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ABSTRACT 
 

The DC motor has been commonly utilized in the industry although its 

maintenance is costly, more than the induction motor. Consequently, speed 

control of DC motor has attracted considerable researches and different 

algorithms have evolved. All the traditional algorithms for the Proportional 

Integral Derivative (PID) controller provide initial practical values for (kp, 

ki, and kd) PID parameters, which are manually tuned to achieving the 

desired performance. The manual tuning is inaccurate and a hard job, which 

requests comprehensive experience of the problem domain. This research 

presents the Whale Optimization Algorithm (WOA) and Equilibrium 

optimizer (EOto optimally tune gain parameters of PID control scheme in 

order to regulate DC motor’s speed. These suggested techniques tune the 

controller by the minimization of the fitness function represented by the 

integral of time multiplied by absolute error (ITAE). The modelling and 

simulation are carried out in MATLAB/Simulink. The results indicate that 

the PID-WOA controller demonstrates superior performance in terms of step 

response, minimizing overshoot, settling time, rise time, and peak value in 

controlling the speed of a DC motor system. However, for steady-state error 

measured by the ITAE criterion, the EO-PID controller exhibits better 

performance. This highlights the trade-offs between different control 

strategies and their impact on specific performance metrics, providing 

valuable insights for system optimization. 
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Chapter one 

1.1 Introduction 

The motor is device It converts electrical energy into mechanical energy and 

depends on the type of magnet and has a single armature winding. The 

motor that works generates a voltage opposite to the input voltage. The 

electrical circuit is represented by voltage, resistance, and inductance, and 

the rotor part, the disk, is obstructed by something called a damper. The 

input of the system is the voltage source. that is applied to the motors 

armature while the output is the rotational speed of the shift . 

The main function of PID controller is to make plant less sensitive to 

changes The core technology of PID control is how to optimize the three 

parameters of PID controller to make PID control reach the desired control 

effect, the optimization of the three important parameters is of great 

significance for the control performance of the control system. The selection 

of PID parameters directly affects the control effect of the system, so the 

optimization of the controller parameters is very important. The algorithm 

uses repeatedly the model of the object in the process of optimization, and 

initializes the control parameters which need to be adjusted. Combining with 

the constraint conditions, we correct the initial value of the parameters, solve 

the quadratic programming problem and update the Hessian Matrix of 

Varangian function by line search and when kp equals zero there is on PID. 
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Figure 1.1 The equivalent circuit of the system 

The standard PID control configuration is as shown in Figure 1.1 This is a 

type of feedback controller whose output, a control variable, is generally 

based on the error between some user-defined set point and some measured 

process variable. A PID controller attempts to correct the error between a 

measured process variable and a desired set point by calculating and then 

outputting a corrective action that can adjust the process accordingly. So by 

integrating the PID controller to the DC motor were able to correct the error 

made by the DC motor and control the speed or the position of the motor to 

the desired point or speed. However, PID controllers cannot be tuned in such 

way that the optimum step response is achieved for different inertia, load 

and speed reference, to achieve the desired step response of the system has 

minimal rise time and without overshoot. For design and tuning of PID 

controller  . 

1.2 Problem statement: 

When using a PID controller alone, the system may face the following 

problems: 
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1. Overshoot: The system may exhibit overshoot, where the control signal 

causes the system to exceed the desired setpoint before settling down. 

2. Oscillations: The system may exhibit oscillations around the setpoint due 

to the proportional and derivative terms in the PID controller. 

3. Steady-state error: The system may have a steady-state error, where it 

cannot reach the desired setpoint accurately and remains offset from it. 

4. Sensitivity to parameter variations: The PID controller's performance may 

be sensitive to changes in system parameters, leading to instability or poor 

control. 

5. Limited control for complex systems: PID controllers may not be suitable 

for highly nonlinear or complex systems that require more sophisticated 

control strategies. 

1.3 Aim of project 

the goal of this project is to control the speed by making the output signal 

exactly like the input. 

4.1 Objectives 

Objectives of using a modified PID controller to control the speed of a DC 

motor using optimization algorithms include the following: 
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1. Improve system performance: The main goal of using a modified PID 

controller is to improve system performance by better and more accurately 

adjusting the PID parameters using optimization algorithms. 

2. Achieve fast and stable response: The use of modified PID control aims to 

achieve fast and stable response to load changes and various conditions that 

may affect the motor speed. 

3. Reducing deviation from the target value: The modified PID control seeks 

to reduce the deviation between the target value of the motor speed and the 

actual value at which the motor is running. 

4. Improve system efficiency: By fine-tuning the PID parameters, the system 

efficiency can be improved and power consumption reduced. 

5. Increased motor life: With a properly adjusted PID control, the stress on 

the motor can be reduced thus increasing its lifespan. 

6. Providing a sophisticated and suitable solution: The use of optimization 

algorithms in adjusting PID parameters aims to provide a sophisticated and 

suitable solution to achieve the goals of DC motor speed control. 

In general, the use of PID control modified by optimization algorithms aims 

to improve the performance of the control system and achieve specific goals 

such as effective and accurate DC motor speed control.  

4.5 Contribution 
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Certainly, contributing in this area can be very beneficial. Considering that 

automatic control is an evolving and complex field, continuous research and 

development is essential to improve performance and overcome control-

related challenges. Here are some ways you can contribute. 

Develop new methods to improve the performance of PID units and make 

them more effective in controlling complex systems.Propose advanced 

control strategies that use technologies such as advanced control, multiple 

controllers, or intelligent control. Conduct studies on how to improve 

systems response and reduce vibrations and bounces using advanced control 

techniques. Develop advanced mathematical models of dynamic systems to 

facilitate the design of effective control strategies.Test and evaluate new 

methods and technologies through simulation or practical application on real 

systems. 

In short, contributions in this field can contribute to the development of new 

and effective solutions to the challenges facing automatic control and 

improving systems performance. 

