
1

Ministry of Higher

Education

& Scientific Research

Maysan University

College of Engineering

Department of Electrical

Engineering

Robotic Arm Controlled by Hand Gestures

Students:

Kuwthar jassim

Nawras Majed

Narjes Heriz

Sajeda Hussan

Supervisor:

Sarah Kareem

1446 A.H 2025 A.C

A graduation project report submitted in accordance with the requirements of

Maysan University for the degree of bachelor of Electrical Engineering

II

 ﷽

{
َ

ىن
ُ
مِن

ْ
ؤ

ُ ْ
هُ وَالْ

ُ
مْ وَرَسُىل

ُ
ك

َ
ُ عَمَل سَيَرَي اللَّه

َ
ىا ف

ُ
لِ اعْمَل

ُ
 { وَق

 صَدَقَ اللهُ العلَِيُّ العظَيم

III

 الإهداء

وع إلى اهالينا الاعزاء ، الذين كانوا ولا زالوا مصدر قوتنا بدعمهم الثابت، نهدي هذا المشر

تنا ا هم، ومحبتهم خلال مسبر .لدراسيةوصبر

تها، فنا،]ست ساره كريم [، على توجيهاتها القيمة، وخبر ه بخالص امتناننا إلى مشر
ّ
كما نتوج

ي إنجاح هذا العمل

ي كان لها الدور الأكبر ف

.وتشجيعها المستمر، والت

ي القسم على دعمهم المتواصل

ا بجزيل الشكر لجميع أعضاء الهيئة التدريسية ف

ً
ونتقدم أيض

ي نقلوها إلينا خلال سنوات دراستنا الجامعيةوالمعرفة القيّ
.مة الت

كما نخص بالشكر الدكتور محمد خلف، رئيس قسم الهندسة الكهربائية، على تعاونه وتفانيه،

ه البيئة الأكاديمية اللازمة .وتوفبر

ي هذه الرحلة، فشكرًا على كل من له سبب على

ولا ننسى أصدقائنا وزملائنا الذين رافقونا ف

.ا لهذه المرحلةوصولن

ا، إلى كل من ساهم بكلمة، أو فكرة، أو يدٍ معطاءة ً .نشكركم من أعماق قلوبنا —وأخبر

IV

Abstract

 This project aims to control a robotic arm using human hand gestures in real-time.

A glove equipped with flex sensors and MPU6050 modules captures hand and finger

movements, which are wirelessly transmitted via Bluetooth to an Arduino-controlled robotic

arm. The system translates gestures into physical movements such as rotation, bending, and

gripping. Designed for interactive and assistive use cases, the robotic arm responds within one

second, providing smooth and accurate motion. This gesture-based approach improves usability

and offers potential applications in education, rehabilitation, and industrial automation.

V

List of Contents

Subject page

Chapter one

General Introduction and Project Framework

1.1 Introduction 1

1.2 Background and Evolution of Robotics 2

1.3 Laws of Robotics 3

1.4 Basic Functions of the Robot 4

1.5 Defining the Project Problem 4

1.6 Project Importance 4

1.7 Aims and Objectives

5

1.8 Chapters Layout 5

Chapter Two

Literature Review

2.1 Related Works 6

2.2 Identified Research Gaps 10

2.3 Technical Comparison of Gesture-Based Robotic Arm Designs 12

2.4 Evaluation Outcomes of Previous Gesture-Controlled Robotic

Prototypes
13

CHAPTER THREE

Design and Implementation Methodology for Gesture-Based Robotic Arm

3.1 System Architecture and Overview 14

3.2 Hardware Components and Functions 15

3.2.1 Input Subsystem 15

3.2.1.1 Flex Sensors 15

VI

3.2.1.2 MPU6050 Accelerometers 16

3.2.1.3 Arduino Nano 16

3.2.1.4 Bluetooth Module HC05 18

3.2.2 Output Subsystem (Robotic Arm) 19

3.2.2.1 MG966R Servo Motors 19

3.2.2.2 NEMA 17 Stepper Motor 20

3.2.2.3 A4988 Stepper Motor Driver 21

3.2.2.4 PCA9685 Servo Driver 22

3.2.2.5 Arduino Uno 23

3.2.3 Components of the Project (with Quantity) 24

3.3 Circuit Wiring and Integration 25

3.4 Software Architecture and Programming Logic 27

3.5 Control Unit 29

3.6 Flow Chart 30

3.7 Results and Performance Analysis 32

3.7.1 Joint Mapping of Glove Inputs to Robotic Arm Movements 34

CHAPTER FOUR

Coding and Programming

4.1 Glove Program (Transmitter Side) 35

4.2 Robotic Arm Program (Receiver Side) 39

CHAPTER FIVE

Conclusion and Future Work

51 Conclusion 45

5.2 Future Work 45

Reference 46

VII

Index of Figures

Figures page

Figures 3.1 Flex Sensor 15

Figures 3.2 MPU6050 Accelerometers 16

Figures 3.3 Parts of the Arduino Nano 17

Figures 3.4 Bluetooth Module HC05 18

Figures 3.5 MG966R Servo Motors 20

Figures 3.6 Internal and External View of the NEMA 17 Stepper Motor 21

Figures 3.7 A4988 Stepper motor driver module and pinout diagram 21

Figures 3.8 PCA9685 Servo Driver 23

Figures 3.9 Components and Parts of the Arduino Uno 23

Figures 3.10 Circuit wiring diagram for the Robotic Arm Controlled by

Hand Gestures
25

Figures 3.11 Final shape of the robot arm after connection 26

Figures 3.12 Labeled diagram of the robotic arm joints 32

Figures 3.13 The robotic arm responding to real-time hand gestures 32

Figures 3.14 Real-time response of the robotic arm to user hand gesture 33

Figures 3.15 Robotic arm aligning with a target object (tape roll) 33

Index of Tables

Tables page

Table 2.1 Technical Comparison of Gesture-Based Robotic Arm Designs 12

Table 2.2 Evaluation Results of Reviewed Gesture-Controlled Robotic Systems 13

Table 3.1 List of Project Components with Quantities 24

Table 3.2 Mapping of Robotic Arm Joints to Glove Gestures and Sensor Values 34

1

CHAPTER ONE

General Introduction and Project Framework

1.1 Introduction

The development of robot technology, also known as robotics, has made the workplace safer

and more efficient. The use of robots in hazardous areas, such as those involving harmful

chemicals or dangerous operations, reduces the likelihood of damage to goods or the occurrence

of industrial accidents. Robots are also used in repetitive and productive tasks more than relying

on human workers. In some applications, robots are capable of performing repetitive tasks

faster, at a lower cost, and with higher accuracy than humans. The word ―robot‖ is used to refer

to the device that takes the place of a human in performing work, especially when it is difficult

or impractical for humans to carry it out, and to reduce the potential risks in certain operations

[1]. The current challenge in using computers does not lie in collecting or transmitting visual

data, but in perceiving visual data in order to extract useful information from it [2]. Among

these applications is the creation of a smart car capable of operating without a driver. One of the

applications of robotics is in the field of navigation and surveillance, due to the high and fast

accuracy it provides, as mobile and independent means [3]. Many autonomous and non-

autonomous robots are available today in various areas, such as commercial robots, in research,

and military applications. An autonomous robot is a mechanically and electronically complex

system. Designing an autonomous robot requires knowledge of many engineering-related fields

necessary before designing it technically, including mechanical and electronic control, and

computer engineering. Mechanical engineers usually study the dynamics of the system. System

modeling is a difficult task and can be infinitely complex, and designing a specific model in a

simple and concise way largely depends on basic and sequential steps carried out by electrical

and electronic engineers to design the system and its control interfaces. First, the mathematical

model of the system is created, then control systems and techniques are designed as desired,

taking into account the physical laws, and finally, the economic cost of the design. The

economic costs include sensors and control devices, as obtaining these devices to perform a

2

specific task may be feasible in local markets. Therefore, designers make efforts to find

alternatives, whether for the electronic components required for the design or the programming

capabilities of the designer and the availability of sensor parts and microcontrollers [4]. Finally,

self-controlled robots require knowledge from computer engineering and computer science, in

addition to extensive experience to complete the software that will control the movement of the

robot. The computer engineer must understand the system in which it operates and translate its

movements into simple code instructions in order to obtain sensor data or other data required

from the robot. That is, the robot can be programmed to perform specific and fixed movements,

or to make it sensitive so that it processes the data it receives and then performs the required

movements based on the commands it has received and processed [5].

