
Republic of Iraq

Ministry of Higher Education

and Scientific Research

University of Misan

College of Engineering

Department of Electrical Engineering

Internet World Radio

A graduation project submitted to the Department of Electrical

Engineering, in partial fulfillment for the requirements for the award of the

degree of Bachelor of Electrical Engineering

By

Sajjad Hisham Noori

Hussein Khaled Wahwed

Noor Ali Jasem

Ali Abdulzahra

Ahmed Ali Aboud

SUPERVISED BY: Assist Lec. Yasir Ali Khaled

Maysan, Iraq

2025

 الرحيم الرحمن الله بسم
دُ وَقَالَ ۖ عِل مًا وَسُلَي مَانَ دَاوُودَ آتيَ ناَ وَلَقدَ)) ِ ال حَم ن كَثِير عَلىَ فَضّلَنَا الذِّي لِِلّ مِِّ

مِنِينَ عِبَادِهِ (١٥)ةالنمل اي((ال مُؤ

العظيم العلي الله صدق

SUPERVISOR CERTIFICATION

I certify that Sajjad Hisham Noori, Hussein Khaled Wahwed,

Noor Ali Jasem, Ali Abdulzahra, and Ahmed Ali Aboud prepared the

project titled “Internet World Radio” under my supervision at the

General Electrical Engineering Branch, Electrical Engineering

Department, University of Misan. This project was partially fulfilled to

meet the requirements for the degree of Bachelor of Science in Electrical

Engineering.

Supervisor : Assist Lec. Yasir Ali Khaled

 Signature:

Scientific Degree:

Date:

I

DEDICATION

To All parents and to our families who made this accomplishment possible.

II

ACKNOWLEDGEMENT

Praise be to ALLAH who enabled us to complete this

work under his benediction.

Cordial thanks and deepest gratitude to our supervisor

(Mr. Yasir Ali Khaled) for being assistance and for the

continuous encouragement and suggestions from him

which helped us to successfully complete this project.

In addition, we would like to express my thanks to the
head of the Electrical Engineering Department
 (Dr. Mohammed Khalaf Jumaah) for his continuous
support and encouragement.

We would like to express our thanks to our University

for their encouragements and anyone helped us.

Finally, sincere gratitude and appreciation and love to

our families for their encouragements and supports and for

all things they have given us.

III

ABSTRACT

This research presents the design and implementation of an
interactive internet radio system that combines the classic
look of vintage radios with modern digital streaming
technologies. The project transforms the traditional radio
experience by integrating a Raspberry Pi 4, rotary
encoders, an LCD screen, and a web interface based on
Leaflet.js, allowing users to explore and stream global
radio stations through an interactive map. A JSON-based
database of stations provides efficient data management,
while physical controls offer a nostalgic and tactile
experience.

The system overcomes common problems of traditional
AM/FM radios, such as signal interference and
geographical limits, by providing high-quality internet
streaming and easy navigation through locations on the
map. The software, which includes HTML, JavaScript, and
Python scripts, handles station data, user interactions, and
live playback. The hardware integration ensures smooth
communication between user inputs and dynamic visual
feedback.

Through extensive testing, the system’s reliability,
responsiveness, and ease of use were confirmed.
Challenges such as station overlap, broken links, and
electrical interference were addressed with technical
solutions like real-time validation, zoom limitations, and
improved grounding. This project shows the potential of
combining older technologies with modern systems to
create new and useful devices.

Table of Figures

Fig 2.1
Raspberry Pi 4 architecture

14

Fig 2.2
rotary encoder

16

Fig 2.3
PAM8406

18

Fig 2.4
external speaker

18

Fig 2.5
GPIO pin

19

Fig 2.6
wiring diagram

19

Fig 3.1
Night mode view

27

Fig 3.2
Day mode view

28

Fig 4.1
stations overlap

40

IV

TABLE OF CONTENTS

Dedication I
Acknowledgement II

Abstract III

List of Figures IV

Table of Contents V

Chapter One: Introduction

1.1 Introduction 2

1.1.1 Radio: From Invention to Global Spread 3

1.1.2 Different Eras of Radio 4

1.1.3 Modern Technology and Radio Development 5

1.1.4 Preserving Cultural Heritage Through Technology 6

1.2 The Internet Radio Project and Its Objectives 7

1.3 Project Idea 9

1.4 Advantages of the World Radio Project Compared to Classical
Radio 9

Chapter Two: Components of the Project

2.1 Components of the Project
13

V

2.2 Circuit Design
19

2.3 Integration of Components
20

Chapter Three: Design and Implementation

3.1 The Role of the Software Side in the Project
22

3.2 Key Components of the Code
22

3.2.1 JSON File Code (stations.json)
23

3.2.2 Interface and Processing Code (radiomap.html) 23

3.2.3 Encoder Code (rotary_encoder.py) 30

Chapter Four: Results and Discussion

4.1 Challenges and solutions 39

4.2 Results: Setting Up and Running the Interactive Radio System

on Raspberry Pi
43

4.2.1 Setting Up the Lighttpd Web Server
43

4.2.2 Enabling the uinput Kernel Module
43

4.2.3 Running the Rotary Encoder Python Script
44

VI

4.2.4 Launching the Interactive Map
44

4.2.5 Making the System Start Automatically
44

4.2.6 Making the Startup Look Better
47

Chapter Five: Conclusion and Future Work

5.1 Conclusion 49

5.2 Future Work 49

References 53

VII

Chapter One

 Introduction

1

1.1 Introduction

Technological Development in Radio

In recent decades, technological advancement has reshaped every
aspect of human life, profoundly influencing how individuals
communicate, access information, and engage with global
culture. Among the most transformative technologies in the
realm of communication is radio, which has evolved from
rudimentary wireless signaling into a multifaceted medium
delivering news, entertainment, and educational content to
audiences worldwide.

Initially developed in the late 19th century as a method of
transmitting electromagnetic signals, radio became a cornerstone
of mass communication throughout the 20th century. Its role
expanded from military and maritime applications to public
broadcasting, fostering social connectivity and public awareness
on an unprecedented scale (Britannica, 2023).

The trajectory of radio’s development mirrors broader global
trends in digitalization. The transition from analog to digital
broadcasting has significantly enhanced audio quality,
transmission reliability, and user interactivity. Furthermore, the
rise of internet-based radio has dismantled geographic
boundaries, enabling users to access a global network of stations
in real time (Techopedia, 2022).

This evolution demonstrates radio’s adaptability and continued
relevance. Even in an era dominated by on-demand media and
smart devices, radio persists as a dynamic platform—now
augmented with digital interfaces, streaming protocols, and
user-personalized services—cementing its role as both a cultural
artifact and a forward-looking communication technology (IEEE
Spectrum, 2021).

