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Chapter One

Euler's Theorem




Euler's Theorem

1.1 Theorem 1: Let m >1 and gcd (a,m)=1.
Then

a®™=1  (mod m)

Proof: Let {r; ,..., "y(m) } be @ RSR modulo m.

Then {ar; ,...,aryun) } is @ RSR modulo m1, too.

Therefore, for all i, there is a unique j so that ;= ar; (mod m).
Then

a®™ 77 = NP @r) = (M) (mod m).

Since ged ([T2™ 7;,m )=1, we can cancel and geta®™=1 (mod m).

Example 1: Let m=13x23=299 , where 13 and 23 are primes.

Then

O(m)=9(299)=(13—1)(23—1)=12x22=264.

Note that gcd(5,299)=1 , Euler's Theorem says 52°4=1 (mod 299),

thatis, 299 | (5264-1).




Example 2 : of the use of Euler's theorem.
Find the two low-order decimal digits of 33862513119442,

First, 33862513=13 (mod 100), so the answer is the same as the two low-order
deci- mal digits of 13119442

(because (100k + 13)"=13"(mod 100) and the two low-order decimal digits
of m are m mod 100).

Second,

0(100)=0(22)d(52)=2(2—1)-5(5—1)=40.

Now 119442=2 (mod 40), so by Euler, 13119442=132 (mod 100).
Finally, 33862513119442=13119442=132= 169=69 (mod 100),

and the two low-order decimal digits of 3386251319442 are 69.

1.2 A Corollary of Euler's Theorem

Here is an alternate way to compute the mul- tiplicative inverse a~tof a modulo m:
Recall that a~1tis the residue class mod m such that a~ta=aa™! =1 (mod m). It is
defined only when gcd(a,m)=1 In that situation we have a®(™=1 (mod m) by
Euler's Theorem.

Factoring out one a gives
a-a®™~1 =] (mod m)
whence a~1=a®™~1 (mod m). For a prime modulus p we have a~*=a?~2 (mod p).

For large m, computing a~*mod m by this for- mula requires roughly the same
number of bit operations as computing a~*mod m by the Ex- tended Euclidean
Algorithm. (The latter must be used if one does not know ¢(m).)




ler's generalization

Theorem 2: The set Z;;of nonzero elements of Z,, that are not zero divis forms a
group.

Proof:

closed:

Suppose that a and b are not 0 nor zero divisors. We n to show that ab is
neither O nor a zero divisor.

Since a and b are not 0 nor zero divisors, ab # 0.
Now suppose that (ab) c=0.
Then a(bc)=0. Since a is not 0 nor a zero divisors, bc=0.

By the same token bc=0 implies c=0 Thus ab is nor zero divisor.

1.3 Euler's @-function
Definition :

The Euler's @-function @(n) is defined as the number of elements in Z;;
(By Theorem 19.3,¢6(n)={1< k <n:gcd(k,n)=1}.)

Example 3 :

1. 7%={1,5,7,11} .Thus ¢(12)=4.
2. 7%={1,2,4,7,8,11,13,14}, and ¢(15)=8.

Remark

In general, ¢(n)=n]] (1-1/p).

p |n,p primes
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Euler's theorem

1.3 Theorem 4: Euler's theorem

Let n be a positive integer. Then for all integers a relatively prime to n, we have
a®™=1 mod n.

Proof:

Similar to the proof of Fermat's theorem. (Apply the Lagrange theorem to the
group Z7)

Example 4:
Let us compute 4°° mod 35. We have 4?G5=] mod 35

i.e.. 42*=1 mod 35. Thus, 4°°=43=64=29 mod 35.

Proof:

Let {r; ,...T¢(m) } b€ @ RSR modulo m. Then {ar; ,...,arymm) } is @ RSR modulo
mtoo. Therefore, for all i, there is a unique j so that r; = ar; (mod m) .

Then
a?®™ 25V vy = TS (ar) =A1Z7° 11) (modm).

Since ged ([T2Y™ r,;,m)=1, we can cancel and get a®™ =1 (mod m).

11




Chapter Two

Fermat's ""Little" Theorem
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Fermat's ""Little" Theorem

2.1 Theorem 1: Let p be prime and a be an integer which is not a multiple of p.
Then

aP~1=1 (mod p).
Proof: Since gcd (a,p)=1, the set

{ai mod p;i =1,...,p—1} is the same as the set {1,...,p—1}. Therefore,

— -1.
aP )i = TP (ai) = (TTP2] ). 1 (mod p).
Since gcd (1'[{’:_11 i, p)=1, we can cancel and get a?~1=1 (mod p).

Example 1: 97 is prime and 2 is not a multiple of 97, so 2°6 = 1 (mod 97).

2.1 Fermat's theorem
Theorem 2: (Little theorem of Fermat)
Let p be a prime. Then for all integers a not divisible by p, we have
aP~1=1 mod p.
Proof:

The group Z; has p—1 elements. Then by the Lagrange theorem (Theorem 10.10),

foralla € Z} , a?P~'=1 mod p.

