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ABSTRACT
This study presents a comprehensive deep learning framework for the 

automatic classification of lumbar spine diseases using magnetic resonance 

imaging (MRI). The goal is to reduce the dependency on manual image 

interpretation by radiologists, which can be time-consuming and prone to 

subjectivity. Leveraging a dataset of over 170,000 annotated MRI slices, we 

evaluated multiple state-of-the-art convolutional neural network (CNN) 

architectures, including InceptionV3, Xception, VGG16, NASNetLarge, 

ResNet50, MobileNetV2, and DenseNet. Each model was trained under 

standardized preprocessing and augmentation techniques to ensure 

consistency and robustness. Among all models, InceptionV3 achieved the 

highest classification accuracy of 88.2%, followed closely by MobileNetV2 

and Xception, while ResNet50 demonstrated the lowest performance.

The study also addresses several challenges encountered throughout the 

research process, including inconsistencies in dataset formatting, the 

difficulty of locating high-quality labeled data, software compatibility issues 

with Python 3.9, and hardware limitations during training. Despite these 

constraints, the results validate the feasibility and potential of applying deep 

learning techniques to spinal disease diagnosis.

This research underscores the value of integrating AI into medical imaging 

workflows, especially for enhancing diagnostic accuracy and speed. The 

proposed system lays the groundwork for future advancements, including 

mobile deployment, IoT integration, and real-time clinical application.
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Chapter One

Introduction
1.1 Introduction

In recent years, artificial intelligence (AI) has experienced remarkable 

growth, particularly in the field of deep learning. These advancements have 

had a transformative effect on many domains, most notably healthcare, 

where intelligent algorithms are increasingly being adopted to support 

medical diagnosis and improve clinical decision-making processes. Among 

the most promising applications of AI in healthcare is the automated analysis 

and classification of medical images, which has the potential to enhance 

diagnostic accuracy and reduce human workload.

Magnetic Resonance Imaging (MRI) has become a critical imaging modality 

for diagnosing spinal disorders, especially those affecting the lumbar region. 

Lumbar spine diseases—including disc degeneration, spinal stenosis, and 

herniated discs—are a leading cause of chronic lower back pain and 

disability across the globe. Timely and accurate identification of such 

conditions is vital for effective intervention and long-term patient care [1][2].

In this research project, we focus on the development of a deep learning-

based system for the classification of lumbar spine diseases using MRI scans. 

Our approach leverages convolutional neural networks (CNNs) and other 

advanced models to automatically detect and categorize spinal pathologies 

with high reliability. By building upon the foundations laid by previous work 

in medical image analysis, we aim to contribute a solution that improves 

diagnostic efficiency, supports radiologists, and ultimately leads to better 

patient outcomes [3][4].
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Figure 1.1 Convolutional Neural Networks

1.2 Historical Overview

The integration of artificial intelligence into the field of medical imaging has 

progressed through several significant stages. Initially, conventional image 

processing techniques such as thresholding, edge detection, and histogram 

analysis were utilized to extract basic features from medical images. 

However, these techniques often struggled to capture the complexity and 

variability inherent in anatomical structures, particularly those found in the 

spine [5].

In the early 2000s, the application of machine learning algorithms—such as 

support vector machines (SVM), decision trees, and random forests—

marked a major improvement in diagnostic automation. These models 
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introduced data-driven decision-making but still relied heavily on 

handcrafted features, limiting their adaptability and generalizability [6].

The advent of deep learning revolutionized this landscape, particularly 

through the use of convolutional neural networks (CNNs). These networks 

demonstrated superior capabilities in visual recognition tasks and soon found 

widespread use in medical imaging. Early implementations in spinal analysis 

involved vertebral segmentation and disc localization, laying the 

groundwork for more sophisticated applications [1][7].

As research evolved, attention shifted from structural analysis to disease 

classification. Notably, deep learning models have shown significant success 

in detecting lumbar spine conditions such as spinal stenosis, disc 

degeneration, and foraminal narrowing. Some models have achieved 

classification accuracies exceeding 90%, outperforming traditional 

diagnostic tools in speed and precision [4][8].

Our project builds upon this historical progression, applying modern deep 

learning techniques to further advance the automated classification of lumbar 

spine diseases from MRI data. This foundation not only highlights the 

importance of AI in medical imaging but also underscores its growing role 

in future clinical practices.

1.2.1 Evolution of Deep Learning in Medical Diagnosis

The application of deep learning in medical diagnosis has evolved rapidly 

over the past decade, reshaping the landscape of computer-aided diagnosis 

(CAD) systems. Initially, CAD relied on manually engineered features 

extracted by domain experts, which limited the scalability and generalization 

of diagnostic tools. These conventional systems often struggled with inter-
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patient variability and image noise, especially in complex modalities such as 

MRI [5].

The introduction of deep learning, and particularly convolutional neural 

networks (CNNs), brought a significant paradigm shift. CNNs have the 

ability to automatically learn hierarchical features directly from raw image 

data, eliminating the need for manual feature extraction. This capability has 

proven especially beneficial in medical contexts, where subtle variations in 

tissue structure or shape can be critical for accurate diagnosis [3].

In the early stages, deep learning was applied to relatively simple 

classification tasks, such as distinguishing between healthy and diseased 

tissues. As computational power and dataset availability increased, more 

complex models were introduced to handle multi-class classification, lesion 

localization, and even image generation for data augmentation purposes. 

Transfer learning further accelerated this progress by allowing pretrained 

models—originally developed for general-purpose image recognition—to be 

fine-tuned for medical imaging applications [7].

Specifically in spinal diagnostics, deep learning has been employed to 

classify various pathologies, detect anatomical landmarks, and quantify 

disease severity. For instance, CNN-based systems have been developed to 

classify intervertebral disc degeneration and spinal stenosis with high levels 

of accuracy, sometimes surpassing the performance of human radiologists 

[2][4]. These advancements not only improve diagnostic precision but also 

enable faster workflows in clinical settings, reducing both the burden on 

specialists and the time to treatment initiation.

As deep learning continues to evolve, its role in medical diagnosis is 

expected to expand, driven by innovations in model architecture, data fusion, 

and explainability. Our project seeks to build on this trajectory by developing 
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a robust deep learning framework specifically tailored for classifying lumbar 

spine conditions from MRI images.

1.2.2 Application in Lumbar Spine Disease Detection
Deep learning has demonstrated significant potential in the detection and 

classification of lumbar spine diseases, particularly through the analysis of 

MRI scans. The lumbar region of the spine is a common site of degenerative 

changes, including disc herniation, spinal stenosis, and intervertebral disc 

degeneration, which are often difficult to assess manually due to anatomical 

complexity and inter-patient variability. Deep learning models, particularly 

convolutional neural networks (CNNs), have emerged as powerful tools for 

automating this diagnostic process [1][2].

One major application is the classification of intervertebral disc 

degeneration. By training CNNs on large datasets of lumbar spine MRIs, 

researchers have achieved high accuracy in distinguishing between different 

stages of degeneration. These models analyze features such as disc shape, 

signal intensity, and structural deformation—factors that are critical for 

proper diagnosis and treatment planning [4].

