

University of Maysan College of Science Department of Chemistry

Green synthesis of zinc oxide nanoparticles and potential future applications

BY

Tabark lazem saheb

Fatema satar lafta

ZAINAB SALEH JABR

GHADEER KARIM JASSIM

UNDER THE SUPERVISION OF

Prof. Dr. Salim Naamah Saleh

2024 ۾

بسيم دسرِ الرحم ن الرّرح يم

﴿ وَقُلْ رَبِي نِوْنِي عِلْمًا }

صرق الس العظيم

سورة طه:114

To gift

I would like to express my thanks and gratitude

For the owner of enlightened thought,

And who returned to the God of virtue?

Reaching that status, and achieving the goal of the

desired

(My father is strengthened) may God prolong his life

And to whom

Supported

Success n, and you put on the first ways

(Umm Al-Masda)

To those who had a trace

Adult, and standing next to them was influenced by big

(brothers)

To all the professors

The revered

Whoever extended the help to, and they went to the correct path.

This paper and the research behind it would not have been possible without the exceptional support of my supervisors Dr. Salim Naamah Saleh His enthusiasm, knowledge and keen interest in detail would have been an inspiration and kept my work on track from the first true beginning of this research to the list of references.

Contents

page	Topics
1	Abstract
3	Introduction
6	Nanoscience
3	Synthesis of ZnO Nanoparticle Methods
8	Synthesis of ZnO Nanoparticles by Plants
8	Important of Green Synthesis
12	synthesis of zinc oxide nanoparticles
14	synthesis of zinc oxide nanoparticles
16	REFERENCES

Abstract:

Recent years have seen an increase in the acceptance of green chemistry as a viable method for producing nanoparticles. zinc oxide nanoparticles (ZnO NPs) exhibit

distinctive characteristics, making them highly sought-after in many sectors. Nevertheless, conventional techniques for producing ZnO-NPs are linked to environmental and health hazards due to toxic substances. In this review, we study zinc oxide nanoparticles (ZnO NPs) synthesized from plant extracts and their subsequent biomedical uses in detail. Research shows that several different plant extracts are employed in manufacturing ZnO nanoparticles. Leaves, fruits, seeds, roots, and complete plants are all included in these extracts. Phytochemicals such as phenolic compounds, alkaloids, flavonoids, and terpenoids are all a part of these biological matrices. compounds show bioreduction mechanism, act as stabilizing and reducing agent. The attributes of ZnO nanoparticles (NPs), including their size, shape, and crystallinity, may be altered by adjusting the plant extract variety, concentration, and synthesis conditions. Consequently, the formed nanoparticles display notable diversity in their physical and chemical characteristics, subsequently impacting their biological functionality. The biomedical uses of ZnO nanoparticles manufactured using green methods are extensive, including beneficial effects such as antibacterial activity against various pathogens, anti-inflammatory characteristics, and possible anticancer activities. Nanoparticles have been integrated into wound dressings, used as carriers for medication delivery, and utilized in biosensing and imaging applications. The enhanced biocompatibility and reduced toxicity of greenprocessed

zinc oxide nanoparticles (ZnO NPs) techniques, in comparison to those made using conventional approaches, make them very appealing for use in biomedical contexts. Moreover, the paper examines the synthesis mechanisms, explicitly focusing on the involvement of phytochemicals in the processes of reduction and stabilization. Additionally, this study emphasizes the difficulties and potential future directions in optimizing synthesis processes, increasing manufacturing capacity, and facilitating the therapeutic use of these nanoparticles.