1.6 Outline of This Thesis: 

In the first chapter, we talked about a general overview of the project, 

followed by the second chapter Literature review which talks about articles 

on the subject of the DC motor and controlling its speed, the third chapter is 

about parameter optimization algorithms PID, the fourth chapter is about the 

results and discussion of this topic, and last but not least the fifth chapter is 

About the conclusion, work and future of this project. 
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Chapter Two 

2.1 Literature review 

DC motors, renowned for superior speed control, are extensively used in 

industry despite higher maintenance costs. Research on DC motor speed 

control has led to the widespread adoption of PID controllers. This survey 

explores [1] the use of the Artificial Bees Colony (ABC) optimization 

algorithm to enhance PID controller parameters, aiming to boost DC motor 

tracking performance. Results indicate that the ABC algorithm outperforms 

other population-based optimization methods. The study emphasizes the 

significance of accurate motor position control, contributing insights for PID 

controller refinement in DC motor applications. The innovative ABC 

algorithm, known for autonomous adaptation, avoidance of local optima, 

and parallel exploitation, demonstrates promising results for enhancing time-

domain performance in the DC-motor system. 

In [2] introduces the Aquila Optimizer (AO) algorithm for determining 

Proportional Integral Derivative (PID) controller parameters in DC motor 

speed control. Inspired by a northern hemisphere bird of prey, AO is 

evaluated on benchmark optimization problems and compared with Seagull 

Optimization Algorithm (SOA), Marine Predators Algorithm, Giza Pyramids 

Construction (GPC), and Chimp Optimization Algorithm (ChOA). Results 

indicate AO's promising and effective performance, showcasing superior 

outcomes in PID parameter determination. The study highlights the 

significance of precise parameter adjustment in DC motor control, 

positioning AO as a robust method with optimal achievements, reducing PID 

overshoot by an average of 0.023% and improving undershoot by 0.5%.          
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In [3] use of PID controllers for system control, particularly focusing on the 

challenge of parameter tuning. It highlights the application of genetic 

algorithms as a method to optimize PID parameters, using MATLAB 

simulations and Arduino Uno for implementation on a DC motor system. 

The genetic algorithm approach offers improved performance compared to 

traditional trial and error methods, enhancing system response and reducing 

maximum spikes. The literature survey underscores the continued relevance 

of PID controllers in industrial settings and mentions alternative tuning 

methods such as Ziegler-Nichols and Fuzzy logic, which often demand 

extensive control system expertise. 

The paper discusses the challenge of tuning PID controllers, In [4] 

considering their widespread use in industrial settings. It introduces a 

flexible and efficient tuning technique based on genetic algorithms (GA) for 

optimizing PID controller parameters, specifically for a DC motor. A 

comparison with the Active Set Optimization Algorithm (ASOA) is 

provided, demonstrating the superiority of GA in meeting a wide range of 

performance requirements. Both algorithms are applied to speed control of 

DC motors, with GA-PID enhancing overall system performance and 

meeting specified requirements effectively. 

 

In the article [5] focus lies on the challenge of tuning PID parameters for 

optimal system performance. The literature discusses the common use of DC 

motors in various applications, often controlled using PID The study 

employs the Particle Swarm Optimization (PSO) method for tuning PID 

parameters, demonstrating stable results compared to other methods. 
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Through MATLAB Simulink simulations, optimal PID parameter values are 

obtained. Hardware testing using Arduino IDE software confirms stable 

motor speed response, albeit with slightly different parameter values. A 

comparison between simulation and hardware testing reveals variations in 

rise time, settling time, and overshoot values, highlighting differences 

between simulated and real-world performance 

A literature survey on PID controllers highlights the challenge of parameter 

tuning, particularly in systems like DC motors, often relying on trial and 

error. In [6] genetic algorithms offer a smarter alternative inspired by natural 

selection, resulting in better system performance. Using MATLAB 

simulations and Arduino Uno hardware, this research demonstrates that 

genetic algorithms provide PID parameters with improved steady time and 

reduced maximum spikes compared to trial-and-error methods. With an 

overshoot below 10%, the genetic algorithm approach, utilizing 100 

generations, mutation at 0.4, and crossover at 0.8, outperforms trial and error 

methods. Hardware testing confirms the effectiveness of the genetic 

algorithm in achieving optimal PID parameters, such as KP = 4.2090, KI = 

1.2012, and KD = 0.2539, with an overshoot value of 2. Overall, genetic 

algorithms offer a reliable method for tuning PID controllers in practical 

applications like DC motor control. 

A novel method [7] for optimal control of a DC motor using a PID controller 

is introduced, employing an enhanced version of the whale optimization 

algorithm. This approach aims to minimize settling time while ensuring 

stable and accurate control of the motor speed. Unlike other control 

algorithms, PID controllers offer precise control by adjusting process 

outputs based on error signal history and rate of change. The proposed 
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method boasts easy application, stable convergence, and high computational 

efficiency, modeled using MATLAB. Comparative analysis with the 

standard whale optimization algorithm demonstrates superior stability and 

reduced steady-state error, unaffected by disturbances, and ensuring smooth 

motor operation. The study explores optimal PID controller parameters 

under varying resistance and K values to strike a balance between optimality 

and robustness in system control. The proposed method exhibits enhanced 

convergence through an updated whale optimization algorithm, ensuring 

optimal control with minimal settling time and overshoot. Simulation results 

validate the efficacy of the proposed technique in achieving dynamic system 

performance superior to standard WOA-PID controllers.  

In [8] Introduces Archimedes Optimization Algorithm (AOA) and 

Dispersive Flies Optimization (DFO) for tuning PID control parameters to 

regulate DC motor speed. The techniques minimize the ITAE fitness 

function using MATLAB/Simulink simulations. AOA-PID-ITAE and DFO-

PID-ITAE outperform Ziegler-Nichols (ZN) and Particle Swarm 

Optimization (PSO) methods, reducing rise and settling times. DC motors 

play a crucial role in various applications due to their precision and 

continuous control. PID controllers, incorporating proportional integral 

derivative components, are widely used but conventional tuning methods are 

time-consuming. Metaheuristic techniques like AOA and DFO offer faster 

convergence and superior performance compared to ZN and PSO, ensuring 

optimal PID controller performance in diverse applications. 