Another important application lies in the detection of spinal stenosis, a 

condition where the spinal canal narrows and compresses the spinal cord or 

nerve roots. Deep learning approaches have been employed to not only 

identify the presence of stenosis but also grade its severity, which plays a 

crucial role in surgical decision-making. Some models utilize both sagittal 

and axial MRI views to capture the full anatomical context and improve 

classification robustness [3][6].

Additionally, advanced models have been proposed to perform multi-task 

learning, where a single network is trained to simultaneously classify 

multiple lumbar spine conditions. This enhances clinical utility by providing 

a comprehensive analysis of a patient’s MRI in a single inference step. The 
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incorporation of transfer learning techniques has also allowed researchers to 

overcome data scarcity issues, further improving performance in real-world 

applications [7].

The successful deployment of these systems has highlighted the 

transformative role of deep learning in spinal diagnostics. By improving 

detection speed and reducing human error, such models support radiologists 

in achieving more consistent and reliable diagnoses. Our project builds 

directly upon these applications, seeking to implement a deep learning-based 

framework optimized for accurate classification of lumbar spine diseases 

using MRI data [2][8].

1.3 Motivation
The motivation behind this research stems from the increasing prevalence 

and clinical significance of lumbar spine diseases worldwide. Conditions 

such as disc degeneration, spinal stenosis, and herniated discs contribute 

significantly to chronic lower back pain, disability, and reduced quality of 

life for millions of individuals. Early and accurate diagnosis is essential to 

ensure effective treatment and prevent disease progression, yet current 

diagnostic processes remain labor-intensive, time-consuming, and subject to 

inter-observer variability [1][2].

Magnetic Resonance Imaging (MRI) is widely recognized as the gold 

standard for spinal assessment due to its superior soft tissue contrast and non-

invasive nature. However, interpreting lumbar spine MRI scans demands a 

high level of expertise and experience, which may not be readily available 

in all clinical settings, particularly in underserved regions. This challenge 

underscores the need for automated, reliable, and efficient diagnostic tools 

that can assist radiologists and clinicians in making timely and precise 

decisions [3][4].
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Deep learning techniques, with their ability to learn complex patterns 

directly from imaging data, present a promising solution to these challenges. 

By automating the classification of lumbar spine diseases, deep learning 

models can reduce diagnostic workload, minimize human error, and improve 

patient outcomes through faster and more consistent analysis [5][6].

Therefore, this project aims to develop a deep learning-based framework for 

the classification of lumbar spine diseases using MRI images. By leveraging 

advances in convolutional neural networks and transfer learning, we aspire 

to create a tool that enhances diagnostic accuracy, supports clinical decision-

making, and ultimately contributes to better healthcare delivery in the field 

of spinal medicine [7][8].

1.4 The Aim of This Project

The primary aim of this project is to develop a deep learning-based model 

using Convolutional Neural Networks (CNNs) to classify lumbar spine 

diseases from MRI images. This project seeks to enhance the diagnostic 

process by creating an automated system capable of accurately identifying 

and categorizing various spine-related conditions. By utilizing deep learning 

techniques, the model aims to reduce the dependency on manual image 

interpretation by medical professionals, thereby improving the efficiency, 

speed, and accuracy of the diagnosis.

Furthermore, this project aims to explore and evaluate the effectiveness of 

CNNs in analyzing MRI images of the lumbar spine, with a focus on 

achieving high classification performance in distinguishing between 

different types of spinal disorders. The ultimate goal is to create a reliable 

tool that can assist healthcare providers in making informed decisions and 
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offer a more efficient, timely, and precise method for diagnosing lumbar 

spine diseases.

In summary, the project aims to bridge the gap between cutting-edge 

artificial intelligence techniques and practical medical applications, 

improving diagnostic outcomes for patients and supporting healthcare 

professionals in their decision-making processes.

1.5 Chapters Layout

Chapter One: Introduction

Chapter Two: Thepritical Part  

Chapter Three: result and discussion

Chapter Four: Conclusions and Feature Works  
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Chapter Two

Thepritical Part  

2.1 Deep Learning

Deep learning is a subset of machine learning that focuses on algorithms 

inspired by the structure and function of the human brain, specifically 

artificial neural networks with multiple layers. These multilayered networks, 

known as deep neural networks (DNNs), are capable of learning complex 

representations from large volumes of data, enabling them to perform tasks 

such as image recognition, natural language processing, and speech 

recognition with remarkable accuracy [1].

In the context of medical imaging, deep learning has revolutionized the way 

images are analyzed and interpreted. Traditional machine learning methods 

often relied on handcrafted features and domain-specific knowledge, which 

limited their ability to generalize across different datasets and imaging 

modalities. In contrast, deep learning models, particularly convolutional 

neural networks (CNNs), automatically learn hierarchical features directly 

from raw image data, capturing intricate patterns that may be imperceptible 

to human observers [2][3].

CNNs have become the dominant architecture for medical image analysis 

due to their ability to exploit spatial hierarchies and local correlations within 

images. Through layers such as convolution, pooling, and fully connected 

layers, CNNs progressively extract features ranging from simple edges to 

complex shapes and textures. This capability makes CNNs particularly well-

suited for detecting subtle abnormalities in medical images, including 

magnetic resonance imaging (MRI) scans of the lumbar spine [4].



10

Moreover, the development of advanced techniques such as transfer 

learning, data augmentation, and attention mechanisms has further enhanced 

the performance and robustness of deep learning models in medical 

applications. Transfer learning enables the use of pretrained networks on 

large natural image datasets to be fine-tuned on smaller, domain-specific 

medical datasets, addressing challenges related to data scarcity [5].

In summary, deep learning provides a powerful framework for automated 

medical image analysis, offering promising solutions for tasks such as the 

classification of lumbar spine diseases from MRI images. Our research 

leverages these strengths to develop a deep learning-based model that can 

accurately and efficiently classify lumbar spine pathologies, ultimately 

contributing to improved diagnostic workflows.

2.2 CNN (Convolutional Neural Networks)

Convolutional Neural Networks (CNNs) represent a specialized class of 

deep learning models that have achieved remarkable success in image 

processing and computer vision tasks. Their architecture is specifically 

designed to automatically and adaptively learn spatial hierarchies of features 

through the use of convolutional layers, which act as learnable filters 

scanning over input images to detect patterns such as edges, textures, and 

shapes [1][2].

The fundamental building blocks of CNNs include convolutional layers, 

pooling layers, activation functions, and fully connected layers. 

Convolutional layers apply a set of filters to input data, generating feature 

maps that highlight specific characteristics within localized regions. Pooling 

layers reduce the spatial dimensionality of these feature maps, which helps 

to lower computational complexity and enhance translation invariance. 

Activation functions, such as ReLU (Rectified Linear Unit), introduce non-
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linearity enabling the network to model complex relationships. Fully 

connected layers at the network’s end combine the extracted features to 

perform classification or regression tasks [3].