2

1.1.1 Radio: From Invention to Global Spread

The origins of radio trace back to the foundational work of
physicist Heinrich Hertz, who, in the late 19th century, confirmed
the existence of electromagnetic waves—an essential prerequisite
for wireless communication. This scientific milestone was
followed by the pioneering efforts of Guglielmo Marconi, who
successfully developed and demonstrated the first practical
wireless telegraphy system in the 1890s. Marconi’s work laid the
technological foundation for the modern radio by enabling
long-distance signal transmission without the need for physical
connectors (Hong, 2001; IEEE History Center, 2023).

By the early 20th century, radio technologies had evolved beyond
scientific experimentation and military use to become tools of
mass communication. The widespread adoption of vacuum tube
amplification enabled stronger and clearer audio signals,
accelerating the commercial viability of radio broadcasting. The
1920s and 1930s marked the beginning of public radio as a
household staple, with stations delivering real-time news, music,
and cultural programming to growing audiences around the
world (Sterling & Kittross, 2002).

Radio quickly became a unifying medium, fostering national
identity, informing the public, and offering entertainment on an
unprecedented scale. In wartime, it served as a critical
communication tool; in peacetime, it helped shape societal values
and promote cultural cohesion. As broadcasting regulations were
standardized and infrastructures expanded, radio emerged as a
globally accessible platform, influencing politics, education, and
public discourse throughout the 20th century (Briggs & Burke,
2009).

3

1.1.2 Different Eras of Radio

The evolution of radio as a technology and cultural medium can
be classified into three distinct eras—each characterized by
significant advancements in electronic engineering and shifts in
user experience: the Vacuum Tube Era, the Transistor Era, and
the Digital Radio Era.

● Vacuum Tube Era (Early 20th Century)

The first radios utilized vacuum tubes (thermionic valves) to
amplify and detect audio signals. These devices, while bulky and
power-hungry, enabled long-distance signal transmission and
were primarily employed in military and commercial contexts.
By the 1920s, vacuum tube radios were introduced into the
consumer market, albeit at high cost and limited portability.
Nevertheless, they marked the beginning of mass media
broadcasting and laid the foundation for modern public radio
infrastructure (Fagen, 1975).

● Transistor Era (1950s–1970s)

The invention of the transistor in 1947 and its rapid adoption in
consumer electronics during the 1950s revolutionized radio
technology. Transistor-based radios were smaller, cheaper, more
energy-efficient, and highly portable—characteristics that made
them immensely popular among consumers. The widespread use
of these radios expanded access to information and
entertainment, especially in automobiles and remote locations,
further embedding radio into the fabric of daily life (Riordan &
Hoddeson, 1997).

4

● Digital Radio Era (Late 20th Century – Present)

The emergence of digital signal processing in the late 20th
century ushered in a new era of broadcasting. Digital Audio
Broadcasting (DAB), introduced in the 1990s, offered higher
fidelity, reduced noise and interference, and the ability to
transmit additional data such as station metadata, song titles, and
traffic updates. Furthermore, digital platforms facilitated the
integration of radio with emerging technologies, enabling
interactive features and on-demand services (WorldDAB, 2023).
This transformation redefined the way audiences engage with
audio content and broadened the scope of radio beyond linear
programming.

1.1.3 Modern Technology and Radio Development

The ongoing advancement of digital technologies has
significantly reshaped the radio landscape, transitioning it from
traditional broadcast infrastructure to a globally connected,
user-driven ecosystem. One of the most profound changes has
been the emergence of internet radio, which enables listeners to
stream audio content from virtually any location with internet
access. This innovation effectively removes the geographic
limitations imposed by terrestrial broadcasting, allowing users to
explore thousands of stations worldwide in real time
(Techopedia, 2022).

Unlike analog radio, which is constrained by frequency
allocation and atmospheric interference, internet radio offers
high-fidelity audio and the capacity to integrate advanced
metadata, such as track information, station descriptions, and
interactive features. Platforms like TuneIn, iHeartRadio, and
Spotify Radio exemplify how radio has merged with streaming
technology to offer personalized content recommendations and
on-demand playback

 (Gannes, 2011).

5

Moreover, the integration of radio services into smart
devices—including smartphones, tablets, smart speakers (e.g.,
Amazon Echo, Google Nest), and vehicle infotainment
systems—has increased both accessibility and user engagement.
These smart systems often employ voice control, cloud
connectivity, and AI-driven personalization, thereby transforming
radio from a passive listening experience into a dynamic,
user-centered interaction

(Statista, 2023).

This convergence of internet connectivity and smart technology
illustrates how radio continues to adapt and remain relevant in a
competitive digital media environment. Rather than becoming
obsolete, radio has evolved into a hybrid communication
platform that bridges the nostalgia of traditional audio
broadcasting with the interactivity and convenience of modern
digital ecosystems.

1.1.4 Preserving Cultural Heritage Through
Technology

In the digital age, rapid technological advancement poses both
challenges and opportunities for the preservation of cultural
heritage. Traditional communication mediums, such as analog
radio, risk obsolescence due to the proliferation of internet-based
and on-demand platforms. However, through strategic integration
and innovation, these historical technologies can be revitalized
and reimagined to serve contemporary purposes while retaining
their cultural value (UNESCO, 2023).

Radio, as a medium, has long been a vessel for the transmission
of cultural narratives, local music, indigenous languages, and
region-specific knowledge. With the decline in analog
broadcasting, much of this intangible heritage is at risk of being
lost. Internet radio offers a means to mitigate this loss by
enabling the digitization and global distribution of culturally

6

significant audio content. Moreover, it facilitates access to
minority voices and underrepresented communities that are often
excluded from mainstream media platforms (Barrowclough &
Kozul-Wright, 2018).

Projects that combine legacy radio hardware with modern digital
technologies—such as streaming protocols, interactive interfaces,
and geographic mapping—offer a compelling approach to
cultural preservation. These hybrid systems not only extend the
functionality of old devices but also engage new generations of
users in discovering, valuing, and participating in cultural
expression through a familiar yet enhanced medium.

Thus, the convergence of innovation and preservation becomes a
pathway for sustaining heritage in the digital era. Rather than
discarding obsolete technologies, recontextualizing them within
current digital infrastructures contributes to both technological
sustainability and cultural continuity.

1.2 The Internet Radio Project and Its Objectives

The Internet Radio Project represents an innovative response to
the evolving nature of audio media in the digital era. Rooted in
the objective of modernizing traditional radio experiences, the
project integrates classical hardware aesthetics—such as rotary
knobs and vintage enclosures—with advanced digital
functionalities to deliver a hybrid listening platform. This
approach not only preserves the nostalgic value of radio as a
cultural artifact but also enhances user experience through
interactive and customizable features enabled by internet
connectivity.

At its core, the project envisions a globally accessible radio
system powered by a compact computing platform (e.g.,
Raspberry Pi) and complemented by intuitive physical controls, a
visual interface, and a wide range of international content. By
bridging analog user interaction with digital broadcasting
infrastructure, the Internet Radio Project fosters both functional
innovation and cultural inclusivity.