Introduction

Nanotechnology is a recent development in scientific research. This field was founded by American physicist Richard P. Feynman at Caltech when he presented his lecture titled "There is plenty of room at the bottom," in 1959, he had suggested Scaling down to the nanoscale was the way of the future for technology and advancement [1]. The science of nanotechnology deals with understanding and manipulating materials at the nanoscale size, which has dimensions between 1 and 100 nanometers. Nanoparticles are materials having a diameter of less than 100 nm. They have high surface/volume ratios and are smaller than their bulk materials [2]. As the particle size decreases, the number of constituent atoms surrounding the surface of the particles increases. Highly reactive particles with unique chemical, optical, physical, and electronic properties develop as a result. Nanotechnology showed a rapidly expanding branch of technology that holds enormous potential for the chemical, medicinal, engineering, and food-processing industries [3-5]. This rapid development of nanotechnologies suggests that nanoscale production will soon be used in almost every area of science and technology. . Metal oxide nanoparticles such as Fe₃O₄, AgO, Al₂O₃, MgO, ZrO₂, CeO₂, TiO₂, ZnO, Fe₂O₃, and SnO; are the most adaptable materials because of their wide range of characteristics and uses. Zinc oxide (ZnO), Nanoparticles has received a lot of interest from scientists as a 'future material' *6-10]. ZnO nanoparticles are an important class of metal oxide nanoparticles exhibiting exciting biological and photocatalytic properties due to their small size and enhanced surface chemical reactivity [11], However, the majority of conventional techniques for producing ZnO NPs are based on wet chemical route options, which demand the use of numerous hazardous chemicals during laborious, prolonged multistep processes that result in the production of vast quantities of hazardous by products and dangerous chemical waste [12]. In recent years, the use of more sustainable green techniques for preparation has increased focus on replacing harmful traditional chemicals with more environmentally friendly extracts from various natural materials, such as plants, fungi, bacteria, and algae, in order to prepare ZnO NPs, which demonstrated higher and comparable activities compared to the conventional ones. For instance, *Eucalyptus, Phlomis, pomegranate, Syzygium cumini, Ziziphus*, etc. have all been used as plant part extracts for the green biosynthesis of ZnO NPs. [13-17], whereby plant extracts are utilized as capping agents and stabilizers to both maintain the generated nanoparticles' stability and prevent their aggregation. [18]. besides, ZnONPs produced in green methods is safe for the environment and have also been used for biomedical purposes such as antioxidant, antibacterial, and anticancer properties [19,20]. It is important to note that *C.spinosa L.* is one of the middle east region's most widely-used plant and is distinguished by a variety of medicinal properties and that there are numerous long chains of natural compounds present that could serve as capping and stabilizing agents and avoid the nanoparticles from aggregating [21,22].

nsformative impact on the production of metal oxide nanoparticles, offering notable benefits in comparison to conventional physical and chemical methodologies [1–3]. Plant-based technologies in green synthesis have garnered significant attention due to their extensive array of medicinal and biotechnological applications [4,5]. Zinc oxide nanoparticles (ZnO NPs) have garnered considerable attention in several sectors, including optics, electrics, packaged foods, and medicine, owing to their favorable attributes such as biocompatibility, low cytotoxicity, and cost-effectiveness. A critical element of ZnO nanoparticles (NPs) pertains to their capacity to induce cellular death via the facilitation of reactive oxygen species (ROS) production and the liberation of zinc ions (Zn2+), which exhibit cytotoxic qualities [6,7]. In addition, Zn is a necessary trace element found in the human physiological system. It has biocompatibility owing to its low toxicity and high biodegradability, which is attributed to the solubility of Zn+2 ions [8]. [h1] Nevertheless, the therapeutic use of chemically manufactured ZnO nanoparticles is restricted as a result of the hazardous properties of the chemicals employed in their production [9,10]. Consequently, there is an increasing inclination towards investigating environmentally friendly production techniques for zinc oxide nanoparticles (ZnO NPs). Current advancements have emphasized using various plant components as reducing agents in manufacturing zinc oxide nanoparticles [11–13]. Using plant-based green synthesis technologies has many benefits compared to

traditional approaches [14,15]. Firstly, it may be argued that virtual methods are characterized by simplicity, enhanced safety measures, more sustainability, and a more ecologically conscious approach compared to traditional physical and chemical alternatives. In addition, ZnO nanoparticles that are generated by biological processes have significant biological properties, making them appropriate for a wide range of biomedical applications in diverse sectors [16–19]. For example, previous research has shown that the antibacterial activities of ZnO nanoparticles (NPs) generated using plant extracts are superior to those of conventional medications in combating infections [20,21]. Furthermore, it has been shown that these nanoparticles have anticancer properties and display promise as agents that scavenge free radicals while exhibiting antioxidant activity [22,23]. Plant-mediated green synthesis has shown potential in developing innovative therapeutics for illnesses including malaria and urinary tract infections [24–26]. Furthermore, using green-synthesized zinc oxide nanoparticles (ZnOPs) has shown considerable potential for wound healing. The antibacterial characteristics of these substances are primarily responsible for their effectiveness, especially when included in formulations at the nanoscale and microscale levels [27– 29]. Additionally, these entities have the potential to function as biosensors for the detection and characterization of biomarkers associated with various clinical states. In contrast to conventionally manufactured ZnO nanoparticles, the ZnO nanoparticles generated using green methods exhibit superior biocompatibility and increased biomedical characteristics, rendering them highly suitable as antibacterial agents and pharmaceuticals for combating cancer. Furthermore, the use of these nanoparticles has been shown in medication distribution and sensing applications [30–32]. In summary, the emergence of nanobiotechnology has brought about a paradigm shift in producing metal oxide nanoparticles. Using plantbased techniques in green synthesis processes has shown to be very advantageous compared to conventional methods. Zinc oxide

