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Abstract 

Nanotechnology can help to address the existing efficiency hurdles and greatly 

increase the generation and storage of solar energy. A variety of physical processes 

have been established at the nanoscale that can improve the processing and 

transmission of solar energy. The application of nanotechnology in solar cells has 

opened the path to the development of a new generation of high-performance products. 

When competition for clean energy options is growing, a variety of potential 

approaches have been discussed in order to expand the prospects. New principles have 

been explored in the area of solar cell generation, multi-generation, spectrum 

modulation, thermo-photoelectric cells, hot carrier, the middle band, and many other 

techniques. Nanoparticles and nanostructures have been shown to enhance the 

absorption of light, increase the conversion of light to energy, and have improved 

thermal storage and transport. 

The solar cell industry has grown quickly in recent years due to strong interest in 

renewable energy and the problem of global climate change .Cost is an important 

factor in the success of any solar technology. Today's solar cells are simply not enough 

efficient and are too expensive to manufacture for large-scale electricity generation. 

However, potential advancements in nanotechnology may open the door to the 

production of cheaper and slightly more efficient solar cells. Nanotechnology has 

already shown huge breakthroughs in the solar field. Quantum dots have the potential 

to change the world. They are a form of solar cell that is completely beyoznd anything 

you might imagine. Nanotechnology might be able to increase the efficiency of solar 

cells, but the most promising application of nanotechnology is the reduction of 

manufacturing cost. PVs based on CdTe, CuInGaSe (CIGS), CuInSe (CIS), and 

organic materials are being developed with the aim of reducing the price per watt even 

if that means sacrificing conversion efficiency and reliability. 
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1. Introduction 

The most emphasized problem of modern life in the 21. century is by far the growing 

energy requirement of the world. The global energy consumption is estimated to 

double by the year 2050; the growth of any other industry is strictly related to the 

resources. However, this high energy demand is conventionally met with the use of 

fossil fuels. The disadvantages of fossil fuels including environmental pollution and 

resource depletion are well-disputed and undeniable. This is why researchers have 

steered towards new and renewable energy resources. Solar energy is considered to be 

the most promising solution to the clean energy requirement of the modern world. The 

conversion of solar energy to electricity is achieved through solar cells. We are 

considerably familiar with the conventional solar cells which are installed on almost 

every rooftop, traffic lights, and various other places we encounter on a daily basis. 

These are single-crystalline silicon solar cells and make up to 94% of the solar energy 

market. Many photovoltaic devices including these traditional solar cells have been 

developed over the years however; their wide-spread use is limited by conversion 

efficiency and cost. Traditional silicon solar cells are often referred to as first 

generation solar cells. With regards to first generation solar cells, high cost, and 

theoretical efficiency limit (which is known as the Shockley-Quiesser limit) are the 

two major disadvantages. The high cost of the single–crystalline silicon solar cells is 

due to the production of high quality Si wafers which makes up to 40-50% of the 

market price. The second generation thin film solar cells were developed in order to 

aid the high cost of traditional solar cells.  
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2. Solar Energy 

Solar energy is the most abundant of all energy resources and can even be harnessed in 

cloudy weather. The rate at which solar energy is intercepted by the Earth is about 10,000 

times greater than the rate at which humankind consumes energy. 

Solar technologies can deliver heat, cooling, natural lighting, electricity, and fuels for a 

host of applications. Solar technologies convert sunlight into electrical energy either 

through photovoltaic panels or through mirrors that concentrate solar radiation. 

Although not all countries are equally endowed with solar energy, a significant 

contribution to the energy mix from direct solar energy is possible for every country. 

The cost of manufacturing solar panels has plummeted dramatically in the last decade, 

making them not only affordable but often the cheapest form of electricity. Solar panels 

have a lifespan of roughly 30 years, and come in variety of shades depending on the type 

of material used in manufacturing. 

