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ABSTRACT

Let R be any ring with identity and Let M be aunitary Left R-module. This
research Studies Two Types of modules. The first is supplemented modules
and the second cofinitely supplemented modules with some examples and
properties.



INTRODUCTION

Throughout all rings are associative with identity and modules are rings
unitary. In This work. we will study the concepts of supplemented modules
and the second cofinitely supplemented modules this research has Two
chapters:

In chapter One, we recall the definition of the group modules and Some
Properties about small submodules

In chapter Two, there are Two sections. In section one Study supplemented
modules with example and Properties

Section Two Studies The cofinitely supplemented modules with examples
and properties.



CHAPTER ONE

BASIC CONCEPTS OF MODULES



Chapter one

Basic concepts of modules

In This chapter we will recall the definition of the group, modules and small
submodules with some examples and properties.

Definition (1.1):[1]

A group is an ordered Pair (G,*) consisting anon empty set G and binary
operation * defined on G satisfy the following.

1. Gis a closed under *— a *b € G,Va *b € G
2. x1s assoca i tive on G— a (b*c) = (a *b) *c Va, b, c €G
3.3e €G.suchthatVa €G.axe=exa=a

where a! is called the inverse element of a

Example (1.2): (Z,+) is a group
Solution:
1.Z 1s a closed under (+) atb € zVa,b € z
2. +1s associative on z—a + (b+¢)=(atb) +cVa,b,CEZ
3. 0 1s the identity element with add. since Va €Z— a +0=0+a=a

4Vva€Z3d—a€Z. suchthata+ (-a)=(-a)+a=0

Definition (1.3):[1]

A group (G. *) be a called commutative group or (abelian group) if

a *xb=b*xa Va,b€Z



Example (1.4): show that (Q-{0} ,.) is a commutative group.
Solution:
1. Q-{0} 1s a closed under (-) , since Va,beQ-{0}— a+b € Q-{0}
2. (*) 1s associative on Q-{0}. Since (a ‘b)-c=a *(b:c)Va, b, c € Q-{0}

3. I is the identity element with multiply of Q-{0} since Va € Q-{0}—
a‘l1=lra=a

4.Ya € Q-{0}- 3 a'e Q-{0}. Such that a.a'=a!- a =1 where a'=1/a €
Q-{0}
5.Va,beQ-{0}— a-b=>b-a —()is acommutative on Q-{0}

Definition (1.5):[1]

Let R be a non-empty set and let *, # be two binary operations on R. Then
(R, *, #) 1s a ring if:

1. (R, *) 1s an abelian group
1. Closed because Va,b € Rthena *b €R
2. Associative because Va, b, c € Rthena * (b *xc)=(a *b) *c
3.Va ER,de ERsta xe=e xa=a
4.Ya ERFa'€Rsta x a'=a'l*xa=e
5. commutative because Va,b € Rthena *b=bx*a
i1. (R, #) semi group.
1. Closed because Va, b € R then a#b € R
2. Associative because Va, b, c€ R then a#(b#c) = (a#b) #c
i1, Distributive

1.Va, b, c € R then a#(b * ¢c) = a#tb * a#c



Example (1.6):
(Z,+,) 1s aring
1. (Z, +) is an abelian group
1. Closed because Va,b € Zthena +b € Z
2. Associative because Va, b, c € Zthena +(b+c)=(a+b)+c
3.Va €Z.3e €Zsta+te=e+a=a , e=0
4.Ya€Z. 3a'€eZsta+al=a+a=e , al=a
5. Commutative because Va,b € Z.thena+b=b +a
i1 (Z, *) semi group
1. Closed because Va,b € Zthena -b € Z
2. Associative because Va,b,c € Zthan a-(b-c)=(a-b)-c
ii1. Distributive
I. Va,b,c€ Zthena-(b+c)=a-b+a-c

& (Z,+,)1s aring

Definition (1.7):[1]

Let R be a ring with identity an abelian group (M, +) is called a left R- module
(or left R-module over R) if there exists a mapping f: RXM—M such that
f(r,m) = rmVr € R and Ym € M satisfying the following conditions

L.f(r, m; + mp) = f(r, m;) + f(r, m2) or r (m; + mp) = rm;+ rmy Vr ER
Vm;, m; E M

2.f(r1 + 12, M) = f(r;, m) +f(r2, m) or (r;, 1) m =rym + rom V 1}, n€E
RVmeM

3.f(rir2, m) = f(11),f (r2, m) or (1112) m= r;(r2m)
Vr,n€Rand VmEM
4. If in addition I.m=m Vm € M, then M is called a unital R-module



Example (1.8): Q is Z-module

Solution:

