator, but not the denominator. 

Thus, for all 1 ≤ k ≤ p−1, 

(𝑝
𝑘
) ≡ 0 mod p. 
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Hence 

(𝑛 + 1)𝑝 ≡𝑛𝑝  + 0 + ... + 0 + 1 ≡ 𝑛𝑝+ 1 mod p. 

By induction, we have the result for all n ≥ 0. For negative a, choose n ≥ 0 so that    

a≡ n modulo p. Since the result holds for n, it holds for a as well. Thus the result 

holds for all a∈Z. 

.3 3 ERMUTATION BASED PROOF 

Now we give a second proof of Fermat's theorem. This involves permuting the 

order of factors of (p−1)!. Recall that a permutation map on a finite set is just a 

bijection from the set to itself.  

For Fermat's theorem we only need the following lemma form m=p pa prime. 

However, the general case is no harder to prove. 

Lemma 1. Let m > 1 be an integer, and let a ∈ 𝑍𝑚
𝑥  . Then the function 𝜇𝑎 defined 

by the rule x ↦ a .  x is a bijection 𝑍𝑚
𝑥 → 𝑍𝑚

𝑥 . 

Proof: Observe that 

𝜇𝑎  (𝜇𝑎−1(x)) = 𝜇𝑎 (𝑎
−1 x) = a(𝑎−1x) = x. 

Similarly 𝜇𝑎−1(𝜇𝑎(x))=x. Thus 𝜇𝑎−1 is the inverse of the function 𝜇𝑎.  Since 𝜇𝑎 has 

an inverse, it is a bijection. 

 

Corollary 2. Let p be an prime. If a∈𝐹𝑝
𝑥  then a,2a,...,(p−1)a are distinct, and every 

element of 𝐹𝑝
𝑥 is in the sequence. In particular, this list is a permutation of the list 

1,2,3,...,p−1. 

Proof: The injectivity of 𝜇𝑎tells us that the terms are distinct, and the surjectivity 

tells us that every element of 𝐹𝑝
𝑥 is on the list. 

 Exercise 2. Make a table showing all the values of the functions 𝜇3: 𝐹5
𝑥→𝐹5

𝑥. 

Observe that multiplication by 3 (modulo 5) permutes {1,2,3,4}. 
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Exercise 3: Make a table showing all the values of the functions𝜇4: 𝐹15
𝑥 →𝐹15

𝑥 . 

Here is the permutation based proof: 

Theorem 3: (Fermat's Little Theorem): Let p be a prime. If a∈ 𝐹𝑝
𝑥 then 𝑎𝑝−1=1.  

Proof:   

Let u=1⋅2⋅3⋅⋅⋅ (p−1) = (p−1)! considered as an element of 𝐹𝑝. Since u is the product 

of units, u is also a unit. By Corollary 2, 

(a) (2a) (3a) ... ((p−1) a) = 1⋅2⋅3...(p−1) =  u 

since both sides are the product of the same elements, possibly in a different order. 

Observe that 

(a) (2a) (3a)...((p−1) a) = 1⋅2⋅3... (p−1) 𝑎𝑝−1=u𝑎𝑝−1 

(move all the a terms to the right). Thus 

u𝑎𝑝−1 =u. 

Since u is a unit, we can multiply by its inverse . So  𝑎𝑝−1 =1. 

 

3.4  EULER'S THEOREM 

The famous mathematician Euler was fascinated with the number theoretic work of 

Fermat. In fact, Euler's interest in number theory is largely due to his study of 

Fermat's writings. Fermat did not leave a proof of his Little Theorem in his 

published writings, but Euler, once he learned of the statement, was able to figure 

out a proof. Next Euler thought about how to generalize this result to a modulus m 

that is not prime. His key idea was to develop his function ꝕ(m), and replace p−1 

with ꝕ(m). This is motivated by the fact that 𝑍𝑝 has p−1 units, but in general 𝑍𝑚 

has ꝕ(m) units. The proof follows closely the permutation based version of the 

proof of Fermat's theorem. 

