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Abstract

Nanotechnology can help to address the existing efficiency hurdles and greatly
increase the generation and storage of solar energy. A variety of physical processes
have Dbeen established at the nanoscale that can improve the processing and
transmission of solar energy. The application of nanotechnology in solar cells has
opened the path to the development of a new generation of high-performance products.
When competition for clean energy options is growing, a variety of potential
approaches have been discussed in order to expand the prospects. New principles have
been explored in the area of solar cell generation, multi-generation, spectrum
modulation, thermo-photoelectric cells, hot carrier, the middle band, and many other
techniques. Nanoparticles and nanostructures have been shown to enhance the
absorption of light, increase the conversion of light to energy, and have improved

thermal storage and transport.

The solar cell industry has grown quickly in recent years due to strong interest in
renewable energy and the problem of global climate change .Cost is an important
factor in the success of any solar technology. Today's solar cells are simply not enough
efficient and are too expensive to manufacture for large-scale electricity generation.
However, potential advancements in nanotechnology may open the door to the
production of cheaper and slightly more efficient solar cells. Nanotechnology has
already shown huge breakthroughs in the solar field. Quantum dots have the potential
to change the world. They are a form of solar cell that is completely beyoznd anything
you might imagine. Nanotechnology might be able to increase the efficiency of solar
cells, but the most promising application of nanotechnology is the reduction of
manufacturing cost. PVs based on CdTe, CulnGaSe (CIGS), CulnSe (CIS), and
organic materials are being developed with the aim of reducing the price per watt even

if that means  sacrificing  conversion  efficiency and  reliability.
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1. Introduction

The most emphasized problem of modern life in the 21. century is by far the growing
energy requirement of the world. The global energy consumption is estimated to
double by the year 2050; the growth of any other industry is strictly related to the
resources. However, this high energy demand is conventionally met with the use of
fossil fuels. The disadvantages of fossil fuels including environmental pollution and
resource depletion are well-disputed and undeniable. This is why researchers have
steered towards new and renewable energy resources. Solar energy is considered to be
the most promising solution to the clean energy requirement of the modern world. The
conversion of solar energy to electricity is achieved through solar cells. We are
considerably familiar with the conventional solar cells which are installed on almost
every rooftop, traffic lights, and various other places we encounter on a daily basis.
These are single-crystalline silicon solar cells and make up to 94% of the solar energy
market. Many photovoltaic devices including these traditional solar cells have been
developed over the years however; their wide-spread use is limited by conversion
efficiency and cost. Traditional silicon solar cells are often referred to as first
generation solar cells. With regards to first generation solar cells, high cost, and
theoretical efficiency limit (which is known as the Shockley-Quiesser limit) are the
two major disadvantages. The high cost of the single—crystalline silicon solar cells is
due to the production of high quality Si wafers which makes up to 40-50% of the
market price. The second generation thin film solar cells were developed in order to
aid the high cost of traditional solar cells.
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2. Solar Energy

Solar energy is the most abundant of all energy resources and can even be harnessed in
cloudy weather. The rate at which solar energy is intercepted by the Earth is about 10,000

times greater than the rate at which humankind consumes energy.

Solar technologies can deliver heat, cooling, natural lighting, electricity, and fuels for a
host of applications. Solar technologies convert sunlight into electrical energy either

through photovoltaic panels or through mirrors that concentrate solar radiation.

Although not all countries are equally endowed with solar energy, a significant

contribution to the energy mix from direct solar energy is possible for every country.

The cost of manufacturing solar panels has plummeted dramatically in the last decade,
making them not only affordable but often the cheapest form of electricity. Solar panels
have a lifespan of roughly 30 years, and come in variety of shades depending on the type

of material used in manufacturing.

Quantum-based solar cell  Dye-sensitized solar cell

Silicon-based solar cell

Conventional solar cells : Nanostructured solar cells

Fig. 1. Evolution of photovoltaic technology from conventional to nanostructured solar cells [3].
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3. How does Nanotechnology Enhance Solar Cell?

