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ABSTRACT 

    The importance of the study on advanced fault detection, and localization in 

transmission lines is to enhance the accuracy and efficiency of fault detection and 

localization in power transmission systems. The study aims to take advantage of 

advanced technologies such as adaptive neuro-fuzzy inference systems (ANFIS), 

neural networks, and hybrid methods to improve fault detection and its localization 

in transmission lines, where the work was compared using a model based on 

artificial neural networks (ANN), and the proposed system was preferred. The 

study emphasizes the benefits of ANFIS compared to alternative approaches, such 

as its ability to manage uncertainties and non-linear systems and the possibility of 

its integration with other preventive migration strategies for using power networks.  

Subsequent studies focus on improving the accuracy and reliability of the model 

used. This study shows the implementation of ANFIS technology for the automatic 

identification and localization of fault disturbances in transmission lines using data 

measured from a single transmission line station. The goal of designing and 

implementing this technology is high-speed processing that can provide fault 

detection and localization in real-time. It has been proposed to use the approach to 

identify faults and locations for digital distance protection systems in addition to 

detecting all shunt faults. Where a transmission line with a voltage capacity of 400 

kV was used, with a distance of 200 km, connecting from Maysan Governorate to 

Wasit Governorate. The ten different forms of switching errors that may occur in a 

transmission line have been carefully identified by the stage(s) involved using the 

proposed technique. Different field data sets have been used to train and test the 

system of the used techniques. Using computer programs built on the Matlab 

platform, field data are extracted from simulations of faults at different locations 

along the transmission line. This study addresses a variety of fault scenarios, 
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including fault types, fault locations, and fault resistance. Measurement of the 

phase current and voltage available at the relay position based on the RMS values 

are the inputs of the ANFISs. When it comes to fault detection and fault type, the 

used technique outputs are either 1 or 0. The results of the simulation process show 

that the speed and selectivity of the approach are very reliable for the ANFIS as 

compared with ANN. The results of fault detection for a transmission line length of 

20 km in ANFIS is (19.99821) km , whereas for an ANN transmission line of the 

same length is (19.0988) km. This clearly shows that ANFIS is more accurate and 

faster than ANN. Testing and comparison of two techniques models in defect 

identification and localization show that ANFIS outperforms ANN in terms of 

prediction accuracy, consistency of outcomes, and training duration. But still 

provide sufficient performance for applications involving transmission and 

distribution monitoring, control, and protection. Performance for applications 

including monitoring, control, transmission, and distribution protection. 
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  CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 

      For electrical power systems to remain highly reliable and to guarantee service 

continuity, power transmission lines' efficiency and dependability are essential. 

However, some causes, including aged equipment, the environment, and human 

mistakes, can cause transmission line failures, which can result in serious financial 

losses and disruptions to the provision of power[1].  

     To guarantee the dependability and effectiveness of electricity transmission lines, 

fault localization and detection are crucial processes. Conventional techniques for 

localizing and detecting faults depend on manual testing and inspection, which can be 

labor-intensive, time-consuming, and prone to human mistakes[2].  

    More sophisticated methods for defect localization and detection have been developed 

as a result of recent developments in machine learning and artificial intelligence. A 

method like this is called Adaptive Neuro-Fuzzy Inference. system (ANFIS), which 

offers a reliable and flexible method for defect localization and detection by fusing the 

advantages of fuzzy logic and artificial neural networks[3].  

   The purpose of this thesis is to look at the use of ANFIS methods for power 

transmission line fault detection. The goals of this research are to build an ANFIS model 

to identify power transmission line faults. Analyze the ANFIS model's performance with 

both simulated and actual data. Examine how well the ANFIS model performs in 

comparison to more conventional approaches for fault localization and detection. 

Examine the possibilities of ANFIS methods for localizing and detecting faults in real-

time. The suggested ANFIS model will be assessed using performance metrics like 



CHAPTER ONE                                                                                 INTRODUCTION 

 

2 
 

accuracy, consistency, and recall after being trained on a dataset of simulated and real 

data. accuracy as well as memory.  

     The findings of this study will help to develop more dependable and effective 

strategies for guaranteeing service continuity and upholding high-reliability levels in 

electrical power systems. They will also shed light on the potential of ANFIS techniques 

for fault detection and localization in power transmission lines. The ANN network was 

constructed by the study to compare the ANFIS and ANN findings. Although they are 

both effective techniques for localizing and detecting faults, ANN and ANFIS have 

distinct advantages and disadvantages. While ANN is more adept at identifying patterns 

and generating forecasts based on past data, ANFIS is more trustworthy at forecasting 

efficiency and can handle language input factors. The particular requirements of the 

application determine which of the ANFIS, ANN, in brief, Fault detection and 

localization are crucial aspects of power system protection, ensuring the reliable and 

efficient operation of electrical grids.  

    The primary objectives are to quickly identify the occurrence of a fault and precisely 

pinpoint its location along the transmission or distribution lines. This enables prompt 

isolation of the faulty section, restoration of the power supply, and minimization of 

customer impact. 

 

 

1.2 Problem Statement 

    Fault detection and localization in power systems are critical for maintaining the 

reliability and stability of electrical networks. The primary problem is to quickly and 

accurately identify the occurrence of faults, such as short circuits or open circuits, and to 

determine their precise location along transmission or distribution lines. This is essential 
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for minimizing downtime, ensuring safety, and reducing economic losses associated 

with power outages.  

    The suggested approach uses an adaptive network-based fuzzy inference system to 

locate transmission line faults. This innovative technology provides precise fault 

location in real-time, overcoming the drawbacks of conventional techniques. The 

technique uses MATLAB to extract fault signatures from phase current and voltage 

values, stores the data in a file, and trains ANFIS to locate faults accurately. Simulation 

results are used to assess the performance of the suggested ANFIS-based approach, 

showing its efficacy in real-time fault detection, and accurate fault location estimate in 

transmission lines. The requirement for an accurate and effective way to locate and 

detect faults in transmission lines is the study challenge for the publication "Fault 

Detection and Localization in Transmission Lines Using Adaptive Neural Fuzzy 

Inference System". ANFIS can achieve high accuracy in fault detection and localization, 

often with low error percentages. This reliability is crucial for maintaining the stability 

and security of power systems. 

 

 

1.3 The Research Objectives 

The following are the study's research goals regarding enhanced fault localization and 

detection in transmission lines: 

 Develop ANN and ANFIS models that achieve high accuracy and precision in 

detecting and localizing three-phase to-ground faults in transmission lines. This 

includes minimizing faults and ensuring reliable identification of faults. 
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 Develop methodologies for accurately determining the location of faults along 

the transmission line using voltage and current measurements from different 

points in the system. 

 Utilize MATLAB and Simulink to simulate fault conditions and validate the 

performance of the Artificial Neural Networks (ANN) and Adaptive Neuro-

Fuzzy Inference Systems ( ANFIS)  models. This includes generating synthetic 

fault data for training and testing the models 

 Assess the performance of the developed models based on metrics such as 

detection speed, accuracy, and robustness against various faults. 

 State the main differences in the training algorithms used by Artificial Neural 

Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and the 

accuracy of each method. 

 

 

  

1.4 Aim of the study 

       Using adaptive neuro-fuzzy inference system (ANFIS) methodologies, the project 

aims to design an intelligent fault detection and localization system for power 

transmission lines. The purpose of the study is to evaluate ANFIS's performance in 

terms of fault identification, localization, and localization in transmission lines in 

comparison to other machine learning algorithms, including neural networks and hybrid 

techniques. By putting the suggested method to the testing data transmission lines and 

contrasting its results with those of other approaches now in use, the study also seeks to 

show how effective it is.  

    The project is to aid in the creation of a different, highly accurate, and high-

performing method for fault diagnostics in transmission lines. The project also seeks to 
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locate and precisely diagnose defects to increase power systems' reliability in 

transmission lines, which can enhance power system stability and help avoid false trips. 

 

 

1.5 Contribution  of study 

     The application of ANFIS and ANN  for fault detection and localization in power 

systems marks a significant contribution to the field of electrical engineering in Misan 

City by employing this technique in the 400 Kv transmission line between  Misan and 

Kut 200 Km (south-west networks).ANFIS provides a robust framework for accurately 

detecting and localizing faults in transmission lines. By integrating fuzzy logic with 

neural networks, ANFIS can effectively process imprecise and uncertain data, which is 

critical in real-world power system scenarios. 

     The effectiveness of ANFIS has been validated through simulations using software 

like MATLAB and Simulink. By simulating various fault scenarios, train ANFIS models 

on diverse field data, ensuring that the system is well-equipped to handle real-world 

conditions and achieve very low error percentages in fault detection and localization, 

demonstrating its reliability. This high level of accuracy is crucial for maintaining the 

stability and security of power systems. 

 

 

1.6 Outline of  study 

The following steps are commonly involved in the outline of this study  of employing 

ANFIS for fault detection and localization in transmission lines: 

 Chapter one: this chapter discusses the problem of the thesis the objectives of the 

research and how to deal with this problem using the technology of (Adaptive 
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Neuro-Fuzzy Inference System) ANFIS technology used first time in Misan –-Kut 

station. the background and requirement for ANFIS in fault localization and 

detection stem from the need to improve the efficiency and accuracy of fault 

detection in a variety of systems, especially electrical networks and power 

transmission lines. 

 

 Chapter two: Includes the studies that provide valuable insights into the 

application of ANFIS in fault detection and localization, showcasing its 

effectiveness in improving fault diagnosis accuracy, classification, and 

localization in power transmission systems. 

 

 

 Chapter Three:  The first part of this chapter is The research technique, the 

modeling for the network, data analysis, and result interpretation presented in 

these sections of Chapter Three of a thesis are essential to gaining a thorough 

knowledge of the study's findings and their implications. Explain the methods and 

resources for data analysis that were utilized to evaluate the gathered information. 

Outlines the analysis's findings and talks about their ramifications. Incorporates 

figures, tables, and other visual aids to bolster the conclusions. the second part is 

this chapter is to build an ANN network and train the data used in ANFIS.  Using 

the testing program in Matlab to compare the results between the two techniques. 

 

 Chapter four: summarizes the study's conclusions based on the data analysis that 

was done. Contains graphs, tables, and figures to help visually represent the 

results. Gives a thorough explanation of the findings concerning the study topics. 
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 Chapter Five: explains the main conclusions and how important they are for 

answering the study questions. Summarizes the study's key findings and how they 

relate to the topic of study. provides suggestions for more research based on the 

findings of the study. Offers recommendations for useful uses or additional 

research based on the study's conclusions. Provides advice on how to apply the 

research's findings in practical situations. Identifies areas in the discipline that 

require further research or improvement. Makes recommendations for how to 

expand on the results of the current study in future research. 
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CHAPTER TWO 

THEORETICAL BACKGROUND 

2.1 INTRODUCTION 

Faults in power systems refer to abnormal conditions that disrupt the normal 

operation of electrical equipment, leading to potential damage, safety hazards, and 

service interruptions. These faults can arise from various causes, including 

insulation failures, physical damage, environmental factors, and human errors. 

Understanding the nature and types of faults is crucial for effective power system 

design, operation, and protection[4]. Faults in power systems can be categorized 

into several types, symmetrical Faults These involve all three phases equally and 

are relatively rare but can cause significant damage. An example is a three-phase 

short circuit. Asymmetrical Faults: These involve one or two phases and are more 

common. Types include Single Line-to-Ground Fault ( SLG) Occurs when one 

phase makes contact with the ground. Line-to-Line Fault (LLG)  Involves two 

phases short-circuiting each other Double Line-to-Ground Fault ( DLG)  Involves 

two phases making contact with the ground [5]. There are many  Causes of Faults 

Common causes of faults include deterioration of insulation materials can lead to 

short circuits. Physical Damage like  Accidents, weather events, or wildlife can 

damage power lines. Excessive current can cause overheating and subsequent 

faults. Mistakes during maintenance or operation can lead to faults[6]. Faults can 

be characterized by their effects on the power system, including current and 

voltage Changes. faults typically cause abrupt changes in current and voltage 

levels, which can be monitored for detection. Fault currents can generate heat, 
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leading to equipment damage, and can exert mechanical forces on conductors and 

components. Importance of fault detection prompt detection of faults is essential to 

Prevent damage to transformers, generators, and other components [7]. Maintain 

reliability and reduce the duration and frequency of outages by enabling quick 

isolation of faulty sections. Fault detection techniques various techniques are 

employed for fault detection in power systems, including  Impedance-Based 

Methods, These methods measure the impedance seen from the relay location to 

determine fault conditions. They are effective but can struggle with accuracy in 

complex systems [8]. Traveling Wave Methods These techniques analyze high-

frequency signals generated by faults, providing rapid detection and location 

capabilities. Techniques such as Artificial Neural Networks (ANN) and Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS) are increasingly used for their ability to 

learn from data and adapt to changing conditions. They can effectively classify 

faults and estimate their locations based on real-time measurements[7]. 

