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Introduction 

 

This appendix will be devoted to the introduction of the basic 

proper ties of metric, topological, and normed spaces. A metric 

space is a set where a notion of distance (called a metric) 

between elements of the set is defined. Every metric space is a 

topological space in a natural manner, and therefore all 

definitions and theorems about topological spaces also apply to 

all metric spaces. A normed space is a vector space with a 

special type of metric and thus is also a metric space. All of these 

spaces are generalizations of the standard Euclidean space, 

with an increasing degree of structure as we progress from 

topological spaces to metrics 
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Conclusion 

     

    This research dealt the Study of metric space and topological 

space, the similarities and differences between them, and the 

Characteristics of each. It also dealt with defining types of Sets 

it topological and metric space. We also touched on the tubes of 

topological Space, and we concluded through this research that 

topological space is wider that metric space, as the elements of 

topological space are sets. It is noted that a metric space can be 

used to define a topological spacer while the reverse is hot true. 
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Chapter one 

Topology space 

 [1.1] Definition: "Topology"(1) 

    It is one of the branches of mathematics that is Concerted with studying the 

Structures Components and properties of all different space so that these properties 

remain similar under continuous shaping operations without tearing of leaving 

openings. in moving from one to the other and vice Versa as well. 

 

[1-2] Definition: "Topological space" (1) 

    Let 𝑋 be a nonempty set and 𝜏 be a family of 𝑋 (i.e, ⊆ 𝐼𝑃(𝑋) ). We say, 𝜏 is a 

topology on 𝑋 if satisfy the following conditions: 

 (1)  𝑋, ∅ ∈ τ
 (2)  If U,V∈τ , Then U ∩ V∈τ  

 

The finite intersection of elements from τ is again ah element of τ. 

 

(3) If 𝑈 ∈ τ:  ∈ 𝐴, theh 𝑈𝛼 ∈ 𝐴𝑈𝛼 ∈ 𝜏∀𝑎 ∈ 𝐴   

The arbitrary (finite or infinite) union of elements of 𝜏 is again as element of 𝜏. We 

called a pair (𝑋, 𝜏) topological space. 

 [1-3] Definition: "open set" (1) 

     Let (𝑋, 𝜏) be any topological space, then the members of 𝜏 are said to be an open 

Set. 

 

[1-4] Example: 

    

 If 𝑋 = {𝑎, 𝑏} with topology 𝜏 = {∅, 𝑋, {𝑎}, {𝑏}} Then 𝜏 = ∅, 𝑋, {𝑎} and {𝑏} are open 

Subset of 𝑇. 
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[1-5] Definition: "Close Set" (1) 

     Let (𝑋, 𝑇) be atopotogical spare. A subset 𝑠 of 𝑋 is said to be closed Set in (𝑋, 𝑇) 

if its complements if𝑋, hatmety𝑋/𝑆, is open in(𝑋, 𝑇). 

[1-6] Example: 

 if 𝑋 = {a, 𝑏}, 𝑇 = {𝜙, 𝑋, {a}} 

Then 𝑋, 𝜙, {𝑏} are closed set since 

𝜙𝑐 = 𝑋, 𝑋𝑐 = 𝜙, {𝑎}𝑐 = {𝑏} 

We will show the types of topologies 
 

[1-7] Definition: "indiscrete of topology" (1) 

For any Set 𝑋 ≠ 𝜙, 𝐼 = {𝜙, 𝑋} is topology on𝑋. 𝐼 is called the indiscrete or trivial 

toparagy on 𝑋 

[1-8] Example 𝑋 = {𝑎, 𝑏, 𝑐}, 𝑋 = {∅, x} 

 

Solution: [ is topology on 𝑋 and called indiscerte tololagy since satisfies the 

following conditions: 

𝑖, 𝑋, 𝜙 ∈ 𝐼 

ii. ∀𝐴, 𝐵 ∈ 𝐼 ⇒ 𝐴 ∧ 𝐵 ∈ 𝐼 

iii. 𝐴𝑖 , 𝑖 ∈ A →  𝑈𝐴𝑖 ∈ 𝐼𝑋1 is in indiscrete topology s puce. 