1.2 Background and Evolution of Robotics

A robot is a mechanical tool capable of performing pre-programmed activities. The robot

accomplishes these activities either by direct instruction and control from a human or by

instruction from computer programs. The activities programmed for the robot to perform are

usually exhausting or dangerous, such as mine detection, outer space exploration, and cleaning

the waste produced in nuclear reactors [6]. Many studies and predictions have been made about

this robot that later failed. However, after many good designs and serious attention to many

details and precise matters, engineers succeeded in presenting various robotic systems for many

industries expected in the near future. Today, due to the tremendous development of computers,

artificial intelligence, technologies, and the obsession with developing space programs, we are

on the verge of another major achievement in the field of robot design sciences. The robot is a

reprogrammable manipulator that can perform multiple tasks and is dedicated to moving

materials, parts, tools, or specific machines through various programmed movements to perform

a number of tasks. There is an ongoing debate among scientists and linguists alike regarding the

precise definition of the robot. Some argue that this term applies to every machine that can be

controlled and moved remotely by humans, while others do not agree with this [7]. Their

argument is that such machines, like a remote-controlled car or plane, cannot be considered

robots because they do not have the ability to think and make decisions on their own. They

3

provide an example that if such a machine can act according to a pre-programmed set of

instructions by stepping back two steps from an obstacle, turning right or left, and continuing

forward, then it becomes possible to label it a true robot [8]. It becomes clear from this that the

fundamental idea held by those with this opinion is that a true robot, according to some, must

possess artificial intelligence and have the ability to recognize patterns, understand systems,

reason, and make inferences. In the field of robotics, the first successful applications of the

robot were in the American automotive industry. At the Ford Motor Company, specifically in

the year 1940, a new word was born called "automation." After much time and effort, the robot

began to perform many tasks in this field such as spot welding, machine loading, and many

other applications. In 1995, around 25,000 robots were introduced into the automotive industry

in America alone, and in the rest of the world, the number was not less than that, as 1,000,000

robots were used in various industrial fields [9]. The most important factor in the development

of robotics technology, which helped the robot break into the industrial field relentlessly, was

based on the discovery of microprocessors (zero-level processors), whose controllers were able

to produce programs capable of executing coordinated movements for several degrees of

freedom. The emergence of the industrial robot also came in multiple types prepared for manual

tasks. Among these types is the robotic arm, which can be defined as a type of manipulator

robot that is usually programmed to perform the same functions as the human arm, to a degree

that may be equivalent to the human arm‘s capability in terms of freedom of movement.

1.3 Laws of Robotics

The laws of robotics were established by Isaac Asimov and are as follows:

First Law: A robot may not cause harm to a human being or, through inaction, allow a human

being to come to harm.

Second Law: A robot must obey the orders given to it by human beings, except where such

orders would conflict with the First Law.

Third Law: A robot must protect its own existence as long as such protection does not conflict

with the First or Second Law [10].

4

1.4 Basic Functions of the Robot

The robot has three main tasks or basic functions:

1. Sensing the environment around it through sensors.

2. Processing the received information through sensors.

3. Acting appropriately based on the previously made decision.

These basic functions are what make the robot an intelligent machine capable of operating

without any human supervision or direct intervention in its work.

1.5 Defining the Project Problem

Recent advancements in human-machine interaction have highlighted the need for more natural

and intuitive methods of communication with robotic systems. Among these, gesture-based

control has emerged as a promising alternative to traditional interfaces that rely on keyboards,

joysticks, or complex programming. Despite the progress, most robotic arms still depend on

intricate control schemes, which can be impractical for individuals with limited mobility or

technical background. This project addresses the challenge of creating a cost-effective, user-

friendly system that translates real-time human hand gestures into robotic arm movements

without requiring prior expertise or physical strain. By bridging the gap between human

intention and robotic execution, the proposed system aims to make robotic manipulation more

accessible and responsive.

.

1.6 Project Importance

The importance of the project lies in the significant role of robots in production lines and in

carrying out various tasks in the modern era, due to their precision, speed, and ability to reach

places that are difficult for humans to access. Robots have become an integral part of industrial

production and daily life in developed countries. This project specifically stands out by offering

a gesture-based control method, making interaction with the robotic arm more natural and

efficient. It opens new possibilities for future applications in areas such as assistive technologies

for people with disabilities, remote operations, and smart industrial processes.

5

1.7 Aims and Objectives

1. To design a multi-movement robotic arm controlled by hand gestures using flex sensors and

motion sensors, aiming to accurately mimic human arm movements.

2. To assist humans in performing certain daily life tasks.

3. To reduce reliance on traditional control tools (such as buttons or mechanical joysticks) and

replace them with a more intuitive and natural gesture-based interaction interface.

1.8 Chapters Layout

 Chapter 1: General Introduction and Project Framework

 Chapter 2: Literature Review

 Chapter 3: Design and Implementation Methodology for Gesture-Based Robotic Arm

 Chapter 4: Coding and Programming

 Chapter 5: Conclusion and Future Work

6

CHAPTER TWO

Literature Review

2.1 Related Works

This chapter reviews the literature (previous studies) on Arm Controlled by Hand Gestures and

related topics concerning gesture-based robotic control systems through low-cost and user-

friendly projects. It highlights the integration of these systems with various sensors and

examines their practical applications. The fundamental concepts of these studies will be

understood and analyzed, and the existing gaps will be identified and developed. The goal is to

provide more efficient projects with high performance, simple systems, and low costs, and to

further develop them in the future.

1. In 2016, The authors [11] proposed MEMS Controlled Robotic Arm with Gestures. This

Paper addresses the design and implementation of a "MEMS Controlled Robotic Arm with

Gesture". The system design was divided into three parts, which are: the accelerometer part, the

robotic arm, and the platform. The system relies on a low-cost 3-axis (Degrees of Freedom)

accelerometer, through which the robotic arm was controlled wirelessly using Zigbee signals.

The robotic arm was mounted on a movable platform, and both were controlled wirelessly using

the same accelerometer in a different switching mode. An accelerometer was fixed on the

human hand to capture its behavior (gestures and postures), and as a result, the robotic arm

moved accordingly, and in the other mode, the same accelerometer was used to capture the

gestures and postures, so the platform moved accordingly. In summary, the robotic arm and

platform were synchronized with the gestures and postures of the user's or operator‘s hand,

respectively. The movements executed by the robotic arm include: pick, drop, raise, and lower

objects. As for the platform's movements, they are: forward, backward, right, and left. The

system includes an IP-based camera that allows real-time video streaming wirelessly to any

internet-connected device such as a mobile phone or laptop.

2. In 2017, The authors [12] proposed Gesture Controlled Robotic Arm using Leap Motion.

This paper, Gesture control commence to be one of the simplest and easy way by with a

complex robot could be controlled easily, with the help of different sensors and among them is

7

the leap motion sensor. It helps to build the inactive way of communication between the human

hand and robotic arm with the help of few mathematical equations. This system can be utilized

in the field of robotics where reduction of lot of effort and manual control is needed. The main

object to study this system is to keep in mind the end goal to empower the embodiment of a

mechanical system in to the home surroundings, to improve the self-governance and freedom of

individuals with rigorous mobility disabilities and to concede at the same the tracking and

aversion of eccentric disorders. The initial design used for the hand was very effective but due

to the limitation used in the system, also limited the efficiencies of the system. The

experimental results conclude that the system can detect hand gesture efficiently in real time

and execute accordingly. As for future development it is considered that leap motion technology

will definitely benefit and enable new ways to human-machine interaction in the field of ADLs

and AAL due to its size and efficiency. This innovation enables more perceptive five DOF

control with an end effector.

3. In 2018, The authors [13] proposed Hand Gesture Controlled Robot Using Arduino. This

paper describes regarding how the conventional hand gestures can control a robot and perform

our desired tasks. The transmitter will transmit the signal in line with the position of

accelerometer and your hand gesture and therefore the receiver will receive the signal and make

the robot move in respective direction. In this paper, an automated robot has been developed

which works according to your hand gesture. The robot moves wirelessly according to palm

gesture. The RF module is working on the frequency of 433 MHz and has a range of 50-80

meters. This robot can be upgraded to detect human life in earthquake and landslide by

implementing the sensor accordingly. It can also be upgraded to bomb detecting robot by

adding robotic arm which can also lift the bomb as well as in general terms, a robotic arm can

be added which can be used in our day to day activities making human life easy.

4. In 2020, The authors [14] proposed Hand Gesture Controlled Robot Arm. The outcome of

this work is to control a robotic arm using flex sensors pinned with a hand glove. The sensors

are employed for remote control that will enable forward, backward, left and right control

movements and pick and drop depends on the hand movements. The hardware setup was

designed which results in the robotic arm formation. The software section enables

8

movements processing wherein the hand gestures were analyzed to extract the actual direction.

The identified direction was transferred to the robotic arm through Zigbee. The command for

the robotic arm is to direct specifically in the surroundings which is enabled by hand gestures

technique adopted by the user. The use of external hardware support for gesture input

not necessary like specified existing system. This working model enables user to control a

robotic arm from his software station. The robotic arm delivers the programmed movement and

the proposed model have widespread application for people working in hazardous areas.

5. In 2022, The authors [15] proposed Gesture Controlled Robotics Hand. This paper deals

with the gesture recognition for controlling the movements of the robotic hand through wireless

control using servo control, flex sensor, Arduino Nano, (receive rand transmitter) transceiver.

Each finger managed to contract individually, however some fingers performed better than

others. An example of a digit with worse performance was the thumb on the robotic hand. As

for the hand signs the robotic hand was able to replicate the hand signs carried out by the

operator with the glove The performed hand motions were also successfully imitated by the

robotic hand, with little to no significant delays being observed.

6. In 2023, The authors [16] proposed A Study on Hand Motion Controlled Robotic Arm.

This study has sought to address the challenges of intuitive control, precision, and usability in

robotic arm technology, with the overarching goal of enhancing the potential applications across

industries. The "A Study on Hand Motion Controlled Robotic Arm" project has made

significant strides in advancing the field of human-robot interaction. The developed HMCR

system represents a leap forward in intuitive and precise robotic control, with the potential to

revolutionize industries and improve the quality of life for individuals with limited mobility. As

we continue to refine and expand this technology, we move closer to a future where human-

robot collaboration is seamless, efficient, and accessible to all.

