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ABSTRACT 

   Let R be any ring with identity and Let M be aunitary Left R-module. This 

research Studies Two Types of modules. The first is supplemented modules 

and the second cofinitely supplemented modules with some examples and 

properties. 
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INTRODUCTION 

   Throughout all rings are associative with identity and modules are rings 

unitary. In This work. we will study the concepts of supplemented modules 

and the second cofinitely supplemented modules this research has Two 

chapters: 

In chapter One, we recall the definition of the group modules and Some 

Properties about small submodules 

In chapter Two, there are Two sections. In section one Study supplemented 

modules with example and Properties 

Section Two Studies The cofinitely supplemented modules with examples 

and properties. 
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Chapter one 

Basic concepts of modules 

 

  In This chapter we will recall the definition of the group, modules and small 

submodules with some examples and properties. 

 

Definition (1.1):[1] 

  A group is an ordered Pair (G,∗) consisting anon empty set G and binary 

operation ∗ defined on G satisfy the following. 

1. G is a closed under ∗→ 𝑎 ∗b ∈ G, ∀𝑎 ∗b ∈ G 

2. ∗ is assoca i tive on G→ 𝑎 (b∗c) = (𝑎 ∗b) ∗c ∀𝑎, b, c ∈ G 

3. ∃𝑒 ∈ G. such that ∀𝑎 ∈G. 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 

where 𝑎-1 is called the inverse element of 𝑎 

 

Example (1.2): (Z,+) is a group 

Solution: 

1.Z is a closed under (+) 𝑎+b ∈ z.∀𝑎, b ∈ z 

2. + is associative on z→𝑎 + (b + c) = (𝑎+b) + c ∀𝑎,b , C ∈ Z 

3. 0 is the identity element with add. since ∀𝑎 ∈ Z→  𝑎 +0 = 0+𝑎 = 𝑎 

4.∀𝑎 ∈ Z.∃ − 𝑎 ∈ Z. such that a + (-𝑎) = (-𝑎) + 𝑎 = 0 

 

Definition (1.3): [1] 

  A group (G. ∗) be a called commutative group or (abelian group) if  

𝑎 ∗b=b∗ 𝑎 ∀𝑎, b ∈ Z 
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Example (1.4): show that (Q-{0} ,.) is a commutative group. 

Solution: 

1. Q-{0} is a closed under (∙) , since ∀𝑎,b∈Q-{0}→ 𝑎+b ∈ Q-{0} 

2. (∙) is associative on Q-{0}. Since (𝑎 ∙b)∙c = 𝑎 ∙(b∙c)∀𝑎, b, c ∈ Q-{0} 

3. I is the identity element with multiply of Q-{0} since ∀𝑎 ∈ Q-{0}→

𝑎 ∙1=1∙ 𝑎 = 𝑎  

4. ∀𝑎 ∈ Q-{0}∙ ∃ 𝑎-1∈ Q-{0}. Such that 𝑎.𝑎-1=𝑎-1∙ 𝑎 = l where 𝑎1 = 1/𝑎 ∈

 Q-{0} 

5. ∀𝑎 ,b ∈ Q-{0}→ 𝑎 ∙b = b∙ 𝑎 →(∙) is a commutative on Q-{0} 

 

  

Definition (1.5): [1] 

  Let R be a non-empty set and let ∗, # be two binary operations on R. Then 

(R, ∗, #) is a ring if: 

 i. (R, ∗) is an abelian group 

1. Closed because ∀𝑎, b ∈ R then 𝑎 ∗ b ∈ R 

2. Associative because ∀𝑎, b, c ∈ R then 𝑎 ∗ (b ∗ c) = (𝑎 ∗ b) ∗c 

3. ∀𝑎 ∈ R, ∃𝑒 ∈ R s.t 𝑎 ∗  𝑒 = 𝑒 ∗  𝑎 = 𝑎 

4. ∀𝑎 ∈ R,∃ 𝑎-1 ∈ R s.t 𝑎 ∗  𝑎-1 = 𝑎-1 ∗  𝑎 = 𝑒 

5. commutative because ∀𝑎, b ∈ R then 𝑎 ∗ b = b ∗ 𝑎 

ii. (R, #) semi group. 