13




2.3 Corollary and examples
Corollary 1: Let p be a prime. Then
aP=amod p

foralla €z

Example 1. Let us compute the remainder of 71°3 when divided by 17.

Solution:

By Fermat's theorem, we have 716=1 mod 17. Thus,

7103 = 76x16+7 = (716Y6(77) = 77 = 7(73)% = 7(343)? = 7.9=12 mod 17.

Example 2 : Prove that n33—n is divisible by 15 for all n.

Solution:

We need to show that n33—n is divisible by bot and 5. Here we demonstrate
n33-—n=0 (mod 5), and learn n33—n=0 mod 3 as an exercise.

If 5|n, then n33is clearly congruent to n modulo 5. If 5|n
n33 —n=n(n32-1)=n((n*)®)8—1)=n(1-1)=0

Finding a~*modulo n using the Euclidean algorithm

14




Example 3 : Find the multiplicative inverse of 11 modulo 29.

Solution: We have

29=2x11+7
11=1x7+4
7=1%x4+3
4=1x3+ 1.
Thus
1=4-1x3

=4—1%(T—1x4)=2x4—1x7 =2x(11-1x7)~1x7=2x11-3x7
=)x11-3%(29-2x11)=8x11-3x29

We see that the multiplicative inverse of 11 modulo 29 is

15




Chapter Three

FERMAT'S LITTLE THEOREM AND EULER'S
GENERALIZATION
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FERMAT'S LITTLE THEOREM AND EULER'S GENERALIZATION

3.1: FERMAT'SLITTLE THEOREM
Theorem 1 :

One form of Fermat's Little Theorem states that if p is a prime and if a is an integer
then pla? -a

For example 3 : divides 23—2=6 and 33-3=24 and 43—4=60 and 53-5=120
Similarly, 5 divides 2°—2=30 and 3°—3=240 et cetera.

Obviously aP—a factors as a(a?~1-1) So if p t a then we have
plaP~1 -1

This gives another common form of Fermat's Little Theorem. For example, 3
divides 52—1=24 and 4%—1=15 and 2%2—1=3 Also, 5 divides 2*—1=15 and 3*—1=80
and 4*—1=255, and 7 divides26—1=63 et cetera. After Gauss introduced
congruences, the theorem was typically written

aP=amodp
or, equivalently,
a#0 mod p=>a?~1 =1 mod p

Exercise 1. Show that these two versions of Gauss's form of Fermat's Little
Theorem are

equivalent. In other words, show
version 1<===> version 2

Finally, using the more modern notion of a finite field F, with p elements, we can
write the theorem as

17




a€EF,=>a’ =a
or, equivalently,
a€F=aP™1=1

We will discuss three different proofs of Fermat's Little Theorem. The shortest is a
proof using group theory: Suppose a is in the unit group F;*. By a theorem of group

theory, if |G| is the order of the group, then a'¢!is the identity. The order of the
unit group is p—1, so aP~1=1. This proof is very economical, but will only appeal
to readers who have studied group theory. Furthermore, it is a relatively late proof,
and uses concepts that were not available to Fermat, Euler, and Gauss.

3.2. INDUCTION BASED PROOF

The first of the two highlighted proofs of Fermat's Little Theorem uses induction
and binomial coefficients.

Theorem 1: (Fermat's Little Theorem). Let a be an integer, and let p be a prime.
Then

aP=amod p

Proof: Fix the prime p. First we prove the result for natural numbers n by
induction. The base case is trivial:

0P=0 mod p.
Now suppose n?=n modulo p. By the binomial theorem
(n+ 1)P=nP (X)nP~1 + (D)nP~2 +..+ (pl—,Z) n’+ (pl_’l)n*'l

The formula for the binomial coefficients is

_ p!
(i) T kl(p-k)!

and when 1 <k <p—1 we have p dividing the numerator, but not the denominator.
Thus, forall 1 <k <p-—1,

P) =0 mod p.

18




Hence
(n+1)P=nP +0+..+0+1=nP+1modp.

By induction, we have the result for all n > 0. For negative a, choose n > 0 so that
a=n modulo p. Since the result holds for n, it holds for a as well. Thus the result
holds for all aeZ.

3.3 ERMUTATION BASED PROOF

Now we give a second proof of Fermat's theorem. This involves permuting the
order of factors of (p—1)!. Recall that a permutation map on a finite set is just a
bijection from the set to itself.

For Fermat's theorem we only need the following lemma form m=p pa prime.
However, the general case is no harder to prove.

Lemma 1. Let m > 1 be an integer, and let a € Z}}, . Then the function u, defined
by the rule x = a. X is a bijection Z;;,— Z,y.

Proof: Observe that
i, (Ug-1(X)) = uq (@™t x) =a(a™'x) = x.