7. In March 2024, The authors [17] proposed Design and Development of Robotic Arm

Control by Human Hand. This research paper presents a comprehensive study on a robotic

arm controlled by hand gestures and developed using 3D printing technology. The system‘s

intuitive nature, coupled with its accuracy, versatility, and importance in industry, positions it as

a transformative solution for optimizing human-robot collaboration and driving innovation in

9

industrial automation with an intuitive and user-friendly control interface, enhancing human-

robot interaction in various applications such as manufacturing, healthcare, and education. The

paper discusses the Design, implementation, experimental results, and potential applications of

this innovative control System. Future work may focus on optimizing gesture recognition

algorithms, expanding the range of supported gestures, and exploring advanced control

strategies for more complex tasks.

8. In May 2024, The authors [18] proposed Design and Development of Gesture Controlled

Robotic Arm. This paper introduces a groundbreaking approach to wirelessly control robotic

hand movements via gesture recognition. The integration of flex sensors and the ESP32 module

in a Gesture controlled robotic hand marks a notable advancement in human-robot interaction.

This innovative system adeptly interprets hand gestures, enabling precise robotic movements

with potential applications in prosthetics, industrial automation, and assistive technologies. The

project's success highlights the feasibility and promise of leveraging accessible technologies to

elevate user experience and propel robotics research forward.

9. In 2025, The authors [19] proposed Arduino-Based Gesture-Controlled Robot. The

primary objective of this project—controlling a robot using hand gestures—was successfully

achieved without any major obstacles. The robot accurately responds to hand movements,

ensuring smooth operation. To enable remote control, a Holtek encoder-decoder pair (HT12E

and HT12D) was implemented in conjunction with a 433MHz transmitter-receiver module.

HT12E and HT12D are CMOS integrated circuits (ICs) that operate within a voltage range of

2.4V to 12V. The HT12E encoder consists of eight address lines and four additional

address/data lines. When the transmit-enable (TE) pin is set to low, the encoded data from these

lines is transmitted serially. The DOUT pin outputs the data in a repeated sequence, using

positive-going pulses of varying durations to represent binary ‗1‘ and ‗0‘—with the pulse width

for ‗0‘ being twice that of ‗1‘. The frequency of these pulses ranges from 1.5 kHz to 7 kHz,

depending on the resistance value connected between the OSC1 and OSC2 pins.

10

2.2 Identified Research Gaps

Although gesture-controlled robotic systems have .attracted increasing interest, many previous

studies remain limited in key aspects such as real-world validation, user diversity, and

integration .with modern technologies. .This section highlights the main .research gaps found in

each reviewed study, aiming to .guide future work .toward more .practical and advanced

solutions.

1. In [2016] MEMS Controlled Robotic Arm with Gestures the gaps observed:

The system could not accommodate irregularities in hand size or gesture shape and this resulted

in circumstances where the accuracy of the measurement was impacted due to environmental

aspects or hand tremors of the respective users. The system did not accommodate automatically

correcting for hand tremors and/or environmental factors such as lighting that caused

measurement inaccuracies.

2. In [2017] Gesture Controlled Robotic Arm using Leap Motion the gaps observed:

Using the Leap Motion allowed for improved accuracy for the system; however, the Leap

Motion capability did not provide adaptive calibration consideration for differing hand size or

speeds of velocity, and this situation can negatively impact performance consistency for users.

3. In [2018] Hand Gesture Controlled Robot Using Arduino the gaps observed:

The system only accepted relatively simple directional gestures and posed difficulty in

accommodating dynamic variations in gestures, or scale and could not accommodate complex

robotic arm operations for users completing real world task.

4. In [2020] Hand Gesture Controlled Robot Arm the gaps observed:

The system did not provide examples of handling errors associated with detection error that can

occur related to inaccuracies and delays associated with signals; this concern leads to decreased

stability and responsiveness that is useful in time-critical applications.

5. In [2022] Gesture Controlled Robotics Hand the gaps observed:

The stability of the glove dimensions, along with the sensor placements had definitive fixed

sizes, placements, motion tracking and gesture detection and these concerns limit flexibility and

11

comfort for these actions, moreover, long-term usability considerations are valid due to

variations in users' hand shapes or required shapes and any needs of the users.

6. In [2023] A Study on Hand Motion Controlled Robotic Arm the gaps observed:

The potential for good accuracy existed for the system, however the system consistently lacked

adaptive ability to account for and recognize different gesture patterns or hand shapes without

needing retraining to recognize different gesture patterns and/or hand shapes; this concern

influences the breathability of use of the system to a greater diversity of users.

7. In [2024, March] Design and Development of Robotic Arm Control by Human Hand

the gaps observed:

The fixed placement of the potentiometers could also limit flexibility when the users' hand size

differs or when range of motions vary since these concepts are vital to performance precision

and comfort during extended periods of wear.

8. In [2024, May] Design and Development of Gesture Controlled Robotic Arm the gaps

observed:

The system provided reliable gesture recognition performance, but by not providing any

mechanism for adaptively correcting for sensor drift or exploration of user-specific calibration,

could restrict long-term reliability and personalization.

9. In [2025] Arduino-Based Gesture-Controlled Robot the gaps observed:

The system offers useful gesture-based control, but can only filter noise, not adaptively to

correct for sensor drift over long periods of use which could impact accuracy and reliability.

10. Common Gaps Summary:

There was generally no automatic calibration for differences in hand size and user movement.

This was a glaring gap in most studies. While most systems didn't differ significantly in this

area, other researchers didn't account for sensor noise and evolving drift over time. These gaps

can be addressed to enhance the system‘s credibility in this field, resulting in a more accurate,

user-friendly, highly efficient, and cost-effective system.

12

2.3 Technical Comparison of Gesture-Based Robotic Arm Designs

This section provides a comparative overview of the technical designs used in the nine selected

studies. It highlights the sensor types, system interfaces, performance feedback, communication

methods, and key features to offer a clearer understanding of the evolution and diversity in

gesture-controlled robotic arm technologies. As shown in Table 2.1, a technical comparison has

been conducted across all reviewed studies.

Table 2.1 Technical Comparison of Gesture-Based Robotic Arm Designs

Title Sensor Type Display Performance Connectivity Features

MEMS Controlled

Robotic Arm with

Gestures [11].

3-Axis

Accelerometer

Wireless

Camera/Not

Specified

Pick, place,

direction

Zigbee Dual

accelerometer

sync for arm +

base

Gesture Controlled

Robotic Arm using

Leap Motion [12].

Leap Motion Software

Visualization

5 DOF with

end effector

USB Inverse

kinematics, real-

time tracking

Hand Gesture

Controlled Robot Using

Arduino [13].

Accelerometer Not Specified Basic

movement

RF Simple

directional

motion

Hand Gesture

Controlled Robot Arm

[14].

Flex Sensor Mobile App /

LEDs

Pick and

place

Bluetooth RF + app dual

input

Gesture Controlled

Robotics Hand [15].

Flex +

Transceiver

Not Specified Wireless

glove control

RF Custom glove

with servos

A Study on Hand

Motion Controlled

Robotic Arm [16].

Vision + Sensor

Fusion

Graphical

Interface

High

accuracy

Local Motion tracking

+ gesture

mapping

Design and

Development of

Robotic Arm Control

by Human Hand [17].

Potentiometers Not Specified Smooth

mimic

motion

Arduino

USB

3D printed arm,

simple interface

Design and

Development of

Gesture Controlled

Robotic Arm [18].

Flex Sensors Not Specified Functional

control

433 MHz RF Wireless pick-

and-place

Arduino-Based

Gesture-Controlled

Robot [19].

MPU6050

(Accelerometer

+ Gyro)

None / LEDs Directional

control

RF Accelerometer-

based mobile

navigation

13

2.4 Evaluation Outcomes of Previous Gesture-Controlled Robotic Prototypes

This section summarizes the experimental results and evaluation outcomes for each of the

reviewed prototypes. It covers key aspects such as accuracy, validation methods, and practical

performance, providing insights into system reliability and effectiveness. The summarized

evaluation results are presented in Table 2.2.

Table 2.2 Evaluation Results of Reviewed Gesture-Controlled Robotic Systems

Study Accuracy /Error Validation Method Remarks

MEMS Controlled

Robotic Arm with

Gestures [11].

Good real-time

performance

Accelerometer sync

test

Dual part control tested

Gesture Controlled

Robotic Arm using Leap

Motion [12].

Highly responsive Leap 3D coordinate

mapping

5 DOF, fine control

Hand Gesture Controlled

Robot Using Arduino

[13].

Moderate Movement-based

response

Directional only

Hand Gesture Controlled

Robot Arm [14].

Effective App command test Basic grasping task

Gesture Controlled

Robotics Hand [15].

Decent Wireless motion

trials

Servo precision

measured

A Study on Hand Motion

Controlled Robotic Arm

[16].

High Vision-mapping

validation

Reliable tracking

Design and Development

of Robotic Arm Control

by Human Hand [17].

Accurate Angle-to-PWM

mapping

Smooth servo motion

Design and Development

of Gesture Controlled

Robotic Arm

Functional RF gesture demo Controlled motion

achieved

Arduino-Based Gesture-

Controlled Robot [19].

Basic Gesture-to-motor

response

Simple four-directional

control

14

CHAPTER THREE

Design and Implementation Methodology for Gesture-Based Robotic Arm

3.1 System Architecture and Overview

This chapter presents the hardware and software design methodology of the proposed system. It

also includes experimental results. The idea behind this project started from a simple yet

practical goal ―controlling a robotic arm using human hand gestures in real time‖. To make this

possible, a sensor glove was used to capture finger bending and hand orientation. These values

are then translated into movement commands that are sent to a robotic arm, making it perform

corresponding motions. The entire system is divided into three main parts: the mechanical part,

which includes the 3D-printed arm; the electrical part, which includes the sensors, Arduino

boards, motors, and drivers; and the software part, which controls the logic and communication

between the glove and the arm. The mechanical structure of the arm was built using a 3D

printer, allowing for fast prototyping and customization. The electrical components include

three flex sensors and an MPU6050 sensor fixed on a glove, connected to an Arduino Nano.