1. Closed because ∀𝑎, b ∈ R then 𝑎#b ∈ R 

2. Associative because ∀𝑎, b, c∈ R then 𝑎#(b#c) = (𝑎#b) #c 

iii.  Distributive 

1. ∀𝑎, b, c ∈ R then a#(b ∗ c) = 𝑎#b ∗  𝑎#c 
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Example (1.6):  

(ℤ, +,∙) is a ring 

i. (ℤ, +) is an abelian group 

1. Closed because ∀𝑎, b ∈ ℤ then 𝑎 + b ∈ ℤ 

2. Associative because ∀𝑎, b, c ∈ ℤ then 𝑎 + (b + c) = (𝑎 + b) + c 

3. ∀𝑎 ∈ ℤ. ∃𝑒 ∈ ℤ s.t 𝑎 + 𝑒 = 𝑒 + 𝑎 = 𝑎  ,  𝑒 = 0  

4. ∀𝑎 ∈ ℤ. ∃ 𝑎-1∈ ℤ s.t 𝑎 + 𝑎-1 = 𝑎-1+ 𝑎 = 𝑒   ,  𝑎-1 = 𝑎 

5. Commutative because ∀𝑎, b ∈ ℤ. then 𝑎 + b = b + 𝑎 

ii (Z, ∙) semi group 

1. Closed because ∀𝑎, b ∈ ℤ then 𝑎 ∙ b ∈ ℤ 

2. Associative because ∀𝑎, b, c ∈ Z than  𝑎 ∙ (b ∙ c) = (𝑎 ∙ b) ∙ c 

iii. Distributive 

1. ∀𝑎, b, c ∈  ℤ then 𝑎 ∙ (b + c) = 𝑎 ∙ b + 𝑎 ∙ c 

∴ (ℤ, +, ∙) is a ring  

 

Definition (1.7): [1] 

 Let R be a ring with identity an abelian group (M, +) is called a left R- module 

(or left R-module over R) if there exists a mapping 𝑓: R×M→M such that 

f(r,m) = r∙m∀r ∈ R and ∀m ∈ M satisfying the following conditions 

 

1.𝑓(r, m1 + m2) = 𝑓(r, m1) + 𝑓(r, m₂) or r (m1 + m2) = r∙m1+ r∙m2 ∀r ∈ R 

∀m1, m2 ∈ M 

2.𝑓(r1 + r2, M) = 𝑓(r1, m) +𝑓(r2, m) or (r1, r2) m = r1m + r2m ∀ r1, r2∈

 R,∀m ∈ M 

3.𝑓(r1r2, m) = 𝑓(r1),𝑓(r2, m) or (r1r2) m= r1(r2m) 

∀ r1, r2 ∈ R and ∀m ∈ M  

4. If in addition 1.m = m    ∀m ∈ M, then M is called a unital R-module 
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Example (1.8): Q is Z-module 

Solution: 

Since ℚ is an abelian group and the ring Z has unity then ∃ amapping  

𝑓: ℤ ×ℚ→ ℚ s.t 

𝑎(r, m) = r ∙ m ∀r ∈ ℤ and ∀m ∈ ℚ. Let r1, r2 ∈ ℤ and m1, m2 ∈ ℚ then 

 

1. 𝑓(r, m1 + m2) = r∙(m1 + m2) = (m1 + m2) + (m1 + m2) +…....+ (m1 + m2) 

𝑓(r, m1 + m2) = (m1 + m1 +……+ m1) + (m2 + m2 +……+ m2) = r∙m1 + r∙m2  

2. 𝑓(r1 + r2, m) = (r1 + r2)∙ m = m + m +…..+ m + m + m 

𝑓(r1 + r2, m) = (m + m +……+ m) + (m + m +……+ m) = r1∙m + r2∙m 

3. 𝑎(r1∙r2,m) = (r1∙r2)∙m = m + m + m +……+ m + m + m →∗ 

r1∙(r2∙m) = r1∙(m +…..+ m + m) 

r1∙(r2∙m) = (m +…..+ m + m) + (m +…...+ m + m +…..+ (m +…..+ m + 

m) 

r∙(r2∙m) = m + m + m +…..+ m + m + m→∗∗from∗and∗∗we get (r1∙r2)∙m 

= r1∙(r2 ∙m) 

4. Since 1 is the unity of a ring ℤ, then 1∙ m = m. 

Therefore, by module definition we get ℚ is ℤ-module 

 

 

Definition (1.9): [1]  