Nanoscience

The prefix "nano," which derives from a Greek word meaning "dwarf" or "something very small," represents one billion of a meter (10⁻⁹m). It is also a reference to a Greek prefix. There is a clear need to differentiate between nanotechnology and nanoscience. Nanoscience is the study of structures and molecules on the sizes of nanometers ranging from 1 to 100 nm, and the technology that utilises it in practical applications such as electronics, Nanomedicine etc is termed nanotechnology [23]. Nanoscience is an interdisciplinary field of research that focuses on the atomic, molecular, and subatomic levels of matter. Nanotechnology refers to the focused research and development that is done for the purpose of understanding, manipulating, and measuring materials at the atomic, molecular, and supermolecular levels. The term "nanotechnology" refers to materials, systems, and processes that function at a size of one hundred nanometers (nm) or less, according to a tentative definition of the term. One billionth of a metre is equal to one nanometer [24]. As a point of reference, the visible spectrum of light has a wavelength that ranges from 400 to 700 nanometers. The size of a leukocyte is 10000 nm, the size of a bacterium is 1000-10000 nm, the size of a virus is 75-100 nm, the size of a protein is 5-50 nm, the width of deoxyribonucleic acid (DNA) is 2 nm, and the size of an atom is 0.1 nm. On this scale, as seen in Figure (1), the physical, biological, and chemical properties of materials have fundamentally distinct relationships to one another, and as a result, the activities of these materials are often surprising. The size of viruses and other infectious agents is taken into consideration by nanotechnology. Therefore, it has a significant potential to detect and eradicate infections [25].

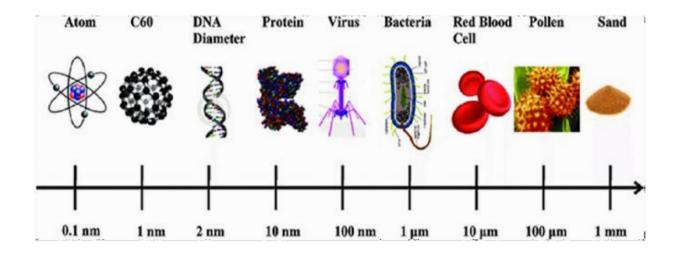


Figure (1) A basic concept on length scale that is showing size of nanomaterial's and their comparison to biological components and the definition of 'micro' and 'Nano' sizes[26].

Synthesis of ZnO Nanoparticle Methods

Prior to the development of nanoscience, it was challenging to synthesise nanomaterials using an easy, affordable, and highly effective process. Three procedures, known as the solid-phase, liquid-phase, and gas-phase processes, are used to create nanoparticles. Solid-phase processes include mechanical ball milling and mechanochemical methods; liquid-phase processes include laser ablation, exploding wire, solution reduction, and decomposition; and gas-phase processes include gas evaporation, exploding wire, laser ablation, and green synthesis. Additionally, chemical, physical, and biological methods may be used to create ZnO NPs[26, 27].

Synthesis of ZnO Nanoparticles by Plants

They are employed for the synthesis of ZnO NPs due to the distinctive phytochemical production of plant parts such stem, leaf, fruit, root, and seed. Utilising natural extracts from plant parts is cost-effective, environmentally beneficial, and sustainable since no intermediary base groups are included. It saves time, doesn't need heavy gear or equipment, and produces a large amount of extremely pure, impurity-free output [28]. NPs plants are a highly preferred source of NPs production due to their extensive production and stable, diversified in form and size [29]. Phytochemicals released by plants, such as polysaccharides, amino acids, polyphenolic compounds, vitamins, alkaloids and terpenoids, may convert metal oxides or metal ions to Neutral valence metal nanoparticles in a process known as bioreduction [30, 31].