Understanding the theoretical background of faults in power systems and their 

detection is critical for developing effective monitoring and protection strategies. 

As power systems evolve and become more complex, advanced detection 

techniques, including AI-based methods, are essential for ensuring reliability, 

safety, and efficiency in electrical networks[9]. 

2.2 Electric Transmission Power System Faults 

Transmission lines should transmit power over the required distance economically 

and satisfy the electrical and mechanical requirements prescribed in particular 

cases. It would be necessary to transmit a certain amount of power, as a given 
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power factor, over a given distance and be within the limit of given the regulation, 

efficiency, and losses. The lines should stand the weather conditions of the locality 

in which they are laid. This would involve wind pressures and temperature 

variation at the places and the lines should be designed for the corresponding 

mechanical loading. The regulation would give the voltage drop between the 

sending-end and the receiving-end. The possibility of a corona formation and 

corresponding loss would be another consideration. The charging current of the 

line depends on the capacity of the line and should not exceed the limit. As far as 

the general requirements of transmission lines are concerned, the lines should have 

enough capacity to transmit the required power, should maintain 3 continuous 

supply without failure, and should be mechanically strong so that there are no 

failures due to mechanical breakdowns also[10]. 

2.2.1   Shunt faults  ( short-circuit faults) 

2.2.1.1   Unsymmetrical faults  

The most common type of shunt fault is Single Line-to-ground fault (SLG) see 

Figure 2.1, which is one of the four types of shunt faults, which occur along the 

power lines. This type of fault occurs when one conductor falls to the ground or 

contacts the neutral wire [10], Fault line to ground  75–80% of short circuits 
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between a phase and the ground that result from physical contact are line-to-

ground faults. (Ex. lightning and other influences). The second most common type 

of shunt fault is the Line-to-Line fault (LL). It is the result of two conductors being 

short-circuited. or if a tree branch falls on top of the two of the power lines. This 

type could be represented in Figure 2.2  with an occurrence percentage reaching 

10-15% and the Third type is double-line-to-ground faults (DLG) see Figure 2.3. 

This can be a result of a tree falling on two of the power lines, or other causes with 

a 5-10% occurrence percentage[10].  

 

Figure 2.1 Single line to a ground fault[10] 
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Figure 2.2 line to line fault ([10]) 

 

Figure 2.3 Line to line to ground fault [10]. 

2.2.1.2   Symmetrical faults (Three-Phase Faults). 

 The least common but most severe type of fault occurs when all three phases come 

into contact with each other or with the ground see Figure 2.4. It causes very high, 

symmetrical fault currents in all three phases [10]. A simultaneous short-circuit 



CHAPTER TWO                                           THEORETICAL BACKGROUND 

  

13 
 

fault that results in a symmetrical current and happens in all three phases is 

referred to as this kind of fault.[11] It's the most severe kind, yet it happens rarely. 

The internal emf of the machine in the system, internal impedances, and the 

impedance in the network between the machine and the problem all influence this 

fault current. Asymmetrical three-phase faults may be studied using per-phase 

basis analysis or an equivalent single-phase circuit. Although the fault may be 

asymmetrical, using symmetrical components might help minimize computation 

complexity in cases of asymmetrical three-phase faults because transmission lines 

and other components are typically symmetrical. Because fault analysis provides 

answers that are roughly consistent across a range of voltage and power ratings and 

operates on values of order unity, it is typically performed in per-unit numbers. 

Generally, this is a balanced state, and fault analysis just requires knowledge of the 

positive-sequence network. Additionally, since all three phases carry identical 

currents displaced by 120°, the single-line diagram can be utilized. Three-phase 

faults, with or without earth, account for only 5 percent of initial faults in a power 

system on average. Of the unbalanced faults, 15% are double-line faults with or 

without earth, and 80% are line-earth faults. These faults frequently worsen to 

become three-phase faults. The remainder is due to malfunctioning conductors. A 

fault is the equivalent of the structural network change brought about by the 
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increase of impedance at the fault site. The defect is known as a fastened fault or a 

solid fault if the fault impedance is zero.[11] 

 

Figure 2.4 Three-phase fault[10] 

Table .2.1 Types of faults with occurrence percentage  [21]  

Types of faults Symbols % Occurrence Severity 

Line to Ground L-G 75-80 % Very less severe 

Line to Line L-L 10-15 % Less severe 

Double Line to 

Ground 

L-L-G 5-10 % Severe 

Three phase 3-ɸ 2-5 % Very severe 
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2.2.2  Series faults or open circuit faults 

These kinds of failures are caused by the lines' imbalanced series impedance 

situation. This might happen when circuits are controlled by fuses or any other 

mechanism that only opens one or two of the three phases. It can also happen from 

one or more lines breaking or from impedance being introduced into one or more 

lines. One or more line phases being open while the other phase or phases are 

closed could result in such faults figure 2.5 shows one open conductor [13]. 

 

Figure 2.5 One open conductor.[13] 
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Figure 2.6  Three-phase power transmission systems can have several kinds of 

challenges [21] . 

The classification of faults in overhead transmission networks is depicted in Fig. 

2.6; phases A, B, C, and G, respectively, represent these stages.  

2.2.3 Arcing Faults 

arcing faults are distinct from other electrical faults due to their unique 

characteristics, detection challenges, and potential hazards[15]. Understanding 

these differences is crucial for implementing effective electrical safety measures 

and protection strategies. An arcing fault is characterized by a high-power 

discharge of electricity that occurs between two conductors or between a conductor 

and a conductive surface[16]. This discharge generates intense heat and can create 

an electric arc that can ignite surrounding materials, leading to fires. Arcing faults 

can occur due to loose connections, damaged insulation, or physical obstructions 

like nails or staples piercing wires[17]. The current levels in arcing faults can be 

variable and may not always be high enough to trip standard circuit breakers, 

making them harder to detect. The current can range from a few amps to thousands 
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of amps, and the behavior of the arc can be unpredictable[18]. Detection of arcing 

faults requires specialized devices, such as Arc Fault Circuit Interrupters (AFCIs), 

which are designed to recognize the unique signatures of arcing faults and respond 

quickly to interrupt the circuit. Traditional thermal breakers may not effectively 

detect arcing faults due to their lower current levels and variable nature.  Common 

causes include loose wire connections, degradation of insulation due to age or 

environmental factors, and physical damage to wiring. The presence of moisture or 

dirt can also contribute to the occurrence of arcing faults [19]. 

2. 2.4  External Faults 

Transient faults are temporary faults that occur briefly and then disappear, often 

caused by external factors like lightning strikes or falling branches. While 

common, they do not result in permanent damage to the system and are less 

impactful than the other fault types[20]. Overhead lines experience resistive losses, 

which result in what seems to be a series of resistance at the ends of the lines[21]. 

Line reactance is the term used to describe the magnetic field that is created around 

a conductor in overhead lines by current flow. An electrical field is produced by 

reactance between the phases of the wire and to ground; this phenomenon is known 

as capacitance. A lightning strike can occur in different locations besides the direct 

strike of a phase conductor, which is where a lightning fault often manifests, based 

on the magnitude of the lightning's voltage and the earth's resistance. A lighting 

problem on an overhead line will cause an arcing over the phases, insulators, and 

insulator brackets. A ground fault occurs if the isolator bracket is linked to the 

ground[22]. Depending on how many phases are involved, a ground fault might be 

single- or multiphase. When all three phases are involved, ground fault voltages 
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into a properly grounded network have low values; if the ground fault voltage 

phase voltage reaches a high level, an earth fault has occurred. Almost every 

lighting strike on a 400 kV network is a single-phase fault, lighting strikes often 

happen on all phases simultaneously if the grid has two or more phase 

inductors[23]. One conductor may have been implicated if the voltage is mild and 

the insulation strength is more than the typical voltage level. Other kinds of 

problems can happen on overhead lines in the transmission system besides 

lightning strikes. Phase failure, faulty insulators, and failure from snow and ice, 

salt, or other contaminants are a few examples of these external defects[24]. 

2.2.5 Fault Resistance 

A fault resistance consists of two major components. Arc resistance and ground 

resistance [25], [26]. It is either constant for the duration of a fault or it varies with 

time due to the elongation of the arc and its ultimate extinction. In phase-to-phase 

faults. Fault resistance is entirely due to the arc. However, for faults involving the 

ground. Fault resistances are composed of both arc and ground resistances. Ground 

resistance includes the resistance of the contact between the conductor and the 

ground and the resistance of the ground path for the flow of current in the ground 

in situations where the snapped conductor touches the ground. In situations where 

a broken conductor touches the tower, the ground resistance includes the resistance 

of the contact between the conductor and the tower and the resistance of the 

ground path for the flow of current in the ground and tower footings[19]. 
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2.2.5.1 Arc Resistance 

Arc resistance is a function of both the arc's length and current. The length of an 

arc is originally equal to the distance between two conductors or the conductor and 

the tower, but it grows as a result of arc elongation brought on by convection, 

electromagnetic propagation, and a crosswind. It has been proposed that the 

conductor spacing, wind speed, and duration can all be used to express arc 

resistance[27]. 

2. 2.5.2 Ground resistance 

If overhead ground wires are insulated or not used, the ground resistance is the 

total of the tower footing resistance at the fault location and the resistance of the 

current path through the ground from the fault to the source[28]. Ground resistivity 

and tower footing resistance are measured and recorded by electric utilities. The 

resistances of the tower footings, the ground wires, and the ground path form 

lattice networks if above-ground wires are utilized. The resistance of the contact 

between the conductor and the current's passage through the ground if a conductor 

breaks and falls to the ground is the fault circuit's dominant resistance[29]. The 

type and moisture content of the soil determines the ground-contact resistance. The 

conductor voltage affects the contact resistance as well since surface insulation can 

only degrade at a certain voltage. Resistances to ground contact are typically 

greater than resistances to tower footing. For inter-phase short circuits, fault 

resistances are tiny and don't go above a few ohms. However, because tower 

footing resistances can reach 10 ohms or greater, fault resistances for ground faults 

are substantially larger[30]. When contact is made with trees or broken conductors 

that are laying on dry pavement, fault resistances are unusually high. There is a 
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range of a few ohms to hundreds of ohms in the fault resistance. maximum weight 

[19].  

2.2.3  Protection of transmission lines 

Many essential transmitting issues that are relevant to the safety of various kinds of 

power systems can be found in the research on transmission line protection. While 

each electrical element will inevitably have its own set of issues, transmission line 

protection considerations include the ideas of selectivity, zones of protection, local 

and remote backup, coordination, speed, and dependability—all of which may be 

relevant in safeguarding one or more other electrical systems[31]. Transmission 

line protection needs to work with the other elements' protection as well since 

transmission lines serve as connectors to other lines or related equipment. Setting 

up, timing and feature synchronization is necessary for this. Power system 

protection is designed to identify malfunctions or unusual operating circumstances 

and to start the necessary repair action. To determine whether corrective action is 

necessary, relays need to be able to assess a wide range of parameters. A relay 

cannot stop the error. Finding the problem and taking the appropriate steps to 

reduce the harm to the system or equipment is its main goal. When a fault is 

present, the voltages and currents at the protected apparatus's terminals or the 

designated zone limits are the most frequent indicators. The definition of values 

capable of distinguishing between normal and abnormal situations is the core issue 

in power system protection. The current definition of "normal" is defined as 

existing outside the zone of protection, which exacerbates the issue. All protection 

systems are designed with this factor in mind since it is the most important one 

when creating a secure relaying system. [32]. Transmission line protection is 
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essential in maintaining the dependability, security, and effectiveness of electrical 

power systems. Drawing from the sources cited, the following are salient issues 

reinforcing the need for transmission line protection. Dependability of transmission 

line protection is essential for preserving power systems' dependability because it 

stops errors, interruptions, and outages that could affect customers' access to 

electricity. Reducing Damage and Downtime with Effective Transmission Line 

Protection Reducing equipment and infrastructure damage minimizes downtime 

and ensures that homes, companies, and industries have a steady supply of 

electricity[33]. Security and System Robustness in Transmission line protection 

devices improve safety by quickly identifying and isolating faults to avert 

dangerous situations and preserve system stability. Keeping the Environment Safe 

Transmission line protection lowers the possibility of errors leading to equipment 

damage or fires, which helps to preserve biodiversity and the natural world. 