    Anon-empty subset N of R-module M is called a submodule of M iff 

1.(N, +) is a subgroup of (M,+) 

2. r∙N⊆N∙ ∀ r∈R 

 

 

Example (1.10): (ℤ,+) is submodule of module (Q,+) over a ring (ℤ,+), 

since ∅ ≠ ℤ⊆Q 

1. 𝑎+b ∈ℤ,∀ 𝑎, b ∈ℤ 



6 
 

2.r∙ 𝑎 ⊆ ℤ∙ ∀ r ∈ R, ∀𝑎 ∈ ℤ 

Definition (1.11): [1] 

  A submodule N of a left - R- module M is said to be a direct summand of M 

if there is a sub module of M such that M=N⊕K. In other word there is a 

submodule k of M such that M=N+K and N∩K=0 

 

 

Example (1.12): Let M=Z6 as a left Z-module the direct summands of M is 

Solution: 

M, 0, N1=<2> = {0̅, 2̅, 4̅} and N2=<3> = {0̅, 3̅} are all direct summands  

of M 

 

 

Definition (1.13): [1] 

  Let R and S be rings. Then a ring homomorphism 𝜌:R→S is a mapping for 

which for all r1, r2∈R we have 

1. 𝜌(r1 + r2) = 𝜌(r1) + 𝜌(r2) 

2. 𝜌(r1.r2) = 𝜌(r1)∙ 𝜌(r2) 

 

 

Definition (1.14): [1] 

  Let R and S be rings. A function ∝: R→S is called ring epimorphism if 

satisfies the following 

 

1. ∝ is a homomorphism. 

2. ∝ is surjective (onton). 
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Definition (1.15): [1] 

  Let M be an R-module M is called semi simple module if every submodule 

of M is a direct summand M. 

 

 

Definition (1.16): [1] 

  Let G be a group. and A, B, C be subgroups of G the modular law states that. 

(A + B) ∩ C = (A ∩ C) + (B ∩ C) = (A ∩ C) + B 

 

 

Definition (1.17): [1] 

  A module M is called duo. if every submodule of M is fully invariant. 

 

 

Definition (1.18): [2] 

  Let M be an R-module and S be a sub module of M. S is said to be small 

submodule of M (denoted s ≪ M) if for any submodule N of M such that M 

= S + N We have N = M 

 

 

Examples (1.19):  

(1) For any R-module M, {0̅} is a small submodule of M but M is not small 

in M. Since the only case that we have is 0 + M = M 

(2) The submodule {0̅, 2̅} of the ℤ4 as ℤ- module is small of ℤ4. Since the 

only case that we have is {0̅, 2̅} + ℤ4 = ℤ4 

(3) The submodules {0̅, 2̅, 4̅} of the ℤ6 as ℤ-module is not small of ℤ6 since 

{0̅, 2̅, 4̅}+ {0̅, 3̅} = ℤ6 but {0̅, 3̅}≠ℤ6 

(4) In ℤ as a ℤ-module, 2ℤ is not a small submodule since 2ℤ+3ℤ=ℤ but 

3ℤ≠ℤ 
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Proposition (1.20): 

(1) Let K1 and K2 be a submodule of R-module M K1 ≪ M and K2 ≪ M, then 

K1 + K₂ ≪ M 

(2) Let 𝑓: M→M ’ be an R-epimorphism and A ≪M. then 𝑓(A)≪M’. 

(3) Let M be an R-module M and K1 and K2 be a submodules of M with K1≤ 

K2≤ M 𝑖𝑓 K2≪ M, then K1≪M. 

(4) Let M be an R-module and N, K, L are submodules of M With N ⊆ K ⊆ 

L ⊆ M, if K ≪ L then N ≪ M. 

 

 

 

Definition (1.21): 

  Let M be an R-module and N is submodule of M is said to be coffinite if 
M

N
 

is finitely generated. 
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Chapter Two 

supplemented and cofinitely 

 supplemented modules 

    In This chapter, we will recall the concepts of the Supplemented and 

cufinitely supplemented modules with some examples and properties. 

 

1-SUPPLEMENTED MODULE 

  In This section we recall the supplemented modules with some properties 

see [4] and [5]. 

 

Definition (2.1.1): 

  Let M be any R-module and N, K are submodules of M. N is called 

supplement of K in M if M = N + K and N ∩ K ≪ N. If every submodule of 

M has supplement then M is called supplemented module. 