 

 

 

 

 

 

Fig. 1. Evolution of photovoltaic technology from conventional to nanostructured solar cells [3]. 

https://www.ipcc.ch/site/assets/uploads/2018/03/Chapter-3-Direct-Solar-Energy-1.pdf
https://www.ipcc.ch/site/assets/uploads/2018/03/Chapter-3-Direct-Solar-Energy-1.pdf
https://www.irena.org/solar
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3. How does Nanotechnology Enhance Solar Cell? 

Amorphous Si, cadmium telluride (CdTe), copper-indium-gallium-selenide (CIGS), 

and other compound semiconductor thin films are commonly used in second 

generation solar cells. However, hydrogenated amorphous silicon degenerates when 

exposed to sunlight hence they have a short lifetime. The CdTe and CIGS films are 

more efficient for the conversion of sunlight and are relatively cheap to produce, but 

they contain heavy metals and thus are harmful to the environment. The third 

generation solar cells composed of hybrid junctions, polymers, organic-inorganic 

hybrid assemblies, and semiconductor nanostructures are developed to improve the 

theoretical efficiency. The Shockley-Quiesser limit defining the theoretical efficiency 

of traditional solar cells was first calculated by William Shockley and Hans-Joachim 

Quiesser in 1981. They proposed that the maximum efficiency of a silicon solar cell 

would be 30% at 1.1 eV. However, later calculations have updated this limit as 33.7% 

at 1.37 eV. This limit is one of the most fundamental theories of solar energy systems 

and frequently utilized in the production of photovoltaic cells. Shockley-Quiesser limit 

calculations assume that; low energy photons can’t be absorbed and high energy 

photons can only excite one electron. However, it is important to note that this limit is 

only valid for conventional single p-n junction solar cells. Third generation solar cells 

attempt to increase the efficiency limit either by utilizing the high-energy photons 

more efficiently, or recovering the low-energy photons normally not converted. 

Nanostructures are extensively studied for this purpose. Here we will examine how 

nanotechnology benefits solar cells technologies and the use of nanotechnology in 

several different solar cells including conventional thin film solar cells, dye-sensitized 

solar cells, carbon and polymer based solar cells, quantum dot solar cells, and 

extremely thin absorber solar cells. 
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Employing nanotechnological solutions and nanoscale structures to the solar cell 

systems provide promising improvements. Nanoscale systems exhibit different 

properties than their bulk or thin film counterparts. High surface to volume ratio of 

nanostructures 6, quantization effects at ≈1-20 nm scale, and variety in production 

methods provide several benefits to solar energy systems. Nanomaterials are utilized 

in multiple-junction solar cells to exceed the Shockley-Quiesser limit. In theory, a 

finite number of junctions results in an efficiency limit of 68% at 1-sun intensity while 

a triple-junction solar cell based on III-V semiconductors reaches up to 34.1% 

efficiency 3. However, these high-efficiency cells are far too expensive. On the other 

hand, nanomaterials can be used to produce layers with different bandgaps, and the 

multiple junctions can be solution-processed at a significantly lower cost. 

Furthermore, the unique properties of nanostructures are employed to provide two 

major improvements to the solar energy systems; optical losses and electrical 

performance. 
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4. Nanomaterial 

4.1 What are Nanomaterials? 

The term nanoscale refers to the dimension of 10-9 meters. It is the one billionth part of 

a meter. So, the particles whose any of the external dimensions or internal structure 

dimension or surface structure dimension lies in the range of 1nm to 100nm are 

considered as Nanomaterials. 

 

4.2 Properties of Nanomaterials 

A drastic change in the properties of nanomaterials can be observed when they are 

breakdown to the nanoscale level. As we go towards the nanoscale level from the 

molecular level, the electronic properties of materials get modified due to the quantum 

size effect. Change in the mechanical, thermal and catalytic properties of the materials 

can be seen with the increase in surface area to volume ratio at the nanoscale level. 

 

4.3 The classification of nanomaterials  

The classification of nanomaterials mainly depends on the morphology and their 

structure, they are classified into two major groups as Consolidated materials and 

Nanodispersions. Consolidated nanomaterials are further classified into several 

groups. The one dimensional Nano dispersive systems are termed as Nanopowders and 

Nanoparticles. Here the nanoparticles are further classified as Nanocrystals, 

Nanoclusters, Nanotubes, supermolecules,etc.. 