Similarly p,-1(pq (X))=X. Thus p,-1 is the inverse of the function u,. Since u, has
an inverse, it is a bijection.

Corollary 2. Let p be an prime. If a€E;* then a,2a,...,(p—1)a are distinct, and every
element of F;* is in the sequence. In particular, this list is a permutation of the list
1,2,3,....p—1.

Proof: The injectivity of u,tells us that the terms are distinct, and the surjectivity
tells us that every element of E* is on the list.

Exercise 2. Make a table showing all the values of the functions u;: F&—FZ.
Observe that multiplication by 3 (modulo 5) permutes {1,2,3,4}.

19




Exercise 3: Make a table showing all the values of the functionsu,: F{X—F%.
Here is the permutation based proof:

Theorem 3: (Fermat's Little Theorem): Let p be a prime. If a€ E;* then aP~1=1,
Proof:

Let u=1-2-3--- (p—1) = (p—1)! considered as an element of F,. Since u is the product
of units, u is also a unit. By Corollary 2,

@ (2a) (3a) ... (p~1Ha)=123..(p~1)=u

since both sides are the product of the same elements, possibly in a different order.
Observe that

(a) (2a) (3a)...((p—1)a) = 1-2-3... (p—1) aP~t=ua??
(move all the a terms to the right). Thus
uaP~1t =u.

Since u is a unit, we can multiply by its inverse . So a1 =1,

3.4 EULER'S THEOREM

The famous mathematician Euler was fascinated with the number theoretic work of
Fermat. In fact, Euler's interest in number theory is largely due to his study of
Fermat's writings. Fermat did not leave a proof of his Little Theorem in his
published writings, but Euler, once he learned of the statement, was able to figure
out a proof. Next Euler thought about how to generalize this result to a modulus m
that is not prime. His key idea was to develop his function p(m), and replace p—1
with p(m). This is motivated by the fact that Z,, has p—1 units, but in general Z,,
has p(m) units. The proof follows closely the permutation based version of the
proof of Fermat's theorem.

Lemma 2: Let m>1 be an integer and let u,...,u,m)be the (distinct) elements of
Zy. Ifaezy, then the terms of the sequence a auy,...,auy, ) are distinct, and
every element of Z.y is in the sequence.

20




Proof: This follows from the fact that pa is a bijection (Lemma 1).

Theorem 4 : (Euler's Theorem). Let m>1 be an integer. If a€ ZZ, then a?™ =1.

Proof: LetZy, ={ uy,...,um)} By the above lemma, and the commutative law of
multi-plication,

Uy Up(m) =@ Ug)* (@ Upp(my, JZAPT™ (U Uy ).

(The first equality is true since the second product has the same factors as the first,
but typically in a different order. The second is true based on moving a to the front.
Observe that there are p(m) occurances of a since there are p(m) units.)

Let u=uy,...,Upm)-
Observe that u is a unit by the closure property. Thus
u=a?m y.
Now multiply both sides by the inverse of u .
3.5 Wilson's Theorem

In the permutation based proof of Fermat's theorem we used (p—1)! in the field F,.
We didn't have to calculate its value, since it cancelled at the end of the proof.
However, it is interesting to note that it is just -1. We begin with a short lemma.

Lemma 3: Let p>2 be a prime and let a€Z}; . Then a=a~" if and only if a is
1or-1.

Proof: One direction is clear. For the other, suppose that a=a~!. Multiplying both
sides by a gives a®=1. In other words, a?—1=0. This implies that (a—1)(a+1)=0.
Since F, is an integral domain, we have a—1=0 or a+1=0. Thus a=1 or a=—1.

Exercise 5: Show that x—x 1 is a bijection of Z% . Conclude from this that (p—1)!
is its own multiplicative inverse in F,. The above lemma tells us that (p—1)! is
either 1 or -1. The next exercise shows that is cannot be 1 but must be -1.

21




Theorem 5 : (Wilson's Theorem): Let p be a prime. Then (p—1)!=—1 mod p.

Proof: If p=2 then it is clear, so assume p>2. If we multiply all the elements of F;*
together we get

12 (p-1) = (p1)!

Now reorder the elements of E* as a,,a,,...,a,—; S0 that a;=1, so that a,=-1,
and, for i>1 so that a,;—1 and a,; are multiplicative inverses to each other. [64]

We can do this by the previous lemma: an element and its inverse pair up to give
two distinct elements except for 1 and -1. Consider the product:
a1,8z,00p-1= 1- (1) - (az-aq) - (@p-2 - ap—1) =1-(-1) -1 - 1=-1
By the commutative law of multiplication in E,;
p-D!'=1-2-(@p-1D=a;a, ;=1
Example 1: Consider 6! modulo 7:
6!=1.2-3-4-5-6 =1-6-(2-4)-(3-5) =1-—1-(1):(1) =—1 mod 7.

From a direct calculation 6! + 1= 721 is seen to be divisible by 7.
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