Efficient Energy Transmission by The seamless movement of electricity from 

generation sources to distribution centers and end customers is made possible by 

well-protected transmission lines. Economic Repercussions By preventing 

expensive repairs, equipment replacements, and downtime, transmission line 

protection helps reduce the financial losses brought on by power outages and other 

problems. To sum up, transmission line protection is crucial to guaranteeing the 

dependable and secure operation of power systems, reducing failures, protecting 

the environment, and assisting in the effective transfer of electricity[34]. 

Consumers and the overall operation of the power grid can both benefit from 

maintaining the integrity and resilience of electrical networks through the use of 

strong protection mechanisms. As seen in Fig. 2.7, many protection device types 
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are employed in transmission systems. That protection device's job is to detect 

anomalous signals that indicate problems with a power transmission system. 

  

Figure 2.7  Protection devices of transmission lines and related work [35] 

These numbers shown in fig 2.7 are based on a system that is adopted as a standard 

for automatic switchgear by the Institute of Electrical and Electronics Engineers 

(IEEE), and incorporated in American Standard(Allen Bradley, n.d.).Transmission 

line protection systems come in the following primary types differential protection, 

overcurrent protection, directional protection, phase comparison protection, and 

distance protection the most related type of protection with the thesis is distance 

protection : 

2.2.3.2 Distance Protection 

Distance protection is an essential component of power system security. Distance 

protection is a critical method used in power systems to detect and isolate faults on 

transmission lines. It operates by measuring the impedance of the line and 
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comparing it to predefined settings to determine whether a fault has occurred. 

Distance protection relays measure the electrical impedance of the transmission 

line, which changes during a fault condition. When a fault occurs, the impedance 

decreases, indicating the presence of a fault. The relay calculates the distance to the 

fault based on this impedance measurement and compares it to pre-set values to 

determine if the fault is within the protection zone. Distance protection is primarily 

used for phase-fault protection, including single line-to-ground, line-to-line, double 

line-to-ground, and three-phase faults. It is particularly effective for long-distance 

transmission lines where traditional overcurrent protection may not be reliable due 

to reduced fault currents. Distance protection is typically implemented in multiple 

zones see figure 2. , zone 1 covers the area closest to the relay, providing primary 

protection. 

Zone 2  Provides backup protection for the next section of the line. Zone 3 Offers 

further backup protection, often extending beyond the line to cover adjacent lines. 

The effectiveness of distance protection can be influenced by several factors, 

including, fault Resistance higher fault resistance can lead to underreaching of the 

relay, source impedance ratio the relationship between the source impedance and 

the line impedance affects the relay's ability to detect faults accurately,  and 

measurement errors voltage and current transformer errors can impact the accuracy 

of impedance measurements. The advantages of Distance Protection are 

Speed can operate quickly, often within a few cycles, minimizing damage to 

equipment and maintaining system stability, selectivity by measuring impedance, 

distance protection can discriminate between faults and normal operating 

conditions, reducing unnecessary tripping, simplicity the principle of measuring 

impedance simplifies the protection scheme compared to more complex methods. 
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Distance protection is widely used in high-voltage transmission lines, sub-

transmission lines, and as part of teleportation schemes. It is essential for ensuring 

the reliability and safety of power systems, especially in areas with high fault 

occurrence. Distance protection is a vital tool in the protection and control of 

electrical transmission systems. By measuring impedance and utilizing multiple 

protection zones, it provides fast, reliable, and selective fault detection, ensuring 

the stability and security of power delivery. Understanding its principles and 

applications is crucial for protection engineers and operators in maintaining 

efficient power system operations. 

 

Figure 2.8 Relay R1's stepped distance protection characteristics[37]. 

 

2.2.4  The intelligent Techniques Used in Transmission line protection  

2.2.4.1 Artificial Neural Network (ANN) Techniques  

Artificial Neural Networks (ANNs), or simply neural networks, are novel 

computational techniques and systems for machine learning, knowledge 

demonstration, and, ultimately, applying learned principles to optimize 
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complicated system output responses. A data processing model called an Artificial 

Neural Network (ANN) is based on how biological nervous systems, like the brain, 

handle information. On a much smaller scale, they are concentrated on the 

neuronal architecture of the mammalian cerebral cortex. Artificial neural networks 

are regarded by many experts in artificial intelligence as the greatest, if not the 

only, option for creating intelligent machines[38]. The divisions and segments of 

the computational techniques. Artificial neural networks are regarded by many 

experts in artificial intelligence as the greatest, if not the only, option for creating 

intelligent machines. The divisions and segments of the computational techniques. 

Artificial neural networks are constructed with neuron nodes connected in a 

manner akin to that of the human brain The billions of cells that comprise the 

human brain are called neurons. The cell bodies that make up each neuron are 

responsible for processing information as it enters and exits the brain. The primary 

concept behind these networks is derived from the way the organic nervous system 

processes information and data to enable learning and knowledge creation [39]. 

The primary notion of this concept is to establish new frameworks for the 

information processing system figure 2.11  Artificial neural network architecture. 

One popular technique for training artificial neural networks (ANNs) is the 

backpropagation algorithm. This is a high-level summary of how it functions:  

Moving forward Propagation: The input layer of the neural network receives the 

input data. The information is routed through the hidden layers, where each neuron 

processes the weighted total of its inputs employing an activation function. The 

network's prediction for the supplied input is the last layer's output. 
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Calculating Errors: A loss function, such as mean squared error or cross-entropy, is 

used to compare the projected output to the desired (target) output. 

The difference between the target and expected outputs is quantified by the loss 

function. 

Backpropagation: Beginning at the output layer, the error spreads backward 

through the network. The method determines the gradient of the loss function 

relative to each network weight. To prevent unnecessary computations, the 

gradients are efficiently computed layer by layer using the chain rule. 

Weight Update: To minimize the loss function, an optimization procedure, like 

gradient descent, is used to update the weights. The gradient's negative value and 

learning rate are directly correlated with the update. Because it computes the 

gradients one layer at a time, iterating backward from the last layer, the 

backpropagation algorithm is efficient. By doing this, the chain rule's intermediate 

terms are not calculated twice. With the help of the potent technique known as 

backpropagation, neural networks may learn complicated relationships drawn from 

inputs to outcomes. It is extensively employed in many different applications, 

including speech recognition, image recognition, and natural language processing. 
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Figure 2.9  Artificial neural network architecture [40]  

 

 

Figure 2.12   A fully connected network of ANN [41] 
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Backpropagation Algorithm: The most popular technique for training artificial 

neural networks is backpropagation. Figure 2.12 shows a fully Connected Network 

where every neuron in one layer is connected to every other layer's neuron in a 

fully connected artificial neural network (ANN). 

The following equations are crucial for output units 

                                            βj =  (tj - xj) xj (1 - xj)                                       2.8 

For hidden units: 

                                           βj =  xj (1 - xj)Σ βkwjk                                    2.9 

ANN Output Equation:  

                                        yn = B1 + LW * tanh(B2 + IW*xn)                       2.10                

is the output equation for a single hidden layer ANN.  

where IW and LW are the input and layer weights, B1 and B2 are the biases, and 

xn and tn are the normalized input and target values. A tangent hyperbolic function 

is another name for the tanh function. In actuality, it is a sigmoid function that has 

been mathematically shifted. Both are derived from and comparable to one 

another. unit j is a typical unit in the output layer and unit i is a typical unit in the 

previous layer. xj = activity level of the jth unit in the top layer tj = is the desired 

output of the jth unit[41].In general Layers of ANN are:  

Input Layer: After obtaining the input features, the input layer forwards them to the 

hidden layer.  

Hidden Layer(s): The output layer receives the results of computations made by 

the hidden layer(s) on the input features. The activation functions sigmoid, tanh, 

and ReLU (The RELU Function For Rectified Linear Unit, it stands. The most 
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popular activation function is this one. mostly used in a neural network's hidden 

layers). 

 Output Layer: The output layer generates the ANN's final forecasts or outputs 

2.2.4.2  ANFIS Technique 

Neural networks and fuzzy logic concepts are used in the hybrid computational 

model known as the Adaptive Neuro-Fuzzy Inference System (ANFIS), with five 

layers,  the fuzzification layer, rule layer, normalization layer, defuzzification 

layer, and output layer are the five layers that construct the  ANFIS. Using 

membership functions, the first layer transforms input values into fuzzy values. 

Firing strengths for rules are generated by the second layer, normalized by the 

third, defuzzified values are computed by the fourth, and the output is returned by 

the final layer. To identify and learn patterns, ANFIS employs a training algorithm 

that combines a least squares approach with backpropagation gradient descent. It 

approximates nonlinear functions using fuzzy IF-THEN rules that can be learned, 

which makes it a universal estimator with greater predictive power than 

conventional techniques like multiple linear regression (MLR)[42]. Because of its 

ability to adjust to uncertainties and nonlinear relationships in data, the ANFIS 

architecture makes it possible to represent complex systems. Compared to other 

approaches, ANFIS may produce accurate predictions with comparatively reduced 

error rates by fusing neural network training with fuzzy logic principles [42]. 
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Figure.2.11  The structure of the ANFIS [43]. 

where x and y are the crisp inputs to the first layer, fi ( f1,f2 ) is the output within 

the fuzzy region specified by the fuzzy rule. wi represents the firing strength of the 

rule. The quantity w is known as wi the normalized firing strength. Ai and Bi are 

the fuzzy sets in the antecedent. 

ANFIS follows a five-layer architecture consisting of: 

Fuzzification Layer: This section is referred to as the "fuzzification layer."  

Membership functions are used by the fuzziness layer to generate fuzzy clusters 

based on input values.  

Various membership functions, including the triangle function (trimf) and the 

generalized bell function (gbell), may be employed in this section. In membership 

functions, parameters like {a, b, c} define the shape of the membership function; 

these parameters are referred to as antecedent parameters. These parameters, which 

are listed in Equations [2.1] and [2.2] are used to calculate the membership degrees 

of each member function. The membership degrees that come from this layer are 
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displayed using transform input variables into fuzzy values. Produce the 

membership grading system this label has a node that is adaptable. The fuzzy 

membership grade of the inputs is the layer's executed output, and it looks like this: 

Ai(x) = gbellmf (x;a,b.c) = 
 

    
   

 
      

                    2.1 

2
Ο  i= Ai(X)                                                              2.2 

where O
1
i is the membership function. Ai(X)  Every MF made a change to this 

layer parameter. The linguistic label attached to this node is A. 

Rule layer: Based on the inputs, determine the firing strengths for each rule or 

generate the firing strengths. The nodes are fixed nodes denoted as π, indicating 

that they perform as a simple multiplier.[44] Each node in this layer calculates the 

firing strengths of each rule by multiplying the incoming signals and sending the 

product out. The equation (2.3) can be represented as: 

Οi
2 
=  wi =Ai(x) .  Bi (x) =1 Ai(X)     i= 1, 2, …               2.3 

Normalization layer: Ensures that the sum of the firing strengths is one by 

normalizing them. Moreover, the nodes are fixed nodes. The nodes that bear the N 

label indicate that the firing strengths have been normalized from the previous 

layer. This layer's 𝑖𝑖𝑡𝑡ℎ node determines the ratio of the firing strength of the ith 

rule to the total firing strength of all the rules: 

Ο
3

i=  ŵi  =
  

           
            i = {1,2,3,4}                                         2.4 

The layer of defuzzification: Determines the weighted average of the effects 

linked to the firing strength of each rule.  
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This layer's nodes are all adaptive, and their parameters for output are changed. 

Usually, this output is a linear function of the input. The output was calculated 

using a first-order [44]  polynomial and normalized firing strength for every node 

in the layer. ŵ is the output of the normalization layer. Therefore, this layer's 

outputs are provided by: 

Ο
4

i= yi = ŵifi = ŵ (pix1+qix2+ri) , i=1,2,3,…                  2.5 

Output layer: Provides the system's final output.  

ANFIS uses a least squares approach in conjunction with a backpropagation 

gradient descent technique to learn and improve its behavior. Through these 

principles, ANFIS may adjust to new data and gradually get better at making 

predictions. All of the signals combine to form a single node, denoted as Ϋ, which 

performs the following functions for the model[45]: 

O
5

 i = overall output = ∑  𝑖  𝑖  = 
∑      

∑    
                     2.6 

A least squares approach can be used to solve for the consequent parameters in this 

final layer. To make this final equation more practical, let's rewrite it as follows: 

y  = [ w1x1    w1x2    w1   w2x2   w2x2    w2 ] *     

  
  
  
  
  
  

  =  XW                      2.7 
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Regression analysis can be used to find the weight vector (W), which is made up of 

the resulting parameters when input-output training patterns are present[45]. 