 Lemma 2: Let m>1 be an integer and let 𝑢1,...,𝑢ꝕ(𝑚)be the (distinct) elements of 

𝑍𝑚
𝑥 .    If a∈𝑍𝑚

𝑥   then the terms of the sequence a 𝑎𝑢1,...,𝑎𝑢ꝕ(𝑚) are distinct, and 

every element of 𝑍𝑚
𝑥  is in the sequence.  
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Proof: This follows from the fact that μa is a bijection (Lemma 1). 

 

Theorem 4 : (Euler's Theorem). Let m>1 be an integer. If a∈ 𝑍𝑚
𝑥  then 𝑎ꝕ(𝑚) =1. 

Proof:  Let𝑍𝑚
𝑥  ={ 𝑢1,...,𝑢ꝕ(𝑚)} By the above lemma, and the commutative law of 

multi-plication, 

𝑢1,...,𝑢ꝕ(𝑚)=(a 𝑢1)⋅⋅⋅(a 𝑢ꝕ(𝑚)3 )=𝑎ꝕ(𝑚)⋅(𝑢1,...,𝑢ꝕ(𝑚)). 

 (The first equality is true since the second product has the same factors as the first, 

but typically in a different order. The second is true based on moving a to the front. 

Observe that there are ꝕ(m) occurances of a since there are ꝕ(m) units.)  

Let u=𝑢1,...,𝑢ꝕ(𝑚).  

Observe that u is a unit by the closure property. Thus 

u=𝑎ꝕ(𝑚) u. 

Now multiply both sides by the inverse of u . 

3.5 Wilson's Theorem 

In the permutation based proof of Fermat's theorem we used (p−1)! in the field 𝐹𝑝. 

We didn't have to calculate its value, since it cancelled at the end of the proof. 

However, it is interesting to note that it is just -1. We begin with a short lemma. 

 Lemma 3: Let p>2 be a prime and let a∈𝑍𝑝
𝑥 . Then a=𝑎−1 if and only if a is            

1 or -1.  

Proof: One direction is clear. For the other, suppose that a=𝑎−1. Multiplying both 

sides by a gives 𝑎2=1. In other words, 𝑎2−1=0. This implies that (a−1)(a+1)=0. 

Since 𝐹𝑝 is an integral domain, we have a−1=0 or a+1=0. Thus a=1 or a=−1. 

Exercise 5: Show that x↦𝑥−1 is a bijection of 𝑍𝑚
𝑥  . Conclude from this that (p−1)! 

is its own multiplicative inverse in 𝐹𝑝. The above lemma tells us that (p−1)! is 

either 1 or -1. The next exercise shows that is cannot be 1 but must be -1. 
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Theorem 5 : (Wilson's Theorem): Let p be a prime. Then (p−1)!≡−1 mod p.  

Proof:  If p=2 then it is clear, so assume p>2. If we multiply all the elements of 𝐹𝑝
𝑥 

together we get 

1 ⋅ 2 ⋅⋅⋅ (p−1) = (p−1)! 

Now reorder the elements of 𝐹𝑝
𝑥 as  𝑎1,𝑎2,...,𝑎𝑝−1  so that 𝑎1=1, so that 𝑎2=−1, 

and, for i>1 so that 𝑎2𝑖−1 and 𝑎2𝑖 are multiplicative inverses to each other. [64] 

We can do this by the previous lemma: an element and its inverse pair up to give 

two distinct elements except for 1 and -1. Consider the product: 

𝑎1,𝑎2,...,𝑎𝑝−1= 1⋅ (−1) ⋅ (𝑎3⋅𝑎4) ⋅⋅⋅ (𝑎𝑝−2 ⋅ 𝑎𝑝−1) = 1 ⋅ (−1) ⋅1 ⋅⋅⋅ 1= −1 

By the commutative law of multiplication in 𝐹𝑝; 

(p−1)! = 1 ⋅ 2 ⋅⋅⋅ (p−1) = 𝑎1⋅⋅⋅𝑎𝑝−1 = −1. 

Example 1: Consider 6! modulo 7: 

6! ≡ 1⋅2⋅3⋅4⋅5⋅6 ≡ 1⋅6⋅(2⋅4)⋅(3⋅5) ≡ 1⋅−1⋅(1)⋅(1) ≡ −1 mod 7. 

From a direct calculation 6! + 1= 721 is seen to be divisible by 7. 
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