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ABSTRACT

The DC motor has been commonly utilized in the industry although its
maintenance is costly, more than the induction motor. Consequently, speed
control of DC motor has attracted considerable researches and different
algorithms have evolved. All the traditional algorithms for the Proportional
Integral Derivative (PID) controller provide initial practical values for (kp,
ki, and kd) PID parameters, which are manually tuned to achieving the
desired performance. The manual tuning is inaccurate and a hard job, which
requests comprehensive experience of the problem domain. This research
presents the Whale Optimization Algorithm (WOA) and Equilibrium
optimizer (EOto optimally tune gain parameters of PID control scheme in
order to regulate DC motor’s speed. These suggested techniques tune the
controller by the minimization of the fitness function represented by the
integral of time multiplied by absolute error (ITAE). The modelling and
simulation are carried out in MATLAB/Simulink. The results indicate that
the PID-WOA controller demonstrates superior performance in terms of step
response, minimizing overshoot, settling time, rise time, and peak value in
controlling the speed of a DC motor system. However, for steady-state error
measured by the ITAE criterion, the EO-PID controller exhibits better
performance. This highlights the trade-offs between different control
strategies and their impact on specific performance metrics, providing

valuable insights for system optimization.
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Chapter one

1.1 Introduction

The motor is device It converts electrical energy into mechanical energy and
depends on the type of magnet and has a single armature winding. The
motor that works generates a voltage opposite to the input voltage. The
electrical circuit is represented by voltage, resistance, and inductance, and
the rotor part, the disk, is obstructed by something called a damper. The
input of the system is the voltage source. that is applied to the motors

armature while the output is the rotational speed of the shift .

The main function of PID controller is to make plant less sensitive to
changes The core technology of PID control is how to optimize the three
parameters of PID controller to make PID control reach the desired control
effect, the optimization of the three important parameters is of great
significance for the control performance of the control system. The selection
of PID parameters directly affects the control effect of the system, so the
optimization of the controller parameters is very important. The algorithm
uses repeatedly the model of the object in the process of optimization, and
initializes the control parameters which need to be adjusted. Combining with
the constraint conditions, we correct the initial value of the parameters, solve
the quadratic programming problem and update the Hessian Matrix of

Varangian function by line search and when kp equals zero there is on PID.
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Figure 1.1 The equivalent circuit of the system

The standard PID control configuration is as shown in Figure 1.1 This is a
type of feedback controller whose output, a control variable, is generally
based on the error between some user-defined set point and some measured
process variable. A PID controller attempts to correct the error between a
measured process variable and a desired set point by calculating and then
outputting a corrective action that can adjust the process accordingly. So by
integrating the PID controller to the DC motor were able to correct the error
made by the DC motor and control the speed or the position of the motor to
the desired point or speed. However, PID controllers cannot be tuned in such
way that the optimum step response is achieved for different inertia, load
and speed reference, to achieve the desired step response of the system has
minimal rise time and without overshoot. For design and tuning of PID

controller .

1.2 Problem statement:

When using a PID controller alone, the system may face the following

problems:



1. Overshoot: The system may exhibit overshoot, where the control signal

causes the system to exceed the desired setpoint before settling down.

2. Oscillations: The system may exhibit oscillations around the setpoint due

to the proportional and derivative terms in the PID controller.

3. Steady-state error: The system may have a steady-state error, where it

cannot reach the desired setpoint accurately and remains offset from it.

4. Sensitivity to parameter variations: The PID controller's performance may
be sensitive to changes in system parameters, leading to instability or poor

control.

5. Limited control for complex systems: PID controllers may not be suitable
for highly nonlinear or complex systems that require more sophisticated

control strategies.

1.3 Aim of project

the goal of this project is to control the speed by making the output signal

exactly like the input.

1.4 Objectives

Obijectives of using a modified PID controller to control the speed of a DC

motor using optimization algorithms include the following:



1. Improve system performance: The main goal of using a modified PID
controller is to improve system performance by better and more accurately

adjusting the PID parameters using optimization algorithms.

2. Achieve fast and stable response: The use of modified PID control aims to
achieve fast and stable response to load changes and various conditions that

may affect the motor speed.

3. Reducing deviation from the target value: The modified PID control seeks
to reduce the deviation between the target value of the motor speed and the

actual value at which the motor is running.

4. Improve system efficiency: By fine-tuning the PID parameters, the system

efficiency can be improved and power consumption reduced.

5. Increased motor life: With a properly adjusted PID control, the stress on

the motor can be reduced thus increasing its lifespan.

6. Providing a sophisticated and suitable solution: The use of optimization
algorithms in adjusting PID parameters aims to provide a sophisticated and

suitable solution to achieve the goals of DC motor speed control.

In general, the use of PID control modified by optimization algorithms aims
to improve the performance of the control system and achieve specific goals

such as effective and accurate DC motor speed control.

1.5 Contribution



Certainly, contributing in this area can be very beneficial. Considering that
automatic control is an evolving and complex field, continuous research and
development is essential to improve performance and overcome control-

related challenges. Here are some ways you can contribute.

Develop new methods to improve the performance of PID units and make
them more effective in controlling complex systems.Propose advanced
control strategies that use technologies such as advanced control, multiple
controllers, or intelligent control. Conduct studies on how to improve
systems response and reduce vibrations and bounces using advanced control
techniques. Develop advanced mathematical models of dynamic systems to
facilitate the design of effective control strategies.Test and evaluate new
methods and technologies through simulation or practical application on real

systems.