2.3 Previous Studies 

2.3.1 The Traditional Studies  

The main part of the power system is the overhead transmission lines. The 

possibility of faults occurring in the transmission line is greater than alternative 

real power structure parts where it is exposed to the surrounding natural 

environment.[46] . Faults can occur at any point in the power system, and the 

most exposed parts are overhead transmission lines. Regarding the distribution 

system, transmission lines perform the most important part which is to transfer 

electric power from the generating station to load centers. Since the 

development of the distribution and transmission system, power system 

engineers have been an object for locating and detecting faults[10]. The fault 

must be identified to prevent the transmission line from damage[47], However, 

fault detection input may considerably aid problem localization for faster fault 

clearing and power restoration [21] Identifying the location of a transmission 

line failure in a power system is crucial for rapid response and power supply 

dependability [21]. The fault location must be precise for speedy line isolation 

different types of fault location algorithms are presented. In the beginning, older 

technologies laid the foundation for modern protective relaying systems. While 

they have been largely replaced by more advanced digital and microprocessor-

based devices that offer improved speed, accuracy, and functionality, 

understanding these traditional methods is essential for appreciating the 

evolution of transmission line protection. Modern systems now incorporate 
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advanced algorithms and communication technologies to enhance reliability 

and performance in fault detection and localization[48]. The oldest methods 

used in transmission line protection primarily include electromechanical and 

solid-state relay technologies. Electromechanical relays are slower and less 

accurate compared to modern digital relays. They also require manual resetting 

after operation, which can lead to longer downtime[49]. While more reliable 

than electromechanical relays, solid-state relays still lack the advanced 

functionalities and adaptability of modern microprocessor-based relays[50]. 

Distance protection can be affected by load conditions and fault resistance, 

which may lead to misoperation under certain circumstances.  Pilot protection 

requires reliable communication channels, which can be a challenge in some 

environments[49]. By measuring the impedance at different points along the 

line, utilities can estimate the location of faults .The accuracy of impedance-

based methods can be compromised by variations in line characteristics and 

load conditions[51]. Digital relays represent a significant advancement over 

analog relays in transmission line protection, offering improved speed, 

accuracy, and functionality. Their ability to adapt to changing conditions and 

communicate with other devices makes them essential for modern power 

systems, enhancing reliability and efficiency in fault detection and 

localization[52]. 
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Conventional methods were used for transmission line protection. The impedance 

measurement-based method and traveling wave method are the conventional 

methods broadly used for the detection, classification, and localization of the fault 

in a transmission line[53]. In impedance-based methods, the distance relay 

operation is accurate and reliable on the low value of fault impedance but does not 

rely upon high fault impedance[54]. Based on some current and voltage signals 

collected from a terminal of a transmission line, single-end or two-end impedance 

methods are proposed. The concept of the single-ended impedance-based method 

is to identify the location of the fault by calculating the apparent impedance seen 

from one termination of the line. Impedance-based method fault position error is 

high due to high fault path impedance, load on the line, source parameters, and 

shunt capacitance.[55][56]. one-ended and two-ended impedance-based fault 

location algorithms and demonstrate their application in locating real-world faults. 

To analyze both methods, various types of faults will be modeled and 

simulated[12]. The two-ended impedance-based method is implemented to locate 

the fault to eliminate the above-said problems. The disadvantage of this method is 

a high computational burden due to the measurement of current and voltage signals 

at two ends of the line. However, improves the accuracy of locating the 

fault[1][57]. Traveling wave-based methods are used to determine the distance of 

fault by using the correlation of forward and backward waves traveling in a 

transmission line. This method has less error in locating faults in high resistance 

faults. However, the main difficulties are computational burden, expensive and 

high sampling frequency, and difficulty in practical application[58][59]. based on 

the fact that any disturbance on a transmission line generates traveling waves that 

travel along the transmission line. These waves are the consequence of charging 
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and discharging the line capacitance and line inductance of the transmission line. 

Each wave, with a frequency anywhere from a few kilohertz to several megahertz, 

travels at a rate that is almost as fast as the speed of light[60].  

2.3.2  Intelligent Methods  

A similar hybrid technique is used in [61] to predict the fault's location using the 

three-line impedances of the three phases as input to the ANFIS. Approximation 

coefficients are used to compute line impedances. The maximum error of fault 

location is found to be 1.5%. A comparative study of ANN and ANFIS fault 

detection and fault location has been done by [62] the percentage error in both 

techniques is found to be 0.25%. However, the mean error of ANFIS is less than 

ANN. The accuracy for the fault classification for both techniques is found to be 

99.9%. Wavelet-based ANN is used for fault detection in ultra-high transmission 

lines [63]. High-frequency details of the local current signal at one end of the 

transmission line are used to classify transients, categorize transients and faults, 

and detect the causes of the transients on the protected and adjacent lines. DWT is 

used to extract high-frequency components. A feature vector is developed and used 

to train ANN. (ANN) and a fuzzy expert system called an Adaptive Network-

Based Fuzzy Inference System (ANFIS) is proposed. First, three-phase 

transmission lines are modeled and various types of faults are generated using 

MATLAB/Simulink. Then, the faulted current signal is segmented from the faulted 

transmission. Next, feature extraction is performed to obtain information from the 

faulted current signal. In [64], the extracted features are mean, standard deviation, 

energy, peak-to-peak, and amplitude value. Feature selection is then applied to 

select important features that correlate with the fault location. Takagi-Sugeno 
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fuzzy control system algorithm was used to detect High Impedance Faults. The 

tuning algorithm is performed off-line employing the concept of Adaptive Neuro-

Fuzzy Inference System (ANFIS). In [64]  magnitude and phase angle of 3
rd

 

harmonics were used to detect the HIF. The controller algorithm is developed in 

the Matlab. The experimental results show that the proposed controller can provide 

an adequate performance for detecting HIF. Modern AI techniques have affected 

almost all scientific disciplines. Businesses and industries are already being 

disrupted and transformed by it. The top economies and IT firms in the world are 

competing to enhance modern AI learning. It has already outperformed humans in 

many fields, including disease diagnosis and disaster prediction. Hutcher et al 

introduced the LSTM in 1997 as a powerful, recurrent neural network (RNN) 

architecture for time series modeling and forecasting. Experiments with artificial 

data have shown that LSTM leads to more successful runs and learning faster 

compared to other recurrent network methods[8]. LSTM is also capable of solving 

complex long and time-consuming tasks, that previous methods were unable to 

solve. LSTM (  Long Short-Term Memory ) network has been able to overcome 

major limitations and shortcomings of recurrent neural networks, such as the 

problem of vanishing gradient, by allowing gradients to pass unaltered. While 

traditional neural networks focus on learning the static relationship between inputs 

and outputs of the network, LSTM can retain knowledge or information of 

previous modes and is trained for high-dimensional data that requires memory or 

needs previous knowledge [65]. The use of the frequency response analysis (FRA) 

approach to locate and categorize transmission line problems according to their 

impedance is covered in [66]. The FRA technique is employed to evaluate the 

effects of fault location and impedance on frequency-domain voltage and current 
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data. Authors [67] propose a new relaying scheme for bipolar line commutated 

converter high voltage direct current ((LCC HVDC) transmission lines that detect 

faults, identify the pole of fault, and estimate the fault’s location using features 

from rectifier end DC and voltage signals. The scheme uses LSTM, a deep learning 

method. In [68], a novel method for identifying insulated overhead conductor 

(IOC) faults following partial discharge is described. It is based on discrete wavelet 

transform (DWT) and long short-term memory network (LSTM). First, DWT 

denoises the raw signal. Second, DWT decomposes the denoised signal and 

extracts characteristics on several layers. Another study on fault classification in 

transmission lines using a Long Short-Term Memory (LSTM) network is presented 

in [69]. The research entails simulating a 400 kV, 100-kilometer transmission line 

and generating fault signals for ten different types of failures. The fault signals are 

pre-processed, and the post-fault current signals are supplied into the LSTM 

network, which has been trained to recognize various sorts of defects. The 

suggested model is tested with white Gaussian noise with Signal-to-Noise Ratios 

(SNR) of 20 dB and 30 dB, and it achieves a promising classification accuracy of 

100%, 99.77%, and 99.55% for ideal, 30 dB, and 20 dB noise, respectively. The 

results are compared with four different methods, and the LSTM network 

outperforms them with the highest classification accuracy. Modern AI learning 

techniques particularly LSTM have gained significant attention worldwide in 

modern artificial intelligence approaches. The approach has been widely used in a 

variety of power system applications and has yielded remarkable results. Several 

attempts have been made to classify transmission line faults using various deep-

learning approaches[8] . Overall, each method has its strengths and weaknesses, 

and the choice of the appropriate method depends on the specific application and 
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the characteristics of the data. A combination of these methods may be used for 

fault detection in transmission lines to improve the accuracy and robustness of the 

system. ANFIS can give advantages in terms of accuracy, efficiency, and training 

speed in many scenarios, making it a competitive choice for modeling and 

prediction tasks, according to comparisons of ANFIS with other techniques across 

different research and applications. Comparisons of ANFIS with other techniques 

across various research and applications shown in Table ( 2.2 ) that it can provide 

advantages in terms of accuracy, efficiency, and training speed in many cases, 

making it a competitive choice for modeling and prediction jobs. To evaluate 

ANFIS's relative effectiveness in fault identification and localization in power 

transmission lines, a direct comparison of its training time with these particular 

algorithms is required. The particular techniques employed, the intricacy of the 

data, and the application all affect how accurate ANFIS is to other machine 

learning algorithms for fault detection and localization in power transmission lines. 

While several research has revealed that ANN is generally better than ANFIS, 

ANFIS has demonstrated promising results in fault classification and real-time 

detection. 
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Table 2.2 Comparing different approaches to fault categorization 

Dis advantages Advantage Techniques 

used 

Name of approach Ref. 

Needs for GPS or 

communication latency 

estimation for data 

synchronization, making it 

independent of these 

external factors. 

Independence from GPS 

or communication 

latency estimation, 

accurate fault distance 

calculation, and 

applicability to various 

fault circumstances. 

Double-

terminal 

traveling 

wave 

Eliminating the 

Dependence of GPS or 

Communication Latency 

Estimation in Traveling 

Wave Based Double-

Terminal Fault Location 

 

[07]  

Limited application in 

Electrical Power Systems 

EPS, lack of detailed 

technique information, the 

assumption of noiseless 

signals, and the need for 

further investigation to 

enhance the approach. 

Accurate fault location 

in TLs, robustness to 

noise, and efficient 

representation of signal 

information. 

The Mel-

Frequency 

Cepstral 

Coefficients 

(MFCC) as 

inputs for 

fault location 

in 

Transmission 

Lines (TL). 

Transmission Line Fault 

Location Using MFCC and 

LS-SVR 

 

[07]  

-The method is applied in 

appropriate conditions and 

with careful consideration 

of the data quality and 

computational resources. 

-the effectiveness of the 

method heavily relies on 

the quality and availability 

of the data. If the data is 

incomplete or contains 

noise 

- Does not require 

explicit feature 

engineering by a domain 

expert, making it more 

accessible and less 

dependent on expert 

knowledge. 

-allows for capturing 

temporal dependencies 

in the data, which can 

improve the accuracy of 

fault location estimation 

LSTM 

Model 

Fault Location in 

Transmission Lines based 

on LSTM Model 

 

[07]  

Investigating faults in 

these banks requires 

significant time and 

human resources. 

-The use of DWT in 

fault analysis can 

improve the efficiency 

of power systems and 

ensure their protection. 

-the discrepancy 

between the system 

parameters in the case of 

faults occurring in a 

single capacitor bank 

The discrete 

wavelet 

transform 

(DWT) 

Analyzing the 

Characteristics of Faults in 

a Transmission Line and 

High Voltage Capacitor 

Banks in a 115-kV-Power 

System Using Discrete 

Wavelet Transform 

 

[07]  
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and two capacitor banks 

connected in a back-to-

back topology can be 

resolved. 

The complexities and 

computational 

requirements of 

integrating multiple 

techniques remain a 

potential drawback of the 

proposed transmission line 

protection scheme 

A robust and efficient 

method for fault 

detection and 

classification, offering 

improved accuracy and 

reliability in power 

system protection 

Signal 

processing 

techniques 

(the Stock 

well 

transform), 

(the Wigner 

distribution 

function), 

and (the 

alienation 

coefficient) 

Design and 

Implementation of Hybrid 

Transmission Line 

Protection Scheme Using 

Signal Processing 

Techniques 

[77]  

-The requirement for a 

large amount of training 

data to achieve high 

accuracy. DNNs are data-

hungry models. 

- the complexity and 

black-box nature of DNN 

models can make it 

difficult to interpret and 

explain the decision-

making process behind 

fault classifications. 