 

[1-9] Definition: "Discrete topology" (1) 

    Let 𝑋 be atyhoh-emply Set and let 𝐼 be the collection of all subset of 𝑋. then 𝜏 is 

called the discrete topology on the Set 𝑋. the topological space (𝑋, 𝑇) is called a 

discrete space. 
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[1-10] Example: 

𝑋 = {𝑥} D = {∅, 𝑋 ⋅ {𝑎}, {𝑏}, {𝑐}, {𝑑}, {𝑎, 𝑏},

 {𝑎 ⋅ 𝑐}, {𝑎, 𝑑} ⋅ {𝑏, 𝑑} ⋅ {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐},

 {𝑎, 𝑏, 𝑑}, {a, c, 𝑑}, {𝑏, 𝑐, 𝑑}, {𝑐, 𝑑}}

 

Solution: 𝐷 is topology on 𝑋 and called discrete topology since satisfies the following 

condition: 

𝑖 = 𝑋, 𝜙 ∈ 𝐷

 ii- ∀𝐴, 𝐵 ∈ 𝐷 ⇒ 𝐴 ∩ 𝐵 ∈ 𝐷
 

 iii − 𝐴𝑖 ,i∈ A →  U𝐴𝑖∈D  

XD is discrete topological space. 

 

[1-11] Definition: "usual topology"(1)  

    Let 𝑈 be a cdlection of all open interval of real numbers, then 𝑈 is a topotogy on 𝑅 

it called the usual topology on 𝑅. 

[1-12] Example: 

 𝑋 = 𝑅, 𝑈 = {𝜙, 𝑅, (−6,6)} 

∅ ⋅ 𝑅 ⋅ (−6.6) ate opeh sets. 

R, ∅. (−∞, −6)] ∪ [6, ∞) are closed sets. 

[1-13] Definition: "Coffinite topology" (1) 

   let 𝑋 be aby hoh-ehply set. A tropology 𝜏 on 𝑋 is catted the filite-closed to potogy 

or the coffinite topology if the closed subset of 𝑋 ave 𝑋 and all finite subsets of 𝑋; 

that is, the opec Sets are © ald all subsets of 𝑋 which have finite Complements. 

[1-14] Example: 

𝑥 = 𝑁𝑓𝑐 = {𝜙, 𝑋, 𝑁 ⋅ {1 ⋯ ∈}, 𝑁 − {10 … ,99}}

𝑋, 𝜙, 𝑁 = {1 … ∈}, 𝑁, {10 … 99}𝜏 =  open 

𝜙, 𝑋, {1 ⋯ ∈}, {10 … 99}𝜏 closed 
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[1-15] Definition: Compact Space (1)  

a space 𝑋 is called compact if each open cover of 𝑋 has a finite sub cover for𝑋 i.e., 𝑋 

is compact 

∀c = {𝑈α}𝛼 ∈ 𝐴; 𝑈α ∈ 𝜏 ∀𝛼 ∩ 𝑋 = 𝑈α ∈ 𝐴𝑈τ𝛼 

⇒ ∄, 𝛼1 … 𝛼n, 𝑋 = 𝑈i=1
𝑛 𝑈α𝑖. 

𝑋 is 𝑛𝑜𝑡 Compact ⇒ ∃𝐶 = {𝑈 α } α∈ 𝐴; 

𝑈𝑡  ∈ 𝜏 ∀𝛼 ∩ 𝑋 = 𝑈 α∈ 𝐴𝑈𝑖; 

⇒ ∄, 𝛼1 … 𝛼n, 𝑋 = 𝑈i=1
𝑛 𝑈α𝑖 

[1-16] Theorem: (1) 

  The continuous image of compact space is compact. i.e, 𝐼𝑓(𝑋, 𝑟) → (𝑌, 𝜏′) is 

continuous function and 𝑋 is compact space. Then 𝑓(𝑥) is compact. 