In short, contributions in this field can contribute to the development of new

and effective solutions to the challenges facing automatic control and

improving systems performance.

1.6 Outline of This Thesis:

In the first chapter, we talked about a general overview of the project,
followed by the second chapter Literature review which talks about articles
on the subject of the DC motor and controlling its speed, the third chapter is
about parameter optimization algorithms PID, the fourth chapter is about the
results and discussion of this topic, and last but not least the fifth chapter is
About the conclusion, work and future of this project.



Chapter Two

2.1 Literature review

DC motors, renowned for superior speed control, are extensively used in
industry despite higher maintenance costs. Research on DC motor speed
control has led to the widespread adoption of PID controllers. This survey
explores [1] the use of the Artificial Bees Colony (ABC) optimization
algorithm to enhance PID controller parameters, aiming to boost DC motor
tracking performance. Results indicate that the ABC algorithm outperforms
other population-based optimization methods. The study emphasizes the
significance of accurate motor position control, contributing insights for PID
controller refinement in DC motor applications. The innovative ABC
algorithm, known for autonomous adaptation, avoidance of local optima,
and parallel exploitation, demonstrates promising results for enhancing time-

domain performance in the DC-motor system.

In [2] introduces the Aquila Optimizer (AO) algorithm for determining
Proportional Integral Derivative (PID) controller parameters in DC motor
speed control. Inspired by a northern hemisphere bird of prey, AO is
evaluated on benchmark optimization problems and compared with Seagull
Optimization Algorithm (SOA), Marine Predators Algorithm, Giza Pyramids
Construction (GPC), and Chimp Optimization Algorithm (ChOA). Results
indicate AO's promising and effective performance, showcasing superior
outcomes in PID parameter determination. The study highlights the
significance of precise parameter adjustment in DC motor control,
positioning AO as a robust method with optimal achievements, reducing PID

overshoot by an average of 0.023% and improving undershoot by 0.5%.



In [3] use of PID controllers for system control, particularly focusing on the
challenge of parameter tuning. It highlights the application of genetic
algorithms as a method to optimize PID parameters, using MATLAB
simulations and Arduino Uno for implementation on a DC motor system.
The genetic algorithm approach offers improved performance compared to
traditional trial and error methods, enhancing system response and reducing
maximum spikes. The literature survey underscores the continued relevance
of PID controllers in industrial settings and mentions alternative tuning
methods such as Ziegler-Nichols and Fuzzy logic, which often demand

extensive control system expertise.

The paper discusses the challenge of tuning PID controllers, In [4]
considering their widespread use in industrial settings. It introduces a
flexible and efficient tuning technique based on genetic algorithms (GA) for
optimizing PID controller parameters, specifically for a DC motor. A
comparison with the Active Set Optimization Algorithm (ASOA) is
provided, demonstrating the superiority of GA in meeting a wide range of
performance requirements. Both algorithms are applied to speed control of
DC motors, with GA-PID enhancing overall system performance and

meeting specified requirements effectively.

In the article [5] focus lies on the challenge of tuning PID parameters for
optimal system performance. The literature discusses the common use of DC
motors in various applications, often controlled using PID The study
employs the Particle Swarm Optimization (PSO) method for tuning PID

parameters, demonstrating stable results compared to other methods.



Through MATLAB Simulink simulations, optimal PID parameter values are
obtained. Hardware testing using Arduino IDE software confirms stable
motor speed response, albeit with slightly different parameter values. A
comparison between simulation and hardware testing reveals variations in
rise time, settling time, and overshoot values, highlighting differences

between simulated and real-world performance

A literature survey on PID controllers highlights the challenge of parameter
tuning, particularly in systems like DC motors, often relying on trial and
error. In [6] genetic algorithms offer a smarter alternative inspired by natural
selection, resulting in better system performance. Using MATLAB
simulations and Arduino Uno hardware, this research demonstrates that
genetic algorithms provide PID parameters with improved steady time and
reduced maximum spikes compared to trial-and-error methods. With an
overshoot below 10%, the genetic algorithm approach, utilizing 100
generations, mutation at 0.4, and crossover at 0.8, outperforms trial and error
methods. Hardware testing confirms the effectiveness of the genetic
algorithm in achieving optimal PID parameters, such as KP = 4.2090, KI =
1.2012, and KD = 0.2539, with an overshoot value of 2. Overall, genetic
algorithms offer a reliable method for tuning PID controllers in practical

applications like DC motor control.

A novel method [7] for optimal control of a DC motor using a PID controller
is introduced, employing an enhanced version of the whale optimization
algorithm. This approach aims to minimize settling time while ensuring
stable and accurate control of the motor speed. Unlike other control
algorithms, PID controllers offer precise control by adjusting process

outputs based on error signal history and rate of change. The proposed

8



method boasts easy application, stable convergence, and high computational
efficiency, modeled using MATLAB. Comparative analysis with the
standard whale optimization algorithm demonstrates superior stability and
reduced steady-state error, unaffected by disturbances, and ensuring smooth
motor operation. The study explores optimal PID controller parameters
under varying resistance and K values to strike a balance between optimality
and robustness in system control. The proposed method exhibits enhanced
convergence through an updated whale optimization algorithm, ensuring
optimal control with minimal settling time and overshoot. Simulation results
validate the efficacy of the proposed technique in achieving dynamic system

performance superior to standard WOA-PID controllers.