7

Project Objectives:

● Global Content Accessibility:

 Provide users with seamless access to thousands of radio stations
worldwide, allowing for enriched entertainment and exposure to
diverse musical, linguistic, and cultural content.

● Interface Hybridization:

 Merge traditional control mechanisms (e.g., rotary encoders)
with modern interface technologies to offer a familiar yet
enhanced user experience.

● Cultural Exchange Promotion:

 Encourage intercultural understanding by enabling users to
explore regional programming from different parts of the world,
thus broadening their global perspective.

● Interactive Navigation:

 Incorporate geographic visualization (such as an interactive
world map) to simplify station selection and provide spatial
context for audio content.

By achieving these objectives, the project seeks to reimagine
radio as an educational, cultural, and technologically relevant
medium for a global audience in the 21st century.

8

1.3 Project Idea

The World Radio Project seeks to bring radio into the digital age
by reimagining the traditional radio experience through internet
connectivity. The key components of the project include:

● Raspberry Pi 4: The primary computing platform that
drives the device’s processing capabilities.

● Rotary Encoders: Allowing users to easily navigate
through stations and adjust volume, giving the experience of
traditional manual controls.

● Interactive Screen: Displays station names and additional
information, enhancing the user’s experience and providing
real-time feedback.

● PAM8406 Audio Amplifier: Provides high-quality sound
output, ensuring an immersive audio experience.

● Dedicated 5V Power Supply: Ensures stable and reliable
operation for all components.

By combining these elements, the project merges the tactile feel
of physical interfaces with the flexibility of modern digital
technology, offering an intuitive and engaging radio experience
that is both nostalgic and innovative.

1.4 Advantages of the World Radio Project
Compared to Classical Radio

The World Radio Project offers several key advantages over
traditional radio, which is typically limited by geographical
constraints and signal quality. Below is a comparison
highlighting these differences:

9

Radio type Classic radio Internet world
radio

Content
Access

Limited to
local stations

Global access
to thousands
of stations

Cultural
Discovery

Limited
exposure to
regional
content

Access to
diverse
cultures and
languages

Geographical
Reach

Restricted by
signal range

Accessible
worldwide via
the internet

Sound Quality Prone to
interference
and static

High-quality
digital audio

Station
Selection

Manual tuning
required

Interactive
map selection

Feature Traditional
Radio

World Radio
Project

10

Additional Features:

● Interactive Global Map: The user can select radio stations
based on geographical locations rather than frequency tuning,
which enhances user engagement and simplifies navigation.

● Remote Communication and Information Access: In areas
where traditional radio signals are weak, this project offers a
reliable way to receive important updates, such as news, weather
forecasts, and emergency information.

● Cultural Exploration: By allowing users to listen to
stations from various countries, the project promotes global
cultural awareness, helping users learn about different traditions,
music, and languages.

Why Does This Project Matters ?

The World Radio Project combines the value of old radio designs
with the power of modern digital technology. Instead of using
traditional radio signals like AM or FM, it works through the
internet to access thousands of radio stations from around the
world. This allows people to listen to international content
without limits of distance or borders. By adding digital features
to vintage radios, the project keeps the classic feel of old devices
while making them useful in today’s digital world. It also helps
preserve cultural identity and creates new ways for people to
learn, communicate, and connect globally.

11

Chapter Two

 Components of the Project

12

2.1 Components of the Project

The "World Radio" project relies on a combination of hardware
and software components, each carefully selected to ensure
functionality, reliability, and usability. Below is a detailed
explanation of each component:

1. Raspberry Pi 4 (Model B, 8GB):

○ Processor and Memory: The Raspberry Pi 4 is powered by
a 1.5GHz quad-core Broadcom BCM2711 processor, delivering
strong performance that enables complex tasks like streaming
Internet radio stations without lag. The 8GB of LPDDR4 RAM
ensures smooth multitasking, improving overall performance,
especially when browsing radio stations or interacting with the
interactive map.

○ Storage and Connectivity: The Raspberry Pi 4 uses a
microSD card to store the operating system and software,
offering flexibility for upgrades or replacements. It supports
internet connectivity via Wi-Fi 802.11ac and Bluetooth 5,
allowing seamless access to online radio stations. If the wireless
network is unstable, the Ethernet port provides a stable wired
connection.

○ Display and Graphics: The Raspberry Pi 4 features dual
HDMI ports supporting 4K displays, offering flexibility for
showing an interactive map displaying radio stations worldwide.
The VideoCore VI graphics processor enables smooth graphics
playback, perfect for dynamic updates on the map while
interacting with stations.

○ GPIO Control: The Raspberry Pi has 4 GPIO pins to
connect devices such as rotary encoders, buttons, or sensors. This
allows direct interaction with the map, controlling station
playback, volume adjustments, and navigation, offering a flexible
user experience.

○ Power and Applications: The Raspberry Pi 4 requires a
5V/3A USB-C charger for stable performance. With low power
consumption, the Raspberry Pi 4 ensures long-term operation

13

without power concerns. It supports operating systems like
Raspbian and Ubuntu, making it ideal for the Global Internet
Radio project, where developers can customize the system to
their needs.

○ Programming: Raspberry Pi programming is primarily in
Python, utilizing libraries like RPi.GPIO to operate devices
connected to GPIO pins. Players such as VLC are used to stream
radio stations. The Raspberry Pi OS is set up, with necessary
libraries installed, while HTML/CSS/JavaScript web interface.

 Fig 2.1

2. Micro SD Card (64GB): The microSD card serves as the
storage medium for the Raspberry Pi, containing the operating
system, software libraries, and project-specific applications. The
64GB capacity ensures enough space for system files, cached
data, and potential updates. A high-speed card is used to ensure
faster data access and quicker boot times.

14

3. 12-inch Display Screen: The 12-inch screen provides a
user-friendly interface, displaying the interactive global map and
relevant information about selected radio stations. The display is
crucial for enhancing user experience and ensuring smooth
navigation.

○ Resolution: Full HD (1920x1080 pixels) provides
excellent clarity for displaying fine details such as a detailed
map. Lower resolutions, like 1280x800 pixels, still provide a
decent display but with less clarity.

○ Interface: the disply connects via HDMI, providing
high-quality video and audio output for accurate, clear images.

4. Three Rotary Encoders: Rotary encoders detect rotational
movement and direction, providing intuitive control over various
functions like cursor movement and zoom adjustments. Each
encoder connects to the Raspberry Pi through GPIO pins and
uses software libraries to process signals, ensuring smooth and
precise user interaction.

○ Technical Specifications:

■ Operating Voltage: 5V

■ Pulses per 360° Rotation: 20

■ Output: 2-bit gray code

■ Mechanical Angle: 360° continuous rotation

■ Built-in push button switch for additional functionality

○ Functionality: The rotary encoders generate pulses that
indicate the direction and degree of rotation. By monitoring these
pulses, the Raspberry Pi updates the cursor position or zoom
level accordingly. The built-in push button toggles between
different modes, such as coarse and fine adjustments.