 

Example (2.1.2): 

(1) Consider the module ℤ4 as ℤ-module. Then ℤ4 is a supplement of a         

submodule {0̅, 2̅} in ℤ4 as ℤ-module since {0̅, 2̅}+ ℤ4 = ℤ4 and {0̅, 2̅}∩ ℤ4 

= {0̅, 2̅} ≪ ℤ But the con verse is not true {0̅, 2̅} is not a supplement of ℤ4 

since {0̅, 2̅}+ℤ4 = ℤ4 and{0̅, 2̅}∩ ℤ4 = {0̅, 2̅}is not small in{0̅, 2̅} 

(2) consider the module ℤ6 as-ℤ-module {0̅, 2̅} is a supplement of {0̅, 2̅, 4̅} 

in ℤ6 

 

Proposition (2.1.3): 

  Let M be a supplemented module and N⊆M then 
M

N
 is a supplemented. 
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Proof: 

  Let 
K

N
  ⊆ 

M

N
 ,to prove 

K

N
 has supplement in 

M

N
. K ⊆ M, since M is supplemented, 

then there exists L ⊆ M such that M = K + L, and K ∩ L ≪ L, now 
M

N
=

K+L

N
=  

K

N
 + 

L+N

N
, to prove 

K

N
∩

L+N

N
≪

L+N

N
 , let (

K

N
∩

L+N

N
) + 

V

N
  = 

L+N

N
, to prove 

V

N
  =  

L+N

N
, 

 
K∩(L+N) 

N
 = 

N+(K∩L)

N
, (by modular law). Then 

N+(K∩L) 

N
+ 

V

N
=  

L+N

N
  and N + 

(K ∩ L) + V = L+N, since N ⊆ V. Then (K ∩ L) + V = L + N hence K ∩ L ≪

 L ⊆ L + N and K ∩ L ≪ L + N, therefore V= L + N and 
V

N
 = 

L+N

N
. 

 

 

Proposition (2.1.4): 

  Let M = M1 ⊕ M₂ be ado module, N and L are submodules of M1, if N is a 

supplement of L in M1 then N⊕M is supplement of L in M. 

Proof: 

  Let N be supplement of L in M1, then M1 = N + L and N ∩ L ≪ N, since M 

= M1 ⊕ M2, then M = (N + L) ⊕ M hence M = L + (N ⊕ M2) but (N ⊕ 

M2) ∩ L= (N ⊕ M₂) ∩ M1 ∩ L1= N ∩ L ≪ N.  

then N ∩ L ≪ N ⊕ M₂, hence N ⊕ M₂ is a supplement of L in M 

 

 

Proposition (2.1.5): 

  Let M be any R-module and V , U are submodules of M, V is supplement of 

U in M, then 
V+L

L
 is supplenient of  

U

 L
  in 

M

L
  for L ⊆ U. 

 proof: 

  Since V is a supplement of U in M. Then M = U + V and U ∩ V ≪ V for L 

⊆ U we have U ∩ U(V + L) = (U ∩V) + L (by modular law) and 
U

 L
 ∩ (

V+L

L
) = 

(U∩V)+L

L
 , since U ∩ V ≪ V, it follows that  

(U∩V)+L

L
≪

V+L

L
  . Now 

M

L
 = 

 U+V

L
 = 

U

L
 + 

V+L

L
 , therefore 

V+L

L
 is supplement of  

U

L
  in  

M

L
. 



12 
 

Proposition (2.1.6): 

  Let M be an R-module. If A is a supplement submodule in M. Then 
A

N
 is a 

supplement submodule in 
M

N
, where N is submodule of A. 

Proof: 

  Since A is supplement in M. Then there exists submodule K of M. Such that 

A + k = M, and A ∩ K ≪ A. Now we have 
A

N
  +  

K+N

N
  =  

M

N
  to show  

A 

N
∩

 K+N

N
 ≪  

A

N
  .  