The authors in [9] presents the application of Harris Hawks Optimization 

(HHO) algorithm to tune a PID controller for DC motor speed regulation, 

aiming to minimize the integral of time multiplied absolute error (ITAE). 
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Comparative analyses with other controllers such as Atom Search 

Optimization (ASO), Grey Wolf Optimization (GWO), and Sine-Cosine 

Algorithm (SCA) demonstrate the superior effectiveness and robustness of 

the proposed HHO/PID controller. The study highlights the significance of 

meta-heuristic algorithms in real-world engineering applications and 

introduces a novel approach to enhance DC motor speed control. The HHO 

algorithm, inspired by Harris' hawks' hunting strategies, has been 

successfully applied in various domains, but its application for tuning PID 

controller parameters in DC motor speed regulation is novel. Through 

simulation and analysis, the study showcases the improved performance of 

the HHO/PID controller compared to existing methods, indicating its 

potential for enhancing stability and robustness in DC motor speed control 

systems. 

The authors in [10] focuses on optimizing PID controller tuning for DC 

motor control using Genetic Algorithm (GA). It compares GA-PID with 

Ziegler & Nichols method, assessing parameters such as Mean Square Error 

(M.S.E) and Integral of Time multiplied by Absolute Error (I.TA.E). PID 

controllers are widely used due to their simplicity and reliability, offering 

robust performance in various system dynamics. GA-based tuning improves 

transient response, reducing rise time and overshoot. The study demonstrates 

that GA provides superior results compared to traditional methods, 

enhancing speed and position control of DC motors effectively. Through 

simulation and analysis, the paper underscores GA's efficacy in achieving 

optimized PID parameters for precise control of DC motors. 

The paper [11] introduces a novel approach for tuning PID controllers using 

the Crow Search Algorithm (CSA) to enhance the performance of DC 
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motors. Traditional methods for PID tuning often require manual 

adjustments and lack accuracy. The proposed method utilizes a hybrid PID-

CSA predictive model to optimize PID parameters, offering improved 

tracking performance and stability. Comparative analyses with various error 

indicator functions and other tuning techniques like Ziegler-Nichols and 

PSO Optimization demonstrate the superiority of PID-CSA in terms of 

steady-state error, stability, overshoot, rise time, and settling time. The study 

emphasizes the importance of automatic adjustment methods for PID 

controllers in industrial applications and highlights the effectiveness of CSA 

in control engineering. The paper is structured to provide an introduction to 

CSA, an overview of DC motor systems and controllers, detailed discussion 

on the design and performance of SCA-PID controllers, and concluding 

remarks on the proposed system's effectiveness. Experimental results 

confirm the superior performance of CSA-optimized PID controllers 

compared to conventional methods, showcasing improved transient and 

static response parameters. 

The study [12] explores Genetic Algorithm (GA) optimization for tuning 

PID controllers in brushed DC motor velocity control, aiming to enhance 

performance compared to classical tuning methods like Ziegler-Nichols and 

Skogestad IMC. By modifying the Integral of Time Multiplied by Absolute 

Error (ITAE) fitness function to include specific weights on performance 

metrics like rise time, settling time, overshoot percentage, and steady-state 

error, GA optimization achieves superior outcomes. The modified ITAE 

fitness function significantly improves rise time and settling time by 76.63% 

and 78.29%, respectively, compared to traditional methods. Although it may 

result in slightly larger steady-state error, it remains acceptable for velocity 
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control applications. Further evaluation in real-life applications, comparing 

simulation with real-time performance, is suggested for future work. This 

paper highlights the effectiveness of GA optimization in achieving better 

PID controller performance compared to classical tuning methods. 

The [13] presents a speed controller for a DC motor using PID parameters 

optimized through Genetic Algorithm (GA). Despite its widespread use in 

various applications, DC motors exhibit nonlinear behavior, necessitating 

effective control strategies. The study compares optimization techniques 

such as GA with traditional tuning methods for PID controllers. Results 

demonstrate the superiority of GA-based optimization in achieving 

improved performance metrics such as minimal rise time, settling time, 

overshoot, and steady-state error. The utilization of GA yields enhanced 

performance compared to conventional PID controllers, highlighting the 

effectiveness of evolutionary algorithms in tuning control parameters for DC 

motor speed control. 
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Chapter Three 

3.1 Dc motor  

DC motors are actuators that produce angular rotation when supplied with 

electrical energy. They have significant importance in various electrical 

systems employed in domestic and industrial applications such as electrical 

vehicles, industrial mills and cranes, robots, and multiple home appliances. 

This importance is due to their advantageous characteristics like precision, 

convenience, and continuous control. In order to drive the DC motor at 

appropriate speed or torque. 

3.1.1 Modelling of Separately Excited D.C Motor 

To realize the D.C Motor drive as a control system transfer function, 

following steps to be done in MATLAB: 

First step is to characterize the equivalent DC motor circuit diagram. Then 

step 2 is to characterize system equations from the circuit diagram. 

Subsequently, step 3 is to derive transfer function from derived system 

equations. After that Step 4 is the Realization of the equivalent block 

diagram of system drive. Finally, in step 5 .m file is created for model 

simulation and to analyze the results. 

3.1.2 DC Motor Equivalent Circuit 
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To execute the simulation of separately excited DC motor drive,the 

equivalent circuit diagram of motor’s mechanical part and electrical portion 

must be obtained first as shown in Fig.1. Here left model represents the 

armature circuit of D.C motor and right model represents the field circuit 

which is separately excited. Field excitation parameters are assumed to be 

fixed as it is separately excited. Therefore, to make this model simple to 

study and execute, here field excitation parameters of motor are not taken 

into account while analyzing the simulation model of motor. 

 

Figure 3.1 Equivalent DC Motor circuit. 