Amorphous Si, cadmium telluride (CdTe), copper-indium-gallium-selenide (CIGS),
and other compound semiconductor thin films are commonly used in second
generation solar cells. However, hydrogenated amorphous silicon degenerates when
exposed to sunlight hence they have a short lifetime. The CdTe and CIGS films are
more efficient for the conversion of sunlight and are relatively cheap to produce, but
they contain heavy metals and thus are harmful to the environment. The third
generation solar cells composed of hybrid junctions, polymers, organic-inorganic
hybrid assemblies, and semiconductor nanostructures are developed to improve the
theoretical efficiency. The Shockley-Quiesser limit defining the theoretical efficiency
of traditional solar cells was first calculated by William Shockley and Hans-Joachim
Quiesser in 1981. They proposed that the maximum efficiency of a silicon solar cell
would be 30% at 1.1 eV. However, later calculations have updated this limit as 33.7%
at 1.37 eV. This limit is one of the most fundamental theories of solar energy systems
and frequently utilized in the production of photovoltaic cells. Shockley-Quiesser limit
calculations assume that; low energy photons can’t be absorbed and high energy
photons can only excite one electron. However, it is important to note that this limit is
only valid for conventional single p-n junction solar cells. Third generation solar cells
attempt to increase the efficiency limit either by utilizing the high-energy photons
more efficiently, or recovering the low-energy photons normally not converted.
Nanostructures are extensively studied for this purpose. Here we will examine how
nanotechnology benefits solar cells technologies and the use of nanotechnology in
several different solar cells including conventional thin film solar cells, dye-sensitized
solar cells, carbon and polymer based solar cells, quantum dot solar cells, and

extremely thin absorber solar cells.
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Employing nanotechnological solutions and nanoscale structures to the solar cell
systems provide promising improvements. Nanoscale systems exhibit different
properties than their bulk or thin film counterparts. High surface to volume ratio of
nanostructures 6, quantization effects at ~1-20 nm scale, and variety in production
methods provide several benefits to solar energy systems. Nanomaterials are utilized
in multiple-junction solar cells to exceed the Shockley-Quiesser limit. In theory, a
finite number of junctions results in an efficiency limit of 68% at 1-sun intensity while
a triple-junction solar cell based on Il11-V semiconductors reaches up to 34.1%
efficiency 3. However, these high-efficiency cells are far too expensive. On the other
hand, nanomaterials can be used to produce layers with different bandgaps, and the
multiple junctions can be solution-processed at a significantly lower cost.
Furthermore, the unique properties of nanostructures are employed to provide two
major improvements to the solar energy systems; optical losses and electrical

performance.
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4. Nanomaterial

4.1 What are Nanomaterials?

The term nanoscale refers to the dimension of 10° meters. It is the one billionth part of
a meter. So, the particles whose any of the external dimensions or internal structure
dimension or surface structure dimension lies in the range of 1nm to 100nm are

considered as Nanomaterials.

4.2 Properties of Nanomaterials

A drastic change in the properties of nanomaterials can be observed when they are
breakdown to the nanoscale level. As we go towards the nanoscale level from the
molecular level, the electronic properties of materials get modified due to the quantum
size effect. Change in the mechanical, thermal and catalytic properties of the materials

can be seen with the increase in surface area to volume ratio at the nanoscale level.

4.3 The classification of nanomaterials

The classification of nanomaterials mainly depends on the morphology and their
structure, they are classified into two major groups as Consolidated materials and
Nanodispersions. Consolidated nanomaterials are further classified into several
groups. The one dimensional Nano dispersive systems are termed as Nanopowders and
Nanoparticles. Here the nanoparticles are further classified as Nanocrystals,

Nanoclusters, Nanotubes, supermolecules,etc..



Fig. 2. Classification of Nanomaterials (a) OD spheres and clusters, (b) 1D nanofibers, wires, and
ﬂ% rods, (c) 2D films, plates, and networks, (d) 3D nanomaterials H

“ 5. Nanostructured photovoltaics platforms H

H Nanostructured PVs offer the possibility of increased surface area due to their H
© nanostructured components without increasing the physical size of the device, whereas I
+  tailoring of their individual components is significantly easier than conventional Si- ®
. based PV as different processes occurring under illumination are decoupled. In this H
| section we highlight the nanostructured PV platforms that have significant and I
i encouraging power conversion efficiencies, and the potential for long term stability. 3
. The various technologies that currently satisfy these criteria, and those we will ;
" describe and discuss here include dye-sensitized solar cells, quantum dot-sensitized ]
solar cells (QDSSCs) , colloidal quantum dot solar cells, and nanowire-based solar i
cells. In addition to their operational principle, we will discuss both their advantages °

and shortcomings, along with insights into possible improvements ]



ﬂ% Classification of PV solar cell H
I |
I |
I |
I First generation Second generation Third generation |
I |
W Monoerystalline (Mono-S$i) Amorphous silicon (a-S1, #-St/pc-Si) Dye sensitized (DSSC) H
3 Cadmium Tellunide (Cd-Te) Perovskite (cell) E
U% Polycrystalline (Pc-Si) Copper-Indium-Selenide (CIS) Organic (OPV) é’U
H Copper-Indium-Gallium-Dislenide (CIGS) Quuntum dot (¢ell) H
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o

I Fig. 3.. classification of photovoltaic panels generations types [5] y

i 6. Quantum dot- solar cells ]