 

 



  

6 
 

 

 

 

 

Fig. 2. Classification of Nanomaterials (a) 0D spheres and clusters, (b) 1D nanofibers, wires, and 

rods, (c) 2D films, plates, and networks, (d) 3D nanomaterials 

 

5. Nanostructured photovoltaics platforms 

Nanostructured PVs offer the possibility of increased surface area due to their 

nanostructured components without increasing the physical size of the device, whereas 

tailoring of their individual components is significantly easier than conventional Si-

based PV as different processes occurring under illumination are decoupled. In this 

section we highlight the nanostructured PV platforms that have significant and 

encouraging power conversion efficiencies, and the potential for long term stability. 

The various technologies that currently satisfy these criteria, and those we will 

describe and discuss here include dye-sensitized solar cells, quantum dot-sensitized 

solar cells (QDSSCs) , colloidal quantum dot solar cells, and nanowire-based solar 

cells. In addition to their operational principle, we will discuss both their advantages 

and shortcomings, along with insights into possible improvements 
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Fig. 3.. classification of photovoltaic panels generations types [5] 

 

6.  Quantum dot- solar cells 

QDSSCs operate much like DSSCs. In these devices, the sensitizer layer now consists 

of quantum dots (QDs) instead of a dye, on a mesoporous semiconductor which serves 

as the ETL, such as TiO2 or ZnO [163, 164]. The solar cell is completed by the 

electrolyte or HTM, and the counter electrode. As outlined in figure 4, when sunlight 

is incident on the QDSSC, the QDs will absorb light to generate electron–hole pairs. 

The electrons are then transferred from the conduction band of the QD to the 

conduction band of the ETL, and the holes are transferred to the electrolyte/HTM, 

which is typically made of polysulfides. The oxidized electrolyte is then reduced to its 

original state by electrons re-entering the cell from the external circuit [13, 15]. The 

open-circuit voltage is determined by the difference between the fermi level of the 

https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib163
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib164
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5f4
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib163
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib165
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QD/ETL system and the redox potential of the electrolyte, whereas the produced 

current is controlled by the sensitizing ability of the QDs and the efficiency of electron 

separation and extraction [13, 16]. QDSSCs have become an attractive alternative to 

DSSCs due to ease of fabrication, tunable spectral properties allowing for tandem 

architectures, improved stability over DSSCs as they can form better junctions with 

solid state HTMs, and the potential of multiple exciton generation by impact ionization 

that could increase the theoretical limit in efficiency to 44% [16–15, 17–19]. The 

current best efficiency recorded for QDSSCs is 11.61% [10], and while significant 

enhancements have been achieved in the past few years, the record efficiency is still 

below the record efficiency of DSSCs [15]. 

 

 

Fig. 4. (a) Schematic diagram of Depleted-heterojunction Colloidal Quantum Dots Solar Cells, (b) 

energy band diagram.  [24]. 

 

 

https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib163
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib166
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib163
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib165
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib167
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib169
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib170
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib165
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7. Results And Discussion 

7.1 Size tunable properties 

Implementation of QDs offers a variety of benefits over dyes as sensitizers in a solar 

cell. Perhaps their biggest benefit is the ability to tune their spectral properties easily 

by varying the diameter of the QD, due to quantization effects present. By modifying 

the energy levels of the QDs, light absorption and electron injection can be tailored to 

match the needs of the solar cell [11, 12], whereas generation of multiple excitons by a 

single photon and hot electrons offer new possibilities for enhancement of device 

performance [11, 13]. 