 

Proof: Let 𝑓: (𝑋, 𝑇) → (𝑦, 𝑇′) be couhtinuous and 𝑋 compact space. To aprove, 𝑓(𝑥) 

compact sit 𝑦 

let 𝐶 = {𝑉𝛼}𝛼 ∈ 𝐴 open cover for 𝑓(𝑥) 

 ⇒ 𝑓(𝑥) ⊆ 𝑉𝛼 ∈ 𝐴𝑉𝛼 , 𝑉𝛼 ∈ 𝜏′∀𝛼 ∈ 𝐴

 ⇒ 𝑓−1(𝑓(𝑥)) ⊆ 𝑓−1(𝑉𝛼 ∈ 𝐴𝑉𝛼)

 ⇒ 𝑥 ⊆ 𝑉𝛼 ∈ 𝐴𝑓−1(𝑉𝛼)( since 𝑓−1(𝑓(𝑥))) =

 

𝑋 And 𝑓−1(𝑈𝑡 ∈ 𝐴𝐴𝑥) = 𝑈𝑡 ∈ 𝐴𝑓−1(𝐴𝛼) 

since 𝑓 is continuous ⇒ 𝑓−1(𝑈𝛼)𝜏 ∀𝑥 ∈ 𝐴 

⇒ {𝑓−1(𝑈1)}2∈𝐴 is open cover for 𝑋 

∴ 𝑋 is compact⇒ ∃ α1 … + α𝑛; 

𝑥 ≤ 𝑈𝑖=1
𝑛 𝛼 ⇒ 𝑓(𝑥) ⊆ 𝑓 (𝑈𝑖=1

ℎ 𝑓−1(𝑣2𝑖𝑖))

⇒= 𝑈𝑖=1
𝑛 (𝑓−1(𝑣α𝑖))  (since 𝑓(𝐴 ∪ 𝐵) = 𝑓(𝐴) ∪ 𝑓(𝐵))

 ⇒ 𝑓(𝑥) ≤ 𝑈𝑖=1
𝑛 ∀α𝐼 [ since 𝑓(𝑓−1(𝐴)) ⊆ 𝐴)

 ∴ 𝑓(𝑥) compact Set 
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[1-17] Theorem: (1) A closed subset of a compact space is compact. 

Proof: let (𝑋, 𝜏) compact space and 𝑓 closed set in 𝑋 To prove. 𝑓 compact set 

let 𝐶 = {𝑈α }𝛼 ∈ 𝐴 open cover of 𝑓 

 ⇒ 𝑓 ⊆ 𝑈𝛼 ∈ 𝐴 𝑈𝜎; 𝑈𝛼 ∈ 𝜏 ∀𝛼 ∈ 𝐴

∴ 𝑋 = 𝐹𝑈𝐹𝐶 ⇒ 𝑋 − 𝑈𝛼 ∈ 𝐴𝑈𝛼𝐹𝑐 (since 𝐹 ⊆ 𝑈𝑡∈𝐴𝑈𝛼)

 ∴ 𝑈𝛼 ∈ τ∀𝛼 ∈ 𝐴 ∩ 𝐹𝑐 ∈ 𝜏  (since 𝑓 closed set) 

 ⇒ {𝑈α} α∈A ∪ {𝐹𝑐} open cover of 𝑋

 ∴ 𝑥 compact ⇒ ∃𝛼2 … 𝛼n, 𝑋 = (𝑈i=1
𝑛 𝑈α𝑖) 𝐹𝑐

But , 𝐹 ⊆ 𝑋 ⇒ 𝐹 ⊆ (𝑈𝑖=1
𝑛 𝑈𝛼𝑖) ∪ 𝐹𝑐

 since 𝐹 ∩ 𝐹𝑐 = 𝜙 ⇒ 𝐹 ⊆ 𝑈𝑖=1
𝑛 𝑈𝛼

 ∴  F compact Set

 

Notes that the condition being 𝐹 closed is very important and the theorem is not true 

if the Condition deleted. 