In the current research methodology, D.C motor model is modeled in which 

the rotor is assumed to be a single coil having equivalent inductance 

expressed as La and equivalent resistance as Ra, therefore representing 

generated back E.M.F represented as eb. In separately excited dc motor, flux 

remains constant. The electrical model of separately excited D.C Motor are 

described by following dynamic equations: 

              
   

  
 (1) 
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The analogy between generated torque Tm and armature current ia is given 

by following equation: 

𝑇𝑚 = 𝐾𝑚. 𝑖𝑎 (2) 

 

The relation between generated back E.M.F eb and the angular speed is 

given by the following equation: 

𝑒𝑏 = 𝐾𝑏. 𝜔                                                                                                            (3) 

 

from equation (1) and (3), we get: 

𝑒𝑎 = 𝐾𝑏. 𝜔 + 𝑖𝑎𝑅𝑎𝐿𝑎 
   

  
 (4) 

 

The equivalent dynamic equation for mechanical system of motor is as 

follows: 

𝑇𝑚 = 𝐾𝑚𝑖𝑎 = 𝐽 
  

  
 + 𝐾𝑓𝜔 + 𝑇𝑑 (5) 

 

3.1.3 Model Block Diagram 

Using Laplace transformation technique for equation (4) and (5), following 

equations are derived: 

𝑒𝑎(𝑠) = 𝐾𝑏. 𝜔(𝑠) + 𝑖𝑎(𝑠). 𝑅𝑎 + 𝐿𝑎(𝑠). 𝑖𝑎 (6) 

and subsequently  

𝑇𝑚(𝑠) = 𝐾𝑚. 𝑖𝑎(𝑠) = 𝐽. 𝜔(𝑠) + 𝐾𝑓. 𝜔(𝑠) + 𝑇𝑑(𝑠) (7) 

Therefore, from equation (7), armature current is expressed as: 

𝑖𝑎(𝑠) = [𝑒𝑎(𝑠) − 𝐾𝑏.𝜔(𝑠)] ⁄ [𝑅𝑎 + 𝐿𝑎(𝑠)] (8) 
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and from equation (8), output speed is represented: 

𝜔(𝑠) = [𝑇𝑚 − 𝑇𝑑(𝑠)] ⁄ [𝐽 + 𝐾𝑓] (9) 

 

Where, 

ea = Armature Voltage (V) 

La = Armature Inductance (H) 

Ia = Armature Current (A) 

Ra = Armature Resistance (ohm) 

J = Mechanical Inertia (kg-m2) 

eb = Back EMF (V) 

Kf = Friction Coefficient (N-m/ rad/ sec) 

Td = Torque Disturbance (N-m) 

Km = Motor Torque Constant (N-m/ rad) 

𝜔 = Angular Speed (rad/sec) 

Kb = Back EMF Constant (V/rad/sec) 

Tm = Mechanical Torque Developed (N-m) 

The block diagram developed from previously stated 

equivalent circuit equations is as shown in Fig.( 3.2) 
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Figure 2.2 Block Diagram of DC Motor. 

Control system closed loop system shown in Fig. 3.2 has the mechanical 

system Laplace function and electrical system Laplace function stated 

separately. They are further combined to realize the output motor speed (𝜔) 

and from which we can estimate the position of rotor. From this transfer 

function we can also study about output armature current of motor. Transfer 

thus obtained is of second order system. Then to control this control system, 

P.I.D. controller used in forward path From motor equivalent equations and 

by using specific standard values of parameters, D.C motor model is 

realized. The D.C motor parameters used in this research paper are defined 

in equation (10). 

Kf = .018, 

Km = Kb = 1.4, 

Ra = 2 ohms, 

La = 16.2 mH 
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J = 0.117 KgM2, 

Va = 220 volts, 

Td = 1 N-m, 

Thus, the final of transform function is shown in equation  (10). 

𝜔 =
   

                               
 (10) 

 

By equation (10) the expression of rotor position of motor is also calculated. 

Analyzing the position of rotor of D.C Motor is also a very keen aspect and 

difficult because the transfer function of position is of third order control 

system. Position of rotor is expressed as ϴ expressed and its transfer 

function is expressed in equation (11). 

𝛳 =
   

                               
 (11) 

Thus, this paper uses the transfer function of rotor position of motor as its 

plant function and to this PID controller is attached to control the position of 

motor. 

3.2 Optimization algorithm 

3.2.1 Equilibrium Optimization (EO): 

This section presents the inspiration, mathematical model, and algorithm of 

the Equilibrium Optimizer (EO). 
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3.2.1.1 Inspiration: 

The inspiration for the EO approach is a simple well-mixed dynamic mass 

balance on a control volume, in which a mass balance equation is used to 

describe the concentration of a nonreactive constituent in a control volume 

as a function of its various source and sink mechanisms. The mass balance 

equation provides the underlying physics for the conservation of mass 

entering, leaving, and generated in a control volume. A first-order ordinary 

differential equation expressing the generic mass-balance equation [14], in 

which the change in mass in time is equal to the amount of mass that enters 

the system plus the amount being generated inside minus the amount that 

leaves the system, is described as: 

 
   

  
            (12) 

 

C is the concentration inside the control volume (V), V  
  

  
 is the rate of 

change of mass in the control volume, Q is the volumetric flow rate into and 

out of the control volume, Ceq represents the concentration at an equilibrium 

state in which there is no generation inside the control volume, and G is the 

mass generation rate inside the control volume. When V 
  

  
 reaches to zero, a 

steady equilibrium state is reached. A rearrangement of Eq. (12) allows to 

solve for  
  

  
  as a function of  

 

 
 ; where 

 

 
 represents the inverse of the 

residence time, referred to here as λ, or the turnover rate (i.e., λ =
 

 
  ). 