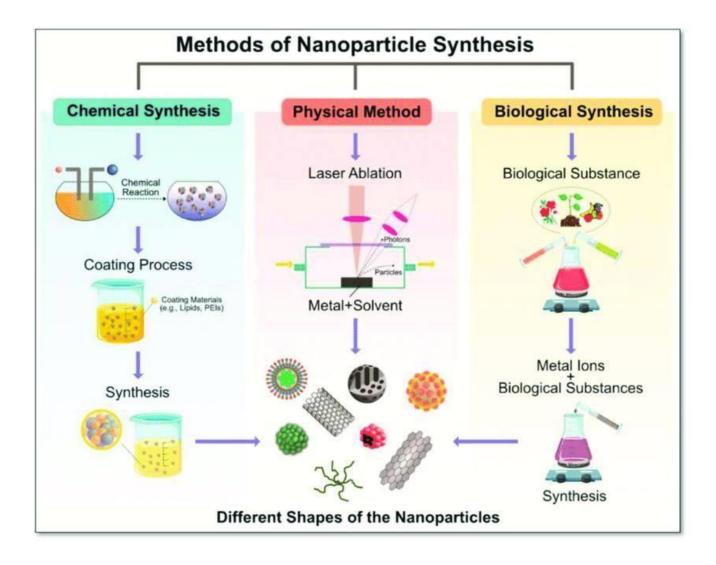
Important of Green Synthesis

The traditional techniques of making nanoparticles were inefficient in terms of cost and required the use of hazardous chemical compounds or organic solvents as reducing agents, which explain why green nanoparticle synthesis methods have became under scrutiny recently [32]. Green synthesis is also environmentally beneficial and reduces the danger of contamination at the source or begetter scale. It also produces no waste, thus there is no need to scavenge garbage after the synthesis. The use of environmentally and ecologically friendly reagents were given top priority in green synthesis.

Despite the fact that physical and chemical techniques are quick and simple for the synthesis of nanoparticles, as illustrated in Figure(2), the biological approach of synthesis has an advantage over them since it is environmentally safe and non-hazardous [33].

The production of new sources of dynamic materials that are nontoxic, stable, nonhazardous, affordable, eco- and environment-friendly occurs during the synthesis of nanoparticles employing biological organisms in green synthesis. Due to their smaller size, unique structure, and specific biological substrate features utilised in their green production, nanomaterials' properties are heightened [34].

Figure(2) Green Synthesis Advantages[35]


nanoparticles (ZnO NPs) have garnered attention in the scientific community because of their notable biocompatibility, minimal cytotoxicity, and cost-effectiveness, as shown by many studies [33–36]. Using botanical components as reducing agents in the fabrication of zinc oxide nanoparticles (ZnO NPs) has shown significant promise in diverse biomedical domains, encompassing antibacterial, anticancer, antioxidant, wound healing, and biosensing functionalities [37].

Using greensynthesized nanoparticles presents a potentially advantageous pathway for advancing ecologically sustainable and efficacious therapeutic approaches within biomedicine [38]. Many research groups have looked at using this biogenic or green synthesis of metal oxide NPs as an alternative to traditional chemical and physical manufacturing processes. Despite their synthesis technique, Nanoparticles have generated apprehension over their possible ecological ramifications. Their diminutive dimensions and distinctive characteristics may result in varied interactions with creatures and environments [39]. Hence, this review comprehensively discusses the current status of plant-mediated synthesis, its recent achievements, and the challenges and perspectives to provide valuable insights into this innovative research field.

Biological Source	Used Plant Parts	Particle Size (nm)	Morphology of Nanoparticles	Applications References
Raphanus sativus	Leaf	66.47 s	pherical hexagonal breast cancer cells	antibacterial; [6]
Rivina humilis	Leaf	14.4	circular antioxidant, antibacterial and	anticancer [64]
Pisonia Alba	Leaf	14.08-14.17	hexagonal antibacterial activity	[65]
Grape	seed	15.86 he	exagonal antibacterial and antioxidant	activities [66]
Boerhavia diffusa	Leaf	23–32	hexagonal antioxidant, antimicrobial,	cytotoxic [67]
Caesalpinia crista	Seeds	20–44	irregular Antibacterial, Antioxidant,	[68]
Aloe barbadensis	Leaf	20–40	Spherical Anticancer and wound healir	ng [69]
Prosopis farcta	Aerial	40-80	hexagonal Antifungal and MCF7	[70]
Trifolium pretense	e Flower	60–70	Hexagonal antibacterial activities	[71]
Santalaceae	Leaves	100	nano rods MCF-7	[72]
Punica granatum	peel	10–45	Spherical Antimicrobial	[73]
Lepidium sativum	Seeds	36.9644	.50 Spherical anticancer activity	[74]
Cyathocline purpu	rea eaf	80120	spherical antimicrobial	[75]