The captured data is sent via Bluetooth using the HC-05 module to another Arduino Uno on the

arm side, which controls six servo motors using the PCA9685 driver. These motors move the

joints of the robotic arm according to the received commands. The software was programmed

using Arduino IDE. It reads the sensors‘ input, processes them, and maps the values to motor

positions. This helps simulate the same hand gestures in the robotic arm, providing a responsive

and intuitive experience. The system is powered using a 7.4V Li-ion battery, providing stable

energy to both the control boards and servo motors. All the mechanical parts of the arm were

printed using a Creality Ender 3 printer, which helped reduce cost and allowed for a high level

of mechanical precision.

15

3.2 Hardware Components and Functions

This section outlines the key hardware components used in the system, including sensors,

microcontrollers, drivers, and actuators. Each component plays a specific role in capturing hand

gestures, transmitting data, and executing precise robotic arm movements.

3.2.1 Input Subsystem

This subsystem is responsible for sensing the hand gestures and transmitting the interpreted data

to the robotic arm.

3.2.1.1 Flex Sensors

 The versatility of flex sensors makes them valuable for creating interactive and responsive

systems that can adapt to physical changes in their environment. When the sensor is bent, the

resistance of the conductive material changes, and this change in resistance. Flex sensors are

commonly used in various applications, including robotics, wearable devices, and medical

equipment [8].

Specification:

 Operating voltage of this sensor ranges from 0V to 5V

 It can function on low-voltages.Length 2.2 inch.

 Power rating is 1 Watt for peak & 0.5Watt for continuous.

 Operating temperature ranges from -45ºC to +80ºC

 Flat resistance is 25K Ω

 The tolerance of resistance will be ±30%

 The range of bend resistance will range from45K -125K Ohms.

Figure (3.1) Flex Sensor

16

3.2.1.2 MPU6050 Accelerometers

The MPU6050 Accelerometer and Gyroscope is a 6-axis motion tracking sensor that integrates

a 3-axis accelerometer and a 3-axis gyroscope into a single compact module. . It provides

orientation data (pitch, roll, yaw) which helps in detecting hand tilt and rotation. This module

plays a crucial role in identifying directional movements of the hand. The fusion of gyroscope

and accelerometer data enables more stable and accurate gesture recognition.It is widely used

in motion-based applications, robotics due to its high precision and ease of integration with

microcontrollers like Arduino. [20].

Figure (3.2) MPU6050 Accelerometers

3.2.1.3 Arduino Nano

The Arduino Nano is equipped with 30 male I/O headers, in a DIP30-like configuration, which

can be programmed using the Arduino Software integrated development environment (IDE),

which is common to all Arduino boards and running both online and offline. The board can be

powered through a type-B mini-USB cable or from a 9 V battery.Micro-controller: Microchip

ATmega328P [51].

Specification:

 Operating voltage: 5 volts

 Input voltage: 6 to 20 volts

 Digital I/O pins: 14 (6 optional PWM outputs)

17

 Analog input pins: 8

 DC per I/O pin: 40 mA

 DC for 3.3 V pin: 50 mA

 Flash memory: 32 KB, of which 0.5 KB is used by bootloader

 SRAM: 2 KB

 EEPROM: 1 KB

 Clock speed: 16 MHz

 Length: 45 mm

 Width: 18 mm

 Mass: 7 g

 USB: Mini-USB Type-B [5]

 ICSP Header: Yes

 DC Power Jack: No [15].

Figure (3.3) Parts of the Arduino Nano

18

3.2.1.4 Bluetooth Module HC05

HC-05 module is an easy to use Bluetooth SPP (Serial Port Protocol) module, designed for

transparent wireless serial connection setup. It has the footprint as small as 12.7mmx27mm. It is

connected to android mobile using its inbuilt Bluetooth and receives signal from the android

app and delivers characters to microcontroller accordingly [21].

Features:

 Up to +4dBm RF transmit power

 Low Power 1.8V Operation,1.8 to 3.6V /O

 Default Baud rate: 38400, Data bits:8, Stop bit:1, Parity: No parity, Data control has

supported baud rate:9600,19200,3

 8400,57600, 115200,230400,460800.

 Auto-connect to the last device on power as default.

Figure (3.4) Bluetooth Module HC05

is considered part of both the input (glove) and output (arm) subsystems, as it facilitates

wireless communication between them.

19

3.2.2 Output Subsystem (Robotic Arm)

This subsystem interprets the received commands and translates them into mechanical motion

through actuators.

Tower Pro MG996 Metal Gear Servo Motor The MG996R is a metal gear servo motor with a

maximum stall torque of 11 kg/cm. Like other RC servos the motor rotates from 0 to 180 degree

based on the duty cycle of the PWM wave supplied to its signal pin. The MG996R is essentially

an upgraded version of the famous MG995 servo, and features upgraded shock-proofing and a

redesigned PCB and IC control system that make it much more accurate than its predecessor.

The gearing and motor have also been upgraded to improve dead bandwidth and centering. The

unit comes complete with 30cm wire and 3 pin ‗S‘ type female header connector that fits most

receivers, including Futaba, JR, GWS, Cirrus, Blue Bird, Blue Arrow, Corona, Berg, Spektrum

and Hitec. This high-torque standard servo can rotate approximately 120 degrees (60 in each

direction) [22].

Specifications [22]:

 Weight: 55 g

 Dimension: 40.7 x 19.7 x 42.9 mm approx.

 Stall torque: 9.4 kg·cm (4.8 V), 11 kg·cm (6 V)

 Operating speed: 0.17 s/60o (4.8 V), 0.14 s/60 o (6 V)

 Operating voltage: 4.8 V a 7.2 V

 Running Current: 500 mA – 900 mA (6V)

 Stall Current: 2.5 A (6V)

 Dead band width: 5 µs

 Stable and shock proof double ball bearing design

 Temperature range: 0-55

3.2.2.1 MG966R Servo Motors

20

3.2.2.2 NEMA 17 Stepper Motor

A stepper motor used with 3D printers, CNC machines, robotics, automation systems, precision

instrumentation, and medical equipment.

Specifications :

 Operating Mode: Bipolar Mode

 Detent Torque: 1.6 to 2.6 cNm

 Holding Torque: 19.5 to 55 cNm

 Step Angle: 1.8 degrees (200 steps per revolution)

 Number of Leads: 4

 Rated Voltage: 12 to 24 V

 Rated Current: 0.33 to 1.30 Amps

 Compatible with external and internal micro-stepping drivers for enhanced resolution and

smoother operation.

Features :

1. High Precision: The 1.8-degree step angle ensures precise control with 200 steps per

revolution.

Figure (3.5) MG966R Servo Motors

21

2. Versatile Voltage Range: Operates effectively between 12 to 24 V, accommodating various

power supply options.

3. Adjustable Current: Rated current range of 0.33 to 1.30 Amps allows for flexibility in

torque and speed settings.

4. Strong Holding Torque: With a holding torque ranging from 19.5 to 55 cNm, it is suitable

for applications requiring strong positional stability.

5. Micro-Stepping Support: Compatible with both internal and external micro-stepping drivers

to achieve finer resolution and smoother motion [23].

3.2.2.3 A4988 Stepper Motor Driver

Drives the NEMA 17 stepper motor by controlling the current and providing micro-stepping

features. It enhances motion smoothness and efficiency in stepper motor control [24].

Figure (3.7) (a) A4988 Stepper motor driver module, and (b) its pinout diagram.

Figure (3.6) Internal and External View of the NEMA 17 Stepper Motor [23].

22

3.2.2.4 PCA9685 Servo Driver

The PCA9685 is a 16-channel I2C-bus controlled LED controller optimized for

Red/Green/Blue/Amber (RGBA) color backlighting applications. Each LED output has

individual 12-bit resolution (4096 steps) PWM controller with a fixed frequency. The controller

operates at a programmable frequency from a typical 24 Hz to 1526 Hz with a duty cycle that is

adjustable from 0% to 100% so the LED can be set to output a specific brightness. All outputs

are set to the same PWM frequency. With the PCA9685 as the master chip, the 16-channel 12-

bit PWM Servo Driver only needs 2 pins to control 16 servos, thus greatly reducing the

occupant I/Os. Moreover, it can be connected to 62 driver boards at most in a cascade way,

which means it will be able to control 992 servos in total.

Technical Specification:

 Driver IC: PCA9685

 Size: 62mm*25mm*15mm (L*W*H)

Features:

Contains an I2C-controlled PWM driver with a built-in clock. It means, unlike the TLC5940

family. 5V compliant, which means you can control it from a 3.3V microcontroller, which is

good when you want to control white or blue LEDs with a 3.4V+ forward voltage Supports

using only two pins to control 16 free-running PWM outputs – can even chain up 62 breakouts

to control up to 992 PWM outputs. 3 pin connectors in 4 groups, so plug in 16 servos at one

time (Servo plugs are slightly wider than 0.1" so you can only stack 4 adjacent ones on 0.1"-

hole female headers 12-bit resolution for each output - for servos, that means about 4us

resolution at an update rate of 60Hz

Applications:

 RGB or RGBA LED drivers

 LED status information

 LED displays

 LCD backlights

 Keypad backlights for cellular phones or handheld devices

23

Figure (3.8) PCA9685 Servo Driver

3.2.2.5 Arduino Uno

The central controller of the robotic arm. It receives Bluetooth data from the glove via the HC-

05 module and generates the necessary PWM signals to control the servos and stepper motor. It

is chosen for its compatibility with a wide range of motor control libraries and its ease of

programming.