- High accuracy 

achieved in fault 

identification 

-the reliability and 

efficacy of power 

systems 

-adaptability contributes 

to the robustness and 

efficiency of fault 

detection 

Deep Neural 

Network 

(DNN) 

Deep Neural Network-

Based Fault Classification 

and Location Detection in 

Power Transmission Line 

[07]  

The need to make critical 

decisions regarding the 

type of network, network 

architecture, and 

termination standards 

of the Back Propagation 

Neural Network (BPNN) 

used in -ANN 

programming requires 

feedback from the output 

to the input to evaluate 

weight changes, which 

can be a complex and 

time-consuming process 

-Allows for quick 

decision-making in 

detecting system 

problems. 

-provides a reliable 

method for identifying 

various fault types. 

-adapt to changes in the 

power system network 

after intense training. 

Artificial 

neural 

network 

Study of Fault Detection 

on a 230kV Transmission 

Line Using Artificial 

Neural Network (ANN) 

[07]  

-Premature Convergence -Simple Idea the Particle PARTICLE SWARM [07]  
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-Limited Exploration 

-Sensitivity to Parameters 

-Lack of Guaranteed 

Global Optimum 

-Easy Execution. 

-Robustness to 

Control Parameters 

-Computational 

Efficiency 

 

Swarm 

Optimization 

(PSO) 

OPTIMIZATION 

ALGORITHM-BASED 

FAULT LOCATION 

USING 

ASYNCHRONOUS 

DATA RECORDED AT 

BOTH SIDES OF 

TRANSMISSION LINE 

-Conventional distance 

relays may experience 

overreach and mal-

operation in the presence 

of TCSC devices. 

-Dynamic control action 

affecting relay 

performance. 

-Increased 

transmittable power. 

-Enhanced system 

stability. 

-Improved voltage 

control. 

-Minimized 

transmission losses. 

Thyristor 

Controlled 

Series 

Capacitor 

(TCSC) 

compensated 

transmission 

line model 

A Fuzzy Logic System to 

Detect and Classify Faults 

for Laboratory Prototype 

Model of TCSC 

Compensated Transmission 

Line 

[00]  

Inability to train on non-

numerical data, making it 

challenging to interpret 

findings and match results 

with real-life 

circumstances 

Ability to extract 

patterns associated 

with the analyzed 

process or system, 

making them 

effective in fault 

analysis 

-handle internal 

network processing 

efficiently. 

Artificial 

Neural 

Network(AN

N) 

The use of artificial neural 

network for low latency of 

fault detection and 

localization in transmission 

line 

[07]  

-The complexity and 

computational resources 

required for training and 

implementation. 

 

Emphasizing the 

potential for 

improved accuracy 

and efficiency in 

fault detection and 

localization. 

Convolutiona

l neural 

network 

(CNN) 

Long short-

term memory 

(LSTM) 

Transmission Line Fault 

Location Using Deep 

Learning Techniques 

 

[07]  

-May not be as robust or 

adaptable to complex fault 

patterns compared to more 

advanced machine 

learning algorithms. 

-the complexity of such 

optimization-based 

approaches 

-Utilizes the frequency 

response of the circuit 

along with simple 

statistical feature 

extraction techniques. 

-allows for a better 

description of circuit 

behaviors in various 

conditions. 

Fuzzy logic 

classifier 

Intelligent Fault Detection 

and Identification 

Approach for Analog 

Electronic Circuits Based 

on Fuzzy Logic Classifier 

[77]  
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2.5  Summary 

A brief overview of the many techniques used to investigate faults in the power 

system, especially in transmission lines. The experimental results of ANFIS-based 

fault location. The key advantages and disadvantages of the several techniques 

created by different researchers for the localization, classification, and detection of 

transmission line faults are briefly discussed. A review of the literature reveals that 

models for fault analysis, like the wavelet transform, fuzzy inference system, and 

artificial neural network, have a big influence on fault analysis approaches. 

Because ANN and other models using supervised learning approaches need to be 

extensively trained using a wide range of data, their analyses are more 

complicated. The FIS method may lead to complexity and inaccurate analysis. As a 

strong rule-based system, FIS does not require precise inputs. Hybrid models are 

the preferred method used by researchers to optimize technique benefits. Before 

using ANN-supervised learning techniques, researchers frequently used WT to 

extract fault features in fault analysis. When all of these tactics are used together, 

fault analyzers become precise and effective. Researchers have recently presented 

novel methodologies, like fault analysis techniques based on LSTM. When 

updating each weight, LSTM is less complicated than the backpropagation 

approach.  ANFIS-based approach; performs best for fault detection and 

classification, while it can still be improved in terms of location by ANFIS. 

Because it expresses a hybrid technology that combines the discrimination ability 

of artificial neural networks with the control technique represented by the visual, it 

was noted from the results that it is a more efficient technique than the neural 

networks alone and the physical technique alone. 
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Chapter Three 

Mathematical Model 

3.1 Introduction 

Electrical grid stability and efficiency are based on the dependability of electricity 

transmission lines. On the other hand, several factors can cause defects like short 

circuits or line breakage, which can disrupt the power supply and perhaps harm 

equipment. Ensuring the integrity and resilience of the electrical grid requires 

prompt detection and precise localization of these disturbances. In this chapter, the 

Adaptive Neuro-Fuzzy Inference System (ANFIS) has proven to be an effective 

instrument for fault location and detection. Modeling complicated nonlinear 

systems such as power grids is a good fit for ANFIS because it combines the 

understanding of fuzzy logic systems with the flexibility of neural networks. 

Through the utilization of ANFIS, engineers may create effective algorithms for 

fault detection and location. Compared to traditional methods, this methodology 

has several advantages, such as being robust to noise, able to manage 

nonlinearities, and flexible enough to adjust to changing operating conditions. In 

this study, we will use the MATLAB ( R2022 a) Simulink program to identify and 

localize transmission line issues using the ANFIS technique. To construct ANFIS-

based fault detection and localization algorithms, MATLAB Simulink offers an 

extensive platform for modeling, simulating, and evaluating dynamic systems. Our 

goal in undertaking this study is to show how well ANFIS can precisely and 

quickly locate and identify the faults. Through the integration of ANFIS models 

into MATLAB Simulink, we can simulate multiple fault scenarios and assess how 

well the suggested solution performs in different circumstances. In the end, this 
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study advances the creation of sophisticated methods for improving the electricity 

transmission networks' dependability and robustness. 

In this work, the following are the steps needed to develop an adaptive neural 

fuzzy inference system (ANFIS) for localizing and detecting faults in transmission 

lines: 

Data Collection: Measurements of voltage, current, and power may be obtained 

from the transmission lines in the first step of data collection. 

Data Preprocessing: To ensure the quality of the data for fault identification and 

localization, the gathered data must be preprocessed to remove noise and outliers. 

Feature extraction is the process of removing pertinent features from the 

preprocessed data so that they can be used as ANFIS model inputs. Development 

of the ANFIS Model, the retrieved features are used to create the ANFIS model. 

To do this, the model must be trained to understand the connections between the 

input features and the transmission line fault states. Finding Faults by examining 

the input data and finding deviations that point to a problem, a trained ANFIS 

model is used to find transmission line failures. The ANFIS model can be used to 

pinpoint the precise place along the transmission lines where a fault has occurred 

once it has been identified. Evaluation of Performance By contrasting the fault 

localization and detection outcomes of the ANFIS model with real fault data, the 

model's performance is assessed. This stage aids in evaluating the ANFIS system's 

precision and efficacy. The ANFIS model may be subjected to optimization and 

fine-tuning to enhance its performance and guarantee the precise detection and 

localization of transmission line problems. These procedures allow engineers and 

researchers to Leverage the capabilities of ANFIS to improve the efficiency and 

reliability of power transmission systems by successfully implementing an 

adaptive neural fuzzy inference system for fault detection and localization in 
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transmission lines. In the final part of this chapter to provide an innovative ANN-

based method for the quick, dependable, and precise localization and diagnosis of 

faults in transmission lines. In addition, to compare the ANFIS and ANN findings 

and simultaneously minimize the fault detection time delay by detecting several 

fault situations, such as defective voltage and current. By simulating multiple 

errors and training them with the ANN model, the performance of the proposed 

technique was evaluated, and the outcomes were positive. Furthermore, power 

systems' transmission line fault management and protection will be developed 

using the proposed model. A notable drawback of the method is that the model 

cannot be trained on non-numerical data. As a result, evaluating the data is never 

easy because it involves tying the findings to the issue statements and actual 

situations. 
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Fig. 3.1 The Data processing model for ANFIS. 

3.2 Simulink in MATLAB 

Modeling, simulating, and analyzing dynamic systems is possible with Simulink, a 

graphical programming environment in MATLAB. The following essential aspects 

are frequently included in Simulink models used for power system failure 

identification and detection the precise depiction of the elements of the power 

system, Practical error injection, Extensibility, online adaptability, visualization 

tools, integration of artificial intelligence, and advanced signal processing blocks. 

The machine learning method solves issues involving ambiguous or imprecisely 

defined data by fusing fuzzy logic with neural network concepts. ANFIS  and 

Start build the 

simulation 

model  

Extract the data 

from the model 

Data extraction 

Derived the features 

from the data 

Using ANFIS to 

train the data 

Preparing the 

ANFIS file 

Comparison between 

the ANFIS file and 

actual Data  

If detect 

fault or not 

No fault 

There is a fault  

Give the fault location  

The end 

NO 

Yes 
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ANN a tools that Simulink can utilize to find and identify power system failures. 

Fig. 3.1   shows the data processing model for ANFIS Use the Library in Matlab 

for Simulink to build the model. It offers models for online, sample-by-sample 

training and operation. 

Use MATLAB to develop a model for identifying and pinpointing faults between 

two stations that are 200 km apart. 

- Gather and prepare data from the stations and adjacent areas that represent 

voltage, current, frequency, and other pertinent measures. Make sure there 

are enough illustrations of both ideal circumstances and problematic 

situations. 

- Create training and testing datasets from the gathered data. Split the data for 

the input and target variables into different files. 

- To train the ANFIS and ANN  model using the training data, use the ANFIS  

function. Give details about the sort of fuzzy inference system (e.g., Sugeno 

or Takagi-Sugeno) and the quantity of input and output variables and using 

the algorithm's performance (Scaled Conjugate Gradient) in (ANN). To 

determine the ideal arrangement, you might need to try a few different 

configurations. 

- Utilizing the test dataset, validate the trained ANFIS and ANN model. 

Analyze its performance indicators, such as mean absolute error (MAE), and 

root mean square error (RMSE). 

- After you are happy with the model's performance, use the Matlab block 

library to implement the ANFIS and ANN models in Simulink. Assign the 

appropriate configuration to the ANFIS blocks after connecting the input 

signals to them. 
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- To ensure that the generated Simulink model can precisely identify and 

pinpoint errors between the two stations, test it with more data. 

- Use the verified ANFIS and ANN models in real-time apps to keep an eye 

on the electrical grid and send out alerts for possible problems. 

 

3.3 The Network Modeling ( Modeling of 400 kV Transmission Line ). 

The two-terminal transmission line model's modeling details are presented in this 

part as an overview. The Simulink software version R2022a and MATLAB were 

used to create the transmission line model Fig. 3.2. The transmission line model's 

development goal was to produce a model that could measure voltage and current 

at both buses on each side of the transmission line. These measurement values will 

have relative magnitudes (RMS) that a practical utility could encounter. The 200 

km long, 50 Hz, 400 kV transmission line will be simulated by the transmission 

line models utilized at every stage of this study. Table 3.1 The constant of 400 

KV,200 Km transmission line. Table 3.2 Fault parameters of the proposed model 

.The transmission line model consists of two stations as shown in Fig 3.2, each 

with a 400 KV and 5000 KVA modeling block. There are 200 kilometers between 

the two stations. This operation selects the 400 KV transmission line between the 

Kut and Misan stations. Two equivalence mutual impedance blocks, two voltage, 

and current V-I measurement blocks (the buses on each side), and the transmission 

line topology indicate the whole load in each city with load (1000 MW, 150 Var). 

The line between two stations ( the π model transmission line)  as shown in Fig. 

3.3 with variable reactor and resistor values is located in the middle of the block. 

Each value of reactors and resistors in the transmission line at the beginning of the 

line is multiplied by (L), and the reactors and resistors at the end of the line are 

multiplied by (1-L). 
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L: It is considered a variable because the location of the fault is unknown. 

So the transmission line is divided into ten sections from 0 to 90 percent of the line 

length. The block of fault detection and location is located on the line applying 

three phases to the ground (symmetrical faults). All information on the constants 

for (132 and 400) KV overhead lines that are used in the Simulink was taken from 

southwest networks in Misan. (see Appendix. K) . 

 

 

 

 

Figure 3.2 Transmission Line Simulink Model 
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Figure .3.3  Transmission Line Construction (π model ). 

 

Table 3.1 The constant of 400 KV,200 Km transmission line ( Overhead lines). 