synthesis of zinc oxide nanoparticles

For the synthesis of ZnO-NPs, various techniques, including chemical, physical, and biological methods, are used. Chemical methods include precipitation, coprecipitation, colloidal, sol-gel processing, water-oil microemulsion, hydrothermal synthesis, cellulothermal, and sonochemical and polyol methods [40]. Physical methods include a range of techniques, such as arc plasma, thermal evaporation, physical vapor deposition, ultrasonic irradiation, and laser ablation [41]. The procedures above exhibit many drawbacks, including but not limited to their elevated expenses, presence of contaminants, lack of stability, and limits in terms of repeatability and dependability [42,43]. Furthermore, these processes need hazardous compounds, which pose a significant risk to environmental and medicinal applications [44]. In order to mitigate these drawbacks, researchers have increasingly used alternate environmentally sustainable and economically viable approaches to synthesize ZnO nanoparticles [45– 47]. The green technique is a biological approach that utilizes plant extracts to synthesize zinc oxide nanoparticles (ZnO NPs). The present methodology has several benefits compared to conventional approaches, including simplicity, environmental sustainability, cost efficiency, and replicability [48]. Using the green technique mitigates the generation of deleterious byproducts and diminishes the reliance on hazardous solvents or chemical agents often necessary in conventional synthesis methodologies [49]. Manipulating temperature may be used to control and enhance morphological characteristics [50]. Furthermore, ZnO semiconductors possess intrinsic flaws in the form of vacancies of zinc and oxygen, as well as interstitials of zinc and oxygen [51]. Calcination temperatures, also known as annealing temperatures, can potentially remove and repair these defects or impurities, activate the dopant atom, and improve the electrical and optical characteristics of ZnO NPs. The specific changes in these properties may vary depending on the intended uses [52,53]. Recent research has investigated the environmentally friendly production of zinc oxide nanoparticles (ZnO NPs) using several plant extracts. These extracts include royal jelly, Cassia fistula, Melia azadarach, and Limonium bruinosum L. chaz. The dimensions and morphology of the generated zinc oxide nanoparticles (ZnO NPs) exhibit variability contingent upon the specific plant extract used

synthesis of zinc oxide nanoparticles

The use of plant extracts as a means to produce zinc oxide nanoparticles (ZnO NPs) via a sustainable and environmentally friendly process known as green synthesis has garnered considerable interest in the scientific community in recent times. The presence of alkaloids, amino acids, enzymes,

proteins, and polysaccharides in plant extracts contributes to their role as reducing agents and capping agents, simplifying the synthesis process and enhancing its safety, sustainability, and environmental friendliness compared to conventional physical and chemical methods Zinc oxide nanoparticles (ZnO NPs) have garnered considerable attention as viable contenders for a range of biomedical applications owing to their favorable attributes, such as biocompatibility, minimal toxicity, and cost-effectiveness [54–56].

These compounds have robust biological properties and have been used in several sectors for their antibacterial, anticancer, antioxidant, antiinflammatory, and woundhealing properties [57]. Synthesizing zinc oxide nanoparticles (ZnO NPs) by environmentally friendly methods includes utilizing many plant components, including leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds. The plant extracts mentioned in the statement consist of several phytochemicals such as lupeol, ursolic acid, oleanolic acid, sitosterol, rutin, leucocyanidin, anthocyanins, proanthocyanidins, and glycosides of kaempferol and quercetin. These phytochemicals have reducing properties [58]. Plant-based synthesis techniques have several benefits compared to traditional physicochemical approaches. This method effectively mitigates the utilization of dangerous substances that provide potential health hazards to both the ecosystem and individuals [59].

Green synthesis produces metal and metal oxide NPs, and these phytochemicals are considered vital in their production [60]. The effects of temperatures between 20 and 100 °C on the formation and size of ZnO NPs were also studied by Singh et al. [61]. There was an increase in ZnO NPs production at higher temperatures, but the particles grew more slowly and were smaller due to the short reaction response time during synthesis. Several scientific investigations have shown biological substrates to be the only possible raw materials for NP biosynthesis [62]. The chemical process during green synthesis is complicated, making it difficult to measure and quantify. Bacteria that can be reproduced (such as lactic acid-generating bacteria) have become increasingly intriguing in bacterial-mediated NP synthesis because of their ability to produce a wide range of enzymes and non-pathogenic characteristics. Lactic acid bacteria, which are Gram-positive, possess a robust cell wall layer consisting of proteins, polysaccharides.