In medical imaging, CNNs have demonstrated an exceptional ability to 

identify subtle and complex features that are often difficult to detect through 

traditional image analysis methods. This capability makes them highly 

effective in applications such as disease detection, segmentation, and 

classification in modalities like MRI, CT scans, and X-rays. Specifically, for 

lumbar spine MRI analysis, CNNs can learn discriminative features that 

distinguish between healthy and pathological tissues, facilitating the 

automated diagnosis of conditions such as intervertebral disc degeneration 

and spinal stenosis [4][5].

Recent advancements in CNN architectures—such as ResNet, DenseNet, 

and EfficientNet—have further improved model depth and performance 

while mitigating issues like vanishing gradients and overfitting. 

Additionally, techniques like batch normalization and dropout regularization 

contribute to more stable and generalized models suitable for clinical 

applications [6].

Overall, CNNs form the cornerstone of modern medical image analysis and 

play a critical role in our proposed system for classifying lumbar spine 

diseases. Their adaptability and powerful feature extraction capabilities 

enable the development of robust and accurate diagnostic tools, advancing 

the integration of AI into clinical workflows.

2.3 Mathematical Equations and Metrics Used in Image 

Classification

In the context of image classification, several mathematical metrics and loss 



12

functions are used to evaluate the performance of deep learning models. 

These metrics provide valuable insights into how well a model is performing 

in terms of accuracy, efficiency, and robustness. Some of the most 

commonly used metrics include accuracy, loss functions, precision, recall, 

and the F1-score. Below are the key formulas and their explanations:

1. Accuracy

Accuracy is the percentage of correct predictions made by the model out of 

all predictions [1][2]. It is defined as:

Accuracy = TP + TN
TP + TN + FP + FN

Where:

• TP = True Positives (correctly predicted positive cases)

• TN = True Negatives (correctly predicted negative cases)

• FP = False Positives (incorrectly predicted positive cases)

• FN = False Negatives (incorrectly predicted negative cases)

2. Loss Function

The loss function measures the difference between the predicted output and 

the actual output. A common loss function used in classification tasks is 

Cross-Entropy Loss[1][3]:

Loss = - ∑ yi log pi

Where:
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• Loss = loss

• yi = true label (1 for correct class, 0 for others)

• pi = predicted probability for class i

3. Precision

Precision measures the proportion of true positive predictions out of all 

predicted positive instances. It is defined as:

Precision = 
TP

TP + FP

4. Recall

Recall (also known as Sensitivity) measures the proportion of true positive 

predictions out of all actual positive instances. It is defined as[2][4]:

Recall = 
TP

TP + FN
5. F1-Score

The F1-Score is the harmonic mean of precision and recall, providing a 

balanced measure between the two. It is defined as [2][4]:

F1 = 2x(Precision x Recall)
Precision + Recall

6. Area Under the Curve (AUC) and Receiver Operating Characteristic 

(ROC) Curve

The ROC curve represents the trade-off between the true positive rate (recall) 
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and the false positive rate across all classification thresholds. The Area 

Under the Curve (AUC) is a measure of the model’s ability to distinguish 

between classes, and is given by [5][6]:

AUC = ∫1
0 (ROC curve)  

2.4 Review of Related Studies in Automated Classification of 

Lumbar Spine Diseases Using MRI Images

2.4.1 Study Overview

One of the significant studies in the field of deep learning for medical image 

analysis, specifically for classifying lumbar spine diseases using MRI 

images, was published in 2021 in a prominent medical journal. This study 

aimed to investigate the effectiveness of convolutional neural networks 

(CNNs) in diagnosing lumbar spine conditions, such as herniated discs, 

degenerative disc disease, and spinal stenosis, from MRI images. The 

authors used a large dataset consisting of MRI scans from patients diagnosed 

with various lumbar spine diseases. These images were labeled with 

corresponding disease categories, forming the ground truth used for training 

and testing the model.

The goal of the study was to build an AI-driven model capable of 

automatically classifying MRI images into predefined categories, reducing 

the reliance on manual interpretation by radiologists, which can be time-

consuming and prone to error. The study used state-of-the-art machine 

learning techniques to automate the detection of these spinal conditions, 

thereby improving diagnostic accuracy and speed[9].
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2.4.2 Methodology and Tools Used

The study employed several machine learning techniques, with a primary 

focus on convolutional neural networks (CNNs). CNNs are particularly well-

suited for image classification tasks because of their ability to automatically 

learn hierarchical features from raw pixel data. The architecture used in the 

study included several convolutional layers, followed by pooling layers to 

down-sample the feature maps and reduce the computational load. The 

model was then followed by fully connected layers that output the 

classification results.

The authors used TensorFlow and Keras, popular frameworks for building 

and training deep learning models, to implement the CNN architecture. 

These tools provided a flexible and efficient way to design the model and 

handle the large dataset of MRI images. For preprocessing, the authors 

applied several techniques such as resizing the images, normalizing pixel 

values, and augmenting the dataset with rotations and flips to artificially 

expand the dataset and prevent overfitting.

Additionally, the dataset was split into training and testing subsets, where 

80% of the data was used for training the model, and the remaining 20% was 

reserved for testing and evaluation. The model was trained using the 

categorical cross-entropy loss function, a standard loss function for 

classification tasks. This loss function measures the difference between the 

predicted probabilities and the actual class labels, helping the model adjust 

its weights during training to minimize the classification error[9].
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2.4.3 Results and Evaluation Metrics

The results of the study were highly promising, with the model achieving an 

accuracy rate of (92%) in classifying different lumbar spine conditions. This 

indicates that the model was able to correctly predict the disease class of 

MRI images with a high degree of reliability. The authors also computed 

several additional evaluation metrics to assess the model's performance more 

comprehensively:

• Precision: The model achieved a precision score of 0.90, meaning 

that when the model predicted a condition (e.g., herniated disc), it 

was correct 90% of the time.

• Recall (Sensitivity): The recall score was 0.93, indicating that the 

model correctly identified 93% of all actual instances of the disease.

• F1-Score: The harmonic mean of precision and recall, the F1-score, 

was 0.91, providing a balanced measure of the model's ability to 

classify positive instances while minimizing false positives and false 

negatives.

The loss function showed a consistent decrease throughout the training 

process, indicating that the model was learning and improving with each 

iteration. This decrease in the loss function correlates with the increase in the 

accuracy and F1-score, suggesting that the model was effectively optimizing 

its parameters to fit the data[9].
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2.4.4 Type of Architecture Used

The study used a Convolutional Neural Network (CNN) architecture, which 

is particularly effective for image-related tasks. CNNs work by applying 

convolutional filters to images to detect various features, such as edges, 

textures, and shapes. The network can then use these features to learn more 

complex representations of the image at higher layers.

• Convolutional Layers: These layers applied filters to the MRI images 

to detect low-level features (e.g., edges or textures), which were then 

passed to deeper layers for more complex feature extraction.

• Pooling Layers: After the convolutional layers, pooling layers were 

used to reduce the spatial dimensions of the feature maps, which helps 

in reducing the computational load while retaining the essential 

features.