15

Fig 2.2

5. HDMI Cable: The HDMI cable connects the Raspberry Pi
to the display, ensuring high-quality video output and a clear
graphical interface.

6. Male and female Jumper Wires: These wires are used to
connect electronic components, such as rotary encoders, to the
Raspberry Pi directly or through the breadboard , providing
reliable electrical connections while maintaining modular design
flexibility.

7. Power Supply for Raspberry Pi: A dedicated power supply
(5V Dc) ensures that the Raspberry Pi receives the correct
voltage and current for stable operation.

8. Mouse and Keyboard (Temporary): A mouse and keyboard
are used during the initial setup and programming of the

16

Raspberry Pi but are not required once the project is fully
operational.

9. Power Supply for Display Screen: The display requires a
separate power source (5V Dc) . A compatible power supply
ensures consistent operation and optimal brightness for the user
interface.
10. AUX Cable: The AUX cable connects the Raspberry Pi to
the amplifier, enabling high-quality audio output for the radio
stations, ensuring clear and uninterrupted broadcasts.

11. 5V Power Supply for the Amplifier: The PAM8406 audio
amplifier is powered by a dedicated 5V power supply, connected
via two wires (positive and negative) to ensure stable and reliable
operation.

12. External Speakers and Amplifier: The project uses a
PAM8406 audio amplifier with a volume control rotary controller
that includes an on/off switch, along with 6-watt stereo speakers.
This setup provides clear, loud, and adjustable sound for a better
listening experience. The PAM8406 is a small and efficient
amplifier that works with 2.5V to 5.5V power and gives up to 5
watts per channel. It can run in two modes: Class-D for lower
heat and better power saving, and Class-AB for higher sound
quality. It also has a built-in system to reduce noise and make the
sound cleaner. This makes it a great choice for Raspberry Pi
projects like the interactive radio.

17

Fig 2.3

Fig 2.4

18

2.2 Circuit Design

● The Raspberry Pi is connected to the screen via an HDMI
cable.

● Rotary Encoder Connections: The three rotary encoders
are connected directly to the Raspberry Pi using female-to-female
jumper wires for the DT (Data) and CLK (Clock) pins. The +
(VCC) and GND pins are connected to the Raspberry Pi through
a breadboard, using male-to-female jumper wires to common
power and ground points, ensuring a stable and organized wiring
setup.

Fig 2.5

Fig 2.6

19

● Audio System and Connectivity: The PAM8406 audio
amplifier chip connects to the Raspberry Pi via the 3.5mm audio
jack. The amplifier outputs sound to the 6-watt speakers through
two wires (positive and negative), ensuring a stable and clear
audio transmission.

● Power Supply and Connectivity: The Raspberry Pi, screen,
and amplifier each have separate power supplies. The Raspberry
Pi and the screen are powered by individual 5V chargers. The
PAM8406 audio amplifier is also powered by a 5V charger,
connected via two wires (positive and negative) to ensure stable
operation.

2.3 Integration of Components

Each component in the "World Radio" project is carefully
integrated to create a cohesive and functional system. The
Raspberry Pi coordinates input from the rotary encoders,
manages internet connections, and streams radio stations. The
display screen serves as the visual interface, while the amplifier
delivers high-quality audio. The connections between these
components are optimized for reliability and ease of use. This
modular approach allows for future enhancements or
modifications, ensuring the project can adapt to new
requirements or technological advancements.

20

Chapter Three

Implementation and Design

21

3.1 The Role of the Software Side in the Project

The software side of the project serves as the foundation,
enabling interaction between various components to accomplish
the overall system goals. In this interactive radio project, the
software components manage the interface through which users
can explore and stream radio stations worldwide. The main
function of the software is to facilitate dynamic interaction with
the map interface, provide seamless data management, and
manage the backend processes to ensure real-time updates of the
stations and streaming audio.

The system is composed of three key components: the JSON file,
the HTML interface, and the Python script. The JSON file holds
the station data, while the HTML interface is responsible for
displaying the map and stations on it. The Python script controls
the rotary encoders for user interaction, adjusting the cursor
position and map zoom levels, with the additional feature of
automatically starting or stopping the audio stream based on the
cursor's location. By working in tandem, these elements create an
intuitive, seamless user experience that enhances the ability to
browse and listen to radio stations interactively.

Additionally, the project incorporates an innovative feature where
radio station streams are triggered based on the cursor's location
on the map. As the cursor enters a station’s coverage area
(represented as a boundary on the map), the audio stream for that
station begins. When the cursor exits the area, the stream
automatically stops. This functionality is managed using three
rotary encoders: one for the X-axis, another for the Y-axis, and a
third for zoom control, providing users with full navigational
control over the interactive map and the audio streams.

3.2 Key Components of the Code

The codebase for this project consists of several key files and
scripts, each serving a specific function within the system. These
components include:

1. stations.json (JSON file containing the station data).

2. radiomap.html (HTML file for rendering the map and
integrating JavaScript logic).

22

3. rotary_encoder.py (Python script for controlling cursor
movement with rotary encoders).

Each of these components is described below, detailing their
functionality and contributions to the overall project.

3.2.1 JSON File Code (stations.json)
 The stations.json file serves as the central data repository for the
interactive internet radio system, storing structured information
about various radio stations across the globe. Each entry in this
JSON file corresponds to a particular station and contains
metadata such as geographic coordinates (latitude and longitude),
streaming URLs, and the associated city name.
 The use of JSON (JavaScript Object Notation) is justified by its
lightweight nature, ease of parsing, and human-readable
structure, making it highly suitable for real-time web
applications.

Example of the stations.json format:

{
 "Beirut - Lebanon": {
 "coords": {
 "n": 33.8938,
 "e": 35.5018
 },
 "urls": [
 {
 "name": "Radio Liban",
 "url": "http://radioliban.ice.infomaniak.ch/radioliban-128.mp3"
 }
]
 }
}

3.2.2 Interface and Processing Code (radiomap.html)

The radiomap.html file is a key part of the project, acting as a
link between the radio station database (stations.json) and the
rotary encoder input (rotary_encoder.py). It is responsible for
fetching, processing, and displaying data, ensuring a smooth and
dynamic user experience. The file is built using HTML,

23

JavaScript, and the Leaflet.js library to create an interactive,
map-based interface with real-time updates.

The process within the file consists of three main stages:

1. Fetching:
 The system retrieves the necessary data from an external JSON
file (stations.json), which contains the details of the radio
stations. The fetch() function in JavaScript is used to get the data
asynchronously, meaning it does not affect the user interface,
ensuring high performance and fast data retrieval.

2. Processing:
 After the data is fetched, it is validated. The system checks that
the audio links are working correctly. It also maps each station’s
location based on geographical coordinates. Additionally, the
map's theme is automatically adjusted between day and night
mode depending on Iraq's local time, providing an engaging and
relevant user experience.