References

- [1] M.S. Samuel, et al., A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications, Catalysts 12 (5) (2022) 459.
- [2] H. Bahrulolum, et al., Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector, J. Nanobiotechnology 19 (1) (2021) 1–26.
- [3] S. Sabir, M. Arshad, S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications, Sci. World J. 2014 (2014).
- [4] H. Jan, et al., Plant-based synthesis of zinc oxide nanoparticles (ZnO NPs)using aqueous leaf extract of aquilegia pubiflora: Their antiproliferative activity against HepG2 cells inducing reactive oxygen species and other in vitro properties, Oxid. Med. Cell. Longev. 2021 (2021).
- [5] K. Kisimba, et al., Synthesis of Metallic Nanoparticles Based on Green Chemistry and Their Medical Biochemical Applications: Synthesis of Metallic Nanoparticles, J. Renew. Mater. 11 (6) (2023) pp.
- [6] M. Alhujaily, et al., Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties, Bioengineering 9 (10) (2022) 541.
- [7] H.K. Allayeith, Zinc-Based Nanoparticles Prepared by a Top-Down Method Exhibit Extraordinary Antibacterial Activity Against Both Pseudomonas aeruginosa and Staphylococcus aureus, Kent State University, 2020.
- [8] N. Asif, M. Amir, T. Fatma, Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles, Bioprocess Biosyst. Eng. (2023) 1–22.
- [9] M. Naseer, U. Aslam, B. Khalid, B. Chen, Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential, Sci. Rep. 10 (1) (2020) 9055.
- [10] Y.Y. Chan, Y.L. Pang, S. Lim, W.C. Chong, Facile green synthesis of ZnO nanoparticles using natural-based materials: Properties, mechanism, surface modification and application, J. Environ. Chem. Eng. 9 (4) (2021) 105417.
 [11] S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chem. 13
- (10) (2011) 2638–2650.
- [12] V. Batra, I. Kaur, D. Pathania, V. Chaudhary, Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review, Appl. Surf. Sci. Adv.
- 11 (2022) 100314.
- [13] A.E. Alprol, A.T. Mansour, H.S. El-Beltagi, M. Ashour, Algal Extracts for Green

- Synthesis of Zinc Oxide Nanoparticles: Promising Approach for Algae Bioremediation, Materials (basel) 16 (7) (2023) 2819.
- [14] J.R. Peralta-Videa, et al., Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol. Environ. Eng. 1 (2016) 1–29.
- [15] T. Thirugnanasambandan, S.C.B. Gopinath, Nanoparticles from plant-based materials: a promising value-added green synthesis for antidiabetic, Biomass Convers. Biorefinery (2022) 1–11.
- [16] S.S. Salem, A. Fouda, Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview, Biol. Trace Elem. Res. 199 (2021) 344–370.
- [17] R. Verma, S. Pathak, A.K. Srivastava, S. Prawer, S. Tomljenovic-Hanic, ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications, J. Alloys Compd. 876 (2021) 160175.
- [18] P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications, Drug Discov. Today 22 (12) (2017) 1825–1834.
- [19] H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: Biological synthesis and biomedical applications, Ceram. Int. 43 (1) (2017) 907–914.
- [20] J.A. Hernandez-Díaz, ´J.J.O. Garza-García, A. Zamudio-Ojeda, J.M. Leon-Morales, ´J.C. Lopez-Vel ´azquez, ´S. García-Morales, Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens, J. Sci. Food Agric. 101 (4) (2021) 1270–1287.
- [21] G. Heidari, et al., Biosynthesized nanomaterials with antioxidant and antimicrobial properties, Mater. Chem. Horizons 1 (1) (2022) 35–48.
- [22] Z. Kiani, et al., Green synthesis of LAE@ ZnO/Ag nanoparticles: Unlocking the multifaceted potential for biomedical and environmental applications, J. Environ. Chem. Eng. 11 (5) (2023) 111045.
- [23] J.N. D'Souza, G.K. Nagaraja, A. Prabhu, K.M. Navada, S. Kouser, D.J. Manasa, Sauropus androgynus (L.) leaf phytochemical activated biocompatible zinc oxide nanoparticles: an antineoplastic agent against human triple negative breast cancer and a potent nanocatalyst for dye degradation, Appl. Surf. Sci. 552 (2021) 149429.
- [24] J.A. Aboyewa, N.R.S. Sibuyi, M. Meyer, O.O. Oguntibeju, Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications, Plants 10 (9) (2021) 1929.
- [25] K. Barathikannan, et al., Plant-based metabolites and their uses in nanomaterials synthesis: an overview, Second. Metab. Based Green Synth. Nanomater. Their Appl. (2023) 1–22.
- [26] J. Jeevanandam, et al., Green approaches for the synthesis of metal and metal