QDSSCs operate much like DSSCs. In these devices, the sensitizer layer now consists
. of quantum dots (QDs) instead of a dye, on a mesoporous semiconductor which serves A
as the ETL, such as TiO,or ZnO [163, 164]. The solar cell is completed by the I
electrolyte or HTM, and the counter electrode. As outlined in figure 4, when sunlight 3
is incident on the QDSSC, the QDs will absorb light to generate electron—hole pairs. A
The electrons are then transferred from the conduction band of the QD to the ]
conduction band of the ETL, and the holes are transferred to the electrolyte/HTM, .
which is typically made of polysulfides. The oxidized electrolyte is then reduced to its .
original state by electrons re-entering the cell from the external circuit [13, 15]. The ]

open-circuit voltage is determined by the difference between the fermi level of the i


https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib163
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib164
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5f4
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib163
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib165

| QD/ETL system and the redox potential of the electrolyte, whereas the produced
" current is controlled by the sensitizing ability of the QDs and the efficiency of electron
” separation and extraction [13, 16]. QDSSCs have become an attractive alternative to
. DSSCs due to ease of fabrication, tunable spectral properties allowing for tandem

 architectures, improved stability over DSSCs as they can form better junctions with

" current best efficiency recorded for QDSSCs is 11.61% [10], and while significant

Glass + SnO,-F

Nanoporous QD film
TiO,
(a)

Fig. 4. (a) Schematic diagram of Depleted-heterojunction Colloidal Quantum Dots Solar Cells, (b)

I
I
I
I
I
I
I
I
I
I
I
)
I
H% energy band diagram. [24].
L
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

[ o

Light

EV

Nanoporous QD film
TiO,
(b)

. solid state HTMs, and the potential of multiple exciton generation by impact ionization
. that could increase the theoretical limit in efficiency to 44% [16-15, 17-19]. The

enhancements have been achieved in the past few years, the record efficiency is still
. below the record efficiency of DSSCs [15].

9p0J}d9|e |e}a |
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7. Results And Discussion

7.1Size tunable properties

Implementation of QDs offers a variety of benefits over dyes as sensitizers in a solar
cell. Perhaps their biggest benefit is the ability to tune their spectral properties easily
by varying the diameter of the QD, due to quantization effects present. By modifying
the energy levels of the QDs, light absorption and electron injection can be tailored to
match the needs of the solar cell [11, 12], whereas generation of multiple excitons by a
single photon and hot electrons offer new possibilities for enhancement of device
performance [11, 13].

Good QDSSC operation requires that the conduction band of the QD sensitizer be
higher than the conduction band of the ETL for efficient electron transfer between the
two, as the offset provides the driving force for charge transfer [13, 11]. While the
open circuit voltage of the device is independent of the size of the QDs used in the
sensitizer, as demonstrated in figure 5(a), the device photocurrent is directly correlated
to the properties of the QDs [11]. It has been observed that smaller QDs result in
higher photocurrent due to the higher conduction band as shown in figure 5(b),
implying that a larger driving force will be available for electron injection to the ETL
[11, 14]. However, decreasing QD size is also associated with more limited response

in the visible part of the spectrum as shown in figure 5(c) [11].
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Fig. 5.. (a) Open-circuit voltage for TiO, nanoparticles/3 nm CdSe QDs and TiO2 nanotubes/3 nm
CdSe QDs, (b) photocurrent of TiO2 nanoparticles/CdSe QDs of various sizes, (c) absorption
spectra of CdSe QDs of various sizes. Reprinted with permission from [11]. Copyright (2008)
American Chemical Society.

7.2Colloidal QD solar cells

The first example of a solar cell employing colloidal QDs for both light harvesting and
charge transport was made in 2005, using a mixture of PbS QDs and a conjugated
polymer poly[2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV),
which served as HTM [21]. However, the efficiency of these devices was limited by
poor electron transport and after significant enhancements in the conductivity of QD
films, the active layer was prepared by PbS QDs only, which was found to enhance
charge carrier extraction from the active layer [26]. These devices were built as
Schottky cells, as the semiconducting active layer (PbS) formed a rectifying junction
with a low work function metal and the operating procedure is outlined in figure 6(a)
[27]. Metals used for this purpose included aluminum, calcium, magnesium, silver,
and gold. The best device efficiency achieved with such an architecture was 5.2% [28].
Nevertheless, the device performance is limited by the Fermi level at the interface
which limits the open-circuit voltage, whereas illumination from the non-rectifying
side of the device was required, which meant that internal quantum efficiency was low

as this was far from the junction [27, 29].
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| Fig. 6.. Device operation of: (a) Schottky colloidal QD solar cell, and (b) depleted heterojunction
l colloidal QD solar cell. Reprinted with permission from [220]. Copyright (2010) American
! Chemical Society