Good QDSSC operation requires that the conduction band of the QD sensitizer be 

higher than the conduction band of the ETL for efficient electron transfer between the 

two, as the offset provides the driving force for charge transfer [13, 11]. While the 

open circuit voltage of the device is independent of the size of the QDs used in the 

sensitizer, as demonstrated in figure 5(a), the device photocurrent is directly correlated 

to the properties of the QDs [11]. It has been observed that smaller QDs result in 

higher photocurrent due to the higher conduction band as shown in figure 5(b), 

implying that a larger driving force will be available for electron injection to the ETL 

[11, 14]. However, decreasing QD size is also associated with more limited response 

in the visible part of the spectrum as shown in figure 5(c) [11]. 

 

 

 

https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib171
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib172
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib171
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib173
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib163
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib171
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5f5
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib171
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5f5
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib171
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib174
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5f5
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib171
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Fig. 5.. (a) Open-circuit voltage for TiO2 nanoparticles/3 nm CdSe QDs and TiO2 nanotubes/3 nm 

CdSe QDs, (b) photocurrent of TiO2 nanoparticles/CdSe QDs of various sizes, (c) absorption 

spectra of CdSe QDs of various sizes. Reprinted with permission from [11]. Copyright (2008) 

American Chemical Society. 

 

7.2 Colloidal QD solar cells 

The first example of a solar cell employing colloidal QDs for both light harvesting and 

charge transport was made in 2005, using a mixture of PbS QDs and a conjugated 

polymer poly[2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV), 

which served as HTM [21]. However, the efficiency of these devices was limited by 

poor electron transport and after significant enhancements in the conductivity of QD 

films, the active layer was prepared by PbS QDs only, which was found to enhance 

charge carrier extraction from the active layer [26]. These devices were built as 

Schottky cells, as the semiconducting active layer (PbS) formed a rectifying junction 

with a low work function metal and the operating procedure is outlined in figure 6(a) 

[27]. Metals used for this purpose included aluminum, calcium, magnesium, silver, 

and gold. The best device efficiency achieved with such an architecture was 5.2% [28]. 

Nevertheless, the device performance is limited by the Fermi level at the interface 

which limits the open-circuit voltage, whereas illumination from the non-rectifying 

side of the device was required, which meant that internal quantum efficiency was low 

as this was far from the junction [27, 29]. 

https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib171
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib215
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib216
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5f6
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib217
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib218
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib217
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib219
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Fig. 6.. Device operation of: (a) Schottky colloidal QD solar cell, and (b) depleted heterojunction 

colloidal QD solar cell. Reprinted with permission from [220]. Copyright (2010) American 

Chemical Society 

 

Fig. 7.. Schematic representation of hot electron transfer mechanism. (a) Excited 

plasmons decaying via radiative emission of photons or non-radiatively by exiting hot 

electrons in the metal. Localized surface plasmons can decay radiatively via re-emitted 

photons or non-radiatively via excitation of hot electrons in the conduction band. 

(b)Hot electron having energy above the Fermi level (c) Hot electrons can be 

transferred to the semiconductor if the electrons have energy greater than the Schottky 

barrier of the metal-semiconductor junction. φM is the work function of the metal 

and χS is the electron affinity of the semiconductor. [34] (2014) Copyright © 2014, 

Springer Nature. With permission of Spring 

 

https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib220
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib343
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Fig. 7. Absorption of ITO/a-Si:H samples with a-Si:H thin film, nanowire arrays, and nanocone 

arrays as top layer over different angles of incidence at at wavelength l = 488 nm (Reprinted 

with permission from Ref. [28] (copyright 2011, Elsevier) and Ref. [12] (copyright 2011, 

American Chemical Society)) 

 

 

Fig. 8 Nanocones for solar cell applicqtions 
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Figure 9. First results from cells using quantum effects in silicon. The band gap of the top layer 

containg silicon nanoparticles is about 1.8 eV (Conibeer, Green et al, 2010). 