- oxide nanoparticles using microbial and plant extracts, Nanoscale 14 (7) (2022) 2534–2571.
- [27] F. Islam, et al., Exploring the journey of zinc oxide nanoparticles (ZnO NPs) toward biomedical applications, Materials (basel) 15 (6) (2022) 2160.
- [28] N. Ahmad, et al., Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens, Sci. Rep. 13 (1) (2023) 14972.
- [29] A. U. Khn et al., "Bio-inspired fabrication of zinc oxide nanoparticles: Insight into
- 30] A.A. Alyamani, S. Albukhaty, S. Aloufi, F.A. AlMalki, H. Al-Karagoly, G.
- M. Sulaiman, Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoxicity and antibacterial properties, Molecules 26 (20) (2021) 6140.
- [31] A.A. Rabaan, et al., Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics, Molecules 27 (24) (2022) 8659.
- [32] H. Xiong, ZnO nanoparticles applied to bioimaging and drug delivery, Adv. Mater. 25 (37) (2013) 5329–5335.
- [33] A. Krol, 'P. Pomastowski, K. Rafinska, 'V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism, Adv. Colloid Interface Sci. 249 (2017) 37–52.
- [34] H. Hamrayev, K. Shameli, S. Korpayev, Green synthesis of zinc oxide nanoparticles and its biomedical applications: A review, J. Res. Nanosci. Nanotechnol. 1 (1) (2021) 62–74.
- [35] A. Fouda, E.L. Saad, S.S. Salem, T.I. Shaheen, In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications, Microb. Pathog. 125 (2018) 252–261.
- [36] M.S. Mthana, D.M.N. Mthiyane, D.C. Onwudiwe, M. Singh, Biosynthesis of ZnO nanoparticles using capsicum Chinense fruit extract and their in vitro cytotoxicity and antioxidant assay, Appl. Sci. 12 (9) (2022) 4451.
- [37] S.A. Akintelu, A.S. Folorunso, A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications, Bionanoscience 10 (4) (2020) 848–863.
- [38] P. Rajasekharreddy, C. Huang, S. Busi, J. Rajkumari, M.-H. Tai, G. Liu, Green synthesized nanomaterials as theranostic platforms for cancer treatment: Principles, challenges and the road ahead, Curr. Med. Chem. 26 (8) (2019) 1311–1327.
- [39] L. Xuan, Z. Ju, M. Skonieczna, P. Zhou, R. Huang, Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models, MedComm 4 (4) (2023) e327.
- [40] A. Ahmadi Shadmehri, F. Namvar, "A review on green synthesis, cytotoxicity mechanism and antibacterial activity of Zno-NPs", J. Res. Appl. Basic, Med. Sci. 6 (1) (2020) 23–31.
- [41] V. Harish, et al., Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review, J. Taiwan Inst. Chem. Eng. 149 (2023) 105010.
- [42] R. Chandrasekaran, S. Gnanasekar, P. Seetharaman, R. Keppanan,
- W. Arockiaswamy, S. Sivaperumal, Formulation of Carica papaya latex functionalized silver nanoparticles for its improved antibacterial and anticancer applications, J. Mol. Liq. 219 (2016) 232–238.
- [43] A. Fouda, et al., Phyco-synthesized zinc oxide nanoparticles using marine macroalgae, Ulva fasciata Delile, characterization, antibacterial activity, photocatalysis, and tanning wastewater treatment, Catalysts 12 (7) (2022) 756.
- [44] P. Dhandapani, A.S. Siddarth, S. Kamalasekaran, S. Maruthamuthu, G. Rajagopal,