In [8] Introduces Archimedes Optimization Algorithm (AOA) and
Dispersive Flies Optimization (DFO) for tuning PID control parameters to
regulate DC motor speed. The techniques minimize the ITAE fitness
function using MATLAB/Simulink simulations. AOA-PID-ITAE and DFO-
PID-ITAE outperform Ziegler-Nichols (ZN) and Particle Swarm
Optimization (PSO) methods, reducing rise and settling times. DC motors
play a crucial role in various applications due to their precision and
continuous control. PID controllers, incorporating proportional integral
derivative components, are widely used but conventional tuning methods are
time-consuming. Metaheuristic techniques like AOA and DFO offer faster
convergence and superior performance compared to ZN and PSO, ensuring

optimal PID controller performance in diverse applications.

The authors in [9] presents the application of Harris Hawks Optimization
(HHO) algorithm to tune a PID controller for DC motor speed regulation,

aiming to minimize the integral of time multiplied absolute error (ITAE).

9



Comparative analyses with other controllers such as Atom Search
Optimization (ASO), Grey Wolf Optimization (GWO), and Sine-Cosine
Algorithm (SCA) demonstrate the superior effectiveness and robustness of
the proposed HHO/PID controller. The study highlights the significance of
meta-heuristic algorithms in real-world engineering applications and
introduces a novel approach to enhance DC motor speed control. The HHO
algorithm, inspired by Harris' hawks' hunting strategies, has been
successfully applied in various domains, but its application for tuning PID
controller parameters in DC motor speed regulation is novel. Through
simulation and analysis, the study showcases the improved performance of
the HHO/PID controller compared to existing methods, indicating its
potential for enhancing stability and robustness in DC motor speed control

systems.

The authors in [10] focuses on optimizing PID controller tuning for DC
motor control using Genetic Algorithm (GA). It compares GA-PID with
Ziegler & Nichols method, assessing parameters such as Mean Square Error
(M.S.E) and Integral of Time multiplied by Absolute Error (I.TA.E). PID
controllers are widely used due to their simplicity and reliability, offering
robust performance in various system dynamics. GA-based tuning improves
transient response, reducing rise time and overshoot. The study demonstrates
that GA provides superior results compared to traditional methods,
enhancing speed and position control of DC motors effectively. Through
simulation and analysis, the paper underscores GA's efficacy in achieving

optimized PID parameters for precise control of DC motors.

The paper [11] introduces a novel approach for tuning PID controllers using

the Crow Search Algorithm (CSA) to enhance the performance of DC

10



motors. Traditional methods for PID tuning often require manual
adjustments and lack accuracy. The proposed method utilizes a hybrid PID-
CSA predictive model to optimize PID parameters, offering improved
tracking performance and stability. Comparative analyses with various error
indicator functions and other tuning techniques like Ziegler-Nichols and
PSO Optimization demonstrate the superiority of PID-CSA in terms of
steady-state error, stability, overshoot, rise time, and settling time. The study
emphasizes the importance of automatic adjustment methods for PID
controllers in industrial applications and highlights the effectiveness of CSA
in control engineering. The paper is structured to provide an introduction to
CSA, an overview of DC motor systems and controllers, detailed discussion
on the design and performance of SCA-PID controllers, and concluding
remarks on the proposed system's effectiveness. Experimental results
confirm the superior performance of CSA-optimized PID controllers
compared to conventional methods, showcasing improved transient and

static response parameters.

The study [12] explores Genetic Algorithm (GA) optimization for tuning
PID controllers in brushed DC motor velocity control, aiming to enhance
performance compared to classical tuning methods like Ziegler-Nichols and
Skogestad IMC. By modifying the Integral of Time Multiplied by Absolute
Error (ITAE) fitness function to include specific weights on performance
metrics like rise time, settling time, overshoot percentage, and steady-state
error, GA optimization achieves superior outcomes. The modified ITAE
fitness function significantly improves rise time and settling time by 76.63%
and 78.29%, respectively, compared to traditional methods. Although it may

result in slightly larger steady-state error, it remains acceptable for velocity

11



control applications. Further evaluation in real-life applications, comparing
simulation with real-time performance, is suggested for future work. This
paper highlights the effectiveness of GA optimization in achieving better

PID controller performance compared to classical tuning methods.

The [13] presents a speed controller for a DC motor using PID parameters
optimized through Genetic Algorithm (GA). Despite its widespread use in
various applications, DC motors exhibit nonlinear behavior, necessitating
effective control strategies. The study compares optimization techniques
such as GA with traditional tuning methods for PID controllers. Results
demonstrate the superiority of GA-based optimization in achieving
improved performance metrics such as minimal rise time, settling time,
overshoot, and steady-state error. The utilization of GA vyields enhanced
performance compared to conventional PID controllers, highlighting the
effectiveness of evolutionary algorithms in tuning control parameters for DC

motor speed control.
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Chapter Three

3.1 Dc motor

DC motors are actuators that produce angular rotation when supplied with
electrical energy. They have significant importance in various electrical
systems employed in domestic and industrial applications such as electrical
vehicles, industrial mills and cranes, robots, and multiple home appliances.
This importance is due to their advantageous characteristics like precision,
convenience, and continuous control. In order to drive the DC motor at

appropriate speed or torque.
3.1.1 Modelling of Separately Excited D.C Motor

To realize the D.C Motor drive as a control system transfer function,
following steps to be done in MATLAB:

First step is to characterize the equivalent DC motor circuit diagram. Then
step 2 is to characterize system equations from the circuit diagram.
Subsequently, step 3 is to derive transfer function from derived system
equations. After that Step 4 is the Realization of the equivalent block
diagram of system drive. Finally, in step 5 .m file is created for model

simulation and to analyze the results.