Subsequently, Eq.(12)can also be rearranged to solve for the concentration 

in the control volume (C) as a function of time (t): 
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    (13) 

 

Eq. (13) shows the integration of Eq. (12) over time: 

∫  
 

  

  

         
 
 

 ∫   
 

  

 (14) 

 

This results in: 

C = C eq + ( C0 – C eq) F +   
 

  
  (1 − F) (15) 

 

In the Eq. (15), F is calculated as follows:  

F = exp [−λ (t − t0)] (16) 

 

where t0 and C0 are the initial start time and concentration, dependent on the 

integration interval. Eq. (4) can be used to either estimate the concentration 

in the control volume with a known turnover rate or to calculate the average 

turnover rate using a simple linear regression with a known generation rate 

and other conditions.  

EO is designed in this sub-section using the above equations as the overall 

framework. In EO, a particle is analogous to a solution and a concentration 

is analogous to a particle’s position in the PSO algorithm. As Eq. (4) shows, 

there are three terms presenting the updating rules for a particle, and each 

particle updates its concentration via three separate terms. The first term is 

the equilibrium concentration, defined as one of the best-so-far solutions 

randomly selected from a pool, called the equilibrium pool. The second term 

is associated with a concentration difference between a particle and the 
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equilibrium state, which acts as a direct search mechanism. This term 

encourages particles to globally search the domain, acting as explorers. The 

third term is associated with the generation rate, which mostly plays the role 

of an exploiter, or solution refiner, particularly with small steps, although it 

sometimes contributes as an explorer as well. Each term and the way they 

affect the search pattern is defined in the following.  

 

3.2.1.2 Initialization and function evaluation: 

 Similar to most meta-heuristic algorithms, EO uses the initial population to 

start the optimization process. The initial concentrations are constructed 

based on the number of particles and dimensions with uniform random 

initialization in the search space as follows: 

C initial i = C min + randi (Cmax − Cmin)              i = 1, 2, . . . ..n (17) 

 

C initial i is the initial concentration vector of the ith particle, Cmin and 

Cmax denote the minimum and maximum values for the dimensions, Rand i 

is a random vector in the interval of [0, 1], and n is the number of particles 

as the population. Particles are evaluated for their fitness function and then 

are sorted to determine the equilibrium candidates.  

 

3.2.1.3 Equilibrium pool and candidates (Ceq) : 

The equilibrium state is the final convergence state of the algorithm, which 

is desired to be the global optimum. At the beginning of the optimization 

process, there is no knowledge about the equilibrium state and only 

equilibrium candidates are determined to provide a search pattern for the 

particles. Based on different experiments under different type of case 
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problems, these candidates are the four best-so-far particles identified during 

the whole optimization process plus another particle, whose concentration is 

the arithmetic mean of the mentioned four particles. These four candidates 

help EO to have a better exploration capability, while the average helps in 

exploitation. The number of candidates is arbitrary and based on type of the 

optimization problem. One might use other numbers of candidates (e.g. 14 

or 16). which is consistent with the literature [14]. For example, GWO uses 

three best-so-far candidates (alpha, beta, and gamma wolves) to update the 

positions of the other wolves. However, using less than four candidates 

degrades the performance of the method in multimodal and composition 

functions but will improve the results in unimodal functions. More than four 

candidates will have the opposite effect. These five particles are nominated 

as equilibrium candidates and are used to construct a vector called the 

equilibrium pool: 

   

C  eq,pool = { C  eq(1), C  eq(2), C  eq(3), C  eq(4), C  eq(ave) } (18) 

 

Each particle in each iteration updates its concentration with random 

selection among candidates chosen with the same probability. For instance, 

in the first iteration, the first particle updates all of its concentrations based 

on  Ceq(1); then, in the second iteration, it may update its concentrations 

based on  Ceq(ave). Until the end of the optimization process, each particle 

will experience the updating process with all of the candidate solutions 

receive approximately the same number of updates for each particle. 
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3.2.1.4. Exponential term (F ) 

The next term contributing to the main concentration updating rule is the 

exponential term (F ). An accurate definition of this term will assist EO in 

having a reasonable balance between exploration and exploitation. Since the 

turnover rate can vary with time in a real control volume, λ is assumed to be 

a random vector in the interval of [0, 1]. 

F=e−λ (t−t0) (19) 

 

where time, t, is defined as a function of iteration (Iter) and thus decreases 

with the number of iterations: 

F=e−λ (t−t0) (20) 

 

t=(  
     

       
         𝑒     𝑀𝑎  𝑖 𝑒     (21) 

 

where Iter and Max_iter present the current and the maximum number of 

iterations, respectively, and a2 is a constant value used to manage 

exploitation ability. In order to guarantee convergence by slowing down the 

search speed along with improving the exploration and exploitation ability 

of the algorithm, this study also considers: 

 t0 =
 

  
 ln(−a1sign (  r − 0.5 ) [1 − 𝑒      ]) + t (22) 

 

where a1 is a constant value that controls exploration ability. The higher the 

a1, the better the exploration ability and consequently the lower exploitation 

performance. Similarly, the higher the a2, the better the exploitation ability 

and the lower the exploration ability. The third component, sign  (r − 0.5), 
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effects on the direction of exploration and exploitation. r is a random vector 

between 0 and 1. For all of the problems subsequently solved in this paper, 

a1 and a2 are equal to 2 and 1, respectively. These constants are selected 

through empirical testing of a subset of test functions. However, these 

parameters can be tuned for other problems as needed. Eq. (23) shows the 

revised version of Eq. (20) with the substitution of Eq. (22) into Eq. (20): 

F  = a1sign (  r − 0.5 ) [ 𝑒        − 1 ] (23) 

 

 

Figure 3.3 presentation of concentrations updating aid in exploration and exploitation. 

3.2.1.4. Generation rate (G): 

 The generation rate is one of the most important terms in the proposed 

algorithm to provide the exact solution by improving the exploitation phase. 