- Bio-approach: ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties, Carbohydr. Polym. 103 (2014) 448–455.
- [45] H. Agarwal, S.V. Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach, Resour. Technol. 3 (4) (2017) 406–413.
- [46] G. Sangeetha, S. Rajeshwari, R. Venckatesh, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties, Mater. Res. Bull. 46 (12) (2011) 2560–2566.
- [47] M.F. Sohail, et al., Green synthesis of zinc oxide nanoparticles by Neem extract as multi-facet therapeutic agents, J. Drug Deliv. Sci. Technol. 59 (2020) 101911.
- [48] A. Khan, R. Vishvakarma, P. Sharma, S. Sharma, A. Vimal, Green Synthesis of Metal-Oxide Nanoparticles from Fruits and Their Waste Materials for Diverse Applications, in: Nanomaterials from Agricultural and Horticultural Products, Springer, 2023, pp. 81–119.
- [49] O.V. Kharissova, B.I. Kharisov, C.M. Oliva Gonz´ alez, Y.P. M´endez, I. Lopez, ´
- Greener synthesis of chemical compounds and materials, R. Soc. Open Sci. $6\,(11)\,(2019)\,191378$.
- [50] T.U.D. Thi, T.T. Nguyen, Y.D. Thi, K.H.T. Thi, B.T. Phan, K.N. Pham, Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities, RSC Adv. 10 (40) (2020) 23899–23907.
- [51] S. Iwan, J.L. Zhao, S.T. Tan, X.W. Sun, Enhancement of UV photoluminescence in ZnO tubes grown by metal organic chemical vapour deposition (MOCVD), Vacuum 155 (2018) 408–411.
- [52] S.T. Karam, A.F. Abdulrahman, Green synthesis and characterization of ZnO nanoparticles by using thyme plant leaf extract, Photonics, MDPI (2022) 594.
- [53] R.S. Mohar, S. Iwan, D. Djuhana, C. Imawan, A. Harmoko, V. Fauzia, Post annealing effect on optical absorbance of hydrothermally grown zinc oxide
- nanorods. AIP Conference Proceedings, AIP Publishing, 2016.
- [54] A.R. Prasad, et al., Applications of phytogenic ZnO nanoparticles: A review on recent advancements, J. Mol. Liq. 331 (2021) 115805.
- [55] N. Bahari, N. Hashim, K. Abdan, A. Md Akim, B. Maringgal, L. Al-Shdifat, Role of Honey as a Bifunctional Reducing and Capping/Stabilizing Agent: Application for Silver and Zinc Oxide Nanoparticles, Nanomaterials 13 (7) (2023) 1244.
- [56] H.R. El-Seedi, et al., Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications, RSC Adv. 9 (42) (2019) 24539–24559.
- [57] E.Z. Gomaa, Microbial mediated synthesis of zinc oxide nanoparticles, characterization and multifaceted applications, J. Inorg. Organomet. Pol[58] K. W. E. K. A. PUTRA, A. R. I. PITOYO, G. D. W. I. NUGROHO, M. RAI, and A. D.
- W. I. SETYAWAN,, Phytochemical activities of Ficus (Moraceae) in Java Island, Indonesia, Int. J. Bonorowo Wetl. 10 (2) (2020) pp.
- [59] M. Ikram, B. Javed, N.I. Raja, Z.-R. Mashwani, Biomedical potential of plantbased selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects, Int. J. Nanomedicine (2021) 249–268.
- [60] J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, 'Green'synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J. Nanobiotechnology 16 (1) (2018) 1–24.
- [61] B.N. Singh, A.K.S. Rawat, W. Khan, A.H. Naqvi, B.R. Singh, Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids, PLoS One 9 (9) (2014) e106937.

- [62] E. Solati, D. Dorranian, Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water, Bull. Mater. Sci. 39 (2016)
- [63] H. Mohd Yusof, R. Mohamad, U.H. Zaidan, N.A. Rahman, Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4, Microb. Cell Fact. 19 (2020) 1–17. [64] S. Suba, S. Vijayakumar, E. Vidhya, V.N. Punitha, M. Nilavukkarasi, Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies, Sensors Int. 2 (2021) 100104.
- [65] M. Murali, et al., Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: A possible alternative for plants, Front. Microbiol. 14 (2023).
- [66] S. Rajeshkumar, R.P. Parameswari, D. Sandhiya, K.A. Al-Ghanim, M. Nicoletti, M. Govindarajan, Green Synthesis, Characterization and Bioactivity of Mangifera indica Seed-Wrapped Zinc Oxide Nanoparticles, Molecules 28 (6) (2023) 2818.
- [67] G. Rahimi Kalateh Shah Mohammad, M. Homayouni Tabrizi, T. Ardalan, S. Yadamani, and E. Safavi,, Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties, J. Biosci. 44 (2019) 1–9.
- [68] F.N. Jobie, M. Ranjbar, A.H. Moghaddam, M. Kiani, Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent, Adv. Powder Technol. 32 (6) (2021) 2043–2052.
- [69] H. Agarwal, V. Shanmugam, A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach, Bioorg. Chem. 94 (2020) 103423.
- [70] H. Chandra, D. Patel, P. Kumari, J.S. Jangwan, S. Yadav, Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens, Mater. Sci. Eng. C 102 (2019) 212–220.
- [71] S. Kanimozhi, et al., Biogenic synthesis of silver nanoparticle using Cissus quadrangularis extract and its invitro study, J. King Saud Univ. 34 (4) (2022) 101930.
- [72] M. Kumar, R. Kumar, S. Kumar, Coatings on orthopedic implants to overcome present problems and challenges: A focused review, Mater. Today Proc. 45 (2021) 5269–5276.
- [73] N. Wang, J.Y.H. Fuh, S.T. Dheen, A. Senthil Kumar, Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds,
- J. Biomed. Mater. Res. Part B Appl. Biomater. 109 (2) (2021) 160-179.
- [74] S.B. Goodman, Z. Yao, M. Keeney, F. Yang, The future of biologic coatings for orthopaedic implants, Biomaterials 34 (13) (2013) 3174–3183.
- [75] X. Yu, et al., Biodegradable magnesium screws and vascularized iliac grafting for displaced femoral neck fracture in young adults, BMC Musculoskelet. Disord. 16 (2015) 1–6.