3.1.2 DC Motor Equivalent Circuit

13



To execute the simulation of separately excited DC motor drive,the
equivalent circuit diagram of motor’s mechanical part and electrical portion
must be obtained first as shown in Fig.1. Here left model represents the
armature circuit of D.C motor and right model represents the field circuit
which is separately excited. Field excitation parameters are assumed to be
fixed as it is separately excited. Therefore, to make this model simple to
study and execute, here field excitation parameters of motor are not taken

into account while analyzing the simulation model of motor.

<«—O+

Figure 3.1 Equivalent DC Motor circuit.

In the current research methodology, D.C motor model is modeled in which
the rotor is assumed to be a single coil having equivalent inductance
expressed as La and equivalent resistance as Ra, therefore representing
generated back E.M.F represented as eb. In separately excited dc motor, flux
remains constant. The electrical model of separately excited D.C Motor are

described by following dynamic equations:

dia
ea=eb+ ia.RaLa.W (1)

14



The analogy between generated torque Tm and armature current ia is given

by following equation:

Tm=Km.ia (2)

The relation between generated back E.M.F eb and the angular speed is

given by the following equation:

eb=Kb. w (3)

from equation (1) and (3), we get:

ea=Kb. w+ iaRaLa% (4)

The equivalent dynamic equation for mechanical system of motor is as

follows:

Tm=Kmia =] 2"+ Kfw+Td (5)

3.1.3 Model Block Diagram

Using Laplace transformation technique for equation (4) and (5), following

equations are derived:

ea(s) = Kb. w(s) + ia(s). Ra + La(s). ia (6)

and subsequently

Tm(s) = Km. ia(s) = J. w(s) + Kf. w(s) + Td(s) (7)

Therefore, from equation (7), armature current is expressed as:

ia(s) = [ea(s) — Kb.w(s)]/[Ra + La(s)] (8)

15



and from equation (8), output speed is represented:

w(s) = [Tm —Td(s)]/[J + Kf]

Where,

ea = Armature Voltage (V)

La = Armature Inductance (H)

la = Armature Current (A)

Ra = Armature Resistance (ohm)

J = Mechanical Inertia (kg-m2)

eb = Back EMF (V)

Kf = Friction Coefficient (N-m/ rad/ sec)
Td = Torque Disturbance (N-m)

Km = Motor Torque Constant (N-m/ rad)

w = Angular Speed (rad/sec)

Kb = Back EMF Constant (V/rad/sec)

Tm = Mechanical Torque Developed (N-m)
The block diagram developed from previously stated

equivalent circuit equations is as shown in Fig.( 3.2)

16
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Figure 2.2 Block Diagram of DC Motor.

Control system closed loop system shown in Fig. 3.2 has the mechanical
system Laplace function and electrical system Laplace function stated
separately. They are further combined to realize the output motor speed (w)
and from which we can estimate the position of rotor. From this transfer
function we can also study about output armature current of motor. Transfer
thus obtained is of second order system. Then to control this control system,
P.1.D. controller used in forward path From motor equivalent equations and
by using specific standard values of parameters, D.C motor model is
realized. The D.C motor parameters used in this research paper are defined

in equation (10).

Kf =.018,
Km=Kb=14,
Ra = 2 ohms,

La=16.2 mH

17



J=0.117 KgM2,
Va = 220 volts,
Td =1 N-m,

Thus, the final of transform function is shown in equation (10).

1.4

W= (10)
$3(0.001895) + 0.23495 + 1.996

By equation (10) the expression of rotor position of motor is also calculated.
Analyzing the position of rotor of D.C Motor is also a very keen aspect and

difficult because the transfer function of position is of third order control
system. Position of rotor is expressed as © expressed and its transfer

function is expressed in equation (11).

$3(0.001895)+ 0.2349s2+ 1.996s

Thus, this paper uses the transfer function of rotor position of motor as its
plant function and to this PID controller is attached to control the position of

motor.
3.2 Optimization algorithm
3.2.1 Equilibrium Optimization (EO):

This section presents the inspiration, mathematical model, and algorithm of
the Equilibrium Optimizer (EO).

18



3.2.1.1 Inspiration:

The inspiration for the EO approach is a simple well-mixed dynamic mass
balance on a control volume, in which a mass balance equation is used to
describe the concentration of a nonreactive constituent in a control volume
as a function of its various source and sink mechanisms. The mass balance
equation provides the underlying physics for the conservation of mass
entering, leaving, and generated in a control volume. A first-order ordinary
differential equation expressing the generic mass-balance equation [14], in
which the change in mass in time is equal to the amount of mass that enters
the system plus the amount being generated inside minus the amount that
leaves the system, is described as:

dc
Vr=QCeq—QC+G (12)

C is the concentration inside the control volume (V), V % is the rate of

change of mass in the control volume, Q is the volumetric flow rate into and
out of the control volume, Ceq represents the concentration at an equilibrium

state in which there is no generation inside the control volume, and G is the
mass generation rate inside the control volume. When V % reaches to zero, a
steady equilibrium state is reached. A rearrangement of Eq. (12) allows to

d . .
solve for d—i as a function of % ; where % represents the inverse of the

residence time, referred to here as A, or the turnover rate (i.e., A :% ).

Subsequently, Eqg.(12)can also be rearranged to solve for the concentration

in the control volume (C) as a function of time (t):

19



dc _d
c=dt (13)

ACeq—AC+V

Eq. (13) shows the integration of Eq. (12) over time:

[« dc t
f c= dt (14)
CO)\Ceq—AC+V to

This results in:

G

In the Eq. (15), F is calculated as follows:

F =exp [\ (t— t0)] (16)

where ty and C, are the initial start time and concentration, dependent on the
integration interval. Eq. (4) can be used to either estimate the concentration
in the control volume with a known turnover rate or to calculate the average
turnover rate using a simple linear regression with a known generation rate
and other conditions.