Since Q is an abelian group and the ring Z has unity then 3 amapping
fiZ xQ- Qs.t

a(r,m)=r-mVr € Zand Vm € Q. Let r;, r; € Z and m;, m; € Q then

1. f(r, m; + my) =r(m; + my) = (m; + my) + (m; + myp) +.......+ (m; + my)
f(r,m+my)=(m;+m;+...... +m;)+(Mmy+my+...... +m,) =1rm;+rm
2.f(n+rn,m=({+rn)m=m+m-+...+m+m-+m
f(ri+r,m)=(m+m-+...... +m)+(m+m+...... +m)=r1m+r;ym
3.a(rir,m)=(r')m=m+m-+m-+...... +m+m+m—x*

r'(rpym) =r*(m +.....+ m+m)

rr(pm)=(m+.... A m+m)+(m-+....+m+m-+....+(m+....+m+
m)

r(r;m)=m+ m+ m +.....+ m + m + m—**from*and**we get (r;'12)'m

4. Since 1 is the unity of a ring Z, then 1- m = m.

Therefore, by module definition we get Q is Z-module

Definition (1.9):[1]
Anon-empty subset N of R-module M is called a submodule of M iff

1.(N, +) is a subgroup of (M,+)
2. rNEN- V reR

Example (1.10): (Z,+) is submodule of module (Q,+) over a ring (Z,*),
since @ # Z<Q

l.atb €Z,Y a,b €Z



2raSZ-VreR,Va EZ
Definition (1.11):[1]

A submodule N of a left - R- module M is said to be a direct summand of M
if there is a sub module of M such that M=N&@K. In other word there is a
submodule k of M such that M=N+K and NNK=0

Example (1.12): Let M=Z; as a left Z-module the direct summands of M is
Solution:

M, 0, N;=<2>= {0, 2, 4} and N,=<3> = {0, 3} are all direct summands

of M

Definition (1.13):[1]

Let R and S be rings. Then a ring homomorphism p:R—S is a mapping for
which for all r;, r,ER we have

L p(ti+12) = p(r1) + p(r2)
2. p(r1.r2) = p(r1) p(r2)

Definition (1.14):[1]

Let R and S be rings. A function «: R—S is called ring epimorphism if
satisfies the following

1. o< is a homomorphism.

2. « is surjective (onton).



Definition (1.15):[1]

Let M be an R-module M is called semi simple module if every submodule
of M is a direct summand M.

Definition (1.16):[1]

Let G be a group. and A, B, C be subgroups of G the modular law states that.
A+B)NC=ANnC)+BNC)=(AnC)+B

Definition (1.17):[1]

A module M is called duo. if every submodule of M is fully invariant.

Definition (1.18): [2]

Let M be an R-module and S be a sub module of M. S is said to be small
submodule of M (denoted s << M) if for any submodule N of M such that M
=S +N We have N=M

Examples (1.19):

(1) For any R-module M, {0} is a small submodule of M but M is not small
in M. Since the only case that we have is 0 + M =M

(2) The submodule {0, 2} of the Z4 as Z- module is small of Z,. Since the
only case that we have is {0, 2} + Zs=Z4

(3) The submodules {0, 2, 4} of the Zs as Z-module is not small of Zg since
(0,2, 31+ {0, 3} = Ze but {0, 3} 27

(4) In Z as a Z-module, 27Z is not a small submodule since 2Z+3Z=Z but
3Z+#T.



Proposition (1.20):

(1) Let K; and K> be a submodule of R-module M K; < M and K, < M, then
K, +K:<<M

(2) Let f: M—M’ be an R-epimorphism and A <M. then f(4)<KM..

(3) Let M be an R-module M and K; and K, be a submodules of M with K;<
KX M if K>< M, then K; <M.

(4) Let M be an R-module and N, K, L are submodules of M With N € K <
Lc M, if KK Lthen N <M.

Definition (1.21):

Let M be an R-module and N 1s submodule of M i1s said to be coffinite 1f %

is finitely generated.



CHAPTER TWO
COFINITELY SUPPLEMENTED
MODULES



Chapter Two
supplemented and cofinitely

supplemented modules

In This chapter, we will recall the concepts of the Supplemented and
cufinitely supplemented modules with some examples and properties.

1-SUPPLEMENTED MODULE

In This section we recall the supplemented modules with some properties
see [4] and [5].

Definition (2.1.1):

Let M be any R-module and N, K are submodules of M. N is called
supplement of K in M if M =N + K and N N K « N. If every submodule of
M has supplement then M is called supplemented module.

Example (2.1.2):

(1) Consider the module Z4 as Z-module. Then Z4 is a supplement of a
submodule {0, 2} in Z, as Z-module since {0, 2}+ Z4=Z4 and {0, 2}N Zy4
= {0, 2} < Z But the con verse is not true {0, 2} is not a supplement of Z,
since {0, 2}+Z4= Z4and{0, 2} N Zs= {0, 2}is not small in{0, 2}

(2) consider the module Zg as-Z-module {0, 2} is a supplement of {0, 2, 4}
n Z6

Proposition (2.1.3):

Let M be a supplemented module and NEM then % 1s a supplemented.