• Fully Connected Layers: These layers connected the extracted features 

to the output, providing the final classification (e.g., whether the 

image shows a herniated disc or another condition).

This type of architecture has been widely successful in other areas of medical 

imaging, such as tumor detection, organ segmentation, and other diagnostic 

tasks, making it a suitable choice for lumbar spine disease classification as 

well[9].
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2.4.5 Insights and Application to My Research

The results and methodology from this study provide several insights that 

can be applied to my own research on the classification of lumbar spine 

diseases using MRI images:

1. Use of CNN for Medical Image Classification: The study's success 

with CNNs for classifying spinal diseases shows the potential of this 

architecture for my research. By leveraging CNNs, I can train a model 

to classify MRI images of the lumbar spine and achieve high accuracy 

in detecting various spinal conditions.

2. Image Preprocessing Techniques: The study’s use of image 

preprocessing, such as resizing, normalization, and data 

augmentation, is crucial in improving the model’s performance. I plan 

to implement similar techniques to enhance the quality of my MRI 

images and ensure the model can generalize well to new, unseen data.

3. Evaluation Metrics: The use of evaluation metrics like precision, 

recall, and F1-score will be essential in assessing my model's 

performance. These metrics provide a more comprehensive view of 

the model's effectiveness, especially in medical applications where the 

balance between false positives and false negatives is crucial.

Model Training and Testing: The study divided the dataset into training and 

testing sets, which is a standard practice in machine learning to ensure that 

the model can generalize to unseen data. I will follow this approach to avoid 

overfitting and ensure my model is evaluated in a robust manner[9].
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2.4.6 Conclusion Of Study
In conclusion, this study demonstrates the effectiveness of deep learning, 

particularly CNNs, in diagnosing lumbar spine diseases from MRI images. 

The high accuracy and robust evaluation metrics suggest that AI-based 

models can significantly improve the speed and reliability of diagnosing 

spinal disorders. The methodology, tools, and techniques discussed in this 

study provide a solid foundation for my own research, and I plan to apply 

similar approaches to develop a model that can assist in the automatic 

classification of lumbar spine diseases[9].

2.5 Algorithms in Deep Learning
Deep learning has made significant strides in the field of image 

classification, especially in tasks like medical image analysis, where 

complex patterns need to be identified [1][2]. For the classification of 

lumbar spine images and the diagnosis of related diseases, several 

powerful deep learning algorithms were employed. The primary 

algorithms used in this study include:

• ResNet50: Known for its deep residual learning approach, ResNet50 

is particularly useful in handling the vanishing gradient problem in 

very deep networks, making it effective for complex image 

classification tasks [3][9].

• VGG16: With its simple architecture of stacked convolutional 

layers, VGG16 excels in extracting high-level features from images, 

which makes it well-suited for tasks involving object recognition, such 

as lumbar spine analysis [4].
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• MobileNet: A lightweight and efficient model designed for mobile 

and embedded devices, MobileNet offers high accuracy while 

requiring fewer computational resources, making it ideal for real-time 

image classification applications [5].

• Inception: With its unique multi-branch architecture, Inception 

models are capable of handling images with varying levels of 

complexity, allowing for better feature extraction and improved 

performance in image classification tasks [6].

• DenseNet: DenseNet connects each layer to every other layer in a 

densely connected manner, enabling the model to reuse features 

efficiently and improving the flow of information throughout the 

network [7].

• U-Net: Primarily used for semantic segmentation, U-Net is highly 

effective for pixel-level image classification and is particularly useful 

for segmenting medical images, allowing for the precise identification 

of abnormalities in lumbar spine scans [8][9].
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Table 2.1 Model Comparison

2.6 Anaconda for Library Management

For the development and execution of deep learning models in this study, we 

utilized Anaconda, a widely used open-source distribution of Python that 

simplifies package management and deployment [1][2]. Anaconda provides 

a robust environment for data science and machine learning projects, 

offering an easy way to install, manage, and update the necessary libraries 

and dependencies.

Model Architecture 
Type

Key Strengths Best Use Case Resource 
Usage

ResNet50 Deep Residual 
Learning

Solves vanishing 
gradient; effective 
for deep networks

Complex image 
classification (e.g., 

spine MRI)

Medium 
to High

VGG16 Stacked 
Convolutional 

Layers

Simple design; 
extracts high-level 

features

Object recognition, 
lumbar spine 

analysis

High

MobileNet Depthwise 
Separable 

Convolutions

Lightweight and 
fast; ideal for 
mobile and 

embedded systems

Real-time image 
classification

Very 
Low

Inception Multi-branch 
Convolutions

Captures features at 
multiple scales; 

good for complex 
images

Classification of 
images with varying 

complexity

Medium

DenseNet Densely 
Connected 

Convolutions

Efficient feature 
reuse; improves 
information and 

gradient flow

Medical image 
classification, fine-

grained tasks

High

U-Net Encoder-
Decoder with 

Skip 
Connections

Excellent for 
segmentation; 

precise pixel-level 
classification

Medical image 
segmentation (e.g., 

lumbar 
abnormalities)

Medium
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Anaconda's Conda package manager was particularly useful in creating 

isolated environments, ensuring that all required libraries for deep learning, 

such as TensorFlow, Keras, PyTorch, and other supporting packages, were 

properly installed and compatible with each other [3][9]. This isolated 

environment also helped avoid conflicts between different versions of 

libraries and ensured the stability of the development setup.

Additionally, Anaconda’s integration with Jupyter Notebook allowed for a 

seamless workflow, enabling us to write, test, and document code 

interactively. This combination of Anaconda’s powerful environment 

management and Jupyter’s interactive nature significantly streamlined the 

development process for the deep learning models used in this project [1][2].

2.7 Python Programming Language

For this study, we utilized the Python programming language to implement 

the deep learning models for classifying lumbar spine images. Python is 

widely recognized for its simplicity, flexibility, and the extensive collection 

of libraries and frameworks available for machine learning and data science, 

making it the ideal choice for this project [1][2][3].

The specific version of Python used was Python 3.9. This version provided 

a stable and reliable environment for developing and running our deep 

learning models, ensuring compatibility with essential libraries such as 

TensorFlow, Keras, NumPy, and others. Python 3.9 includes several 

performance improvements and new features that were crucial for efficiently 

implementing the algorithms required in this study [3][9].

Python’s robust support for both object-oriented and functional 

programming allowed us to efficiently manage the complex neural network 

architectures and streamline the image classification process. Furthermore, 

the active Python community and continuous updates ensured that we had 
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access to the necessary tools and resources throughout the development of 

this project [1][2].

2.8 MRI Images Used for Model Training

Magnetic Resonance Imaging (MRI) is a highly accurate and non-invasive 

diagnostic tool widely used in the assessment of spinal conditions, due to 

its excellent soft tissue contrast and absence of ionizing radiation [1][4][9]. 

In this project, T2-weighted axial and sagittal MRI scans of the lumbar 

spine were utilized, as they provide clearer visualization of intervertebral 

discs, nerve roots, and cerebrospinal fluid—making them particularly 

useful for identifying common spinal disorders such as herniated discs, 

spinal stenosis, and degenerative disc disease [4][9]. 