EO is designed in this sub-section using the above equations as the overall
framework. In EO, a particle is analogous to a solution and a concentration
is analogous to a particle’s position in the PSO algorithm. As Eq. (4) shows,
there are three terms presenting the updating rules for a particle, and each
particle updates its concentration via three separate terms. The first term is
the equilibrium concentration, defined as one of the best-so-far solutions
randomly selected from a pool, called the equilibrium pool. The second term

Is associated with a concentration difference between a particle and the

20



equilibrium state, which acts as a direct search mechanism. This term
encourages particles to globally search the domain, acting as explorers. The
third term is associated with the generation rate, which mostly plays the role
of an exploiter, or solution refiner, particularly with small steps, although it
sometimes contributes as an explorer as well. Each term and the way they

affect the search pattern is defined in the following.

3.2.1.2 Initialization and function evaluation:

Similar to most meta-heuristic algorithms, EO uses the initial population to
start the optimization process. The initial concentrations are constructed
based on the number of particles and dimensions with uniform random

initialization in the search space as follows:

C initiali = C min + randi (Crmax — Cmin) i=1,2,....n (17)

C initial i is the initial concentration vector of the ith particle, Cmin and
Cmax denote the minimum and maximum values for the dimensions, Rand i
is a random vector in the interval of [0, 1], and n is the number of particles
as the population. Particles are evaluated for their fitness function and then

are sorted to determine the equilibrium candidates.

3.2.1.3 Equilibrium pool and candidates (Ceq) :

The equilibrium state is the final convergence state of the algorithm, which
Is desired to be the global optimum. At the beginning of the optimization
process, there is no knowledge about the equilibrium state and only
equilibrium candidates are determined to provide a search pattern for the

particles. Based on different experiments under different type of case
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problems, these candidates are the four best-so-far particles identified during
the whole optimization process plus another particle, whose concentration is
the arithmetic mean of the mentioned four particles. These four candidates
help EO to have a better exploration capability, while the average helps in
exploitation. The number of candidates is arbitrary and based on type of the
optimization problem. One might use other numbers of candidates (e.g. 14
or 16). which is consistent with the literature [14]. For example, GWO uses
three best-so-far candidates (alpha, beta, and gamma wolves) to update the
positions of the other wolves. However, using less than four candidates
degrades the performance of the method in multimodal and composition
functions but will improve the results in unimodal functions. More than four
candidates will have the opposite effect. These five particles are nominated
as equilibrium candidates and are used to construct a vector called the

equilibrium pool:

C” eq,pool ={ C” eq(1), C” eq(2), C” eq(3), C” eq(4), C” eq(ave) } (18)

Each particle in each iteration updates its concentration with random
selection among candidates chosen with the same probability. For instance,
in the first iteration, the first particle updates all of its concentrations based
on "Ceq(1); then, in the second iteration, it may update its concentrations
based on “Ceq(ave). Until the end of the optimization process, each particle
will experience the updating process with all of the candidate solutions
receive approximately the same number of updates for each particle.
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3.2.1.4. Exponential term (F)

The next term contributing to the main concentration updating rule is the
exponential term (F ). An accurate definition of this term will assist EO in
having a reasonable balance between exploration and exploitation. Since the
turnover rate can vary with time in a real control volume, A is assumed to be

a random vector in the interval of [0, 1].

F=e—A"(t—t0) (19)

where time, t, is defined as a function of iteration (Iter) and thus decreases

with the number of iterations:

F=e—\"(t—t0) (20)

t=(1 — ———) @ (Iter ) /(Max_iter )) (21)
AXiter

where Iter and Max_iter present the current and the maximum number of

iterations, respectively, and a2 is a constant value used to manage

exploitation ability. In order to guarantee convergence by slowing down the

search speed along with improving the exploration and exploitation ability

of the algorithm, this study also considers:

"o 2% In(—alsign ("r—0.5)[1—e 2t ]) +t (22)

where al is a constant value that controls exploration ability. The higher the
al, the better the exploration ability and consequently the lower exploitation
performance. Similarly, the higher the a2, the better the exploitation ability

and the lower the exploration ability. The third component, sign (r — 0.5),
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effects on the direction of exploration and exploitation. r is a random vector
between 0 and 1. For all of the problems subsequently solved in this paper,
al and a2 are equal to 2 and 1, respectively. These constants are selected
through empirical testing of a subset of test functions. However, these
parameters can be tuned for other problems as needed. Eq. (23) shows the
revised version of Eq. (20) with the substitution of Eq. (22) into Eq. (20):

F>=alsign (r-05)[e*t —1] (23)
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Figure 3.3 presentation of concentrations updating aid in exploration and exploitation.