In many engineering applications, there are many models that can be used to 

express the generation rate as a function of time [15]. For example, one 
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multipurpose model that describes generation rates as a first order 

exponential decay process is defined as: 

G  = Go𝑒          (24) 

 

where G0 is the initial value and k indicates a decay constant. In order to 

have a more controlled and systematic search pattern and to limit the number 

of random variables, this study assumes k = λ and uses the previously 

derived exponential term. Thus, the final set of generation rate equations are 

as follows: 

 

G= G 0𝑒          = G 0F (25) 

 

 where:   

 

G0=  GCP ( Ceq − λC ) (27) 

  

GCP= {
               
                    

 (28) 

 

where    and      re random numbers in [0, 1] and GCP vector is constructed 

by the repetition of the same value resulted from Eq. (28). In this equation, 

GCP is defined as the Generation rate Control Parameter, which includes the 

possibility of generation term’s contribution to the updating process. The 

probability of this contribution which specifies how many particles use 

generation term to update their states is determined by another term called 

Generation Probability (GP). The mechanism of this contribution is 
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determined by Eqs. (27) and (28). Eq. (28) occurs at the level of each 

particle. For example, if GCP is zero, G is equal to zero and all the 

dimensions of that specific particle are updated without a generation rate 

term. A good balance between exploration and exploitation is achieved with 

GP = 0.5. Finally, the updating rule of EO will be as follows: 

C = C eq + ( C − Ceq) .F +  
 

   
 ( 1 − F) (29) 

 

where F is defined in Eq. (22), and V is considered as unit. The first term in 

Eq. (27) is an equilibrium concentration, where the second and third terms 

represent the variations in concentration. The second term is responsible for 

globally searching the space to find an optimum point. This term contributes 

more to exploration, thereby taking advantage of large variations in 

concentration (i.e., a direct difference between an equilibrium and a sample 

particle). As it finds a point, the third term contributes to making the solution 

more accurate. This term thus contributes more to exploitation and benefits 

from small variations in concentration, which are governed by the generation 

rate term (Eq. (24)). Depending on parameters such as the concentrations of 

particles and equilibrium candidates, as well as the turnover rate (λ), the 

second and third terms might have the same or opposite signs. The same 

sign makes the variation large, which helps to better search the full domain, 

and the opposite sign makes the variation small, aiding in local searches. 

Although the second term attempts to find solutions relatively far from 

equilibrium candidates and the third term attempts to refine the solutions 

closer to the candidates, this is not always happening. Small turnover rates 

(e.g., ≤0.05) in the denominator of the third term increase its variation and 
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helps the exploration in some dimensions as well. Fig. 3.2 demonstrates a 1-

D version of how these terms contribute to exploration and exploitation.  

C1 − Ceq is representative of the second term in Eq. (27) while Ceq−λC1 

represents the third term (G is the function of G0). The generation rate terms 

(Eqs. (24)–(25)) control these variations. Because λ changes with each 

dimension’s change, this large variation only happens to those dimensions 

with small values of λ. It is worth mentioning that this feature works similar 

to a mutation operator in evolutionary algorithms and greatly helps EO to 

exploit the solutions. Fig. 3.3 shows a conceptual sketch of the collaboration 

of all equilibrium candidates on a sample particle and how they affect 

concentration updating, one after another, in the proposed algorithm. Since 

the topological positions of equilibrium candidates are diverse in initial 

iterations, and the exponential term generates large random numbers, this 

step by step updating process helps the particles to cover the entire domain 

in their search. An opposite scenario happens in the last iterations, when the 

candidates surround the optimum point by similar configurations. At these 

times, the exponential term generates small random numbers, which helps in 

refining the solutions by providing smaller step sizes. This concept can also 

be extended to higher dimensions as a hyperspace whereby the concentration 

will be updated with the particle’s movement in n-dimensional space.  
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Figure 3.4 Equilibrium candidates’ collaboration in updating a particles’ concentration in 

2D dimensions. 

3.2.1.5 Particle’s memory saving 

Adding memory saving procedures assists each particle in keeping track of 

its coordinates in the space, which also informs its fitness value. This 

mechanism resembles the pbest concept in PSO. The fitness value of each 

particle in the current iteration is compared to that of the previous iteration 

and will be overwritten if it achieves a better fit. This mechanism aids in 

exploitation capability but can increase the chance of getting trapped in local 

minima if the method does not benefit from global exploration ability [16].  

 

3.2.2 The Whale Optimization Algorithm 

In this section the inspiration of the proposed method is first discussed. 

Then, the mathematical model is provided. 

3.2.2.1 Inspiration 

Whales are fancy creatures. They are considered as the biggest mammals in 

the world. An adult whale can grow up to 30 m long and 180 t weight. There 
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are 7 different main species of this giant mammal such killer, Minke, Sei, 

humpback, right, finback, and blue. Whales are mostly considered as 

predators. They never sleep because they have to breathe from the surface of 

oceans. In fact, half of the brain only sleeps. The interesting thing about the 

whales is that they are considered as highly intelligent animals with emotion. 

According to Hof and Van Der Gucht [17], whales have common cells in 

certain areas of their brains similar to those of human called spindle cells. 

These cells are responsible for judgment emotions and social behaviors in 

humans. In other words the spindle cells make us distinct from other 

creatures. Whales have twice number of these cells than an adult human 

which is the main cause of their smartness. It has been proven that whale can 

think, learn judge communicate, and become even emotional as a human 

does, but obviously with a much lower level of smartness. It has been 

observed that whales (mostly killer whales) are able to develop their own 

dialect as well. Another interesting point is the social behavior of whales. 

They live alone or in groups. However, they are mostly observed in groups. 

Some of their species (killer whales for instance) can live in a family over 

their entire life period. One of the biggest baleen whales is humpback whales 

(Megaptera novaeangliae). An adult humpback whale is almost as size of a 

school bus Their favorite prey are krill and small fish herds. Fig. 3.5 shows 

this mammal. 
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Fig. 3.5.  Bubble-net feeding behavior of humpback whales 

3.2.2.2 Mathematical model and optimization algorithm 

In this section the mathematical model of encircling prey, spiral bubble-net 

feeding maneuver, and search for prey is first provided. The WOA algorithm 

is then proposed. 