3. Rendering:
 The validated data is then displayed using the Leaflet.js library.
The map shows the stations according to their locations, with the
nearest station appearing in the center of the map. A popup
appears when users interact with a station, displaying detailed
information about the selected radio station.

This smooth integration of fetching, processing, and rendering
ensures users can interact with the system easily and intuitively,
providing them with an engaging and dynamic experience while
exploring available radio stations based on their location.

1. Data Fetching

The first step in the interface's workflow is retrieving station data
from an external JSON file (stations.json). This file contains
critical information such as:

24

● Station Name

● Streaming URL

● Latitude and Longitude (to position the station on the map)

● Coverage Radius (defining the interactive area for each
station)

The JavaScript fetch() function asynchronously loads this data to
ensure that the map remains responsive and does not freeze
during data retrieval.

fetch("stations.json")

 .then(response => response.json()) // Convert response to JSON

 .then(data => {

 stations = data; // Store station data globally

 initializeMap(); // Call function to render stations

 })

 .catch(error => console.error("Error loading stations:", error));

How It Works:

● The fetch() function sends an HTTP request to load
stations.json.

● The data is converted into a JavaScript object
(response.json()).

● The parsed data is stored in the stations variable for later
use.

● If fetching fails, an error message is displayed in the
console.

25

By handling data asynchronously, the webpage remains fast and
smooth.

2. Data Processing

Once the data is fetched, the system validates the information to
ensure that:
- The audio stream links are functional.
- Each station has valid geographic coordinates.
- The map adjusts its theme dynamically.

❖ Audio Stream Validation

To avoid broken links, the system checks if each station's
streaming URL is accessible before displaying it on the map.

function checkStream(url) {

 return fetch(url, { method: "HEAD" })

 .then(response => response.ok)

 .catch(() => false);

}

❖ Day/Night Mode Adaptation

To enhance usability, the map automatically switches between
day mode and night mode based on Iraq’s local time.

function setMapTheme() {

 let hour = new Date().getHours();

 let isNight = hour < 6 || hour > 18; // Night mode from 6 PM to 6 AM

 let mapStyle = isNight ? "dark-vintage" : "light-vintage";

L.tileLayer(`https://api.mapbox.com/styles/v1/{mapStyle}/tiles/256/{z}/{x}/{y}`
, {

 attribution: "© OpenStreetMap contributors"

 }).addTo(map);

}

26

● Between 6 PM and 6 AM, the map switches to dark mode
for better night visibility.

● During the daytime, it returns to a bright theme for clarity.

This feature improves readability and provides a visually
appealing experience.

Fig 3.1

27

Fig 3.2

3. Data Rendering (Map Visualization)

The final step is converting the processed station data into a
visually interactive map using Leaflet.js.

❖ Displaying Stations on the Map

function displayStations() {

 stations.forEach(station => {

 let marker = L.marker([station.latitude, station.longitude]).addTo(map);

28

 marker.bindPopup(`

 ${station.name}

 <audio controls>

 <source src="${station.stream_url}" type="audio/mpeg">

 </audio>

 `);

 });

}

How It Works:

● Each station's latitude and longitude are used to position
markers on the map.

● Clicking a marker opens a popup displaying the station
name and an embedded audio player.

● This allows users to listen to the station directly from the
map.

❖ Cursor Interaction and Auto-Playback

The system also highlights the nearest station based on the
cursor's position.

function updateNearestStation() {

 let closestStation = null;

 let minDistance = Infinity;

 stations.forEach(station => {

 let distance = getDistance(cursorLat, cursorLon, station.latitude,
station.longitude);

 if (distance < station.radius && distance < minDistance) {

29

 minDistance = distance;

 closestStation = station;

 }

 });

 if (closestStation) {

 document.getElementById("station-info").innerHTML = `Now Playing:
${closestStation.name}`;

 playStation(closestStation.stream_url);

 } else {

 stopPlayback();

 }

}

● The system calculates the cursor’s distance from each
station.

● If the cursor enters a station’s coverage area, it
automatically starts playing the stream.

● If the cursor exits all coverage areas, playback stops.

The radiomap.html file seamlessly integrates data retrieval,
processing, and rendering to create an intuitive user experience.
By combining efficient data handling, dynamic theme adaptation,
and interactive map rendering, the system ensures that users can
explore and listen to online radio stations effortlessly.

3.2.3 Encoder Code (rotary_encoder.py)

The rotary_encoder.py script is responsible for controlling the
cursor movement on the interactive map. It utilizes three rotary
encoders to allow precise navigation in four directions (left, right,
up, and down), along with zooming in and out. The movement is
based on the rotation direction of each encoder, and the cursor
updates dynamically on the map.

30

Rotary Encoder Functionality:

Each rotary encoder controls a specific aspect of movement:

1. Encoder 1 (Horizontal Movement - Left/Right)
Rotating clockwise moves the cursor to the right (increases
longitude).
Rotating counterclockwise moves the cursor to the left (decreases
longitude).

2. Encoder 2 (Vertical Movement - Up/Down)
Rotating clockwise moves the cursor upward (increases latitude).
Rotating counterclockwise moves the cursor downward
(decreases latitude).

3. Encoder 3 (Zoom Control - Zoom In/Out)
Rotating clockwise zooms in (increases map scale).
Rotating counterclockwise zooms out (decreases map scale).

1. Library Dependencies

import RPi.GPIO as GPIO

import uinput

import pyautogui

import time

The script begins with importing four essential libraries:

● RPi.GPIO: Provides access to the Raspberry Pi GPIO pins,
allowing the script to interface with the physical encoders
through digital input readings.

31

● uinput: A Linux subsystem that enables user-level
programs to emulate input events (e.g., keyboard, mouse,
joystick). This is critical for injecting cursor movement and
scrolling events into the graphical user interface.

● pyautogui: A high-level library used to simulate GUI
interactions. Here, it is used to perform a mouse click that
focuses the map window, ensuring it is ready to receive
navigation input.

● time: A standard Python library utilized to introduce timed
delays, thus controlling the input rate and preventing excessive
event triggering.

2. Encoder Pin Configuration

ENCODERS = {

 'x': {'clk': 17, 'dt': 18},

 'y': {'clk': 22, 'dt': 23},

 'zoom': {'clk': 25, 'dt': 5}

}

This dictionary defines the mapping between logical encoder
functions and physical GPIO pins on the Raspberry Pi. Each
encoder provides two output signals—CLK and DT—which
together form a quadrature encoding system. The axes are
assigned as follows:

● X-axis Encoder: Controls horizontal cursor movement
using GPIO pins 17 (clk) and 18 (dt).

● Y-axis Encoder: Controls vertical cursor movement using
GPIO pins 22 (clk) and 23 (dt).

● Zoom Encoder: Controls zoom-in and zoom-out behavior
using GPIO pins 25 (clk) and 5 (dt).

This modular configuration allows scalable and flexible
integration of multiple encoders.