3.2.1.4. Generation rate (G):

The generation rate is one of the most important terms in the proposed
algorithm to provide the exact solution by improving the exploitation phase.
In many engineering applications, there are many models that can be used to

express the generation rate as a function of time [15]. For example, one
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multipurpose model that describes generation rates as a first order

exponential decay process is defined as:

G = Goe_k#(t_to) (24)

where GO is the initial value and k indicates a decay constant. In order to
have a more controlled and systematic search pattern and to limit the number
of random variables, this study assumes k = A and uses the previously

derived exponential term. Thus, the final set of generation rate equations are

as follows:
G= G e At =G oF (25)
where:
Go= GCP (Ceq—AC) (27)
GCP= {8'5'“ :;i gg (28)

where r; and r, are random numbers in [0, 1] and GCP vector is constructed
by the repetition of the same value resulted from Eq. (28). In this equation,
GCP is defined as the Generation rate Control Parameter, which includes the
possibility of generation term’s contribution to the updating process. The
probability of this contribution which specifies how many particles use
generation term to update their states is determined by another term called

Generation Probability (GP). The mechanism of this contribution is

25



determined by Eqgs. (27) and (28). Eq. (28) occurs at the level of each
particle. For example, if GCP is zero, G is equal to zero and all the
dimensions of that specific particle are updated without a generation rate
term. A good balance between exploration and exploitation is achieved with

GP = 0.5. Finally, the updating rule of EO will be as follows:

C=Ceqt(C—Ceq) F+ == (1-F) (29)

where F is defined in Eq. (22), and V is considered as unit. The first term in
Eqg. (27) is an equilibrium concentration, where the second and third terms
represent the variations in concentration. The second term is responsible for
globally searching the space to find an optimum point. This term contributes
more to exploration, thereby taking advantage of large variations in
concentration (i.e., a direct difference between an equilibrium and a sample
particle). As it finds a point, the third term contributes to making the solution
more accurate. This term thus contributes more to exploitation and benefits
from small variations in concentration, which are governed by the generation
rate term (Eq. (24)). Depending on parameters such as the concentrations of
particles and equilibrium candidates, as well as the turnover rate (), the
second and third terms might have the same or opposite signs. The same
sign makes the variation large, which helps to better search the full domain,
and the opposite sign makes the variation small, aiding in local searches.
Although the second term attempts to find solutions relatively far from
equilibrium candidates and the third term attempts to refine the solutions
closer to the candidates, this is not always happening. Small turnover rates

(e.g., <0.05) in the denominator of the third term increase its variation and
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helps the exploration in some dimensions as well. Fig. 3.2 demonstrates a 1-
D version of how these terms contribute to exploration and exploitation.

C,; — Ceq is representative of the second term in Eq. (27) while Ceq—AC1
represents the third term (G is the function of G,). The generation rate terms
(Egs. (24)—(25)) control these variations. Because A changes with each
dimension’s change, this large variation only happens to those dimensions
with small values of A. It is worth mentioning that this feature works similar
to a mutation operator in evolutionary algorithms and greatly helps EO to
exploit the solutions. Fig. 3.3 shows a conceptual sketch of the collaboration
of all equilibrium candidates on a sample particle and how they affect
concentration updating, one after another, in the proposed algorithm. Since
the topological positions of equilibrium candidates are diverse in initial
iterations, and the exponential term generates large random numbers, this
step by step updating process helps the particles to cover the entire domain
in their search. An opposite scenario happens in the last iterations, when the
candidates surround the optimum point by similar configurations. At these
times, the exponential term generates small random numbers, which helps in
refining the solutions by providing smaller step sizes. This concept can also
be extended to higher dimensions as a hyperspace whereby the concentration

will be updated with the particle’s movement in n-dimensional space.
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Figure 3.4 Equilibrium candidates’ collaboration in updating a particles’ concentration in

2D dimensions.

3.2.1.5 Particle’s memory saving

Adding memory saving procedures assists each particle in keeping track of
its coordinates in the space, which also informs its fitness value. This
mechanism resembles the pbest concept in PSO. The fitness value of each
particle in the current iteration is compared to that of the previous iteration
and will be overwritten if it achieves a better fit. This mechanism aids in
exploitation capability but can increase the chance of getting trapped in local

minima if the method does not benefit from global exploration ability [16].

3.2.2 The Whale Optimization Algorithm

In this section the inspiration of the proposed method is first discussed.
Then, the mathematical model is provided.

3.2.2.1 Inspiration

Whales are fancy creatures. They are considered as the biggest mammals in
the world. An adult whale can grow up to 30 m long and 180 t weight. There
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are 7 different main species of this giant mammal such killer, Minke, Sei,
humpback, right, finback, and blue. Whales are mostly considered as
predators. They never sleep because they have to breathe from the surface of
oceans. In fact, half of the brain only sleeps. The interesting thing about the
whales is that they are considered as highly intelligent animals with emotion.
According to Hof and Van Der Gucht [17], whales have common cells in
certain areas of their brains similar to those of human called spindle cells.
These cells are responsible for judgment emotions and social behaviors in
humans. In other words the spindle cells make us distinct from other
creatures. Whales have twice number of these cells than an adult human
which is the main cause of their smartness. It has been proven that whale can
think, learn judge communicate, and become even emotional as a human
does, but obviously with a much lower level of smartness. It has been
observed that whales (mostly killer whales) are able to develop their own
dialect as well. Another interesting point is the social behavior of whales.
They live alone or in groups. However, they are mostly observed in groups.
Some of their species (killer whales for instance) can live in a family over
their entire life period. One of the biggest baleen whales is humpback whales
(Megaptera novaeangliae). An adult humpback whale is almost as size of a
school bus Their favorite prey are krill and small fish herds. Fig. 3.5 shows

this mammal.
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Fig. 3.5. Bubble-net feeding behavior of humpback whales
3.2.2.2 Mathematical model and optimization algorithm

In this section the mathematical model of encircling prey, spiral bubble-net
feeding maneuver, and search for prey is first provided. The WOA algorithm

IS then proposed.