[1-18] Theorem:  let (𝑋, 𝑇) be a topological Space and 𝑃 be the family of closed 

sets on 𝑥, then 

 (1) 𝑥, ∅ ∈ 𝑃 

         (2) If𝐴 ⋅ 𝐵 ∈ P. Then 𝐴 ∪ 𝐵 ∈ 𝐹 ∀𝐴 ⋅ 𝐵 ∈ 𝑃 

         (3) If𝐴𝛼 ∈ 𝑃;  𝜏 ∈ 𝐴, Theh ∩𝑟∈𝐴∈ 𝑃 ∀𝐴𝜀 ∈ 𝑃 

proof: (1) 

 ∴ 𝜙 ∈ 𝜏 ⇒ 𝜙𝑐 ∈ 𝑃 ⇒ 𝑋 ∈ 𝑃

 ∴ 𝑋 ∈ 𝜏 ⇒ 𝑋c ∈ 𝑃 ⇒ 𝜙 ∈ ∅
 

(2) let 

𝐴𝑃𝐵 ∈ 𝐹 ⇒ 𝐴c ⋅ 𝐵c ∈ 𝜏
 ⇒ 𝐴𝐶 ∩ 𝐵c𝜏
 ⇒ (A ∪ B)𝐶 ∈ 𝜏

 ⇒ 𝐴 ∪ 𝐵 ∈ 𝑃

 

(3) let  
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𝐴𝛼 ∈ 𝑃 ∀ ∈ 𝐴
 ⇒ A

𝐶 ∈ 𝜏 ∀𝛼 ∈ 𝐴

 ⇒ 𝑈𝛼∈𝐴𝐴𝛼
𝐶 ∈ 𝜏

 ⇒ (∩∈𝐴 𝐴∗)c ∈ 𝜏

 ⇒∩𝛼∈𝐴 𝐴 ∈ 𝑃
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Chapter two 

Metric space 

 

[2-1] Definition: "Metric space"(2) 

    If a set in which the concept of distance between the elements of the set it known, 

and it is called three-dimensional space or Euclidean space, as the Euclidean metric 

defines the distance between Points as a Straight Line Connecting them. 

[2-2] Definition: "Metric spaces"(2) 

Let 𝑋 be a non-empty set and 𝑑: 𝑋𝑥𝑋 → 𝑅 is called the distance function satisfy the 

following conditions:  

(a) 𝑑(𝑥, 𝑦) ⩾ 0, for all 𝑥, 𝑦 ∈ 𝑋  

(b) 𝑑(𝑥, 𝑦) = 0 if 𝑥 = 𝑦 

 (c) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all  𝑥, 𝑦 ∈ 𝑥  

(d) 𝑑(𝑥 + 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (Triangle inequality)  

then (𝑥, 𝑑) is called metric space. 

 

[2-3] Example :( 2) 

 

    Let 𝑑: 𝑅 × 𝑅 ⟶ 𝑅 defined by 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, for all 𝑥, 𝑦 ∈ 𝑅 Show that (𝑅, 𝑑) 

is a metric space 

 

solution: 

 

(1) 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| > 0, for all 𝑥, 𝑦 ∈ 𝑅(𝐵𝑦 def: of absolutely value) 

 

(2) 𝑑(𝑥, 𝑦) = 0 

⟺ |𝑥 − 𝑦| = 0 ⟺ 𝑥 − 𝑦 = 0 ⇔ 𝑥 = 𝑦 
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(3) 𝑑(𝑥, 𝑦) 

 = |𝑥 − 𝑦|

 = | − (𝑦 − 𝑥)|

 = | − 1| − |𝑦 − 𝑥| = |𝑦 − 𝑥| = 𝑑(𝑦, 𝑥)

 

(4) 𝑑(𝑥, 𝑦) 

= |𝑥 − 𝑦|

 = |𝑥 − 𝑧 + 𝑧 − 𝑦|

 ≤ |𝑥 − 𝑧| + |𝑧 − 𝑦|

 ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑧, 𝑦)

 

∴ (𝑅, 𝑑) is a metric space. 
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Open Balls and closed Bats and the Ball in metric Space. :( 2) 

 

[2-4] Definition: "open Bulls” 

let(𝑋, 𝑑) be a metric space, group (𝑌 ∈ 𝐾+)𝑟)0,𝑋0 ∈ 𝑋 

𝐵(𝑋0,r) = {𝑋 ∈ 𝑋: 𝑑(𝑋, 𝑥0) < 𝑟} 

is called open Balls in (𝑋, 𝑑) center (𝑋0) and 

radius(r). 