32

3. GPIO Initialization

GPIO.setmode(GPIO.BCM)

for axis, pins in ENCODERS.items():

 GPIO.setup(pins['clk'], GPIO.IN, pull_up_down=GPIO.PUD_UP)

 GPIO.setup(pins['dt'], GPIO.IN, pull_up_down=GPIO.PUD_UP)

The script initializes the GPIO pins using the BCM (Broadcom
SoC) numbering scheme. Each encoder pin is configured as a
digital input with an internal pull-up resistor (GPIO.PUD_UP) to
maintain a defined voltage level and prevent floating states when
the encoder is idle.

4. UInput Device Initialization

device = uinput.Device([

 uinput.KEY_RIGHT,

 uinput.KEY_LEFT,

 uinput.KEY_UP,

 uinput.KEY_DOWN,

 uinput.REL_WHEEL,

])

The script sets up a virtual input device capable of emitting
synthetic keyboard and mouse scroll events. These events
correspond to:

● Arrow key presses (KEY_LEFT, KEY_RIGHT, KEY_UP,
KEY_DOWN)

● Mouse scroll (REL_WHEEL), which is used to simulate
zooming

The uinput.Device instance provides an interface to emit these
actions dynamically in response to encoder rotation.

33

5. Encoder Reading Function

def read_encoder(axis):

 clk = GPIO.input(ENCODERS[axis]['clk'])

 dt = GPIO.input(ENCODERS[axis]['dt'])

 if clk != dt:

 return 1 if clk > dt else -1

 return 0

This function performs real-time quadrature decoding of the
encoder signals. By comparing the state of the clk and dt pins:

● If clk > dt, the encoder is rotated in the forward direction
(clockwise).

● If clk < dt, the encoder is rotated in the reverse direction
(counterclockwise).

● If both signals are equal, no movement is detected, and the
function returns zero.

This method allows determination of both the presence and
direction of rotation with minimal computational overhead.

6. Control Parameters

STEP = 1

ZOOM_STEP = 1

These constants define the granularity of movement:

● STEP: Determines how many virtual keypresses to emit
per encoder tick for directional movement.

● ZOOM_STEP: Defines the number of scroll steps to issue
per tick for zooming.

34

These values can be tuned to modify sensitivity.

7. Focus Function for GUI Activation

def focus_on_map():

 print("Focusing on the map...")

 pyautogui.moveTo(500, 500)

 pyautogui.click()

Before initiating movement control, this function ensures that the
graphical map interface has input focus. It programmatically
moves the mouse to a predefined coordinate and simulates a left
click. This is essential in full-screen kiosk applications to avoid
input loss due to window focus issues.

8. Main Event Loop

try:

 focus_on_map()

 print("Rotary encoder controlling arrow keys and zoom...")

 while True:

 moved = False

 for axis in ENCODERS:

 movement = read_encoder(axis)

 if movement != 0:

 moved = True

The main loop initializes the system by calling focus_on_map()
once. It then enters an infinite polling loop, constantly checking
each encoder for movement. Upon detecting a non-zero
movement, the script proceeds to determine the appropriate
response based on the encoder axis.

35

9. Event Handling per Axis

Horizontal Movement (x axis):

if axis == 'x':

 for _ in range(abs(movement) * STEP):

 if movement > 0:

 device.emit(uinput.KEY_RIGHT, 1)

 device.emit(uinput.KEY_RIGHT, 0)

 elif movement < 0:

 device.emit(uinput.KEY_LEFT, 1)

 device.emit(uinput.KEY_LEFT, 0)

Vertical Movement (y axis):
elif axis == 'y':

 for _ in range(abs(movement) * STEP):

 if movement > 0:

 device.emit(uinput.KEY_UP, 1)

 device.emit(uinput.KEY_UP, 0)

 elif movement < 0:

 device.emit(uinput.KEY_DOWN, 1)

 device.emit(uinput.KEY_DOWN, 0)

Zooming (zoom axis):

elif axis == 'zoom':

 device.emit(uinput.REL_WHEEL, movement * ZOOM_STEP)

36

Each movement is translated into one or more keypress or scroll
events. The emit method issues a "key down" followed by a "key
up" event, which simulates a real keyboard press. The scroll axis
uses REL_WHEEL to simulate mouse wheel rotation.

10. Console Logging and Input Throttling

print(f"Axis: {axis}, Movement: {movement}")

time.sleep(0.01)

Logging output is printed to the console for debugging and
observation. A 10-millisecond delay is introduced to limit the
polling rate, ensuring responsive yet manageable system
performance and reducing CPU usage.

11. Graceful Termination and Cleanup

except KeyboardInterrupt:

 print("Exiting...")

finally:

 GPIO.cleanup()

To ensure clean termination upon receiving a keyboard interrupt
(e.g., Ctrl+C), the script enters a cleanup routine that resets all
GPIO pin states. This prevents potential conflicts with future
GPIO-based scripts or hardware malfunctions due to uncleared
configurations.

37

Chapter Four

Results and Discussion

38

 4.1 Challenges and Solutions

During the development of the interactive radio project, several
technical and usability challenges were encountered. Below is a
detailed discussion of each issue and its corresponding solution.

1. Unreliable Station Links

Problem: Many radio stations had broken or invalid URLs,
leading to playback failures when users tried to stream them.

Solution: A real-time URL validation mechanism was
implemented using Python. Before adding a station to the
interface, a request is sent to verify the availability of the
streaming link. The following script was used:

import requests

def validate_url(url):
 try:
 response = requests.get(url, timeout=5)
 return response.status_code == 200
 except requests.RequestException:
 return False

This approach ensures that only functional stations appear on the
map.

2. Overlapping Station Ranges

Problem: Some stations had coverage areas that overlapped,
making it difficult for users to select the intended station.

Solution: A priority-based selection system was implemented.
When multiple stations were within the selection radius, the
station closest to the map center was automatically chosen.

39

Fig 4.1

3. Map Boundary and Repetition Issues

Problem: Users could navigate the map beyond intended
boundaries, causing distortions and loss of reference points.

Solution: Map boundaries were restricted using the Leaflet.js
library:

var mapBounds = [[-85, -180], [85, 180]];
map.setMaxBounds(mapBounds);

This prevents users from scrolling indefinitely beyond defined
geographic limits.

4. Unrestricted Zoom Levels

Problem: Excessive zooming out or in made it difficult to interact
with station markers effectively.

Solution: A zoom constraint was set within reasonable limits:

map.setMinZoom(3);
map.setMaxZoom(12);

This ensures an optimal user experience.

40

5. Slow Link Validation Process

Problem: Checking all station links at once caused performance
issues and slow page loading times.

Solution: A batch processing approach was introduced where
URLs were validated asynchronously in smaller groups.

from threading import Thread

def check_links_in_batches(stations):
 for batch in split_into_batches(stations, batch_size=10):
 threads = [Thread(target=validate_url, args=(station['url'],)) for station
in batch]
 for thread in threads:
 thread.start()
 for thread in threads:
 thread.join()

This significantly improved response time.