Figure (3.9) Components and Parts of the Arduino Uno

24

3.2.3 Components of the Project (with Quantity)

This section presents a detailed breakdown of all hardware components used in the development

of the hand-gesture controlled robotic arm. Each item is listed with its exact quantity to provide

a clear overview of the system‘s physical structure and assembly needs.

Table 3.1 List of Project Components with Quantities

No. Component Quantity Description/Note

1 MG966R Servo Motor 6 For joint movements of the robotic arm

2 Servo Driver PCA9685 1 Controls all servo motors simultaneously

3 Arduino Uno 1 Main controller for the robotic arm

4 Arduino Nano 1 Microcontroller for the glove unit

5 Flex Sensor 3 Captures finger bending gestures

6 MPU6050

Accelerometer/Gyro

2 Measures hand orientation

7 Bluetooth Module HC-05

1 Wireless communication between glove and

arm

8 NEMA 17 Stepper Motor 1 Linear movement for base/extension

9 A4988 Stepper Motor Driver 1 Drives the NEMA 17 motor

10 Battery (5V, 2200mAh) 1 Power source for the system

11 Breadboard 1 For circuit prototyping

12 Jumper Wires Multiple Connections between components

13 Resistors (10kΩ + 220Ω) Several Used with sensors and LEDs

14 Capacitors (100nF) 3 Noise reduction and signal stability

15 Builders Glove 1 Platform for sensor attachment

16 9V Battery + Clip 1 Powers the glove module

17 Braided Cable Sleeve 1 Organizes and protects wires

25

3.3 Circuit Wiring and Integration

The complete wiring layout of the project, titled Robotic Arm Controlled by Hand Gestures,

was diagrammed to clearly illustrate the electrical connections among all major components,

including the Arduino Uno & Arduino Nano, PCA9685 servo driver, A4988 stepper motor

driver, HC-05 Bluetooth module, Li-Po battery pack, and actuators, as depicted in the following

figure.:

Figure(3.10) Show the interconnection of input and output subsystems through the Arduino

Uno and associated modules. Where the circuit wiring of the robotic arm system was carefully

designed to ensure synchronized movement based on hand gestures and reliable communication

between the glove and the robotic arm. The integration process began by placing all electronic

components on a breadboard for testing and alignment. The Flex sensors, embedded in a glove,

were connected to the analog input pins of the Arduino Nano to capture finger bending. Each

sensor‘s VCC and GND pins were connected to the 3.3V and ground rails respectively, while

Figure (3.10) Circuit wiring diagram for the Robotic Arm Controlled by Hand Gestures project

26

their output signal pins were routed to analog pins A0 to A4, enabling the Arduino Nano to read

varying resistance values caused by finger movement. To facilitate wireless communication, the

HC-05 Bluetooth module was integrated and connected to the TX and RX pins of the Arduino

Nano, allowing data transmission from the glove to the robotic arm controller. On the receiving

end, an Arduino Uno was configured to control the motors. A PCA9685 servo driver was

employed to drive six MG966R servo motors, providing sufficient PWM signals with stable

timing. The SCL and SDA pins of the PCA9685 module were connected to A5 and A4

respectively, which are the default I2C pins on the Arduino Uno. The driver‘s power and

ground were connected to a 5V battery pack and a common GND to ensure consistent motor

operation. Additionally, a NEMA 17 stepper motor was driven via an A4988 stepper driver,

with DIR and STEP pins connected to digital I/O pins on the Arduino Uno. Power was supplied

to the system through either USB during testing or a 9V battery connected to the Vin and GND

pins for standalone operation. Great care was taken to shorten wire lengths, ensure tight

connections, and prevent noise or instability. This organized circuit structure enabled accurate

gesture recognition, real-time actuation of the robotic arm, and stable wireless communication,

making the system both portable and efficient.

Figure(3.11) Final shape of the robot arm after connection

27

3.4 Software Architecture and Programming Logic

1. PCA9685 Servo Driver Library and Variable Definitions

#include "HCPCA9685.h"

#define I2CAdd 0x40

HCPCA9685 HCPCA9685(I2CAdd);

const int servo_joint_L_parking_pos = 60;

int servo_joint_L_pos_increment = 20;

int servo_joint_L_parking_pos_i =

servo_joint_L_parking_pos;

int servo_joint_L_min_pos = 10;

int servo_joint_L_max_pos = 180;

Note: These initial values define the starting position, motion sensitivity, and angular

limits for each servo.

2. Initializing Serial Communication for Bluetooth

Serial.begin(4800); // Initialise default communication rate of the Bluetooth module

Note: The 4800 baud rate is suitable for stable communication with the HC-05 module.

3. Receiving Bluetooth Data and Storing It

if (Serial.available() > 0) {

 state = Serial.read();

 Serial.print(state);

}

Note: The received value is used to determine the motor behavior.

4. Executing Motion Based on Received Character

if (state == 'S') {

 baseRotateLeft();

 delay(response_time);

}

Note: A short delay is added to prevent repeated triggering of the same command.

28

5. Rotating the Base Using a Stepper Motor

void baseRotateLeft() {

 digitalWrite(stepPin, LOW);

 delayMicroseconds(stepDelay);

}

6. Moving a Servo Motor Based on Gesture

if (state == 'f') {

 if (servo_joint_3_parking_pos_i < servo_joint_3_max_pos) {

 HCPCA9685.Servo(4, servo_joint_3_parking_pos_i);

 delay(response_time);

 Serial.println(servo_joint_3_parking_pos_i);

 servo_joint_3_parking_pos_i += servo_joint_3_pos_increment;

 }

}

Note: A hard stop prevents the motor from exceeding its maximum rotation (typically

180°), which could damage the servo gears.

7. Defining Flex Sensors and MPU6050 Addresses

int pinkie_Data = A1;

int finger_Data = A2;

int thumb_Data = A3;

const int MPU2 = 0x69, MPU1 = 0x68;

int response_time = 1000;

8. Reading Values from the Flex Sensors

pinkie = analogRead(pinkie_Data);

finger = analogRead(finger_Data);

thumb = analogRead(thumb_Data);

9. Reading Orientation Data from MPU6050

GetMpuValue1(MPU1);

GetMpuValue2(MPU2);

29

10. Sensor Calibration Routine on Reset

if (bool_caliberate == false) {

 delay(1000);

 thumb_high = (thumb * 1.15);

 thumb_low = (thumb * 0.9);

 finger_high = (finger * 1.03);

 finger_low = (finger * 0.8);

 pinkie_high = (pinkie * 1.06);

 pinkie_low = (pinkie * 0.8);

 bool_caliberate = true;

}

Note: The calibration is triggered automatically upon pressing the reset button on the Arduino Nano.

11. Sending Gesture Command Based on Sensor Thresholds

if (finger >= finger_high) {

 Serial.print("F");

 delay(response_time);

}

if (finger <= finger_low) {

 Serial.print("f");

 delay(response_time);

}

Note: Each character corresponds to a specific servo action, such as opening or closing the claw.

3.5 Control Unit

The control system is structured around two Arduino boards: one acts as a peripheral unit and

the other as a central controller. This design improves modularity, separates signal

interpretation from actuation, and enhances overall performance.

1. Peripheral Control Unit – Arduino Nano

Mounted on the glove, the Arduino Nano reads values from flex sensors and MPU6050 IMUs.

It processes these inputs to detect gestures and sends symbolic commands via Bluetooth to the

Arduino Uno. This reduces the computational load on the central controller.

2. Central Control Unit – Arduino Uno

The Arduino Uno receives gesture codes and translates them into motor actions. It controls

servo motors through a PCA9685 driver and a stepper motor using an A4988 driver. Safety

checks like hard stops and signal validation ensure proper operation.

30

3.6 Flow Chart

31

This flowchart shows a (fully integrated) control program of the robotic arm with two different

types of control: servo motor and sensor-based gesture through which logical order to run is

integrated between them. The system is live in a sense that it relies on bluetooth to receive

commands and with the Arduino it translates these to mechanical movements through a blend of

programmed conditions and sensor return values. program starts, where servo driver

(PCA9685) was initialized and Motor position variables declared. Next it sets up serial

communication via Bluetooth handling data transfer from glove interface to robot arm. A loop

which checks whether there is any data coming through the serial port. After sensing data, the

variable state reads and stores the detected data. This part then looks for what the value of state

is versus a list of predefined commands (‖s" for base turn, ‗f‘ claw grip) and runs the motor

with it using conditionals. All motor movement is accompanied by validator bounds checks to

make sure they do not exceed the ranges of the servos. Alternatively, if the received command

does not match with some pre-defined characters the system will get into gesture based

controlling. Then it checks for button_calibrate (bool_calibrate == true). If not, system

calibrates it by measuring with a dynamic manner high and low of thumb, finger, pinkie

sensors. This process will be executed only once in each session. Post calibration, the flex

sensors and (MPU6050) orientation modules values are read live. They are then compared to

the thresholds of that user's calibrations to see what movement they wanted. From the

comparison, the system commands (open claw, rotate base for example) and transmits the

command via Bluetooth to the robotic arm. This loop runs for an infinite time causing the

robotic arm to keep responding to either the direct serial commands or gestures. Combining

these two control strategies provides a bidentate of precision and user-friendly interaction, the

system is ideal for educational and experimental robotics.