 

[2-5] Definition: "Closed Balls"  

Let (𝑋, 𝑑) be a metric space and Definition 

𝐵[𝑥0,𝑟] = {𝑥 ∈ 𝑋: 𝑑(𝑥, 𝑥0) ≤ 𝑟} 

is called closed Balls in (x, d) center (𝑥0) and radius(r). 

[2-6] Definition: "The Balls" 

let (𝑋 ⋅ 𝑑) be ahretric Space and Definition 

𝐵(𝑥0,𝑟) = {𝑥 ∈ 𝑋: 𝑑(𝑥, 𝑥0) = 𝑟} 

is called Balls in (𝑋, 𝑑) the center (𝑋0) and radius(r). 
 

open set and closed Set in metric space 

 

[2-7] Definition: "open set" 

Let (𝑋, 𝑑) be a metric space and 𝐴 ≤ 𝑋. Ais called ah open Set if ∀𝑃 ∈ 𝐴 there 

exists 𝑟 >0 (𝑟 ∈ 𝑅) such that   

 Br (p) ⊆ 𝐴. i.e. 𝐴 is open if 𝐴∘ = 𝐴 

[2-8] Example:  

Let (R,d) be a metric Space, which of the following sets is open 𝐴 = (0,1) is open 

since 𝐴∘ = (0,1) = 𝐴. 
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[2-9] Remark: every open interval in 𝑹 is an open set 

EX: (𝑎, ∞) ⋅ (−∞, 𝑎), (𝑎, 𝑐) are opeh Sets. 

Soll: ∀𝑏 ≠ 𝑎 ⋅ ∃𝑑 = |𝑏 − 𝑎| 

𝑆. t(𝑏 − 𝜖, 𝑏 + 𝜖)𝐶(𝑎, ∞)

 ∴ (𝑎, ∞)∘ = (𝑎, ∞)
 

∴ (a. ∞ ) is open set. 

 

[2-10] theorem:  Every ball is an open Set (2) 

 Proof: 𝐵𝑟(𝑥0) = {𝑥 ∈ 𝑋: 𝑑(𝑦, 𝑥0) < 𝑟} 

Let 𝑦 ∈ Br(𝑥0) → 𝑑(𝑦, 𝑥0) = 𝑟1 < 𝑟 take 𝜖 = 𝑟 − 𝑟1 > 0 T.P 𝐵 ∈ (𝑦) ⊆ Br(𝑥0) 

 Let 𝑧 ∈ 𝐵 ∈ (𝑠)  T.P. 𝑧 ∈ 𝐵𝑟(𝑥0)

𝑑(𝑧, 𝑦) < 𝜖 T.P, 𝑑(𝑧, 𝑥0) < 𝑟

𝑑(𝑧, 𝑥0) ≤ 𝑑(𝑧, 𝑦) + 𝑑(𝑦1, 𝑥0) < 𝜖 + 𝑟1

 < 𝑟 − 𝑟1 + 𝑟1 < 𝑟

 ∴ 𝑑(𝑧, 𝑥0) < 𝑟 → 𝑍 ∈ 𝐵𝑟(𝑥0)

 ∴ 𝐵∈(𝑦) ≤ 𝐵𝑟(𝑥0)

 

Hence every point of Br(𝑋0) is ah interial Point. 

∴ Br(𝑋0) is an open set. 

[2-11] Definition: Closed Set 

let(𝑋, 𝑑) be amtric space and 𝑓 ⊂ 𝑋. is called an closet Set in (𝑋, 𝑑) if The complement 

of  this set 𝑋/𝑓 is an opeh set in (𝑋, 𝑑).  

i.e 𝑓 ≤ 𝑋 is closed if 𝐹′ ⊆ 𝐹. 