Conductor 

(400 KV single line ) 

RO 

(Ω/Km) 

R1(Ω/K

m) 

Xo(Ω/

Km) 

X1(Ω/Km

) 

Thermal 

power (MVA) 

Current (Amp) 

Type C.S 

Area 

(mm
2
) 

Code     Rated Max. Rated Max. 

Twin 

ASCR 

2*(490/

65) 

ASCR .150 .03610 0.69 0.314 970 1154.

3 

1400 1666 
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Table 3.2 Fault parameters of the proposed model 

System components Parameters 

/units 

Value 

Short circuit level (S) 5000*10
6
 MVA 

Fault capacitance Cs F Infinite 

Switching time Seconds 0.1 

Ground resistance Rg Ohms 0.01 

Fault resistance Rf Ohms 0.1 

Frequency Herts 50 

Phase to phase voltages 

(RMS) 

Voltage 400 

Active Power (load) Watts 1000*10
6
 

Inductive reactive power 

QL(Load) 

Var 150*10
6
 

 

3.3.1 Data extraction 

After applying The fault in this work is a symmetrical, three-phase fault. At each 

bus bar in the Simulink model (bus 1, bus 2) as shown in Figure 3.2,  these buses 

are measurement units that read the voltages and currents of the three phases after 

the fault occurs (each fault will take 0.05 sec.). Figure .3.3 shows transmission line 

construction (π model ) inside the transmission line. The buses will collect the data 

at this moment, figure  (3.4) shows the data extraction Simulink model inside the 

buses ( 1 & 2 )( The Training network). The data was collected from two sides of 

the network ( Misan station and Kut station).  
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Figure 3.4 Data extraction Simulink model inside the buses ( 1 & 2 ) 
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The data will be collected in feature data in matrix form. The feature data will 

transfer to the workspace in Matlab after the simulation. By using a Matlab 

function condition to compare the values of the feature data, if the input is larger 

than zero, the output will be logic 1, and there is a fault. If the input is less than 

zero, that means the output is equal to zero, so no fault is detected. The waveforms 

of the input data ( The three-phase currents ) shown in the figures below are 

essential for evaluating electrical signals and locating transmission line faults using 

ANFIS algorithms in MATLAB. Based on the given search results, the following 

is a description of the waveforms in MATLAB for fault identification and 

localization using ANFIS techniques: 

Obtaining Data: To capture fluctuations brought on by faults or disturbances, 

waveforms representing voltage and current measurements are obtained from 

sensors or monitoring devices along the transmission lines. Before processing the 

obtained waveforms into the ANFIS model for fault identification and localization, 

they undergo preprocessing to eliminate noise, filter out undesired signals, and 

guarantee data quality. 

Feature extraction: By applying wavelet transforms to the obtained waveforms, 

pertinent features that aid in locating fault signatures and patterns in the electrical 

signals can be extracted 

 

3.3.2  Training Data Using ANFIS Techniques 

A large dataset with both normal and fault circumstances is needed to properly 

train ANFIS in this work are about 729 cases of data measurements along the 

transmission line between normal and fault cases collected in the data features 

block in Figure (3.4) and fault location in the class data block. Accurate fault labels 

and a broad range of problem scenarios should be included in this dataset. ANFIS 
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performance can be improved by using data preprocessing techniques like scaling, 

normalization, and feature selection. So in this work, the data collected from the 

buses on the network that’s built in the Simulink model in Matlab is the data 

collected from the line with a length of 200 km. Utilizing labeled fault data and 

extracted features from the Simulink model, train the ANFIS model. To enable the 

ANFIS model to accurately anticipate fault locations, train it with the labeled fault 

data and extracted characteristics from the Simulink model figure (3.2). Extract the 

FIS file (Fuzzy Inference System, or FIS for short, is a tool used in power, 

robotics, and control systems, among other fields. Fuzzy rules are used by FIS, a 

kind of fuzzy logic controller, to make decisions based on incoming data see 

appendix L to see the system that is used in the system to set up the ANFIS file. 

Fuzzy sets and fuzzy operators are used by the system to process input data and 

produce outputs. After that, the output is utilized to decide or operate the system) 

and located in the MATLAB program to compare this file with the real data that is 

taken from any network for the detection of faults and localization information. 

Figure( 3.15 ) shows the surface of the ANFIS that appears during the data training   

Utilizing extra test datasets from the other Simulink model for data extraction from 

buses ( 1 &  2 ) With unknown locations (L is unknown), evaluate the performance 

of the trained ANFIS model to make sure it is accurate in defect detection and 

ANFIS file localization by comparing the trained data in the ANFIS file and the 

real data. In general, the testing and validation are illustrated in steps by using a 

test program in Matlab the ANFIS file will test the accuracy of the detection and 

localization at a specific time. the result of the high speed of the technique.  
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Figure 3.5 The window of the ANFIS program in Matlab. 

 

 

Figure 3.6 The structure of the ANFIS. 
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, the data trained in ANFIS, and the trained data extracted in a file Figure 3.16 

shows the processing of training the ANFIS file with 10 epochs the resulting file 

will be used later in other networks to compare the real data and the trained file. 

The structure of the ANFIS with the trained data is shown in Figure  3.17. 

 

 

 

 

Fig 3.7  Shows the Simulink model of the features data collected from buses 1 and 

2 (From any network) 
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3.3.3 Training Data in ANN (Artificial  Neural  Network) 

An ANN model's ability to function properly and generalize successfully depends 

on both the representativeness and quality of the training data. In this section, the 

final data extract from the Simulink model shown in Fig 3.2 is the data taken from 

all nine sections along the transmission line (200 Km ) between two stations as 

illustrated in previous sections in Matlab R2022a using the nnstart tool to build a 

neural network figure (3.19). and employed in the training of the algorithm. The 

voltage and current waveform's simulated fault results were used to determine the 

data size. To prevent over-fitting, the data is split into training, testing, and 

validation. The input layer consisted of the three-phase value, whereas the input 

data consisted of the phase value of the defective current and voltage. For the 

training, a total of six input parameters, ten input layers, and one output layer result 

are used. In addition to the Mean Square Error (MSE), 1000 epochs,  

 

 

Figure (3.8)  ANN network   
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and training time, the algorithm's performance (Scaled Conjugate Gradient)  was 

examined. The model's performance was assessed using a confusion matrix, which 

contrasts the measured values obtained from the ANFIS result with the ANN 

result. It also provides a comprehensive picture of the model's functionality and the 

kinds of errors that the system has. The outcome also clarifies how ANNs are used 

in transmission line fault management system plans., and the optimal configuration 

was obtained by setting the hidden layer to 10. Six input data points three-phase 

current and voltage, Ia, Ib, Ic, and Va, Vb, Vc as well as about 729  fault data 

points were utilized in the training process, yielding 100% correctness and 0% 

confusion. In the meantime, the fault data was highly accurately validated and 

trained using 729 datasets. After the ANN network has been trained, the error 

between the target and predicted values is displayed in Fig. 3.23 's error histogram. 

With a zero error value of 2,08 for the difference between the target and the output, 

it is evident that the mistake is negligible. Fig. 3.22  illustrates the network's best 

validation performance, which was 0.0015335 at 341 epochs., this is an excellent 

performance because the network is fitted and the best-fit line is near the train, 

validation, and test lines due to shared features that enable efficient training. Based 

on Fig. 3.23, the model has a gradient of 18.08 and a maximum permissible failure 

level of 6 at 14 epochs. This graph demonstrates the effectiveness of the model due 

to the network gradient Additionally, the model is made to locate faults in 

transmission lines by creating a neural network with Simulink. ..Because it 

explicitly indicates the kind of defect and its position at any given time, this model 

is better than others. This is useful for the transmission line fault management 

system and will enable the maintenance team to promptly clear the fault. At 

various transmission line stations, By including noise in the input vector during 

training and training the noise vector using the tanH activation function, the model 



Chapter Three                                                                        Mathematical Model 

 

60 
 

was tested for noise regularization. The accuracy dropped significantly to 88%, as 

Fig. 3.21  illustrates. 

 

 

Figure  3.9 Regression Fit for the noise signal data. 

Using ANNs for fitting a regression model to noisy signals leverages the flexibility 

and learning capabilities of neural networks. By carefully designing the network, 

training it on appropriate data, and evaluating its performance, ANNs can 

effectively model complex relationships and extract meaningful signals from noisy 

data. a perfect fit corresponds to a regression value of 1. This indicates that the 

model explains all the variability in the data without any error. Conversely, a 

regression value of 0 indicates no explanatory power. 
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Figure 3.10 ANN network performance. 

Measuring the performance of an ANN involves a combination of data splitting, 

selecting appropriate metrics, employing cross-validation, monitoring training 

progress, and tuning.  
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Figure 3.11 Error histogram for the ANN network. 

The error values are then grouped into bins to create a histogram. The x-axis 

represents the error values (which can be positive or negative), while the y-axis 

indicates the number of samples that fall within each error bin. By analyzing the 

distribution of errors, practitioners can gain insights into the model's accuracy, 

identify biases, and assess the overall effectiveness of the training process. 

Understanding the characteristics of the error histogram can guide further 

improvements in model design and training. The perfect value for an error 

histogram in an ANN context is characterized by a distribution centered around 

zero. 
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3.12 Validation failures of faults in ANN training 

Validation failures in ANN training highlight the importance of evaluating model 

performance on unseen data. They serve as critical indicators of potential issues 

such as overfitting or underfitting, guiding practitioners to make necessary 

adjustments to improve model generalization and reliability. 
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 Chapter four 

RESULTS AND DISCUSSION 

4.1 Introduction 

The power system is an essential component of the infrastructure that needs to be 

continuously maintained and monitored to guarantee a steady supply of electricity. 

Errors in the power system may result in equipment damage, blackouts, and safety risks. 

Thus, keeping the power system stable and reliable requires effective fault 

categorization, location, and detection procedures. The Adaptive Neuro-Fuzzy Inference 

System (ANFIS) has become a potent tool for fault analysis in power systems in recent 

years. ANFIS is a hybrid intelligent system that blends fuzzy logic's linguistic 

representation with neural networks' adaptive capabilities. It is capable of approximating 

complex nonlinear functions and learning from input-output data. ANFIS is composed 

of a learning algorithm that modifies the parameters of a set of fuzzy if-then rules 

according to training data. Faults in the power system malfunctions can be caused by 

several things, including human mistakes, lightning strikes, and malfunctioning 

equipment. Short circuits, open circuits, voltage sags, and harmonics are examples of 

common fault types. Accurately and quickly identifying and locating these flaws is 

necessary to save downtime and guarantee the security of the power system. In this 

work, the first step is to build a Simulink model in Matlab, as shown in Figure (3.2), 

which represents the (south-west) networks at Misan station (400 kV) and Kut station 

(400 kV) along 200 km distance between them. The block parameters of the Simulink 

model (the series and parallel impedances) values of the transmission line are selected 

approximately to the real value in the Misan station because these values are changed by 

any fault that occurs in the line. Later a comparison between the result of detection and 

localization of ANFIS with results in artificial neural network (ANN). 
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4.2  The Testing of the ANFIS file working in detecting and localization 
 

ANFIS model performance can be assessed using several metrics. The efficacy of fault 

detection and location is measured by these measures. It is also possible to evaluate 

ANFIS's computational efficiency in terms of memory usage and training time. A 

program in Matlab programmed to test the accuracy of the ANFIS  file work to used it in 

the networks by using another Simulink network but with an unknown length and by 

giving any length the result will appear as shown in Table (4.1) that illustrates the 

different values of transmission line length. A three-phase, symmetrical defect exists in 

this work. Bus 1 and Bus 2 are measurement units that are used in the Simulink model to 

read the voltages and currents of the three phases at each bus bar. Three phase faults will 

occur one at a time, each taking 0.05 seconds. Given that the buses are now collecting 

the data, we collected it from the stations in Misan and Kut for those two network 

locations. An attribute data matrix was used to collect the data. ANFIS will use the 

feature data to generate an ANFIS file that will be used to locate and identify faults in 

another network when the values of the feature data are compared using a Matlab 

function condition. Before employing the ANFIS file in networks, a Matlab application 

is created to validate its accuracy using an alternative Simulink network of unknown 

length. This program's output shows a very low error percentage along with different 

values of transmission line length. The output value of the fault detection and the fault 

location are shown in Table 4.1's results. The precision of the findings in determining 

the separation of fault locations with different length values. As the table illustrates, 

Before employing the ANFIS file in networks, a Matlab application is built to validate 

its accuracy using an alternative Simulink network of unknown length (L). This 

program's result, which shows an extremely low error percentage, of fault detection, will 

likely result in a logic one or zero for the identification of a fault or not, meaning that 

100% of the faults were detected without any errors. The proportion of location mistakes 
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in Table 4.1's column is extremely low, nearing 99.9%. For instance, when 45 km is 

entered into Matlab's test program to assess the ANFIS file's functionality, the result is 

45.0088 km. When no errors are found, the output values are shown in the last five 

results. Ultimately, ANFIS provides several benefits for power system malfunction, 

localization, and detection. It can give real-time analysis, adjust to shifting system 

conditions, and handle imprecise and ambiguous data. Nonetheless, ANFIS can find it 

difficult to oversee intricate, expansive systems. with a great deal of variables and 

statutes. It takes a significant amount of labeled data to improve the training process. In 

conclusion, ANFIS is a helpful tool for discovering and identifying power system 

problems. Due to its capacity to learn from data and approximate complicated processes, 

it is an essential instrument for preserving the electrical grid's stability and reliability. 