3.2.2.2.1 Encircling prey

Humpback whales can recognize the location of prey and encircle them.
Since the position of the optimal design in the search space is not known a
priori, the WOA algorithm assumes that the current best candidate solution
is the target prey or is close to the optimum. After the best search agent is
defined, the other search agents will hence try to update their positions
towards the best search agent. This behavior is represented by the

following equations:

D' =) -] (30)
#t+1) =|x"(t)-A.D]| (31)
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where t indicates the current iteration, A and C are coefficient vectors, X* is
the position vector of the best solution obtained so far, X is the position
vector, | | is the absolute value, and - is an element-by-element
multiplication. It is worth mentioning here that x* should be updated in each
iteration if there is a better solution. The vectors A and C are calculated as

follows:

A=2a7-a (32)
C=2.7 (33)
where a is linearly decreased from 2 to O over the course of iterations (in

both exploration and exploitation phases) and r is a random vector in [0,1].
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Fig. 3.6 . 2D and 3D position vectors and their possible next locations ( X*is
the best solution obtained so far)
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Fig. 3.7. Bubble-net search mechanism implemented in WOA (X* is the
best solution obtained so far): (a) shrinking encircling mechanism and (b)
spiral updating position

Fig. 3.7(a) illustrates the rationale behind Eq. (30) for a 2D problem. The
position (X,Y) of a search agent can be updated according to the position of
the current best record ( x*, v*). Different places around the best agent can be
achieved with respect to the current position by adjusting the value of A and
C vectors. The possible updating position of a search agent in 3D space is
also depicted in Fig. 3.7(b). It should be noted that by defining the random
vector (r) it is possible to reach any position in the search space located
between the key-points shown in Fig. 3.7 Therefore, Eqg. (30) allows any
search agent to update its position in the neighborhood of the current best
solution and simulates encircling the prey. The same concept can be
extended to a search space with n dimensions, and the search agents will
move in hyper-cubes around the best solution obtained so far. As mentioned
in the previous section, the humpback whales also attack the prey with the

bubble-net strategy. This method is mathematically formulated as follows:
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3.2.2.2.2 Bubble-net attacking method (exploitation phase)

In order to mathematically model the bubble-net behavior of humpback

whales, two approaches are designed as follows:

Shrinking encircling mechanism: This behavior is achieved by decreasing
the value of a in the Eqg. (31). Note that the fluctuation range of A is also
decreased by a. In other words A is random value in the interval [—a,a]
where a is decreased from 2 to O over the course of iterations. Setting
random values for A in [—1,1], the new position of a search agent can be
defined anywhere in between the original position of the agent and the
position of the current best agent. Fig. 3.7(a) shows the possible positions
from (X,Y) towards ( x*, v*). that can be achieved by 0< A <1 in a 2D

space.

Spiral updating position: As can be seen in Fig. 4(b), this approach first
calculates the distance between the whale located at (X,Y) and prey located
at ( x*, v*). A spiral equation is then created between the position of whale

and prey to mimic the helix-shaped movement of humpback whales as

follows:
(t+1) = D.eb cos(2ml) + x*(t) (34)
D' = [x*(t) — Z(0)] (35)

and indicates the distance of the it whale to the prey (best solution obtained
so far), b is a constant for defining the shape of the logarithmic spiral, | is a

random number in [—1,1], and . is an element-by-element multiplication.
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Note that humpback whales swim around the prey within a shrinking circle
and along a spiral-shaped path simultaneously. To model this simultaneous
behavior, we assume that there is a probability of 50% to choose between
either the shrinking encircling mechanism or the spiral model to update the
position of whales during optimization. The mathematical model is as
follows:

x*(t) —A.D , if p<05

D'.eP . cos(2ml) + x*(t), ifp=0.5

f(t+1)={

where p is a random number in [0,1]. In addition to the bubble-net method,
the humpback whales search for prey randomly. The mathematical model of

the search is as follows.

3.2.2.2.3 Search for prey (exploration phase)

The same approach based on the variation of the A vector can be utilized to
search for prey (exploration). In fact, humpback whales search randomly

according to the position of each other.

Therefore, we use A with the random values greater than 1 or less than —1 to
force search agent to move far away from a reference whale. In contrast to
the exploitation phase, we update the position of a search agent in the
exploration phase according to a randomly chosen search agent instead of
the best search agent found so far. This mechanism and |A| > 1 emphasize
exploration and allow the WOA algorithm to perform a global search. The

mathematical model is as follows:

5 = |5 Xrand _)_()|
R - 55 (37)
X(t+1) = Xpgnqg —A.D
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Fig. 3.8. Exploration mechanism implemented in WOA (X* is a randomly chosen search
agent)
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Chapter Four

RESULTS AND DISCUSSIONS

A set of better PID controller parameters can provide great response which
results in the time domain minimizing performance criteria. Such efficiency
requirements include minimizing overshoot, rise time, setting time, and
steady state error. The proposed PID controller uses a EO and WOA
algorithms to identify optimum system parameters for the DC Motor. The
most important step in applying proposed algorithms in the control system is
to select the cost function, which is utilized to evaluate the fitness of each
Crow agent (Kp, Ki, Kd). Furthermore, in this work, the proposed cost
function depends on different performance indicators to explain clearly how
parameters are utilized to highlight how parameters should be addressed in
the selection. The system output is also represented by four indices-
controlled system: ITAE. These performance indices presented by equations

(38) will be used as a part of the cost function as:

(o]