Figure 2.1 MRI image for lumbar spine
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The dataset used for training comprised over 170,000 high-resolution MRI 

images, systematically categorized into multiple pathological classes based 

on expert radiological interpretation. These classes included normal spines, 

disc herniations, spinal canal narrowing, Modic changes, and other 

degenerative findings [9]. The annotations were performed by experienced 

radiologists to ensure high labeling accuracy and clinical relevance.

Before feeding the data into the deep learning model, a series of 

preprocessing steps were applied to standardize the inputs and enhance 

relevant features. These included image resizing to 224×224 pixels, intensity 

normalization, histogram equalization, and noise reduction using Gaussian 

filtering [3][9]. Data augmentation techniques such as random rotations, 

flips, and brightness adjustments were also employed to improve the model's 

generalization capability and reduce overfitting [9].
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Chapter Three

result and discussion

3.1 Dataset Annotation and CSV File Description
The dataset used in this study includes a CSV file that serves as a 

comprehensive annotation resource, containing crucial metadata for each 

MRI image [1][2]. This file includes several important fields that help in 

organizing, identifying, and labeling the images for effective model 

training and evaluation.

Key columns in the CSV file include:

• Study ID: A unique identifier for each MRI study session, linking all 

images from the same scanning event or patient examination [1].

• Series ID: This field distinguishes different series within the same 

study, representing different MRI acquisition protocols or 

views [1][2].

• Instance Number: The sequential number of the image within each 

series, which helps maintain the order of slices in 3D imaging [1].

• Disease Condition (Label): The classification of the spinal 

condition observed in the image, encoded as integer labels 

representing different pathologies [2][4]. The categories are:

0. Left Neural Foraminal Narrowing

1. Left Subarticular Stenosis

2. Right Neural Foraminal Narrowing

3. Right Subarticular Stenosis

4. Spinal Canal Stenosis

5. Healthy

• Coordinates (X, Y): These columns specify the location of the 
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pathological lesion within the image, given as x and y 

coordinates [4][6]. These coordinates indicate the precise region of 

interest (ROI) related to the disease, which can be useful for 

localization and segmentation tasks.

• Imaging Type: This field denotes the type or protocol of the MRI 

scan (e.g., T2-weighted axial, sagittal), providing information about 

the imaging plane and technique used for acquiring the image [2][5].

The dataset contains over 170,000 high-resolution MRI images, making it 

one of the largest publicly available lumbar spine image datasets used for 

disease classification [2][4]. This structured metadata in the CSV file 

enables efficient data management and facilitates supervised learning by 

linking each image to its corresponding clinical label and spatial 

information [1][2][4]. It also allows the model to not only classify the 

disease type but potentially learn the spatial context of the abnormalities 

within the lumbar spine MRI images [4][6].

Figure 3.1 Example of CSV File

3.2 Libraries Used for Lumbar Spine Image Classification

In this study, several Python libraries were used to implement the deep 

learning models for classifying lumbar spine images. These libraries 

provided powerful tools for data processing, model development, and 
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performance evaluation. The key libraries employed include:

• TensorFlow: TensorFlow, an open-source machine learning 

framework developed by Google, was the backbone of our deep 

learning models. It provided a flexible and efficient platform for 

implementing the neural networks, including the various 

architectures like ResNet50, VGG16, and DenseNet [2][5]. 

TensorFlow’s high-level API, Keras, made it easier to build, train, 

and evaluate models [2][5].

• Keras: Keras is a user-friendly, high-level neural networks API, 

running on top of TensorFlow. It allowed us to quickly prototype and 

build deep learning models with minimal code. Its simplicity and 

ease of use were key in experimenting with different architectures 

and hyperparameters for image classification [2][5].

• NumPy: NumPy is essential for handling numerical data and 

performing efficient array operations. It played a critical role in 

managing image data, including preprocessing tasks such as 

reshaping, normalization, and converting image arrays into formats 

suitable for deep learning models [3].

• Pandas: Pandas was used for handling datasets and performing data 

manipulation tasks such as loading image metadata and storing 

results. It was useful for organizing data, which is vital for managing 

large volumes of image files and associated labels [3].

• OpenCV: OpenCV is a library for computer vision that helped with 

reading and preprocessing images. It was used to resize, crop, and 

perform other transformations on the lumbar spine images to prepare 

them for input into the deep learning models [1].

• Matplotlib: Matplotlib was used for visualizing the results of model 

predictions and displaying images during the data exploration and 

model evaluation phases. It provided graphical tools to plot the 
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accuracy and loss curves, as well as to visualize some of the model’s 

predictions [3].

• Scikit-learn: Scikit-learn was employed for additional machine 

learning tasks such as model evaluation and performance metrics 

(e.g., confusion matrix, classification report). It helped in assessing 

the quality of the models beyond basic training accuracy, enabling 

more detailed performance analysis [3].

• Pillow (PIL): Pillow, a Python Imaging Library, was utilized for 

basic image operations, such as loading and converting images into 

formats compatible with the neural networks [3].

These libraries played a vital role in facilitating the development, training, 

and evaluation of the deep learning models for lumbar spine image 

classification. Each library contributed to different aspects of the project, 

from data preprocessing to model evaluation and visualization, ensuring a 

smooth and efficient workflow.

3.3 Compatibility Between Libraries and Python 3.9 Versions

In this study, we ensured that all the libraries used for deep learning and 

image classification were compatible with Python 3.9. Proper 

compatibility between Python and libraries is essential to ensure the 

stability and performance of the development environment. Below is a list 

of the key libraries used in this project along with their compatible versions 

for Python 3.9:

• TensorFlow: Version 2.5.0 or later is fully compatible with Python 

3.9. TensorFlow 2.5.0 includes significant improvements in 

performance and support for various hardware accelerators, making 

it an optimal choice for implementing the deep learning models.
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• Keras: Keras version 2.4.3 or later is compatible with Python 3.9. 

This version of Keras integrates seamlessly with TensorFlow 2.5.0, 

providing an easy-to-use interface for building neural networks.

• NumPy: NumPy version 1.20.0 or later is compatible with Python 

3.9. This version includes important optimizations and bug fixes, 

which are crucial for efficient numerical operations during data 

processing and model training.

• Pandas: Pandas version 1.2.0 or later supports Python 3.9. This 

version includes numerous performance improvements, especially 

when handling large datasets, which is crucial for efficiently 

managing and processing medical image data.

• OpenCV: OpenCV version 4.5.1 or later is compatible with Python 

3.9. This version offers various enhancements in image processing 

capabilities, which are essential for preprocessing the lumbar spine 

images before feeding them into the deep learning models.

• Matplotlib: Matplotlib version 3.3.4 or later is compatible with 

Python 3.9. This version of Matplotlib provides improved plotting 

features for visualizing results, including accuracy and loss curves, 

as well as image visualization.