6. Lack of Clear Station Activation Indicators

Problem: Users had no way of knowing which station was
currently active.

Solution: Active stations were highlighted on the map with a
color change using CSS and JavaScript.

function highlightActiveStation(stationId) {
 document.getElementById(stationId).style.backgroundColor = "#FFD700";
}

7. Insufficient User Feedback for Station Presence

Problem: There was no visual cue to indicate when a station was
within the selection range.

Solution: A glowing effect was added to stations when they came
into range.

.station-marker.in-range {
 box-shadow: 0px 0px 10px 5px rgba(255, 215, 0, 0.8);
}

41

8. Missing Stations from Specific Regions

Problem: Certain regions, especially the Middle East and Iraq,
had few available stations.

Solution: Additional stations were manually integrated by
collecting and verifying new station URLs.

9. Error Handling for Station Data Loading

Problem: When station data failed to load, users were not
informed of the issue.

Solution: A structured error reporting system was added:

fetch("stations.json")
 .then(response => response.json())
 .catch(error => alert("Failed to load station data. Please try again."));

This ensures users receive clear feedback when an error occurs.

These solutions collectively enhanced system reliability,
efficiency, and user-friendliness, ensuring a smoother experience.

10. Grounding Issue Affecting Display

Problem: The screen flickered and failed to function properly
whenever the amplifier was powered on. This issue was caused
by improper grounding, leading to electrical noise and instability
in the system.

Solution: A direct ground connection was established between
one of the Raspberry Pi's ground pins and a common ground
point in the circuit. This resolved the interference issue,
stabilizing the display performance.

42

4.2 Results : Setting Up and Running the Interactive
Radio System on Raspberry Pi

This part tells you how we got the interactive radio system
working well on the Raspberry Pi. It also explains how we made
it start automatically when you turn on the radio (the Raspberry
Pi).

4.2.1 Setting Up the Lighttpd Web Server:

We used the Lighttpd web server to show the project's website.
This website lets people use the map and choose radio stations.
Here's what we did:

 Updated the System and Installed Lighttpd: To make sure
everything was up-to-date and to put the server on the Raspberry
Pi correctly, we used these commands:

 sudo apt update

sudo apt install lighttpd -y

 Started and Enabled the Lighttpd Service: To make the server
run and start by itself when the Raspberry Pi turns on, we used
these commands:

 sudo systemctl start lighttpd

sudo systemctl enable lighttpd

Checked the Server Status: To see if the server was working
right, we used this command:

 systemctl status lighttpd

Put Project Files Here: We put the project's files inside the
/var/www/html/ folder so the website could see them.

4.2.2 Enabling the uinput Kernel Module:

To let the system understand signals from the Rotary Encoder
(the thing you turn to change stations), we needed to turn on
something called the uinput kernel module. We did this:

43

Loaded the Module: We used this command to load it:

 sudo modprobe uinput

Checked if it Was On: To make sure it was working, we used this
command:

 lsmod | grep uinput

4.2.3 Running the Rotary Encoder Python Script:

We made a small program in Python to read signals from the
Rotary Encoder and tell the system to change radio stations. We
ran it with this command:

sudo python3 /home/radio/rotary_encoder.py

This program runs in the background and listens to the Rotary
Encoder. When you turn it, the program tells the system to pick a
different station.

4.2.4 Launching the Interactive Map:

To show a picture of the radio stations and let people click on
them, we opened the map website in the Chromium browser
using this command:

chromium-browser http://localhost/radiomap.html

When it opens, you should see dots for the radio stations on the
map. You can try turning the Rotary Encoder to see if it changes
the selected station.

4.2.5 Making the System Start Automatically:

To make everything easy to use, we set up the Raspberry Pi so
that the important parts start by themselves when you turn it on.

1. Setting Up the Raspberry Pi: We used a program called
VNC Viewer to control the Raspberry Pi from another computer.
The Raspberry Pi's name was radio.local, the username was
radio, and the password was 1234. We updated the system and
installed the things we needed, like the Chromium browser and
some parts of Python. We also made sure the uinput thing was
ready.

44

 sudo apt update && sudo apt upgrade -y

2. Making Chromium Start Automatically: To make the
Chromium browser open by itself in full screen when the
Raspberry Pi starts, we made a special file called
chromium_browser.service and put it in the /etc/systemd/system/
folder. This file told the system to run Chromium in a special
way (kiosk mode) and open a specific website:

 [Unit]

Description=Autostart Chromium in Kiosk Mode

After=graphical.target

[Service]

User=pi

ExecStart=/usr/bin/chromium-browser --noerrdialogs --kiosk
http://localhost/map/index.html --incognito
--disable-translate --no-first-run

Restart=on-failure

[Install]

WantedBy=graphical.target

 Then we used these commands to make it work:

sudo systemctl daemon-reload

sudo systemctl enable chromium_browser.service

sudo systemctl start chromium_browser.service

3. Making the Rotary Encoder Program Start Automatically:
We also made a special file to run the Python program for the
Rotary Encoder (rotary_encoder.py) when the Raspberry Pi
starts. This file was called rotary_encoder.service and we told it
to run as the main user (root) so it could talk to the hardware.

45

 [Unit]

Description=Rotary Encoder Input Script

After=network.target

[Service]

User=root

WorkingDirectory=/home/radio/

ExecStart=/usr/bin/python3 rotary_encoder.py

Restart=on-failure

[Install]

WantedBy=multi-user.target

We used these commands to make it work:

 sudo systemctl daemon-reload

sudo systemctl enable rotary_encoder.service

sudo systemctl start rotary_encoder.service

Checking if Everything Started: We used these commands to see
if both of our special programs were running correctly after the
Raspberry Pi restarted:

 sudo systemctl status chromium_browser.service

sudo systemctl status rotary_encoder.service

We also used another tool called journalctl to look at logs if
something went wrong.

46

4.2.6 Making the Startup Look Better:
 To make the experience nicer, we let the normal desktop screen
show for a little bit before the website opened. This makes it look
smoother. We also changed the background picture to something
we liked and hid the icons on the desktop to make it look cleaner.
We did this in the Raspberry Pi's settings under "Appearance
Settings".

 Screen Size and Background Picture Size: To match the real
screen size

 (24 cm by 16 cm), we picked a background picture that was the
right size so it wouldn't look stretched or weird.

In Short:

By doing all these steps carefully, we got the interactive radio
system working well on the Raspberry Pi. We also made the
system understand the button you turn (Rotary Encoder) and
made everything start automatically when you turn on the radio.
This makes it easy to use.

47

Chapter Five

Conclusion and Future Work

48

5.1 Conclusion

This research successfully developed an interactive internet radio
system that integrates Raspberry Pi technology with a vintage
radio framework. The primary objective of this project was to
modernize traditional radio devices by enabling them to stream
online radio stations, thereby bridging the gap between nostalgia
and modern digital advancements. Through the integration of
hardware and software components, the system allows users to
explore and interact with global radio stations in an intuitive and
engaging manner.