Power system operators can improve their fault management tactics, reduce downtime, 

and guarantee a steady supply of electricity by utilizing ANFIS. locating and 

recognizing errors. The results in the table show the output value and the accuracy of 

locating the distance of fault points with different values of length In summary, ANFIS 

is an effective technique for locating and detecting faults in power systems. It is an 

invaluable tool for preserving the stability and dependability of the electrical grid 

because of its capacity to learn from data and approximation of complex functions. 

Power system operators can improve fault management tactics, reduce downtime, and 

guarantee a steady supply of electricity by employing ANFIS. 
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Table (4.1) Shows the results of the testing on the ANFIS  file giving the different 

values of transmission line length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ia(A) Ib(A) Ic(A) Va(V) Vb(V) Vc(V) 

Length 

(Km) 

Fault 

location 

(Km) 

fault (1) 

no 

fault(0) 

6518.458 6545.002 6540.482 19098.55 19113.5 19090.96 5 7.01098 1 

5991.413 6018.652 6017.298 35044.43 35061.09 35036.29 10 10.00059 1 

5542.813 5570.075 5570.946 48629.18 48647.01 48620.87 15 14.98088 1 

5156.407 5183.311 5185.77 60334.64 60353.25 60326.36 20 19.99821 1 

4820.132 4846.465 4850.069 70522.76 70541.86 70514.61 25 25.00792 1 

4524.849 4550.498 4554.931 79468.97 79488.33 79461.01 30 30.00606 1 

4263.508 4288.419 4293.453 87386.23 87405.72 87378.49 35 35.00173 1 

4030.581 4054.739 4060.207 94441.71 94461.22 94434.21 40 39.99619 1 

3821.68 3845.089 3850.868 100768.4 100787.8 100761.1 45 45.0088 1 

3633.27 3655.951 3661.948 106473.3 106492.7 106466.3 50 50.03395 1 

3462.476 3484.458 3490.602 111643.7 111662.9 111636.9 55 55.05578 1 

3306.937 3328.251 3334.488 116351.1 116370.1 116344.5 60 60.05143 1 

3164.689 3185.372 3191.662 120655.1 120673.9 120648.7 65 64.48385 1 

3034.094 3054.182 3060.494 124605.3 124624 124599.1 70 69.79157 1 

2913.766 2933.297 2939.608 128243.8 128262.3 128237.8 75 74.76349 1 

2802.53 2821.542 2827.833 131606.1 131624.4 131600.2 80 79.85554 1 

2699.377 2717.911 2724.168 134722.6 134740.8 134716.9 85 84.98052 1 

2603.437 2621.533 2627.749 137619.7 137637.7 137614.1 90 89.80761 1 

2.526418 2.526418 2.526418 216310.8 216310.8 216310.8 1 0 0 

2.524973 2.524973 2.524973 216310.8 216310.8 216310.8 2 0 0 
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4.3  The Testing of the ANN working in detecting and localization and comparing 

with the testing of  ANFIS . 

Using Simulink to create a neural network and forecast the fault position shown in Fig. 

3.6, the model is also intended for fault localization in the transmission line. The fault 

voltage and current of a three-phase line measured at buses in the simulation model fig. 

3.2  are the input parameters. Once the defect location has been identified, the input is 

sent to the classifier. For convenience, a screen display of these defect types and 

locations is provided. A quick and efficient fault management plan is implemented 

through potential action. By entering the same data of the currents and voltages in the 

testing program in Matlab ( R2022a) with Simulink as shown in figure (4.1)  Simulink 

Model of 400 kV, 200 km Transmission line illustrates the testing of the trained data in 

ANN the results and testing the lengths as shown in table (4.2) the output data of the 

fault detection shows the accuracy of the ANN with 100% in location the results show 

 the results from ANFIS is nearest to the given value of transmission line length. 

Ia(A) Ib(A) Ic(A) Va(V) Vb(V) Vc(V) 
Length 

(Km) 

Fault 

location 

(Km) 

fault (1) 

no 

fault(0) 

2.52354 2.52354 2.52354 216310.9 216310.9 216310.9 3 0 0 

2.522125 2.522125 2.522125 216310.9 216310.9 216310.9 4 0 0 

2.520732 2.520732 2.520732 216311 216311 216311 5 0 0 
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Figure. 4.1 Simulink Model of 400 kV, 200 km Transmission line (Testing the Trained 

Data in ANN). 
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Table (4.2) Shows the results of the testing on the ANN giving the different values of 

transmission line length. 

Ia(A) Ib(A) Ic(A) Va(V) Vb(V) Vc(V) 

Length 

(Km) 

Fault 

location 

(Km) 

fault (1) 

no 

fault(0) 

6518.458 6545.002 6540.482 19098.55 19113.5 19090.96 5 7.2012 1 

5991.413 6018.652 6017.298 35044.43 35061.09 35036.29 10 10.1022 1 

5542.813 5570.075 5570.946 48629.18 48647.01 48620.87 15 14.5600 1 

5156.407 5183.311 5185.77 60334.64 60353.25 60326.36 20 19.0988 1 

4820.132 4846.465 4850.069 70522.76 70541.86 70514.61 25 24.0123 1 

4524.849 4550.498 4554.931 79468.97 79488.33 79461.01 30 29.0555 1 

4263.508 4288.419 4293.453 87386.23 87405.72 87378.49 35 35.9821 1 

4030.581 4054.739 4060.207 94441.71 94461.22 94434.21 40 39.0087 1 

3821.68 3845.089 3850.868 100768.4 100787.8 100761.1 45 44.0446 1 

3633.27 3655.951 3661.948 106473.3 106492.7 106466.3 50 49.04495 1 

3462.476 3484.458 3490.602 111643.7 111662.9 111636.9 55 55.9843 1 

3306.937 3328.251 3334.488 116351.1 116370.1 116344.5 60 61.06344 1 

3164.689 3185.372 3191.662 120655.1 120673.9 120648.7 65 64.9666 1 

3034.094 3054.182 3060.494 124605.3 124624 124599.1 70 68.71111 1 

2913.766 2933.297 2939.608 128243.8 128262.3 128237.8 75 73.6722 1 

2802.53 2821.542 2827.833 131606.1 131624.4 131600.2 80 79.0002 1 

2699.377 2717.911 2724.168 134722.6 134740.8 134716.9 85 83.65552 1 

2603.437 2621.533 2627.749 137619.7 137637.7 137614.1 90 89.01002 1 
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4.4  The waveforms in Matlab Simulink 

    The waveforms can be used as training data for ANFIS models in MATLAB, 

allowing researchers to evaluate electrical signals, identify defects, categorize faults with 

effectiveness, and identify issues in transmission lines with exceptional precision and 

dependability. The waveforms are utilized as input data to train the ANFIS model in 

MATLAB after they have been preprocessed and pertinent features have been retrieved. 

Based on the properties of the input signals, the model learns from these waveforms to 

identify anomalies, categorize defects, and pinpoint the sites of faults. The accuracy, 

resolution, and signal-to-noise ratio of the obtained waveforms have a substantial 

influence on how well ANFIS performs in defect localization and identification. 

Accurate defect identification and dependable analysis depend on high-quality data. 

Finding fault signatures and patterns in the waveforms depends critically on how well 

feature extraction techniques work. The model's accuracy in fault detection and 

localization is directly impacted by the features chosen. The ANFIS model's waveform 

training procedure is essential to its functionality. The model's capacity to learn and 

generate accurate predictions is influenced by various factors, including the choice of 

training data, model parameter optimization, and training method convergence. The 

Ia(A) Ib(A) Ic(A) Va(V) Vb(V) Vc(V) 

Length 

(Km) 

Fault 

location 

(Km) 

fault (1) 

no 

fault(0) 

2.526418 2.526418 2.526418 216310.8 216310.8 216310.8 1 0 0 

2.524973 2.524973 2.524973 216310.8 216310.8 216310.8 2 0 0 

2.52354 2.52354 2.52354 216310.9 216310.9 216310.9 3 0 0 

2.522125 2.522125 2.522125 216310.9 216310.9 216310.9 4 0 0 

2.520732 2.520732 2.520732 216311 216311 216311 5 0 0 
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performance of ANFIS can be impacted by the complexity and diversity of fault types 

and circumstances in transmission lines. Robust fault detection and localization depend 

on the model's capacity to generalize across many fault scenarios and adjust to changing 

fault characteristics. The ability of the model to adapt to quickly changing fault 

circumstances can be impacted by how well waveforms are processed in real-time in 

MATLAB for fault detection and localization using ANFIS. Effective fault management 

requires fast analysis and decision-making based on incoming waveform. Voltage and 

Current Measurements reading from Amara Bus-Bar for 9 fault positions when we have  

three phases to ground fault at each position as shown in the figures below . 
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Figure 4.2  The Matlab waveform of current and voltage signal at 10 % of the 

transmission line length . 

Fig. 4.2 illustrates the input signals from the buses (voltages and currents). The plot 

shown in the figure is taken from a plotting program in Matlab, where the x-axis is the 

time and the y-axis is the three-phase voltage signals. In the first part, the second part in 

Fig. 4.14 labels the y-axis with the three-phase current signals. By making a two-phase 

ground fault in the Simulink model to show the effect of the faults on the values of the 

current and voltages, we can see in Fig. The shape of the input waveforms for 10% of 

the line length shows that the high value of the current in two phases and the voltage 

will be reduced. The current in the third phase will be zero. 
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Figure (4.3 ) The Matlab waveform of current and voltage signal at 20 % of the 

transmission line length. 

In Fig. 4.3, the shape of the input waveforms for 20% of the line length shows that the 

high value of the current in two phases and the voltage will be reduced. The current will 

be lower than in the previous state. The voltage is higher due to the distance. 
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Figure (4.4) the Matlab waveform of current and voltage signal at 30 % of the 

transmission line length. 

In Fig. 4.4, the shape of the input waveforms for 30% of the line length shows that the 

high value of the current in two phases and the voltage will be reduced. The current will 

be lower than in the previous state. And the voltage is higher due to the distance 
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Figure  (4.5) the Matlab waveform of current and voltage signal at 40 % of the 

transmission line length . 

In Fig. 4.5, the shape of the input waveforms for 40% of the line length shows that the 

high value of the current in two phases and the voltage will be reduced. The current will 

be lower than in the previous state. And the voltage is higher due to the distance. 
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Figure (4.6 ) the Matlab waveform of current and voltage signal at 50 % of the 

transmission line length. 

In Fig. 4.16, the shape of the input waveforms for 50% of the line length shows that the 

high value of the current in two phases and the voltage will be reduced. The current will 

be lower than in the previous state. And the voltage is higher due to the distance. Other 

locations of fault in transmission lines 60%,70%,80%, and 90%) of the line length in 

appendices (A, B, C, D). 
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4.5  The Comparison between Artificial Neural Network  (ANN ) and Adaptive 

Neural Fuzzy Inference System (ANFIS). 

In the field of artificial intelligence and machine learning, Adaptive Neuro-Fuzzy 

Inference System (ANFIS) vs Artificial Neural Network (ANN) contrast is essential. 

Although they both have strong modeling and prediction capabilities, ANFIS and ANN 

have different underlying architectures and methods. ANFIS is a kind of fuzzy logic 

system that builds a strong and flexible model by fusing the powers of fuzzy logic and 

neural networks[81]. It is especially helpful for managing uncertainty and simulating 

systems with non-linear connections. ANN, on the other hand, is a kind of neural 

network that draws its inspiration from the composition and capabilities of the human 

brain. It is renowned for its capacity to pick up on and adjust to intricate data 

patterns[82]. Given that both ANFIS and ANN have advantages and disadvantages, a 

comparison of the two models is necessary. Although ANFIS is renowned for its 

capacity to manage uncertainty and non-linear interactions, training it may need a 

substantial quantity of data and be computationally demanding. ANN, on the other hand, 

is renowned for its capacity to identify intricate patterns in data; yet, its performance 

may be adversely affected by the caliber of the training set and may not be optimal in 

scenarios with non-linear correlations between variables[83]. This comparison is crucial 

since it can assist in determining which model is appropriate for a certain situation and 

enhance the system's overall performance. In conclusion, it is critical to compare ANFIS 

with ANN in the context of machine learning and artificial intelligence. Each model has 

advantages and disadvantages, and the best model to use will rely on the particular 

application and the kind of data that is accessible. 