 

 

 

 

 

 

 

 

 

Fig. 10. shows the measured absorbance of three different sizes of lead sulfide (PbS) quantum dots 

suspended in toluene using dual beam spectrophotometer. Since a quantum dot bandgap is 

tunable depending on its size, the smaller the quantum dot the higher energy is required to 

confine excitons into its volume. Also, energy levels increase in magnitude and spread out 

more. Therefore, exciton characteristic peak is blue shifted. 
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Fig. 11..Measured absorbance of three different sizes PbS quantum dot suspended in toluene [20]. 

 

7.3 Quantum dot-dye sensitized solar cells(DSSCs) 

Dye sensitized solar cells DSSCs were first introduced by O'Regan and Grätzel in 

1991 [14]. Their work challenged the conventional solid-state photovoltaic cells, by 

introducing a device that incorporated nanomaterials and separated the processes of 

light absorption and charge carrier transport. This new device offered the possibility of 

low-cost photovoltaic devices, which would provide an alternative to power generation 

from conventional sources. 

The first example of DSSC was prepared using a ruthenium complex as sensitizer, 

deposited on a TiO2 (titanium dioxide) film, and employed a liquid re-dox electrolyte 

of tetrapropylammonium iodine mixed with iodine. This device achieved a fill factor 

of 0.76, and in addition to a PCE of 7.9% [14], it also demonstrated an efficiency of 

https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib14
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib14
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12% under diffuse sunlight, revealing unexpected benefits of these devices compared 

to conventional silicon based solar cells. Furthermore, under conditions of low light 

intensity (<5 W m−2), the fill factor remained above 0.7, which is not observed for 

conventional devices. This was an initial indication of the absence of recombination 

processes that normally limit device performance in semiconductor devices. The 

promise shown by this first DSSC encouraged further research into the processes 

occurring within the device and potential enhancements of the device design to 

achieve higher PCE . 

A typical DSSC is shown in figure 1. The device consists of a glass or plastic 

substrate, which is coated with a transparent conductive oxide (TCO)—common 

examples include indium tin oxide (ITO) or fluorine-doped tin oxide (FTO). The 

substrate is coated with a mesoporous oxide layer, which typically serves as the 

electron transport layer (ETL) that guides electrons to the anode, and TiO2 has been a 

particularly popular material for this purpose. Dye is deposited onto the ETL and is 

employed for light absorption followed by electron injection into the conduction band 

of the ETL. The dye is then regenerated via electron transfer from the redox 

electrolyte, typically an iodide/triiodide system. Finally, the triiodide formed is 

reduced to iodide by capture of electron from the cathode, which usually consists of 

platinum on TCO glass. These processes are shown in figure 1(b). Therefore, at the 

end of the process the device has returned to its original state [15]. While extensive 

research has been done on the materials incorporated in these devices, certain dyes 

have shown great promise. The most impressive PCE from a single sensitizer so far 

has been achieved by implementing porphyrin sensitizer (SM315) that has been 

engineered to improve its light harvesting properties, resulting in a PCE of 13.0% [16]. 

https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5f1
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5f1
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib15
https://iopscience.iop.org/article/10.1088/2399-1984/ab02b5#nanofab02b5bib16
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Fig. 12. Device structure of a dye-sensitized solar cell employing iodine electrolyte (employing 

)redox couple) as an example [11,26,29,30]. 

 

Figure 12 shows an example of the I-V characteristics of a first round study of 

assembled cells illuminated with a collimated beam from a hot filament lamp. In cell 

preparation we followed the same strategy described in section 5.6 such that after 

coating the photoelectrode with PbS quantum dots it was soaked in dye for an hour. 

Then, the electrode was rinsed with deionized water and ethanol. After that the cell is 

assembled and tested. The dye used was extracted from a pomegranate. 

 

 

 

https://www.mdpi.com/1996-1944/12/12/1998#B11-materials-12-01998
https://www.mdpi.com/1996-1944/12/12/1998#B26-materials-12-01998
https://www.mdpi.com/1996-1944/12/12/1998#B29-materials-12-01998
https://www.mdpi.com/1996-1944/12/12/1998#B30-materials-12-01998
https://www.intechopen.com/chapters/47671#F22


  

17 
 

 

Fig. 13. I-V characteristics of typical assembled quantum dot-dye sensitized solar cell. Quantum dots 

average size of 2.4 nm and pomegranate dye extract used as sensitizers of 

TiO2 nanoporous layer. 