 

[2-12] Example :( 2)  
Let (𝑅 ⋅ 𝑑) be a metric space and 𝐴 = (0.1) 

soll:  

 ∴ 𝐴′ = [0,1] and 𝐴′ ∉ 𝐴

 ∴ 𝐴 = (,1) is not closed 
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[2-13] Example: 

Let (Rod) be a metric space and 𝐴 = [2,7] 
soll: 

∴ 𝐴′ = [2.7] and 𝐴′ ≤ 𝐴
∴ 𝐴 = [𝑧. 7] is closed 

 

 

 

[2-14] Theorem :( 2)  

  
in a metric space a set 𝐸 is closed if and only if its 

complement is open 

proof: Suppose that E is closed Set 

T.P. 𝐸𝑐 is open 

 let 𝑋 ∈ 𝐸𝑐 ⇒ 𝑋 ∉ 𝐸 

∵ 𝐸 is closed 

∴ 𝑋 is hot atimit point of 𝐸 

 ⇒ 𝑟 > 0 ⋅  s.t Br(𝑥) ∧ 𝐸 = ∅

 ⇒ 𝑥 ∈ Br(𝑥) ⊆ 𝐸𝐶 ⇒ 𝐸𝑐 is open 
 

Suppose that 𝐸c is open  

T.P 𝐸 is closed 

Let 𝑋 be a limit point of 𝐸 

∀𝐵𝑟(𝑥) sir. 𝐵𝑟(𝑥) ∧ 𝐸 ≠ ∅

∴ 𝐵𝑟(𝑥) ∉ 𝐸𝐶  ∴ 𝐸𝐶 is open 

∴ 𝑥 ∉ 𝐸𝐶

∴ 𝑥 ∈ 𝐸
∴ 𝐸 is closed. 

 

 

[2-15] Definition: “Compact Space” (2) 

A Subset 𝐸 of a metric space is called compact if every open cover of 𝐸 contahins 

a finite sub cover. 

 i.e 𝐸 ≤ 𝑈𝑖∈𝐼𝐺𝑖 ⇒ I]𝑖1
, 𝑖2, in 𝑠 ⋅ 𝑡 ⋅ 𝐸 = 𝑈𝑗=1

𝑘 𝐺𝑖𝑗 
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[2-16] Example :( 2)  
every finite set of a metric space is compact. 

 

Solution: Let (𝑋, 𝑑) be a metric space and 𝐸 ⊆ 𝑋  

where: 𝐹 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

Let {𝐺𝑖}𝑖∈𝐼 be an open cover of 𝐸 

∴ E ∪ i ∈ I𝐺𝑖1  

 Let 𝑥1 ∈ 𝐺𝑖1, 𝑥2 ∈ 𝐺𝑖2, 𝑥𝑛 ∈ 𝐺𝑖ℎ

 ∴ 𝐸 = {𝑥1, 𝑥2, … 𝑥𝑛} ⊆∪𝑗=1
𝑛 𝐺𝑖𝑗

 

∴ 𝐸 is compact. 

 

[2-17] Theorem :( 2) 

   closed Subset of compact metric space (𝑋, 𝑑) is Compact. 

Proof: Let  𝑬 ⊆ 𝑿 be closed. 

let {𝐺𝑖}𝑖∈𝐼 be an open Covering for 𝐸  

ie. E ⊆ 𝑈𝑖∈𝐼𝐺𝑖 

 ∴ 𝐹 is closed ⇒ 𝐸𝑐 is open 

 ∴ 𝑋 = 𝑈𝑖∈𝐼𝐺𝑖 ∪ 𝐸𝑐

 ∴ ∃𝑖1
, 𝑖2, 𝑖𝑛 ∈ 𝐼

 S.t. 𝑋 = 𝑈𝑖=1
𝑛 𝐺𝑖𝑈𝐸𝑐

 ∴ 𝐹 ⊆ 𝑋 ⇒ 𝐸𝐺𝑈𝑖=1
𝑛 𝐺𝑖

 

∴ 𝐸 is compact. 