• Scikit-learn: Scikit-learn version 0.24.1 or later is compatible with 

Python 3.9. This version includes various improvements and new 

features for model evaluation, including enhanced performance in 

calculating evaluation metrics such as confusion matrices.
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• Pillow: Pillow version 8.1.0 or later is fully compatible with Python 

3.9. This version is essential for image processing tasks such as 

loading and transforming images into formats suitable for deep 

learning models.

By using these compatible versions, we ensured that all libraries 

worked efficiently with Python 3.9, allowing for smooth 

development and execution of the deep learning models for lumbar 

spine image classification.

3.4 Datasets Used for Lumbar Spine Disease Classification

In this study, a curated dataset of lumbar spine MRI images was employed 

to develop and evaluate the deep learning models [2]. The dataset 

encompassed a wide range of spinal conditions, including herniated discs, 

degenerative disc disease, and spinal stenosis [2]. Each image was carefully 

annotated by experienced medical professionals to ensure the accuracy and 

reliability of the ground truth labels [1][2].

Prior to model training, several preprocessing steps were applied to the 

dataset to enhance the model’s learning capabilities [3]:

• Resizing: All images were resized to a standardized resolution 

appropriate for input into Convolutional Neural Networks [3].

• Normalization: Pixel values were normalized to the range [0, 1] to 

improve the efficiency and stability of the training process [3].

• Data Augmentation: Techniques such as rotation, flipping, and 

zooming were utilized to artificially expand the dataset and mitigate 

the risk of overfitting [2].

          The dataset was subsequently divided into two subsets [3]:

• Training Set: Utilized to train the deep learning models by enabling 

them to learn discriminative features of various spinal 
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pathologies [2].

• Testing Set: Used to assess the generalization performance of the 

trained models on unseen data [3].

The availability of a diverse and well-annotated dataset played a pivotal 

role in achieving robust classification performance, thereby enhancing the 

reliability of the automated diagnostic system for lumbar spine 

diseases [2][3].

3.5 Source of the Dataset

The lumbar spine MRI dataset utilized in this study was obtained from 

Kaggle, a well-known online platform for data science and machine learning 

competitions [2]. Kaggle provides a vast collection of high-quality datasets 

across various domains, including medical imaging, which makes it an 

invaluable resource for researchers and developers working on artificial 

intelligence projects [5].

The selected dataset from Kaggle was chosen due to its comprehensive 

nature and the availability of labeled MRI images covering a diverse range 

of spinal disorders. The platform also provided important metadata and 

structured annotations that facilitated the training and evaluation of deep 

learning models. Additionally, the use of Kaggle as a source ensured that the 

dataset met standardized formatting and accessibility criteria, which 

contributed to a smoother integration into the development pipeline [2][6].

Figure 3.2 Kaggle logo
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By leveraging an open-access and widely trusted platform like Kaggle, this 

research ensures transparency and reproducibility, allowing other 

researchers to replicate the study or build upon its findings. The availability 

of such datasets accelerates the development of intelligent diagnostic 

systems and promotes collaboration within the scientific community [5].

3.6 Description of the Selected Datasets

3.6.1 RSNA-LSDC 2024 Submission Debug Dataset

The first dataset used in this study was the RSNA-LSDC 

2024 Submission Debug Dataset, available on Kaggle [2]. 

This dataset was developed as part of the RSNA Lumbar 

Spine Disease Challenge and consists of lumbar spine MRI 

scans annotated for various spinal pathologies. It includes 

segmentation masks and diagnostic labels, providing 

valuable information for both classification and 

segmentation tasks. The high-quality annotations and 

structured organization of the dataset made it ideal for 

training deep learning models to recognize and differentiate 

between multiple lumbar spine conditions. The dataset’s 

focus on precise segmentation and disease classification 

significantly contributed to building a strong foundation for model 

development [2].

Figure 3.3 Data explorer 
for RSNA-LSDC 2024 

Submission Debug Datas
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3.6.2 RSNA-LSDC YOLOv8 Dataset

The second dataset incorporated into the study was 

the RSNA-LSDC YOLOv8 Dataset, also sourced 

from Kaggle [6]. This dataset was specifically 

prepared for object detection tasks using the 

YOLOv8 framework. It contains MRI images 

annotated with bounding boxes that localize lesions 

and abnormalities in the lumbar spine. Although 

primarily designed for detection purposes, the 

bounding box annotations were instrumental in 

highlighting critical regions of interest. This 

supplementary information enhanced the model’s 

ability to focus on key pathological areas, thereby 

improving overall classification performance. The integration of this dataset 

alongside the segmentation-focused dataset provided a more comprehensive 

understanding of lumbar spine pathologies during model training [6].

3.7 Hardware Specifications for Model Training

The training and development of the deep learning models in this study were 

conducted on a MacBook Pro (2021) featuring an Apple M1 Pro processor 

and 16 GB of unified memory (RAM). The 16-inch MacBook Pro provided 

a robust environment for medium-scale deep learning workflows, supported 

by the efficient architecture of Apple’s custom silicon.

One of the key factors that contributed to the success of model training was 

the availability of 16 GB of unified memory. In deep learning applications, 

Figure 3.4 Data Explorer for 
RSNA-LSDC YOLOv8 Dataset
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memory size plays a critical role in handling large datasets, loading high-

dimensional image arrays, and enabling the simultaneous processing of 

multiple operations. The unified memory architecture of the M1 Pro allowed 

both the CPU, GPU, and the Neural Engine to access a shared memory pool, 

significantly improving the speed and efficiency of data transfer during 

model training.

Additionally, the compatibility of TensorFlow with Apple Silicon through 

Metal TensorFlow (an optimized backend that utilizes the Metal API for 

GPU acceleration) provided substantial performance improvements. Metal 

TensorFlow enabled efficient execution of tensor operations on the Apple 

GPU, resulting in faster training times compared to CPU-only processing. 

This compatibility allowed the device to leverage hardware acceleration 

natively without requiring external GPUs or complex setup procedures.

While the M1 Pro’s integrated GPU does not match the raw power of 

dedicated desktop GPUs like the NVIDIA RTX series, the optimized 

TensorFlow-Metal integration and the efficient memory management of the 

MacBook Pro created a balanced and capable setup for the training of 

convolutional neural networks, especially when working with carefully 

tuned batch sizes and model architectures.

In conclusion, the combination of a powerful processing unit, sufficient 

memory, and optimized deep learning support through Metal TensorFlow 

provided a reliable and efficient platform for conducting this research.

3.8 Deep Learning Architectures Used for Lumbar Spine 

Disease Classification

In this study, we evaluated the performance of several state-of-the-art 

Convolutional Neural Network (CNN) architectures for the task of lumbar 

spine disease classification using MRI images. Each architecture was 
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trained under similar conditions, and its performance was assessed using 

multiple evaluation metrics. The architectures used include InceptionV3, 

Xception, VGG16, NASNetLarge, ResNet50, MobileNetV2, and 

DenseNet.