3.2.2.2.1 Encircling prey 

 Humpback whales can recognize the location of prey and encircle them. 

Since the position of the optimal design in the search space is not known a 

priori, the WOA algorithm assumes that the current best candidate solution 

is the target prey or is close to the optimum. After the best search agent is 

defined, the other search agents will hence try to update their positions 

towards the best search agent. This behavior is represented by the 

following equations: 

  ⃗⃗  ⃗         ⃗⃗⃗⃗  ⃗           (30) 

           ⃗⃗⃗⃗          ⃗⃗  ⃗  (31) 
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where t indicates the current iteration, A and C are coefficient vectors,    is 

the position vector of the best solution obtained so far, X is the position 

vector, | | is the absolute value, and · is an element-by-element 

multiplication. It is worth mentioning here that     should be updated in each 

iteration if there is a better solution. The vectors A and C are calculated as 

follows: 

     𝑎 ⃗⃗⃗     ⃗⃗  𝑎 ⃗⃗⃗    (32) 

  ⃗⃗  ⃗=2.       (33) 

where a is linearly decreased from 2 to 0 over the course of iterations (in 

both exploration and exploitation phases) and r is a random vector in [0,1]. 

 

 

 

 

 

Fig. 3.6 . 2D and 3D position vectors and their possible next locations  (   is 

the best solution obtained so far) 
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Fig. 3.7. Bubble-net search mechanism implemented in WOA (    is the 

best solution obtained so far): (a) shrinking encircling mechanism and (b) 

spiral updating position 

 

Fig. 3.7(a) illustrates the rationale behind Eq. (30) for a 2D problem. The 

position (X,Y) of a search agent can be updated according to the position of 

the current best record (   ,   ). Different places around the best agent can be 

achieved with respect to the current position by adjusting the value of A and 

C vectors. The possible updating position of a search agent in 3D space is 

also depicted in Fig. 3.7(b). It should be noted that by defining the random 

vector (r) it is possible to reach any position in the search space located 

between the key-points shown in Fig. 3.7 Therefore, Eq. (30) allows any 

search agent to update its position in the neighborhood of the current best 

solution and simulates encircling the prey. The same concept can be 

extended to a search space with n dimensions, and the search agents will 

move in hyper-cubes around the best solution obtained so far. As mentioned 

in the previous section, the humpback whales also attack the prey with the 

bubble-net strategy. This method is mathematically formulated as follows: 



 
33 

 

3.2.2.2.2 Bubble-net attacking method (exploitation phase) 

In order to mathematically model the bubble-net behavior of humpback 

whales, two approaches are designed as follows: 

Shrinking encircling mechanism: This behavior is achieved by decreasing 

the value of a in the Eq. (31). Note that the fluctuation range of A is also 

decreased by a. In other words A is  random value in the interval [−a,a] 

where a is decreased from 2 to 0 over the course of iterations. Setting 

random values for A in [−1,1], the new position of a search agent can be 

defined anywhere in between the original position of the agent and the 

position of the current best agent. Fig. 3.7(a) shows the possible positions 

from (X,Y) towards  (   ,   ).  that can be achieved by 0≤ A ≤1 in a 2D 

space.  

Spiral updating position: As can be seen in Fig. 4(b), this approach first 

calculates the distance between the whale located at (X,Y) and prey located 

at  (   ,   ).  A spiral equation is then created between the position of whale 

and prey to mimic the helix-shaped movement of humpback whales as 

follows:  

          ⃗⃗  ⃗ 𝑒              ⃗⃗⃗⃗     (34) 

 

  ⃗⃗  ⃗     ⃗⃗⃗⃗            (35) 

 

and indicates the distance of the it whale to the prey (best solution obtained 

so far), b is a constant for defining the shape of the logarithmic spiral, l is a 

random number in [−1,1], and . is an element-by-element multiplication. 
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Note that humpback whales swim around the prey within a shrinking circle 

and along a spiral-shaped path simultaneously. To model this simultaneous 

behavior, we assume that there is a probability of 50% to choose between 

either the shrinking encircling mechanism or the spiral model to update the 

position of whales during optimization. The mathematical model is as 

follows  :  

        { 
  ⃗⃗⃗⃗          ⃗⃗  ⃗                    𝑖𝑓         

  ⃗⃗⃗⃗  𝑒              ⃗⃗⃗⃗     𝑖𝑓      
 (36) 

 

where p is a random number in [0,1]. In addition to the bubble-net method, 

the humpback whales search for prey randomly. The mathematical model of 

the search is as follows. 

3.2.2.2.3 Search for prey (exploration phase) 

The same approach based on the variation of the A vector can be utilized to 

search for prey (exploration). In fact, humpback whales search randomly 

according to the position of each other.  

Therefore, we use A with the random values greater than 1 or less than −1 to 

force search agent to move far away from a reference whale. In contrast to 

the exploitation phase, we update the position of a search agent in the 

exploration phase according to a randomly chosen search agent instead of 

the best search agent found so far. This mechanism and |A| > 1 emphasize 

exploration and allow the WOA algorithm to perform a global search. The 

mathematical model is as follows: 

 ⃗⃗            
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      | 

              
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        ⃗⃗  

(37) 
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Fig. 3.8. Exploration mechanism implemented in WOA (X  is a randomly chosen search 

agent) 
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Chapter Four 

RESULTS AND DISCUSSIONS 

A set of better PID controller parameters can provide great response which 

results in the time domain minimizing performance criteria. Such efficiency 

requirements include minimizing overshoot, rise time, setting time, and 

steady state error. The proposed PID controller uses a EO and WOA 

algorithms to identify optimum system parameters for the DC Motor. The 

most important step in applying proposed algorithms in the control system is 

to select the cost function, which is utilized to evaluate the fitness of each 

Crow agent (Kp, Ki, Kd). Furthermore, in this work, the proposed cost 

function depends on different performance indicators to explain clearly how 

parameters are utilized to highlight how parameters should be addressed in 

the selection. The system output is also represented by four indices-

controlled system: ITAE. These performance indices presented by equations 

(38) will be used as a part of the cost function as: 