. Fig. 7..Schematic representation of hot electron transfer mechanism. (a) Excited
©  plasmons decaying via radiative emission of photons or non-radiatively by exiting hot
. electrons in the metal. Localized surface plasmons can decay radiatively via re-emitted
. photons or non-radiatively via excitation of hot electrons in the conduction band.
" (b)Hot electron having energy above the Fermi level (c) Hot electrons can be
transferred to the semiconductor if the electrons have energy greater than the Schottky
barrier of the metal-semiconductor junction. om is the work function of the metal
and ys is the electron affinity of the semiconductor. [34] (2014) Copyright © 2014,
Springer Nature. With permission of Spring
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Fig. 7. Absorption of ITO/a-Si:H samples with a-Si:H thin film, nanowire arrays, and nanocone
arrays as top layer over different angles of incidence at at wavelength | = 488 nm (Reprinted
with permission from Ref. [28] (copyright 2011, Elsevier) and Ref. [12] (copyright 2011,
American Chemical Society))

Fig. 8 Nanocones for solar cell applicgtions
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© 7.3 Quantum dot-dye sensitized solar cells(DSSCs) H

. Dye sensitized solar cells DSSCs were first introduced by O'Regan and Gritzel in ”
. 1991 [14]. Their work challenged the conventional solid-state photovoltaic cells, by i
introducing a device that incorporated nanomaterials and separated the processes of ¢
light absorption and charge carrier transport. This new device offered the possibility of :
low-cost photovoltaic devices, which would provide an alternative to power generation ]

from conventional sources. ¥

deposited on a TiO2 (titanium dioxide) film, and employed a liquid re-dox electrolyte i
of tetrapropylammonium iodine mixed with iodine. This device achieved a fill factor .

u
u
u
u
u
u
u
L _ : : . :
. The first example of DSSC was prepared using a ruthenium complex as sensitizer, |
u
u
u
u
~0of 0.76, and in addition to a PCE of 7.9% [14], it also demonstrated an efficiency of ]
I
I
H
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12% under diffuse sunlight, revealing unexpected benefits of these devices compared
to conventional silicon based solar cells. Furthermore, under conditions of low light
intensity (<5 W m—2), the fill factor remained above 0.7, which is not observed for
conventional devices. This was an initial indication of the absence of recombination
processes that normally limit device performance in semiconductor devices. The
promise shown by this first DSSC encouraged further research into the processes
occurring within the device and potential enhancements of the device design to
achieve higher PCE .

A typical DSSC is shown in figure 1. The device consists of a glass or plastic
substrate, which is coated with a transparent conductive oxide (TCO)—common
examples include indium tin oxide (ITO) or fluorine-doped tin oxide (FTO). The
substrate is coated with a mesoporous oxide layer, which typically serves as the
electron transport layer (ETL) that guides electrons to the anode, and TiO2 has been a
particularly popular material for this purpose. Dye is deposited onto the ETL and is
employed for light absorption followed by electron injection into the conduction band
of the ETL. The dye is then regenerated via electron transfer from the redox
electrolyte, typically an iodide/triiodide system. Finally, the triiodide formed is
reduced to iodide by capture of electron from the cathode, which usually consists of
platinum on TCO glass. These processes are shown in figure 1(b). Therefore, at the
end of the process the device has returned to its original state [15]. While extensive
research has been done on the materials incorporated in these devices, certain dyes
have shown great promise. The most impressive PCE from a single sensitizer so far
has been achieved by implementing porphyrin sensitizer (SM315) that has been

engineered to improve its light harvesting properties, resulting in a PCE of 13.0% [16].
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5 Fig. 12. Device structure of a dye-sensitized solar cell employing iodine electrolyte (employing
i Jredox couple) as an example [11,26,29,30]. &

. Figure 12 shows an example of the -V characteristics of a first round study of |
- assembled cells illuminated with a collimated beam from a hot filament lamp. In cell i
I preparation we followed the same strategy described in section 5.6 such that after I
coating the photoelectrode with PbS quantum dots it was soaked in dye for an hour. .
Then, the electrode was rinsed with deionized water and ethanol. After that the cell is ]
assembled and tested. The dye used was extracted from a pomegranate. i
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i In sum, it can be seen that while the usage of nanotechnology in the construction i
+and enhancement of solar cell efficiency is currently in the research process, it can be s
. assumed that the transition period to the commercial arena for this field would be very 1
| L : : : J
©near and inevitable. Seeing the tremendous promise that this sector has demonstrated I
+ in enhancing the efficiency of solar cells, the commercialization of this technology can &
. be viewed as a major turning point in the solar cell industry. Figures 13 and 14 show 1
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