Architecture Accuracy 
(%)

Epochs Batch Size Training 
Time

Final Loss ROC-
AUC

InceptionV3 88.2% 20 8 2h 14m 0.301 0.94

Xception 85.6% 20 8 2h 5m 0.334 0.92

VGG16 68.8% 20 8 1h 45m 0.812 0.80

NASNetLarge 84.4% 20 8 3h 10m 0.367 0.91

ResNet50 61.6% 20 16 1h 38m 1.024 0.72

MobileNetV2 85.6% 20 8 1h 29m 0.354 0.91

DenseNet 83.8% 20 8 2h 20m 0.388 0.90

Table 3.1 Comparison of used architectures

Training Process:

Each model was trained for 20 epochs using the Adam optimizer and a 

categorical cross-entropy loss function, suitable for multi-class 

classification. Early stopping and learning rate reduction on plateau were 

applied to avoid overfitting.

The batch sizes were carefully chosen based on each model’s architecture 

and memory footprint:

• InceptionV3, Xception, VGG16, NASNetLarge, MobileNetV2, 

and DenseNet were trained using a batch size of 8.

• ResNet50 was trained with a slightly larger batch size of 16, which 

helped improve training speed due to its moderate model size.

          Highlights of individual model performance:

• InceptionV3 achieved the highest accuracy (88.2%), showing 
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superior feature extraction capabilities.

• Xception and MobileNetV2 followed closely with 85.6% accuracy, 

offering a good balance between performance and training 

efficiency.

• VGG16 had limited performance (68.8%) despite its simplicity, 

showing difficulty with complex spinal features.

• NASNetLarge delivered strong performance (84.4%) but required 

the most computational time.

• ResNet50 had the lowest accuracy (61.6%) despite using a larger 

batch size, suggesting limitations in learning discriminative features 

in this setup.

• DenseNet achieved 83.8%, leveraging dense connections for better 

gradient flow and feature reuse.

Prediction Visualization:
A selected MRI image was passed through each trained model, and 

the predicted class along with its probability score was visualized to 

assess the model’s confidence and interpretability. 

Figure  3.5  InceptionV3 Prediction Figure  3.6 MobileNetV2 Prediction
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Figure  3.7 NASNetLarge Prediction

Figure  3.10 VGG16 Prediction

Figure  3.8 DenseNet Prediction

Figure  3.9 ResNet50 Prediction
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Prediction Visualization for Each Architecture:

For each deep learning architecture used in this study, separate 

visualizations were generated to illustrate the model’s prediction 

performance. These visual outputs display how accurately each model 

classified the spinal conditions based on the input MRI images. Presenting 

the predictions individually for each architecture—such as InceptionV3, 

Xception, VGG16, NASNetLarge, ResNet50, MobileNetV2, and 

DenseNet—offers a clearer understanding of the strengths and weaknesses 

of each model. These figures demonstrate the models’ ability to localize 

and identify pathological regions, helping to evaluate their practical 

diagnostic relevance in clinical settings.

Figure  3.11  InceptionV3 outputs

Figure  3.12  DenseNet outputs
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Figure  3.13  MobileNetV2 outputs

Figure  3.14  NASNetLarge outputs

Figure  3.15  resnet50 outputs
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3.9 Model Development and Training Workflow
This section provides a detailed breakdown of the deep learning 

implementation used to classify lumbar spine diseases and identify vertebral 

levels based on MRI images. The code was developed using Python and 

TensorFlow with the InceptionV3 architecture. Each part of the code is 

discussed in a separate subsection for clarity.

3.9.1 Data Loading and Preparation
The first step involved loading the dataset files, which included training 

labels, series descriptions, and label coordinates. These files were merged 

using common identifiers (study_id and series_id) to construct a unified 

dataset containing both image metadata and diagnostic labels.

Example code snippet:

df_train = pd.read_csv(train_csv_path)

df_series = pd.read_csv(train_series_descriptions_path)

df_labels = pd.read_csv(train_label_coordinates_path)

df = pd.merge(df_train, df_series, on="study_id", how="inner")

df = pd.merge(df, df_labels, on=["study_id", "series_id"], how="inner")

Figure  3.16  VGG16 outputs
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This step ensured that all relevant information was available in a structured 

format for subsequent processing.

3.9.2 Label Encoding
The disease conditions and spinal levels were mapped into numerical labels. 

This was done using dictionary mappings, which allow categorical labels to 

be converted into formats suitable for machine learning algorithms.

Example code snippet:

disease_map = {disease: i for i, disease in enumerate(disease_classes)}

level_map = {level: i for i, level in enumerate(level_classes)}

df["disease_label"] = df["condition"].map(disease_map)

df["level_label"] = df["level"].map(level_map)

Mapping the labels was essential for enabling multi-class classification at 

both the disease and spinal level categories.

3.9.3 DICOM Image Processing
The DICOM files were converted into 2D arrays suitable for model input. 

Each image was resized to a target shape of (299×299) pixels and normalized 

to a [0, 1] scale. Histogram equalization was also applied to improve 

contrast.

Example code snippet:

def dicom_to_array(dcm_path, img_size=(299, 299)):

    dicom = pydicom.dcmread(dcm_path)

    image = dicom.pixel_array

    image = cv2.resize(image, img_size)

    image = cv2.equalizeHist(image.astype(np.uint8))
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    image = np.stack((image,)*3, axis=-1)

    return image / 255.0

The chosen image size and preprocessing techniques are typical examples 

used when working with architectures such as InceptionV3, but can be 

adjusted depending on the network requirements.

3.9.4 Dataset Splitting
The data was divided into training, validation, and testing sets using an 

80/10/10 approximate split ratio. This ensures robust model evaluation and 

minimizes overfitting.

Example code snippet:

X_train, X_temp, y_disease_train, y_disease_temp, y_level_train, 

y_level_temp = train_test_split(

    X, y_disease, y_level, test_size=0.3, random_state=42)

X_val, X_test, y_disease_val, y_disease_test, y_level_val, y_level_test = 

train_test_split(

    X_temp, y_disease_temp, y_level_temp, test_size=0.5, 

random_state=42)

The division ratios and random seed values are examples and can be 

modified based on dataset size and research needs.

3.9.5 Model Architecture Design

An InceptionV3 network was utilized as the backbone for feature extraction. 

The architecture was modified by adding a Global Average Pooling layer 

followed by fully connected layers, and two output branches: one for disease 

classification and another for spinal level classification.
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Example code snippet:

base_model = InceptionV3(weights="imagenet", include_top=False, 

input_shape=(299, 299, 3))

x = GlobalAveragePooling2D()(base_model.output)

x = Dense(1024, activation="relu")(x)

x = Dropout(0.3)(x)

disease_output = Dense(len(disease_classes), activation="softmax", 

name="disease_output")(x)

level_output = Dense(len(level_classes), activation="softmax", 

name="level_output")(x)

model = Model(inputs=base_model.input, outputs=[disease_output, 

level_output])

The choice of InceptionV3 and the design of output heads are examples; 

other architectures like ResNet or EfficientNet could also be employed 

depending on specific requirements.

3.9.6 Model Compilation
The model was compiled using the Adam optimizer and a categorical cross-

entropy loss function for both outputs. Metrics such as accuracy were 

selected for monitoring performance.