ITAE = j tle(t)| dt (38)
0

The EO-PID and WOA-PID optimizations aim is to achieve a set of PID
parameters so that the closed-loop control system has a minimum
performance indices. The EO-PID and WOA-PID controller system is
implemented using the MATLAB code, which is connected to the Simulink
model created. The proposed methodology implements by Intel ® Core TM
i7-4700HQ, 2. 4 GHz 16 GB RAM, using the MATLAB framework. The

global and specific parameter settings are summarized in Table 1
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Table 1 Setting of parameters

Elements Value
Search Parameter Number 3
Population size 50
Iteration number 100
Search domain [0,100]

The Fig.(4.1) illustrates the implementation of a PID controller interfaced
with the transfer function of a DC motor within a Simulink circuit in
MATLAB. This setup allows for the simulation and analysis of the motor's
speed control system under the influence of the PID controller. The PID
controller is designed to adjust its output based on the error between a
desired setpoint and the system's current state, which in this case is the speed
of the DC motor. The controller's output then influences the motor's input

voltage, effectively controlling its speed.

The transfer function of the DC motor encapsulates the motor's dynamic
behavior, representing the relationship between the motor's input voltage and
its speed. By connecting the PID controller to the motor's transfer function
within the Simulink environment, the overall system's response to various

inputs and controller configurations can be simulated and analyzed.
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Fig.(4.1) PID-Controlled DC Motor System: Simulink Circuit with Transfer Function.

Table 2 shows the gained PID controller parameters for both metaheuristics-
based techniques such as the different versions of proposed EO-PID and
WOA-PID controller. In the context of controlling the speed of a DC motor
system, a comparative analysis was undertaken between the Proportional-
Integral-Derivative (PID) controller enhanced with Whale Optimization
Algorithm (WOA) and the Equilibrium Optimization Proportional-Integral-
Derivative (EO-PID) controller. As shown in Table 3 the PID-WOA
controller demonstrated superior performance in terms of step response
criteria. Specifically, the PID-WOA exhibited a minimized overshoot,
reduced settling time, shorter rise time, and optimal peak value. These
attributes collectively indicate that the PID-WOA controller effectively and
rapidly stabilized the motor speed while minimizing overshoot and

oscillations.

However, when considering the steady-state error, the EO-PID controller
outperformed the PID-WOA. The Integral of Time multiplied by Absolute

Error (ITAE) criterion, a common measure of steady-state error, was smaller
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for the EO-PID controller. This suggests that the EO-PID controller was
more effective in eliminating long-term drift and achieving a stable output at

steady state.

Interestingly, the value of the derivative gain Kd was determined to be zero
in this scenario as shown in Table 2. This implies that a Proportional-
Integral (PI) controller could suffice for this system, as the derivative term
does not contribute to the system's performance. The elimination of the
derivative control could simplify the controller while maintaining
satisfactory performance. However, this also indicates that the system does
not require a high-frequency noise filter, which is often provided by the

derivative term.

Therefore, the choice between the PID-WOA and EO-PID controllers, or
even a simpler Pl controller, would depend on the specific requirements of
the system, such as whether rapid response, steady-state precision, or

simplicity and robustness is prioritized.

Table 2. The values of Adjust PID parameters

Methods Kp Ki Kad
PID_WOA rrae 10.8973413 96.8765 0
PID_EO i1ae 10.8956614 99.9812 0

Table 3. Step response values for PID controllers.

Settling Rise Peak value ITAE
Time (sec) | Time(sec)

PID.WOA | 593386 | 00657 |00219 |1.0694 | 30638«

Methods Overshoot

ITAE 10~%
PID EO 2.6430+
PID_ 7.3154 0.0669 0.0218 1.0732 0t
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The figure (4.2) illustrates the system response of the Whale Optimization
Algorithm-enhanced Proportional-Integral-Derivative (WOA-PID)
controller in comparison with the reference speed and the Equilibrium
Optimization Proportional-Integral-Derivative (EO-PID) controller. This
comparison provides valuable insights into the performance of the WOA-
PID controller in regulating the speed of the system, particularly in relation
to the reference speed and the EO-PID controller.

EO-PID
WOA-PID
Desired Speed |

111

1.05 |

Speed

0.95

09

0.85 -

1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3
Time (sec)

Fig.(4.2) Comparison for step responses of DC motor speed control systems.

Additionally, figure (4.3) showcases the convergence curve of both the
WOA-PID and EO-PID algorithms. This convergence curve offers a visual
representation of the algorithms' convergence behavior, shedding light on

their respective abilities to reach an optimal solution over the course of
iterations.
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These figures collectively contribute to a comprehensive understanding of

the comparative performance and convergence characteristics of the WOA-

PID and EO-PID controllers in regulating the system's speed, providing

valuable insights for further analysis and optimization of the control system.

ITAE

10—3 L
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Fig.(4.3) The convergence curve of EO and WOA algorithms.
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Chapter Five

Conclusion And Future Work

DC motor control is a very interesting field due to the rapid development of
control methods. Weak parameter adjustment will result in dc motor
performance. This study, reveals the effectiveness of the PID-WOA
controller in minimizing overshoot, settling time, rise time, and peak value
in controlling the speed of a DC motor system. However, the EO-PID
controller exhibits superior performance in addressing steady-state error as
measured by the ITAE criterion. This underscores the significance of
considering multiple performance metrics when evaluating control

strategies.

Future research could focus on optimizing a hybrid control strategy that
leverages the strengths of both PID-WOA and EO-PID controllers to
achieve comprehensive performance improvements across various metrics.
Additionally, exploring the applicability of these controllers in real-time
systems and investigating their robustness under varying operating

conditions would be valuable areas for further exploration.
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