 

Fig. 14. a) Quantum-dot (QD)-enhanced solar-cell design concept. (b)Current density-voltage curves 

for control and 5–20 layer enhanced cellsunder one sun global air mass 1.5 (AM1.5g) 

light. These cells did not haveantireflective coating. InGaP: Indium gallium phosphide. 

GaAs: Galliumarsenide.  
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8. Conclusion 

In sum, it can be seen that while the usage of nanotechnology in the construction 

and enhancement of solar cell efficiency is currently in the research process, it can be 

assumed that the transition period to the commercial arena for this field would be very 

near and inevitable. Seeing the tremendous promise that this sector has demonstrated 

in enhancing the efficiency of solar cells, the commercialization of this technology can 

be viewed as a major turning point in the solar cell industry. Figures 13 and 14 show 

the summery of application of nanotechnology in solar technolog 
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 :الخلاصة

يمكن أن تساعد تقنية النانو في معالجة عقبات الكفاءة الحالية وزيادة توليد الطاقة الشمسية وتخزينها بشكل كبير. تم 

الطاقة الشمسية.  إنشاء مجموعة متنوعة من العمليات الفيزيائية على المقياس النانوي يمكنها تحسين معالجة ونقل

فتح تطبيق تقنية النانو في الخلايا الشمسية الطريق أمام تطوير جيل جديد من المنتجات عالية الأداء. عندما تتزايد 

المنافسة على خيارات الطاقة النظيفة ، تمت مناقشة مجموعة متنوعة من الأساليب المحتملة من أجل توسيع 

جال توليد الخلايا الشمسية ، والتوليد المتعدد ، وتعديل الطيف ، والخلايا الآفاق. تم استكشاف مبادئ جديدة في م

الكهروضوئية الحرارية ، والحامل الساخن ، والفرقة الوسطى ، والعديد من التقنيات الأخرى. لقد ثبت أن 

سن التخزين الجسيمات النانوية والبنى النانوية تعزز امتصاص الضوء ، وتزيد من تحويل الضوء إلى طاقة ، وتح

 والنقل الحراري.

نمت صناعة الخلايا الشمسية بسرعة في السنوات الأخيرة بسبب الاهتمام القوي بالطاقة المتجددة ومشكلة تغير 

المناخ العالمي ، وتعتبر التكلفة عاملاً مهمًا في نجاح أي تقنية شمسية. الخلايا الشمسية اليوم ليست فعالة بما فيه 

باء على نطاق واسع. ومع ذلك ، فإن التطورات المحتملة في الكفاية وهي مكلفة للغاية لتصنيعها لتوليد الكهر

تكنولوجيا النانو قد تفتح الباب أمام إنتاج خلايا شمسية أرخص وأكثر كفاءة إلى حد ما. لقد أظهرت تقنية النانو 

شكل من  بالفعل اختراقات هائلة في مجال الطاقة الشمسية. النقاط الكمومية لديها القدرة على تغيير العالم. إنها

أشكال الخلايا الشمسية التي تتخطى تمامًا أي شيء قد تتخيله. قد تكون تقنية النانو قادرة على زيادة كفاءة الخلايا 

و  CdTeعلى أساس  PVsالشمسية ، ولكن التطبيق الواعد لتقنية النانو هو تقليل تكلفة التصنيع. يتم تطوير 

CuInGaSe (CIGS و )CuInSe (CISوالمواد ال ) عضوية بهدف تقليل السعر لكل واط حتى لو كان ذلك يعني

التضحية بكفاءة التحويل والموثوقية. إن استخدام تكنولوجيا النانو في الخلايا الشمسية الرخيصة سيساعد في 

 تقنية النانو ، النقاط الكمومية ، الاختراقات -الحفاظ على البيئة. مصطلحات الفهرس 
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 الفيزياء.
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