The implementation process involved key components, including
a Raspberry Pi as the central processing unit, a rotary encoder for
navigation, an LCD display for visual feedback, and an
interactive map-based interface developed using Leaflet.js. This
interface enables users to browse and select radio stations based
on their geographic locations, enhancing accessibility and user
engagement.

One of the significant achievements of this project was the
seamless integration of these components into a functional
system that retains the aesthetic appeal of a vintage radio while
providing the convenience of digital streaming. Several
challenges were addressed during development, such as
optimizing response time, ensuring stable audio streaming, and
efficiently managing data. The successful completion of this
project demonstrates the feasibility of transforming an old radio
into a smart, interactive device, expanding its functionality
beyond conventional FM/AM broadcasting.

5.2 Future Work

The successful implementation of the interactive internet
radio system lays a solid foundation for further exploration
and innovation in this domain. Despite the system’s current
functionality and user-friendly design, several potential
enhancements can be pursued to significantly expand its
capabilities, improve performance, and elevate user
experience.

One promising avenue is the integration of advanced voice
assistant functionality, enabling users to control the system

49

through natural language commands such as “Play a station
from Spain” or “Find jazz music in the United States.” This
can be achieved using speech recognition libraries like
SpeechRecognition in Python, coupled with dynamic
playback through VLC or HTML5 audio interfaces. This
feature would not only enhance accessibility but also
accommodate users with physical impairments.

In parallel, the development of a cross-platform mobile
application using frameworks such as Flutter or React Native
could significantly improve interaction by allowing remote
access and control over the system. The mobile interface
could support real-time station browsing, favorite
management, and live feedback.

Another critical improvement lies in search optimization and
content discovery. By implementing a sophisticated search
engine, users could filter stations by geographic location,
language, genre, or even keywords. Integration with
third-party APIs such as Last.fm or Shazam can enrich the
station metadata and offer personalized recommendations
based on listening behavior.

Exploring gesture-based control mechanisms using sensors
like Leap Motion or ultrasonic sensors could enable
touchless interaction for changing stations or adjusting
volume, offering an intuitive and hygienic interface in shared
or public spaces.

To support outdoor or remote-area applications, the system
could be transformed into a portable, solar-powered device,
integrating small photovoltaic panels with rechargeable
battery packs. This feature promotes energy sustainability
and extends usability in off-grid locations.

In addition, the concept of user-generated radio content
could be implemented, allowing individuals to create and
stream their own custom stations, thereby fostering a
community-based broadcasting model. This initiative could
be supported by simple streaming tools and content
moderation frameworks.

50

The integration of local broadcasting technologies such as
LoRa or Zigbee would enable short-range FM-like
communication, which could be useful for educational
institutions, events, or rural communities lacking internet
infrastructure.

Another transformative feature would be the application of
real-time audio translation powered by artificial intelligence.
Using APIs like Google Translate in combination with edge
AI hardware such as NVIDIA Jetson Nano, users could listen
to foreign-language stations with simultaneous translation,
enhancing global accessibility.

Moreover, implementing a hybrid FM/AM and internet radio
mode would offer redundancy in case of internet outages. An
embedded FM/AM receiver would allow the system to
function as a traditional radio when connectivity is
unavailable, making it more robust in variable network
environments.

To enhance energy efficiency, the system could incorporate
smart power management algorithms, including automatic
standby modes, low-energy processors, and adaptive
brightness for the display. These improvements would not
only extend battery life but also contribute to the device’s
environmental sustainability.

51

Finally, integrating real-time weather and local condition
displays based on the geographic metadata of the currently
playing station could provide contextual information,
enriching the listening experience. Personalized station lists
and user-defined filters could further streamline the user
interface by allowing quick access to favorite stations and
preferred regions.

By addressing these potential enhancements, the proposed
system could evolve into a highly sophisticated and adaptive
multimedia platform, balancing the charm of vintage design
with cutting-edge digital functionality. As emerging
technologies continue to mature, this project holds the
potential to serve as both a nostalgic artifact and a modern
tool for interactive, global radio communication.

52

 References

1. Make Projects. (2020). Raspberry Pi World Radio Project.
Retrieved from
https://makeprojects.com/project/raspberrypi-world-radio-project

2. Hackaday. (2020). Raspberry Pi World Radio. Retrieved
from https://hackaday.io/project/174631-raspberry-pi-world-radio

3. Britannica. (2023). Radio technology. Retrieved from
https://www.britannica.com/technology/radio

4. IEEE Spectrum. (2021). How radio changed everything.
Retrieved from
https://spectrum.ieee.org/how-radio-changed-everything

5. Techopedia. (2022). What is Internet Radio? Retrieved
from https://www.techopedia.com/definition/13655/internet-radio

6. Briggs, A., & Burke, P. (2009). A social history of the
media: From Gutenberg to the Internet (3rd ed.). Polity Press.

7. Hong, S. (2001). Wireless: From Marconi’s black-box to
the Audion. MIT Press.

8. IEEE History Center. (2023). Guglielmo Marconi and the
development of radio. Retrieved from
https://ethw.org/Guglielmo_Marconi

9. Sterling, C. H., & Kittross, J. M. (2002). Stay tuned: A
history of American broadcasting (3rd ed.). Routledge.

10. Fagen, M. D. (Ed.). (1975). A history of engineering and
science in the Bell System: The early years (1875–1925). Bell
Telephone Laboratories.

11. Riordan, M., & Hoddeson, L. (1997). Crystal fire: The
invention of the transistor and the birth of the information age.

53

W. W. Norton & Company.

12. WorldDAB. (2023). Digital radio overview. Retrieved
from https://www.worlddab.org/

13. Gannes, L. (2011). Why Internet radio is the next big
battleground. GigaOm. Retrieved from
https://gigaom.com/2011/05/10/why-internet-radio-is-the-next-bi
g-battleground/

14. Statista. (2023). Smart speaker usage worldwide.
Retrieved from
https://www.statista.com/statistics/792604/worldwide-smart-spea
ker-user-base/

15. Barrowclough, D., & Kozul-Wright, R. (2018). Creative
economy outlook: Trends in international trade in creative
industries. United Nations Conference on Trade and
Development (UNCTAD).

16. UNESCO. (2023). Digital heritage. Retrieved from
https://en.unesco.org/themes/digital-heritage

17. Raspberry Pi Foundation. (n.d.). Documentation,
specifications and datasheets. Retrieved from:
   - https://www.raspberrypi.com/
   -
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.
pdf
   -
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/sp
ecifications/
   - https://download.kamami.pl/p586119-cm4-datasheet.pdf
   - https://www.raspberrypi.com/documentation/
   - https://pinout.xyz/
   -
https://www.handsontec.com/dataspecs/module/Rotary%20Enco
der.pdf

54