     ∫        
 

 

   (38) 

The EO-PID and WOA-PID optimizations aim is to achieve a set of PID 

parameters so that the closed-loop control system has a minimum 

performance indices. The EO-PID and WOA-PID controller system is 

implemented using the MATLAB code, which is connected to the Simulink 

model created. The proposed methodology implements by Intel ® Core TM 

i7-4700HQ, 2. 4 GHz 16 GB RAM, using the MATLAB framework. The 

global and specific parameter settings are summarized in Table 1 
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Table 1 Setting of parameters 

Elements Value 

Search Parameter Number 3 

Population size 50 

Iteration number  100 

Search domain [0,100] 

 

The Fig.(4.1) illustrates the implementation of a PID controller interfaced 

with the transfer function of a DC motor within a Simulink circuit in 

MATLAB. This setup allows for the simulation and analysis of the motor's 

speed control system under the influence of the PID controller. The PID 

controller is designed to adjust its output based on the error between a 

desired setpoint and the system's current state, which in this case is the speed 

of the DC motor. The controller's output then influences the motor's input 

voltage, effectively controlling its speed. 

The transfer function of the DC motor encapsulates the motor's dynamic 

behavior, representing the relationship between the motor's input voltage and 

its speed. By connecting the PID controller to the motor's transfer function 

within the Simulink environment, the overall system's response to various 

inputs and controller configurations can be simulated and analyzed. 
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Fig.(4.1) PID-Controlled DC Motor System: Simulink Circuit with Transfer Function. 

Table 2 shows the gained PID controller parameters for both metaheuristics-

based techniques such as the different versions of proposed EO-PID and 

WOA-PID controller. In the context of controlling the speed of a DC motor 

system, a comparative analysis was undertaken between the Proportional-

Integral-Derivative (PID) controller enhanced with Whale Optimization 

Algorithm (WOA) and the Equilibrium Optimization Proportional-Integral-

Derivative (EO-PID) controller. As shown in Table 3 the PID-WOA 

controller demonstrated superior performance in terms of step response 

criteria. Specifically, the PID-WOA exhibited a minimized overshoot, 

reduced settling time, shorter rise time, and optimal peak value. These 

attributes collectively indicate that the PID-WOA controller effectively and 

rapidly stabilized the motor speed while minimizing overshoot and 

oscillations.  

However, when considering the steady-state error, the EO-PID controller 

outperformed the PID-WOA. The Integral of Time multiplied by Absolute 

Error (ITAE) criterion, a common measure of steady-state error, was smaller 
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for the EO-PID controller. This suggests that the EO-PID controller was 

more effective in eliminating long-term drift and achieving a stable output at 

steady state.  

Interestingly, the value of the derivative gain Kd was determined to be zero 

in this scenario as shown in Table 2. This implies that a Proportional-

Integral (PI) controller could suffice for this system, as the derivative term 

does not contribute to the system's performance. The elimination of the 

derivative control could simplify the controller while maintaining 

satisfactory performance. However, this also indicates that the system does 

not require a high-frequency noise filter, which is often provided by the 

derivative term.  

Therefore, the choice between the PID-WOA and EO-PID controllers, or 

even a simpler PI controller, would depend on the specific requirements of 

the system, such as whether rapid response, steady-state precision, or 

simplicity and robustness is prioritized. 

Table 2. The values of Adjust PID parameters 

Methods  Kp  Ki  Kd 

PID_WOA ITAE  10.8973413 96.8765 0 

PID_EO ITAE 10.8956614 99.9812 0 

 

Table 3. Step response values for PID controllers. 

Methods  Overshoot  
Settling 

Time (sec)  
Rise 

Time(sec)  
Peak value 

ITAE 

PID_WOA 
ITAE  6.9386 0.0657 0.0219 1.0694 

3.0638 
     

PID_EO 
ITAE 7.3154 0.0669 0.0218 1.0732 

2.6430 
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The figure (4.2) illustrates the system response of the Whale Optimization 

Algorithm-enhanced Proportional-Integral-Derivative (WOA-PID) 

controller in comparison with the reference speed and the Equilibrium 

Optimization Proportional-Integral-Derivative (EO-PID) controller. This 

comparison provides valuable insights into the performance of the WOA-

PID controller in regulating the speed of the system, particularly in relation 

to the reference speed and the EO-PID controller.  

 

Fig.(4.2) Comparison for step responses of DC motor speed control systems. 

Additionally, figure (4.3) showcases the convergence curve of both the 

WOA-PID and EO-PID algorithms. This convergence curve offers a visual 

representation of the algorithms' convergence behavior, shedding light on 

their respective abilities to reach an optimal solution over the course of 

iterations. 
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These figures collectively contribute to a comprehensive understanding of 

the comparative performance and convergence characteristics of the WOA-

PID and EO-PID controllers in regulating the system's speed, providing 

valuable insights for further analysis and optimization of the control system. 

 

 

Fig.(4.3) The convergence curve of EO and WOA algorithms.  
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Chapter Five 

 

Conclusion And Future Work 

DC motor control is a very interesting field due to the rapid development of 

control methods. Weak parameter adjustment will result in dc motor 

performance. This study, reveals the effectiveness of the PID-WOA 

controller in minimizing overshoot, settling time, rise time, and peak value 

in controlling the speed of a DC motor system. However, the EO-PID 

controller exhibits superior performance in addressing steady-state error as 

measured by the ITAE criterion. This underscores the significance of 

considering multiple performance metrics when evaluating control 

strategies. 

Future research could focus on optimizing a hybrid control strategy that 

leverages the strengths of both PID-WOA and EO-PID controllers to 

achieve comprehensive performance improvements across various metrics. 

Additionally, exploring the applicability of these controllers in real-time 

systems and investigating their robustness under varying operating 

conditions would be valuable areas for further exploration. 
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