Example code snippet:

model.compile(optimizer="adam",

              loss={"disease_output": "categorical_crossentropy", 

"level_output": "categorical_crossentropy"},

              metrics={"disease_output": "accuracy", "level_output": 
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"accuracy"})

The optimizer, loss functions, and metrics are standard examples and can 

be tuned to fit different classification problems.

3.9.7 Model Training with Checkpointing

The model was trained for 20 epochs using a batch size of 8. A 

ModelCheckpoint callback was used to save the best-performing model 

based on disease classification accuracy.

Example code snippet:

checkpoint_callback = ModelCheckpoint(

    best_model_path, 

    monitor="disease_output_accuracy",

    save_best_only=True,

    save_weights_only=False,

    mode="max",

    verbose=1

)

history = model.fit(

    X_train, {"disease_output": y_disease_train, "level_output": 

y_level_train},

    validation_data=(X_val, {"disease_output": y_disease_val, 

"level_output": y_level_val}),

    epochs=20,

    batch_size=8,

    callbacks=[checkpoint_callback]

)
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The number of epochs, batch size, and monitoring metric were chosen as 

examples and can be modified based on model convergence behavior.

3.9.8 Model Evaluation

Finally, the trained model was evaluated on the test set to measure its 

performance in terms of loss and accuracy for both disease classification and 

spinal level identification.

Example code snippet:

test_loss, test_disease_loss, test_level_loss, test_disease_acc, 

test_level_acc = model.evaluate(

    X_test, {"disease_output": y_disease_test, "level_output": y_level_test})

print(f"دقة تصنيف الأمراض: {test_disease_acc:.4f}")

print(f"دقة تحديد المستوى الفقري: {test_level_acc:.4f}")

The evaluation results provide insights into the model’s generalization 

capabilities and highlight areas that may require further optimization.

3.10 Challenges and Limitations Faced During the Project

Throughout the development of this research, several technical and logistical 

challenges were encountered that influenced both the progress and the 

performance of the deep learning models:

3.10.1 Library Compatibility Issues
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One of the primary difficulties faced was ensuring compatibility between 

different Python libraries and Python version 3.9. Many libraries used in 

deep learning workflows—such as TensorFlow, Keras, OpenCV, and 

others—have dependencies and specific version requirements. This caused 

several conflicts during environment setup, often requiring version 

adjustments and package reinstallation to achieve a stable and functioning 

development environment.

3.10.2 Dataset Quality and Organization Problems

The datasets used varied significantly in quality and structure. Some were 

poorly organized, with images scattered or mislabeled, while others lacked 

consistency in annotation or image formatting. In some cases, datasets were 

incomplete or contained missing values, which limited their usefulness for 

training deep learning models. This inconsistency required additional 

preprocessing efforts to clean, sort, and reformat the data to ensure it was 

usable.

3.10.3 Difficulty Finding Suitable Datasets

Another major challenge was locating datasets that met all the criteria 

necessary for effective model training. The datasets needed to:

• Contain a medium to large number of images to support better model 

generalization and accuracy.

• Have high-resolution, clinically relevant MRI images.

• Be free and publicly accessible to ensure compliance with open 

research standards.

• Be well-organized and structured, with clear labeling and directory 

formats.
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• Include a detailed and properly formatted CSV annotation file that 

listed the image names, corresponding diseases, lesion coordinates, 

and MRI acquisition types. Many available datasets lacked one or 

more of these critical elements, making them unsuitable or requiring 

significant manual adjustments.

3.10.4 Hardware Limitations
Hardware performance was a significant limiting factor in this project. 

Given the large size of the dataset—over 170,000 high-resolution MRI 

images—model training required substantial computational resources. The 

available hardware, while adequate for basic development, struggled with 

extended training times and memory management. This limitation not only 

affected training speed but also may have impacted the final model 

accuracy, as more powerful GPUs and higher RAM capacity could have 

allowed for more intensive training with larger batch sizes and more 

epochs.

3.11 Summary of Findings and Transition to Discussion
This chapter presented a comprehensive overview of the deep learning 

experiments conducted for lumbar spine disease classification using MRI 

images. Multiple architectures were evaluated, including InceptionV3, 

Xception, VGG16, NASNetLarge, ResNet50, MobileNetV2, and DenseNet, 

each demonstrating varying degrees of performance in terms of accuracy, 

training time, and resource efficiency. The dataset, although rich and diverse, 

posed several challenges in terms of structure, consistency, and size, which 

were addressed through preprocessing and augmentation strategies. Despite 

hardware limitations and compatibility issues with software libraries, the 

models achieved promising results, highlighting the potential of deep 

learning in spinal disease diagnostics. The findings from this chapter lay the 
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groundwork for understanding the practical implications of deploying such 

models in clinical settings.
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Chapter Four

Conclusion and Future Work

4.1 Conclusion
In conclusion, this study successfully developed and evaluated a deep 

learning-based framework for the classification of lumbar spine diseases 

using MRI images. The implementation of various CNN architectures 

revealed that models like InceptionV3 and MobileNetV2 deliver high 

accuracy and efficiency in identifying and differentiating between spinal 

pathologies. The use of image preprocessing, transfer learning, and 

structured annotation files proved crucial in achieving reliable performance.

While challenges such as dataset inconsistency, compatibility issues with 

Python libraries, and hardware limitations were encountered, these were 

effectively addressed through careful planning and methodical execution. 

The findings suggest that deep learning models can play a transformative 

role in automating spinal disease diagnosis, offering significant 

improvements in speed, accuracy, and accessibility, especially in settings 

with limited radiological expertise.

This research not only demonstrates the practical value of deep learning in 

medical image classification but also lays a solid foundation for future 

developments in the field.
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4.2 Future Work
Building upon the findings of this research, several directions are proposed 

for future development:

1. Expanding Dataset Diversity: Incorporating datasets from various 

institutions and demographic groups can improve model 

generalization and reduce bias.

2. Multimodal Learning: Integrating MRI data with clinical metadata 

(e.g., patient history, symptoms) can enhance diagnostic accuracy by 

offering a more holistic view.

3. Real-Time Deployment: Optimizing the models for real-time 

inference on cloud or mobile platforms would improve clinical 

accessibility and usability.

4. Explainability and Interpretability: Implementing explainable AI 

techniques such as Grad-CAM would help radiologists understand 

model decisions and build trust in automated diagnostics.

5. Integration with PACS: Developing a complete diagnostic assistant 

that integrates with hospital PACS (Picture Archiving and 

Communication Systems) can streamline clinical workflow.

6. Mobile Application Development: Creating and deploying a mobile 

application based on the trained model would enable real-time image 

analysis and result visualization, making the system more accessible 

for use in field or remote clinical environments.

7. Utilization of IoT Systems: Incorporating the model within an Internet 

of Things (IoT) framework could allow for continuous monitoring and 

automatic image analysis by connecting directly with MRI devices 

and hospital networks.

These directions aim to push the boundaries of AI-based medical diagnostics 

and support the integration of intelligent tools into real-world clinical 

practice
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