A

N
  ∩  

K+N 

N
 =  

A∩(K+N)

N
 = 

(A∩K)+N

N
 (by modular law). Let  

(A∩K)+N

N
 

+  
L

N
  =  

A

N
 , where L⊆A and N ⊆ L then 

(A∩K)+N+L

N
 = 

A

N
 , hence (A ∩ K) + N + 

L= A, but N ⊆ L, then (A ∩ K) + L= A, and A ∩ K ≪ A, then L = A  and hence 
L

N
 = 

A

N
 , therefore 

A

N
∩

K+N

N
≪

A

N
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2- COFINITELY SUPPLEMENTED MODULE 

In this section, we recall the concept of cofinitely supplemented modules with 

some properties see [6]. 

 

Definition (2.2.1): 

  A module M is called cofinitely supplemented module (for short cof-

supplemented) if for every cofinite sub module L of M. There exists a 

submodule N of M such that M = L + N and N ∩ L≪N. 

 

Remark (2.2.2): 

  It is clear that every supplemented module is cof- supplemented. The 

converse in general is not true, concider the following example. Q as Z-

module is cof-supplemented module. But it is known That Q is not 

supplemental. 

 

 

Proposition (2.2.3): 

  Let M be a finitely generated R-module. Then M is supplemented module if 

and only if M is cof-supplemenited. 

Proof: 

  To show that M is supplemented module. Let L be a submodule of M since 

M is afinitely generated R-module. Then 
M

L
 is a finitely generated hence L is 

acofinite submodule of M. But M is cof-supplemented therefore L has 

supplemented in M thus M is supplemented module the converse is clear. 

 

Proposition (2.2.4): 

  Let M be a cof-supplemented. Let B be a submodule of M then 
M

B
 is a cof-

supplemented. 

Proof: 
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  Let B be a submodule of M and let 
K

B
  be any cofinite submodule of 

M

B
 such 

that 
M

K
 ≅ 

M

  B  
  K 

  B 
 
 is finitely generated. Then K is a cofinite submodule of M since 

M is a cof-supplemented. Then there exists a submodule C of M such that 

M=K+C K ∩ ≪C. Now 
M

  B  
= 

K+C

  B  
 = 

K

  B  
 + 

C+B

  B  
  to show 

K

  B  
 ∩ 

C+B

  B  
 ≪

C+B

  B  
  . Let 

(
K

  B  
 ∩ 

C+B

  B  
) + 

V

  B  
 = 

C+B

  B  
  

with (
C+B

  B  
) = 

C+B

  V  
 , 

K∩(C+B)

  B  
=

B+(K∩C)

  B  
 then 

B+(K∩C)

  B  
 + 

V

  B  
 = 

C+B

  B  
 and B+(K∩C) +V=C+B and (

C+B

  V  
)= 

C+B

  V  
 , but K ∩ C ≪

 C≤ C+B and K ∩ C ≪ C+B thus 

V=C+B and 
V

  B  
=

C+B

  B  
 , there fore 

M

  B  
 is a cof- supplementel module. 

 

 

Proposition (2.2.5): 

  Let M=M1⊕M2, then M1 and M₂ are a cof-supplemented module if and only 

if M is a cof-supplemen ted module. 

Proof: 

  Let L be a cofinite sub module of M. Then M=L+M1+M2 now 
M2

 M2∩(L+M1)   
≅

 
M2+LM1

 L+M1 
 = 

M

 L+M1 
 ≅  

M

  L
  L+M1

  L 
 
  

which is finitely generated. Hence M₂ ∩(L+M1) is a cufinite submodule of 

M2. Since M2 is cof-supplemented. Then there exists asubmodule H of M₂ 

such that M2 = H + [M₂ ∩ (L + M1)] with H ∩ (L + M1) ≪ H we have M = L 

+ M1 + M₂ = L + M1 + M2 ∩ (L + M1) + H = M1 + L + H and since M1 ∩ (L + 

H) is a cufinite submodule of M1 and M1 is a cof-supplemented. Then there 

exists a submodule G of M1 such that 

M1 = G + [M1 ∩ (L + H)] and G ∩ (L + H) ≪ H, hence  

M = G + M1 ∩ (L + H) + L + H = L + H + G and (H + G) ∩ L ≤ [H ∩ (L + 

M1)] + [G ∩ (L + H)] ≪ H + G  

there fare M is a cof-supplemented module. 
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Conversely M₂ ≅
M

  M1  
 and M is a cof-supplemented module by proposition 

(2.1.6) 
M

  M1  
 is  

A cof-supplemented module. Then M2 is a cof-supplemented module. 

similarity M1 is a cof-supplemented module. 
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