32

3.7 Results and Performance Analysis

The robotic arm used in this project features six degrees of freedom (6-DOF), comprising

multiple articulated joints: the Base Joint, Shoulder Joint, Elbow Joint, two Wrist Joints (Wrist

Joint 1 & Wrist Joint 2), and the Gripper Joint. Each joint is actuated by a servo motor

controlled via Bluetooth communication from the main processing unit. The image below

provides a labeled diagram identifying the precise locations and names of each joint.

Figure 3.12 Labeled diagram of the robotic arm joints (Base, Shoulder, Elbow, Wrist, and Gripper)

The system relies on a smart glove to detect hand movements and translate them into robotic

commands. The glove integrates Flex sensors and an MPU6050 accelerometer to monitor finger

bending and wrist orientation. When the user wears the glove and performs gestures, the sensor

data is captured and processed by an Arduino Nano, which transmits the commands wirelessly

to the robotic arm. This integration enables real-time responsiveness—typically within one

second—making the system highly suitable for interactive tasks.

Figure 3.13 The robotic arm responding to real-time hand gestures captured via the smart glove

33

The implemented robotic arm has proven its capability to execute real-time tasks by responding

immediately to hand gestures transmitted via the glove. In this demonstration, the system

successfully converted a physical hand motion into precise servo actuation within

approximately one second. This level of responsiveness reflects a well-calibrated

communication loop between the glove sensors and the arm‘s microcontroller, emphasizing the

system‘s viability for interactive and assistive applications.

Figure 3.14 Real-time response of the robotic arm to user hand gesture for precision interaction task.

The robotic arm was also able to recognize and respond to gesture inputs to perform object

manipulation tasks, such as targeting and preparing to pick up a cylindrical item. In this trial,

the system correctly aligned the gripper with the object using only data from the glove's flex

and motion sensors, demonstrating its spatial accuracy and ability to interpret user intention in

three-dimensional space.

Figure 3.15 Robotic arm aligning with a target object (tape roll) for a grip action using hand gesture input.

34

3.7.1 Joint Mapping of Glove Inputs to Robotic Arm Movements

To enable intuitive control of the robotic arm, each servo motor is mapped to a specific gesture

or hand orientation using data from flex sensors and accelerometers embedded in the glove. The

following table provides the complete mapping between glove inputs and robotic joint

responses.

Table 3.2 Mapping of Robotic Arm Joints to Glove Gestures and Sensor Values

Number Servo Name Robotic Arm

Action

Glove Sensor Type Glove

Symbol

1 Base Joint Rotate Base Left

or Right

Accelerometer_2 T, t

2 & 3 Shoulder Joint Move Shoulder

Closer or Further

Pinkie Finger Flex P, p

3 Elbow Joint Rotate Elbow Joint Accelerometer_2 C, c

4 Wrist Joint 1 Move Wrist Up or

Down

Accelerometer_1 U, D

5 Wrist Joint 2 Rotate Wrist (CW

or CCW)

Accelerometer_1 L, R

6 Gripper Joint Open or Close

Claw Grip

Index Finger Flex F, f

Note:

• T/t – Rotate Base Left/Right

• P/p – Move Shoulder Forward/Backward (Pinkie bend)

• C/c – Rotate Elbow Joint

• U/D – Move Wrist Up or Down

• L/R – Rotate Wrist Left or Right

• F/f – Close/Open Gripper (Index bend)

35

CHAPTER FOUR

Coding and Programming

4.1 Glove Program (Transmitter Side)

#include<Wire.h>

//Create thumb Sensors

int pinkie = 0; //Pinkie thumb

int finger = 0; //finger thumb

int thumb = 0; //Index thumb

int pinkie_Data = A1;

int finger_Data = A2;

int thumb_Data = A3;

//const int MPU_addr = 0x68;

const int MPU2 = 0x69, MPU1 = 0x68;

//First MPU6050

int16_t AcX1, AcY1, AcZ1, Tmp1, GyX1, GyY1, GyZ1;

int minVal = 265;

int maxVal = 402;

double x;

double y;

double z;

//Second MPU6050

int16_t AcX2, AcY2, AcZ2, Tmp2, GyX2, GyY2, GyZ2;

int minVal2 = 265;

int maxVal2 = 402;

double x2;

double y2;

double z2;

/*Autotune flex parameter

 For Debug Mode. Check the upper and lowe limit of the flex sensors

 3 Flex sensors used. Thumb, Middle, Pinkie*/

int thumb_high = 0;

int thumb_low = 0;

int finger_high = 0;

int finger_low = 0;

int pinkie_high = 0;

int pinkie_low = 0;

//Stop Caliberating the Flex Sensor when complete

bool bool_caliberate = false;

//How often to send values to the Robotic Arm

int response_time = 100;

void setup() {

 pinMode(3, OUTPUT);

 Wire.begin();

 Wire.beginTransmission(MPU1);

 Wire.write(0x6B);// PWR_MGMT_1 register

 Wire.write(0); // set to zero (wakes up the MPU-6050)

 Wire.endTransmission(true); Wire.begin();

 Wire.beginTransmission(MPU2);

 Wire.write(0x6B);// PWR_MGMT_1 register

 Wire.write(0); // set to zero (wakes up the MPU-6050)

 Wire.endTransmission(true);

36

 Serial.begin(4800);

 delay(1000);

}

void loop() {

 pinMode(3, HIGH); //Use basic LED as visual indicator if value being sent

 GetMpuValue1(MPU1);

 delay(10);

 //get values for second mpu having address of 0x69

 GetMpuValue2(MPU2);

 delay(10);

 //Print out a value, based on the change of the XYZ co-ordinates of 1st or 2nd MPU

 //Move Left

 if (x > 15 && x < 55 && y < 30) {

 Serial.print("L");

 delay(response_time);

 }

 //Move Right

 if (x < 310 && x > 270) {

 Serial.print("R");

 delay(response_time);

 }

 //Claw Up

 if (y > 60 && y < 80) {

 Serial.print("G");

 delay(response_time);

 }

 // //Claw Down

 if (y < 310 && y > 270) {

 Serial.print("U");

 delay(response_time);

 }

 // //Move right

 if (y2 > 50 && y2 < 85) {

 Serial.print("C");

 delay(response_time);

 }

 // //Move left --- Right Hand

 if (y2 < 160 && y2 > 120) {

 Serial.print("c");

 delay(response_time);

 }

 // read the values from Flex Sensors to Arduino

 pinkie = analogRead(pinkie_Data);

 finger = analogRead(finger_Data);

 thumb = analogRead(thumb_Data);

 //Calibrate to find upper and lower limit of the Flex Sensor

 if (bool_caliberate == false) {

 delay(1000);

 thumb_high = (thumb * 1.15);

 thumb_low = (thumb * 0.9)

 finger_high = (finger * 1.03);

 finger_low = (finger * 0.8);

 pinkie_high = (pinkie * 1.06);

 pinkie_low = (pinkie * 0.8);

 bool_caliberate = true;

 }

37

 delay(response_time);

 // Pinkie

 if (pinkie >= pinkie_high) {

 Serial.print("P");

 delay(response_time);

 }

 if (pinkie <= pinkie_low) {

 Serial.print("p");

 delay(response_time);

 }

 // thumb 1 - thumb (Base Rotation)

 if (thumb >= thumb_high) {

 Serial.print("T");

 delay(response_time);

 }

 if (thumb <= thumb_low) {

 Serial.print("t");

 delay(response_time);

 }

 // finger 1 - Claw Bend/Open

 if (finger >= finger_high) {

 Serial.print("F");

 delay(response_time);

 }

 if (finger <= finger_low) {

 Serial.print("f");

 delay(response_time);

 }

 else {

 delay(5);

 }

}

void GetMpuValue1(const int MPU) {

 Wire.beginTransmission(MPU);

 Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)

 Wire.endTransmission(false);

 Wire.requestFrom(MPU, 14, true); // request a total of 14 registers

 AcX1 = Wire.read() << 8 | Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)

 AcY1 = Wire.read() << 8 | Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)

 AcZ1 = Wire.read() << 8 | Wire.read(); // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)

 Tmp1 = Wire.read() << 8 | Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)

int xAng = map(AcX1, minVal, maxVal, -90, 90);

 int yAng = map(AcY1, minVal, maxVal, -90, 90);

 int zAng = map(AcZ1, minVal, maxVal, -90, 90);

 GyX1 = Wire.read() << 8 | Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)

 GyY1 = Wire.read() << 8 | Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)

 GyZ1 = Wire.read() << 8 | Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)

 x = RAD_TO_DEG * (atan2(-yAng, -zAng) + PI) + 4; //offset by 4 degrees to get back to zero

 y = RAD_TO_DEG * (atan2(-xAng, -zAng) + PI);

 z = RAD_TO_DEG * (atan2(-yAng, -xAng) + PI);

}

void GetMpuValue2(const int MPU) {

 Wire.beginTransmission(MPU);

 Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)

 Wire.endTransmission(false);

 Wire.requestFrom(MPU, 14, true); // request a total of 14 registers

38

 AcX2 = Wire.read() << 8 | Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)

 AcY2 = Wire.read() << 8 | Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)

 AcZ2 = Wire.read() << 8 | Wire.read(); // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)

 Tmp2 = Wire.read() << 8 | Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)

 int xAng2 = map(AcX2, minVal2, maxVal2, -90, 90);

 int yAng2 = map(AcY2, minVal2, maxVal2, -90, 90);

 int zAng2 = map(AcZ2, minVal2, maxVal2, -90, 90);

 GyX2 = Wire.read() << 8 | Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)

 GyY2 = Wire.read() << 8 | Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)