10



Proof:

K M K . M : :
Let N € /to prove - has supplement in s K € M, since M is supplemented,

then there exists LE M suchthat M=K +L,and KN L « L, now% = % =
L+N __ L+N L+N L+ V _ L+N
—+— toprove—r\L«L le t(—ﬂL)-f-— =N —— to prove — = %,

Kn(;+N) N+(KnL) , (by modular law). Then N+(EOL)+% = % and N +

KNnL)+V= L+N since NS V. Then(KNL)+V=L+Nhence KNL K

L+N

LEL+Nand KNL KL+ N, therefore V=L + N an d_:T'

Proposition (2.1.4):

Let M = M; @ M: be ado module, N and L are submodules of M;, if N is a
supplement of L in M; then NéM is supplement of L in M.

Proof:

Let N be supplement of L in M;, then M;=N + L and NN L « N, since M
=M; @ M, thenM=N+L) @ M hence M=L + (N @ M;) but (N @
M) NL=(N®&M2)NnM;NL=NNLKN.

then NN L &K N @ M, hence N €@ Mz is a supplement of L in M

Proposition (2.1.5):

Let M be any R-module and V , U are submodules of M, V is supplement of
U in M, then % is supplenient of EL in % forLc U.

proof:

Since V is a supplement of U in M. Then M =U+ Vand U N V KV for L

c Uwehave UN UV +L)=(UnNV)+ L (by modular law) and N (E) =

UNV)+L UNV)+L  V+L M U+V
UV ,since U NV KV, it follows that ( nL)+ K 'Nowf T+=

U, V+L V+L . Uu. M
R therefore —is supplement of T in T

11



Proposition (2.1.6):

Let M be an R-module. If A is a supplement submodule in M. Then % isa

supplement submodule in %, where N is submodule of A.

Proof:

Since A is supplement in M. Then there exists submodule K of M. Such that
A+k=M, and ANK KA. Now we have— TS % to show —n

N
K;N . % - % n KN ANKEN) (AnK)+N (by modular law). Let (AnE)+N

N N
Lo % where LEA and N € L the nw=— ,hence (ANK)+ N+

N
=A,bu NCLthen(AnK)+L AandAnK<<AthenL A and hence

% , therefore =N ﬂ << -

ert_‘ +

12



2- COFINITELY SUPPLEMENTED MODULE

In this section, we recall the concept of cofinitely supplemented modules with
some properties see [6].

Definition (2.2.1):

A module M is called cofinitely supplemented module (for short cof-
supplemented) if for every cofinite sub module L of M. There exists a
submodule N of M such that M =L + N and N N L«KN.

Remark (2.2.2):

It is clear that every supplemented module is cof- supplemented. The
converse in general is not true, concider the following example. Q as Z-
module is cof-supplemented module. But it is known That Q is not
supplemental.

Proposition (2.2.3):

Let M be a finitely generated R-module. Then M is supplemented module if
and only if M is cof-supplemenited.

Proof:

To show that M is supplemented module. Let L be a submodule of M since
M is afinitely generated R-module. Then % is a finitely generated hence L is

acofinite submodule of M. But M is cof-supplemented therefore L has
supplemented in M thus M is supplemented module the converse is clear.

Proposition (2.2.4):

Let M be a cof-supplemented. Let B be a submodule of M then % is a cof-

supplemented.

Proof:

13



Let B be a submodule of M and let g be any cofinite submodule of % such
M

that % = -2 is finitely generated. Then K is a cofinite submodule of M since
B

M is a cof-supplemented. Then there exists a submodule C of M such that

M=K+CK N <<C.N0w£ KC_K B to showi nC+—B<< c+B . Let
B B B B B B B
(K CHBy Vv _CtB
B B B B
with (C+B) _ C+BI KN(C+B) _ B+(KNC) then
B \'% B
P+ = = 22 and BHKNC) +V=C+B and (o)==, but K N C <

C< C+B and K N C « C+B thus

V=C+B and % = ? , there fore % is a cof- supplementel module.

Proposition (2.2.5):

Let M=M, @M, then M, and M: are a cof-supplemented module if and only
if M is a cof-supplemen ted module.

Proof:
) M
Let L be a cofinite sub module of M. Then M=L+M;+M, now M~
M2n(L+M1)
M2+LM1_ M _ ML
L+M1 L+M1 ~ LtM1

=

which is finitely generated. Hence M2 N(L+M,) is a cufinite submodule of
M,. Since M; is cof-supplemented. Then there exists asubmodule H of M2

such that Mo,=H + [M2nN (L +M;)] with HN (L + M;) K H we have M = L
+M1+Mz=L+M1+M2n(L+M1)+H=M1+L+HandsinceM1 ﬂ(L+
H) is a cufinite submodule of M, and M, is a cof-supplemented. Then there
exists a submodule G of M; such that

M;=G+[M;n((L+H)]and GN (L+ H) K H, hence

M=G+MN(L+H)+L+H=L+H+Gand H+G)NL<[HN(L+
M)]+[GN(L+H)]<H+G

there fare M is a cof-supplemented module.

14



Conversely Mz = % and M i1s a cof-supplemented module by proposition
M .
(2 1 6) W 1S

A cof-supplemented module. Then M, is a cof-supplemented module.
similarity M is a cof-supplemented module.

15
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