 



 
 

 

 

 

 

 

 

 

 

Chapter Three
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Chapter Three  

Metric Topology 

[3-1] Introduction :( 3) 

    Metric topology is a fundamental concept in mathematical analysis and topology 

that extends the idea of distance in a space. It allows us to study the structure and 

properties of spaces based on a metric function. In this chapter, we explore deeper 

aspects of metric topology, including completeness, compactness, connectedness, and 

real-world applications. 

    Metric topology is a type of topology that arises from a metric space. A metric 

space is a set 𝑋 equipped with a metric (distance function) 𝑑: 𝑋 × 𝑋 → 𝑅, which 

satisfies the following properties for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 : 

1. Non-negativity: 𝑑(𝑥, 𝑦) ≥ 0 (distance is always non-negative). 

2. Identity of Indiscernible: 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. 

3. Symmetry: d(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 

4. Triangle Inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

 

Using this metric, we define a topology on 𝑋 by specifying the open sets: 

• A subset 𝑈 ⊆ 𝑋 is open if, for every point 𝑥 ∈ 𝑈, there exists an 𝝐-ball around 

𝑥 that is completely contained in 𝑈. 

• The 𝝐-ball around 𝑥 is defined as: 

𝐵(𝑥, 𝜖) = {𝑦 ∈ 𝑋 ∣ 𝑑(𝑥, 𝑦) < 𝜖} 

Where 𝝐 > 𝟎 is a positive real number. 

This collection of open sets forms a topological space, called the metric topology. 
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[3-2] Examples of Metric Topology :( 3) 

1. Euclidean Space 𝑅𝑛
 

• The standard distance is 𝑑(𝑥, 𝑦) = √(𝑥1 − 𝑦1)2 + ⋯ + (𝑥𝑛 − 𝑦𝑛)2. 

• The open sets in the metric topology are just the usual open balls in 𝑅𝑛. 

2. Discrete Metric 

 

• Define 𝑑(𝑥, 𝑦) = 1 if 𝑥 ≠ 𝑦 and 0 if 𝑥 = 𝑦. 

• Every subset of 𝑿 is open, so the metric topology is the discrete topology. 

 

3. Taxicab Metric (Manhattan Distance) 

 

• Defined on 𝑅2 by 𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|. 

• The topology differs from the usual Euclidean topology since open balls look 

like diamonds instead of circles. 

 

[3-3] Properties of Metric Topology: (3) 

1. Completeness 

    A metric space (𝑋, 𝑑) is complete if every Cauchy sequence converges to a point in 

𝑋. A sequence {𝑥𝑛} is Cauchy if: 

∀𝜖 > 0, ∃𝑛 ∈ 𝑘 such that 𝑚, 𝑛 ≥ 𝑘 ⇒ 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜖.  

• Example: The real numbers 𝑅 with the Euclidean metric are complete. 

• The space 𝑄 (rationals) is not complete since sequences like 𝑥𝑛 = (1 + 1/𝑛) 

converge to an irrational number not in 𝑄. 

• Application: Completeness is essential in functional analysis and Banach spaces. 
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2. Compactness 

    A subset 𝑆 of a metric space (𝑋, 𝑑) is compact if every open cover has a finite 

subcover. Equivalent conditions for compactness: 

• Every sequence in 𝑆 has a convergent subsequence (Sequential Compactness). 

• 𝑆 is bounded and closed (Heine-Borel Theorem, only in 𝑅𝑛. 

• Application: Compactness is crucial in optimization and theoretical physics 

(e.g., compact manifolds in relativity). 

 

3. Connectedness 

    A metric space is connected if it is not the union of two disjoint nonempty open 

sets. 

• A space is path-connected if any two points can be connected by a continuous 

path. 

• Example: The interval [0,1] is connected, but (0,1) ∪ (2,3) is disconnected. 

Application: Used in graph theory, circuit design, and network topology. 

 

[3-4] Conclusion: 

    Metric topology provides a bridge between pure mathematics and applied 

sciences. By studying properties like completeness, compactness, and connectedness, 

we gain insights into geometry, physics, computer science, and engineering. This 

chapter illustrates how mathematical abstraction plays a critical role in solving real-

world problems. 
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