 GyZ2 = Wire.read() << 8 | Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)

 x2 = RAD_TO_DEG * (atan2(-yAng2, -zAng2) + PI) + 4; //offset by 4 degrees to get back to zero

 y2 = RAD_TO_DEG * (atan2(-xAng2, -zAng2) + PI);

 z2 = RAD_TO_DEG * (atan2(-yAng2, -xAng2) + PI);

}

void debug_flex() {

 //Sends value as a serial monitor to port

 //thumb (Claw open / close)

 Serial.print("Thumb: ");

 Serial.print(thumb);

 Serial.print("\t");

 // //thumb Params

 Serial.print("thumb High: ");

 Serial.print(thumb_high);

 Serial.print("\t");

 Serial.print("T Low: ");

 Serial.print(thumb_low);

 Serial.print("\t");

 //finger (Claw Further)

 Serial.print("finger: ");

 Serial.print(finger);

 Serial.print("\t");

 // finger Params

 Serial.print("finger High: ");

 Serial.print(finger_high);

 Serial.print("\t");

 Serial.print("finger Low: ");

 Serial.print(finger_low);

 Serial.print("\t");

 //Pinkie (Claw Further)

 Serial.print("Pinkie: ");

 Serial.print(pinkie);

 Serial.print("\t");

 // //Pinkie Params

 Serial.print("Pinkie High: ");

 Serial.print(pinkie_high);

 Serial.print("\t");

 Serial.print("Pinkie Low: ");

 Serial.print(pinkie_low);

 Serial.print("\t");

 Serial.println();

}

39

4.2 Robotic Arm Program (Receiver Side)

/* Include the HCPCA9685 library */

#include "HCPCA9685.h"

/* I2C slave address for the device/module. For the HCMODU0097 the default I2C address

 is 0x40 */

#define I2CAdd 0x40

/* Create an instance of the library */

HCPCA9685 HCPCA9685(I2CAdd);

//initial parking position of the motor

const int servo_joint_L_parking_pos = 60;

const int servo_joint_R_parking_pos = 60;

const int servo_joint_1_parking_pos = 70;

const int servo_joint_2_parking_pos = 47;

const int servo_joint_3_parking_pos = 63;

const int servo_joint_4_parking_pos = 63;

//Degree of robot servo sensitivity - Intervals

int servo_joint_L_pos_increment = 20;

int servo_joint_R_pos_increment = 20;

int servo_joint_1_pos_increment = 20;

int servo_joint_2_pos_increment = 50;

int servo_joint_3_pos_increment = 60;

int servo_joint_4_pos_increment = 40;

//Keep track of the current value of the motor positions

int servo_joint_L_parking_pos_i = servo_joint_L_parking_pos;

int servo_joint_R_parking_pos_i = servo_joint_R_parking_pos;

int servo_joint_1_parking_pos_i = servo_joint_1_parking_pos;

int servo_joint_2_parking_pos_i = servo_joint_2_parking_pos;

int servo_joint_3_parking_pos_i = servo_joint_3_parking_pos;

int servo_joint_4_parking_pos_i = servo_joint_4_parking_pos;

//Minimum and maximum angle of servo motor

int servo_joint_L_min_pos = 10;

int servo_joint_L_max_pos = 180;

int servo_joint_R_min_pos = 10;

int servo_joint_R_max_pos = 180;

int servo_joint_1_min_pos = 10;

int servo_joint_1_max_pos = 400;

int servo_joint_2_min_pos = 10;

int servo_joint_2_max_pos = 380;

int servo_joint_3_min_pos = 10;

int servo_joint_3_max_pos = 380;

int servo_joint_4_min_pos = 10;

int servo_joint_4_max_pos = 120;

int servo_L_pos = 0;

int servo_R_pos = 0;

int servo_joint_1_pos = 0;

int servo_joint_2_pos = 0;

int servo_joint_3_pos = 0;

int servo_joint_4_pos = 0;

char state = 0; // Changes value from ASCII to char

int response_time = 5;

int response_time_4 = 2;

int loop_check = 0;

int response_time_fast = 20;

40

int action_delay = 600;

//Posiion of motor for example demos

unsigned int Pos;

// Define pin connections & motor's steps per revolution

const int dirPin = 4;

const int stepPin = 5;

const int stepsPerRevolution = 120;

int stepDelay = 4500;

const int stepsPerRevolutionSmall = 60;

int stepDelaySmall = 9500;

void setup()

{

 // Declare pins as Outputs

 pinMode(stepPin, OUTPUT);

 pinMode(dirPin, OUTPUT);

 /* Initialise the library and set it to 'servo mode' */

 HCPCA9685.Init(SERVO_MODE);

 /* Wake the device up */

 HCPCA9685.Sleep(false);

 Serial.begin(4800); // Initialise default communication rate of the Bluetooth module

 delay(3000);

}

void loop() {

 if (Serial.available() > 0) { // Checks whether data is coming from the serial port

 state = Serial.read(); // Reads the data from the serial port

 Serial.print(state); // Prints out the value sent

 //For the naming of the motors, refer to the article / tutorial

 //Move (Base Rotation) Stepper Motor Left

 if (state == 'S') {

 baseRotateLeft();

 delay(response_time);

 }

 //Move (Base Rotation) Stepper Motor Right

 if (state == 'O') {

 baseRotateRight();

 delay(response_time);

 }

 //Move Shoulder Down

 if (state == 'c') {

 shoulderServoForward();

 delay(response_time);

 }

 //Move Shoulder Up

 if (state == 'C') {

 shoulderServoBackward();

 delay(response_time);

 }

 //Move Elbow Down

 if (state == 'p') {

 elbowServoForward();

 delay(response_time);

 }

 //Move Elbow Up

 if (state == 'P') {

 elbowServoBackward();

 delay(response_time);

41

 }

 //Move Wrist 1 UP

 if (state == 'U') {

wristServo1Backward();

 delay(response_time);

 }

 //Move Move Wrist 1 Down

 if (state == 'G') {

 wristServo1Forward();

 delay(response_time);

 }

 //Move Wrist 2 Clockwise

 if (state == 'R') {

 wristServoCW();

 delay(response_time);

 }

 //Move Wrist 2 Counter-CW

 if (state == 'L') {

 wristServoCCW();

 delay(response_time);

 }

 //Open Claw Grip

 if (state == 'F') {

 gripperServoBackward();

 delay(response_time);

 }

 //Close Claw Grip

 if (state == 'f') {

 gripperServoForward();

 delay(response_time);

 }

 }

}

//Boiler plate function - These functions move the servo motors in a specific direction for a duration.

void gripperServoForward() {

 if (servo_joint_4_parking_pos_i > servo_joint_4_min_pos) {

 HCPCA9685.Servo(5, servo_joint_4_parking_pos_i);

 delay(response_time); //Delay the time takee to turn the servo by the given increment

 Serial.println(servo_joint_4_parking_pos_i);

 servo_joint_4_parking_pos_i = servo_joint_4_parking_pos_i - servo_joint_4_pos_increment;

 }

}

void gripperServoBackward() {

 if (servo_joint_4_parking_pos_i < servo_joint_4_max_pos) {

 HCPCA9685.Servo(5, servo_joint_4_parking_pos_i);

 delay(response_time);

 Serial.println(servo_joint_4_parking_pos_i);

 servo_joint_4_parking_pos_i = servo_joint_4_parking_pos_i + servo_joint_4_pos_increment;

 }

}

void wristServoCW() {

 if (servo_joint_3_parking_pos_i > servo_joint_3_min_pos) {

 HCPCA9685.Servo(4, servo_joint_3_parking_pos_i);

 delay(response_time_4);

 Serial.println(servo_joint_3_parking_pos_i);

 servo_joint_3_parking_pos_i = servo_joint_3_parking_pos_i - servo_joint_3_pos_increment;

42

 }

}

void wristServoCCW() {

 if (servo_joint_3_parking_pos_i < servo_joint_3_max_pos) {

 HCPCA9685.Servo(4, servo_joint_3_parking_pos_i);

 delay(response_time_4);

 Serial.println(servo_joint_3_parking_pos_i);

 servo_joint_3_parking_pos_i = servo_joint_3_parking_pos_i + servo_joint_3_pos_increment;

 }

}

void wristServo1Forward() {

 if (servo_joint_2_parking_pos_i < servo_joint_2_max_pos) {

 HCPCA9685.Servo(3, servo_joint_2_parking_pos_i);

 delay(response_time);

 Serial.println(servo_joint_2_parking_pos_i);

 servo_joint_2_parking_pos_i = servo_joint_2_parking_pos_i + servo_joint_2_pos_increment;

 }

}

void wristServo1Backward() {

 if (servo_joint_2_parking_pos_i > servo_joint_2_min_pos) {

 HCPCA9685.Servo(3, servo_joint_2_parking_pos_i);

 delay(response_time);

 Serial.println(servo_joint_2_parking_pos_i);

 servo_joint_2_parking_pos_i = servo_joint_2_parking_pos_i - servo_joint_2_pos_increment;

 }

}

void elbowServoForward() {

 if (servo_joint_L_parking_pos_i < servo_joint_L_max_pos) {

 HCPCA9685.Servo(0, servo_joint_L_parking_pos_i);

 HCPCA9685.Servo(1, (servo_joint_L_max_pos - servo_joint_L_parking_pos_i));

 delay(response_time);

 Serial.println(servo_joint_L_parking_pos_i);

 servo_joint_L_parking_pos_i = servo_joint_L_parking_pos_i + servo_joint_L_pos_increment;

 servo_joint_R_parking_pos_i = servo_joint_L_max_pos - servo_joint_L_parking_pos_i;

 }

}

void elbowServoBackward() {

 if (servo_joint_L_parking_pos_i > servo_joint_L_min_pos) {

 HCPCA9685.Servo(0, servo_joint_L_parking_pos_i);

 HCPCA9685.Servo(1, (servo_joint_L_max_pos - servo_joint_L_parking_pos_i));

 delay(response_time);

 Serial.println(servo_joint_L_parking_pos_i);

 servo_joint_L_parking_pos_i = servo_joint_L_parking_pos_i - servo_joint_L_pos_increment;

 servo_joint_R_parking_pos_i = servo_joint_L_max_pos - servo_joint_L_parking_pos_i;

 }

}

void shoulderServoForward() {

 if (servo_joint_1_parking_pos_i < servo_joint_1_max_pos) {

 HCPCA9685.Servo(2, servo_joint_1_parking_pos_i);

 delay(response_time);

 Serial.println(servo_joint_1_parking_pos_i);

 servo_joint_1_parking_pos_i = servo_joint_1_parking_pos_i + servo_joint_1_pos_increment;

 }

}

void shoulderServoBackward() {

43

if (servo_joint_1_parking_pos_i > servo_joint_1_min_pos) {

 HCPCA9685.Servo(2, servo_joint_1_parking_pos_i);

 delay(response_time);

 Serial.println(servo_joint_1_parking_pos_i);

 servo_joint_1_parking_pos_i = servo_joint_1_parking_pos_i - servo_joint_1_pos_increment;

 }

}

void baseRotateLeft() {

 //clockwise

 digitalWrite(dirPin, HIGH);

 // Spin motor

 for (int x = 0; x < stepsPerRevolution; x++)

 {

 digitalWrite(stepPin, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(stepPin, LOW);

 delayMicroseconds(stepDelay);

 }

 delay(response_time); // Wait a second

}

void baseRotateRight() {

 //counterclockwise

 digitalWrite(dirPin, LOW);

 // Spin motor

 for (int x = 0; x < stepsPerRevolution; x++)

 {

 digitalWrite(stepPin, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(stepPin, LOW);

 delayMicroseconds(stepDelay);

 }

 delay(response_time); // Wait a second

}

void wakeUp() {

 //Pre-Program Function - Wake Up Robot on Start

 if (loop_check == 0) {

 // //Shoulder Raise

 for (Pos = 0; Pos < 10; Pos++)

 {

 HCPCA9685.Servo(1, Pos);

 delay(response_time_fast);

 }

 // //Move Elbow Backwards

 for (Pos = 400; Pos > 390; Pos--)

 {

 HCPCA9685.Servo(2, Pos);

 delay(response_time_fast);

 }

 //Move Wrist 1 Forward

 for (Pos = 10; Pos < 20; Pos++)

 {

 HCPCA9685.Servo(3, Pos);

 delay(response_time);

 }

 //Move Wrist 2 Backwards

 for (Pos = 380; Pos > 50; Pos--)

44

 {

 HCPCA9685.Servo(4, Pos);

 delay(response_time);

 }

 //Move Wrist 2 Backwards

 for (Pos = 50; Pos < 150; Pos++)

 {

 HCPCA9685.Servo(4, Pos);

 delay(response_time);

 }

 //Move Wrist 1 Forward

 for (Pos = 19; Pos < 100; Pos++)

 {

 HCPCA9685.Servo(3, Pos);

 delay(response_time);

 }

 loop_check = 0;

 }

}

void flexMotors() {

 //Example Demo Pre-program Function to Make Robot Wake Up (Motor by Motor)

 if (loop_check == 0) {

 delay(action_delay);

 //Move Wrist 1 Forward

 for (Pos = 100; Pos > 10; Pos--)

 {

 HCPCA9685.Servo(3, Pos);

 delay(10);

 }

 delay(action_delay);

 //Move Wrist 1 Forward

 for (Pos = 10; Pos < 70; Pos++)

 {

 HCPCA9685.Servo(3, Pos);

 delay(10);

 }

 delay(action_delay);

 baseRotateLeft();

 delay(action_delay);

 //Move Wrist 2 Backwards

 for (Pos = 200; Pos < 380; Pos++)

 {

 HCPCA9685.Servo(4, Pos);

 delay(10);

 }

 delay(action_delay);

 loop_check = 1;

 }

}

45

CHAPTER FIVE

Conclusion and Future Work

5.1 Conclusion

This project presented the successful design and implementation of a gesture-controlled robotic

arm using low-cost components such as Arduino boards, servo motors, flex sensors, and

MPU6050 modules. The system was able to interpret human hand gestures in real time and

execute corresponding robotic actions with a response time of less than one second. Throughout

testing, the arm demonstrated precise control in movements like gripping, rotating, and

reaching. The communication between the glove and robotic arm, handled via Bluetooth,

proved stable and reliable under typical operating conditions. Overall, the system validated the

feasibility of using wearable gesture input to control robotic hardware in practical scenarios.

This establishes a strong foundation for future enhancements in interactive robotics.

5.2 Future Work

Several directions can be pursued to enhance the capabilities of the system. One major

improvement would be integrating a feedback mechanism, such as position sensors, to enable

closed-loop control and better accuracy. Additionally, replacing Bluetooth with Wi-Fi or IoT

modules would allow for remote and cloud-based control features. The gesture recognition

process could also be improved by incorporating AI algorithms, enabling the system to learn

and adapt to a wider range of hand gestures. Mechanically, the design could be enhanced by

using stronger servos or lighter materials to improve payload capacity.

46

Reference

[1] Book, Schilling J.. "Fundamentals Robotics Analysis and Control", Prentice Hall, 1996.

[2]Harris, Tom. "How Robots Work". How Stuff Works.

http://science.howstuffworks.com/robot.htm

[3] http://www.preterhuman.net

[4] "Robot (technology)". Encyclopedia Britannica Online. Internet Survey:

http://www.britannica.com/EBchecked/topic/505818/robot.

[5- Internet Survey: http://www.avinashgandi.com/projects-amp- papers.html

[6] Al-Mawrid Dictionary, Baalbaki, Beirut, Lebanon

 [7] Polk Igor (2005). "RoboNexus 2005 Robonexus Exhibition 2005 robot exhibition virtual

our".

[8]Arrick Robotics: Building your first robot.

[9] Robot Oppression: Unethicality of the Three Laws

[10] http://www.dhadh.com/page.php?id=9568

[11] Devi, V. G., & Vijetha, T. (2016, June). MEMS controlled robotic arm with gestures.

International Journal of Scientific Development and Research (IJSDR), 1(6), 82–84.

[12] Hameed, S., Khan, M. A., Kumar, B., Arain, Z., & Hasan, M. U. (2017, December).

Gesture controlled robotic arm using Leap Motion. Indian Journal of Science and Technology,

10(45). https://doi.org/10.17485/ijst/2017/v10i45/120630

[13] Vala, S. T. (2018, November). Hand gesture controlled robot using Arduino. International

Journal of Research in Engineering, Science and Management (IJRESM), 1(11), 194–196.

[14] Elam Cheren, S., Madhubala, S., Pradeepa, C., Poovitha, M., & Madumitha, B. (2020,

August). Hand gesture controlled robot arm. International Journal of Engineering and Advanced

Technology (IJEAT), 9(6), 405–407. https://doi.org/10.35940/ijeat.E1019.089620

[15] Rahman, M. Z., Khatun, M. A., & Ahmed, T. (2022, May). Gesture controlled robotics

hand. International Journal of Computer Applications Technology and Research (IJCATR),

13(5), 8–11. https://doi.org/10.7753/IJCATR1305.1002

http://science.howstuffworks.com/robot.htm
http://www.britannica.com/EBchecked/topic/505818/robot
http://www.dhadh.com/page.php?id=9568

47

[16] Kesharwani, A., Chaudhary, A. P., Singh, B. P., Kumar, V., & Manjunath, T. C. (2023). A

study on hand motion controlled robotic arm. Journal of Propulsion Technology, 44(3), 812–

814.

[17] Lohakare, H., Chainde, T., Jadhav, P., Rahangdale, K., Wanjari, D., & Ikhar, A. (2024,

March). Design and development of robotic arm control by human hand. International Journal

of Research Publication and Reviews, 5(3), 4247–4252.

https://doi.org/10.55248/gengpi.5.0324.07104

[18] Prathibha, K., Jagadeesha, S., Sonu, S., Priyanka, N., Shahid, M., & Kaleem, S. S. (2024,

May). Design and development of gesture controlled robotic arm. International Journal of

Computer Applications Technology and Research (IJCATR), 13(5), 8–11.

https://doi.org/10.7753/IJCATR1305.1002

[19] Anonymous. (2025). Arduino-based gesture-controlled robot. Unpublished undergraduate

project report.

 [20]Zhou, H., & Hu, H. (2008). Human motion tracking for rehabilitation—A survey.

Biomedical Signal Processing and Control, 3(1), 1–18.

https://doi.org/10.1016/j.bspc.2007.09.001

[21] Satghare, N. S. (2019). Gesture controlled robotic arm. International Journal for Research

in Applied Science & Engineering Technology (IJRASET), 7(9), 401–407.

https://doi.org/10.22214/ijraset.2019.9056

 [22] https://www.uruktech.com/product/mg996/

[23] https://mechtex.com/products/hybrid-stepper-motors/nema17

[24] Texas Instruments. (2014). DRV8825 Stepper Motor Controller IC datasheet (Rev. F).

https://doi.org/10.22214/ijraset.2019.9056
https://www.uruktech.com/product/mg996/
https://mechtex.com/products/hybrid-stepper-motors/nema17