 

   

Table 4.3 The Characteristics as a comparison between ANN and ANFIS 
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Feature Artificial Neural Network 

(ANN) 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Basic 

Structure[84] 

Composed of layers of 

interconnected neurons 

(input, hidden, output). 

Combines neural network structure with fuzzy 

logic principles. 

Layers[82] 

Typically consists of an 

input layer, one or more 

hidden layers, and an 

output layer. 

Consists of five layers: input layer, fuzzification 

layer, rule layer, normalization layer, and output 

layer. 

Functionality of 

Nodes[85] 

Neurons perform weighted 

sums and apply activation 

functions. 

Nodes perform specific functions related to fuzzy 

logic and inference. 

Learning 

Mechanism[85] 

Uses backpropagation and 

gradient descent for weight 

adjustment. 

Employs a hybrid learning approach combining 

gradient descent and least squares estimation. 

Handling of 

Inputs[85] 

Accepts numerical inputs 

and processes them through 

activation functions. 

Accepts both numerical and linguistic inputs, 

converting them into fuzzy sets. 

Output Type[86] 

Produces continuous 

outputs based on learned 

patterns. 

Produces fuzzy outputs that can be defuzzified into 

crisp values. 

Interpretability[8

6] 

Often considered a "black 

box"; difficult to interpret 

outputs. 

More interpretable due to fuzzy rules, providing 

human-readable outputs. 
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Feature Artificial Neural Network 

(ANN) 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Adaptability[81] 

Adapts well to large 

datasets but may require 

extensive retraining. 

Adapts to changing conditions by updating fuzzy 

rules and parameters. 

 

4.6  Discussion of the Results 

Power transmission lines have seen the successful application of ANFIS for fault 

localization and detection. The method enhances the efficiency of finding and 

identifying faults in voltage distribution power system networks by utilizing ANFIS. 

With the least amount of error, the approach can locate and detect faults, as well as 

determine their distance and major and minor branches. the result shown in Table (4.1) 

illustrates the accuracy of detection reached 100% and the localization to 99.99% which 

is considered a very effective and reliable technique. 

Comparison of ANN and ANFIS Models: To characterize the generation of 

polygalacturonase, the ANN approach was contrasted with the ANFIS. While the 

ANFIS model and the ANN model both showed comparable predictions, the ANFIS 

method more accurately forecasted and fit the testing data.  

Compared to ANN, ANFIS Performs Better and Learns More Quickly when it comes to 

forecasting particle ratios, the ANFIS models outperformed the ANN system and other 

theoretical models in terms of performance and training speed. Whereas ANN Results 

Vary, ANFIS Results Are Consistent, the ANFIS system will yield the same result in 

every iteration of the experiment when employing it in place of the ANN system, 

whereas the ANN system will yield a new result each time. ANN Needs Longer 

Training Time Than ANFIS, To reach optimal performance, the ANN system needed an 
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overly long training period compared to the ANFIS system. ANN results in table (4.2). 

Table 4.3 shows the Characteristics as a comparison between ANN and ANFIS and the 

comparison between ANFIS and ANN is clear in the table the result of fault detection in 

ANFIS for the length (20 Km ) of the transmission line is (19.99821 Km) and for ANN 

for the same length of the transmission line is (19.0988 Km) so ANFIS is more accurate 

and faster. In summary, ANFIS performs better than ANN in terms of prediction 

accuracy, consistency of outcomes, and training duration, according to testing and 

comparison of ANN and ANFIS models in defect detection and localization. However, 

the application and caliber of the training data determine each model's performance. 
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Chapter five 

CONCLUSIONS AND RECOMMENDATION 

5.1  CONCLUSION 

It's essential to realize that an examination of fault identification can be done by 

ANFIS. The data that may be utilized to train the ANFIS, the time required to design 

and test the ANFIS, and the required accuracy of the ANFIS predictions are all 

important considerations. The application of ANFIS for fault detection and 

localization in 400 kV transmission lines has shown promising results in terms of 

accuracy, speed, and reliability. ANFIS can accurately detect and locate different 

types of faults ( Three-Phase Faults), with very low error percentages. The proposed 

ANFIS-based approach demonstrates high-speed processing capabilities, enabling 

real-time fault detection and localization within less than 0.05 cycles of time. This is 

crucial for minimizing downtime and preventing cascading failures in the power 

system. ANFIS effectively handles uncertainties and imprecisions in measurement 

data, such as voltage and current signals, by combining the strengths of neural 

networks and fuzzy logic. This makes it suitable for practical applications where data 

quality can vary. The interpretability of ANFIS is enhanced by its fuzzy rule-based 

structure, which allows for linguistic representation of the fault conditions. This can 

help power system operators better understand and diagnose fault cases. Simulation 

results using MATLAB/Simulink demonstrate the effectiveness of ANFIS in 

localizing faults along the transmission line, with estimates within 200 Kilometers 

meters of the actual fault location. This level of accuracy is essential for isolating and 

repairing faults. The hybrid learning approach of ANFIS, combining gradient descent 

and least squares estimation, enables more accurate training compared to traditional 

ANN models. This is beneficial for adapting the system to changing network 
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conditions and evolving faults in different locations. In summary, the integration of 

ANFIS into transmission line protection schemes can significantly enhance the 

reliability, stability, and security of power systems by providing accurate, real-time 

 fault detection and localization capabilities.  

                            

5.2 The Recommendations and Future works 

The intricacy of the recommendations made on the use of ANFIS for transmission line 

fault detection ANFIS models can be complicated and challenging to implement, 

requiring a large number of computational resources and expertise; training and testing 

the choice of membership functions can significantly impact By implementing these 

recommendations and pursuing future works, the effectiveness of ANFIS in fault 

detection and localization in transmission lines can be significantly enhanced. This will 

contribute to the reliability and stability of power systems, ultimately benefiting both 

operators and consumers by reducing downtime and improving service quality. 

- Incorporate ANFIS with smart grid systems to enhance real-time monitoring and fault 

management capabilities. This integration can leverage data from smart meter devices 

for improved accuracy in fault detection. 

- Explore hybrid models that combine ANFIS with other machine learning techniques, 

such as deep learning or support vector machines, to improve fault classification and 

localization accuracy. 

- Build user-friendly interfaces for operators to interact with the ANFIS system, making 

it easier to visualize fault detection results and understand the decision-making process. 
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-Adaptive and Self-Tuning ANFIS: Create adaptive and self-tuning ANFIS architectures 

that can automatically adjust their parameters based on systems of detection. Integrate 

with Other Protection Schemes: Examine how ANFIS-based fault detection can be 

integrated with other protection schemes, including communication-based, overcurrent, 

and distance protection. This might result in the creation of fault management systems 

that are more thorough and dependable . 

For future research in  multi-objective optimization techniques to balance various 

performance metrics, such as detection speed, accuracy, and computational efficiency in 

 coster collaborative research efforts between academif ,ault detection and localizationf

and industry to advance the application of ANFIS in power systems, facilitating 

knowledge exchange and practical  implementation of findings 
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: - The ANFIS's configuration for detecting contains the following design parameters 

[System] 

Name='anfis rule' 

Type='sugeno' 

Version=2.0 

NumInputs=6 

NumOutputs=1 

NumRules=729 

AndMethod='prod' 

OrMethod='probor' 

ImpMethod='prod' 

AggMethod='sum' 

DefuzzMethod='wtaver' 

 

 

 

 

 



 

 الخلاصة

ذكًٍ أًْٛح دساعح اكرشاف الأخطاء انًرمذيح ٔذصُٛفٓا ٔذٕطُٛٓا فٙ خطٕط انُمم فٙ ذؼضٚض دلح ٔكفاءج اكرشاف          

الأخطاء ٔذٕطُٛٓا فٙ أَظًح َمم انطالح. ذٓذف انذساعح إنٗ الاعرفادج يٍ انرمُٛاخ انًرمذيح يصم أَظًح الاعرذلال 

ٔانشثكاخ انؼصثٛح ٔانطشق انٓعُٛح نرؽغٍٛ اكرشاف الأخطاء ٔذٕطُٛٓا فٙ  (ANFIS) انؼصثٙ انضثاتٙ انركٛفٙ

، (ANN) خطٕط انُمم، ؼٛس ذًد يماسَح انؼًم تاعرخذاو ًَٕرض ٚؼرًذ ػهٗ انخلاٚا انؼصثٛح الاصطُاػٛح انشثكاخ

ذسذّ ػهٗ إداسج ؼالاخ ٔكاٌ انُظاو انًمرشغ ْٕ انًفضم. ذؤكذ انٕسلح ػهٗ فٕائذ انُظاو يماسَح تانًُاْط انثذٚهح، يصم ل

ػذو انٛمٍٛ ٔالأَظًح غٛش انخطٛح ٔإيكاَٛح ذكايهّ يغ اعرشاذٛعٛاخ انٓعشج انٕلائٛح الأخشٖ لاعرخذاو شثكاخ انطالح. فٙ 

 ذٕضػ ْزِ انذساعح ذطثٛك ذمُٛح. انؼانى انؽمٛمٙ. ٔذشكض انذساعاخ انلاؼمح ػهٗ ذؽغٍٛ دلح ٔيٕشٕلٛح انًُٕرض انًغرخذو

ANFIS رهمائٙ ػهٗ اضطشاتاخ الأػطال فٙ خطٕط انُمم ٔذٕطُٛٓا تاعرخذاو انثٛاَاخ انًماعح يٍ يؽطح نهرؼشف ان

خظ َمم ٔاؼذج. انٓذف يٍ ذصًٛى ْزِ انرمُٛح ٔذُفٛزْا ْٕ انًؼانعح ػانٛح انغشػح انرٙ ًٚكٍ أٌ ذٕفش اكرشاف الأخطاء 

ذٚذ الأخطاء ٔيٕالغ أَظًح انؽًاٚح انشلًٛح ػٍ تؼذ ٔذٕطُٛٓا فٙ انٕلد انفؼهٙ. ٔلذ ذى الرشاغ اعرخذاو ْزا الأعهٕب نرؽ

 044كٛهٕ فٕند، تًغافح  044تالإضافح إنٗ انكشف ػٍ ظًٛغ أخطاء انرؽٕٚم. ؼٛس ذى اعرخذاو خظ َمم لذسج ظٓذ 

كٛهٕيرش، ٚشتظ يٍ يؽافظح يٛغاٌ إنٗ يؽافظح ٔاعظ. نمذ ذى ذؽذٚذ الأشكال انؼششج انًخرهفح لأخطاء انرثذٚم انرٙ لذ 

ذز فٙ خظ انُمم تؼُاٚح يٍ خلال انًشؼهح )انًشاؼم( انرٙ ُٚطٕ٘ ػهٛٓا اعرخذاو انرمُٛح انًمرشؼح. ذى اعرخذاو ذؽ

يعًٕػاخ تٛاَاخ يٛذاَٛح يخرهفح نرذسٚة ٔاخرثاس َظاو انرمُٛاخ انًغرخذيح. تاعرخذاو تشايط انكًثٕٛذش انًثُٛح ػهٗ 

ػهٗ طٕل خظ انُمم. ذرُأل ْزِ  يؽاكاج الأخطاء فٙ يٕالغ يخرهفح ٚرى اعرخشاض انثٛاَاخ انًٛذاَٛح يٍ ػًهٛاخ . يُصح

انذساعح يعًٕػح يرُٕػح يٍ عُٛاسْٕٚاخ الأخطاء، تًا فٙ رنك إَٔاع الأخطاء ٔيٕالغ الأخطاء ٔيمأيح الأخطاء. ٚؼذ 

ذيا ٚرؼهك ػُ .ANFISs تًصاتح يذخلاخ RMS لٛاط ذٛاس انطٕس ٔانعٓذ انًرٕفش فٙ يٕضغ انرشؼٛم تُاءً ػهٗ لٛى

. ٔذظٓش َرائط ػًهٛح انًؽاكاج أٌ 4أٔ  1الأيش تاكرشاف انخطأ َٕٔع انخطأ، ذكٌٕ يخشظاخ انرمُٛح انًغرخذيح إيا 

َرائط اكرشاف الأخطاء نخظ  .ANN يماسَح تـ ANFIS عشػح ٔاَرمائٛح انُٓط ًٚكٍ الاػرًاد ػهٛٓا نهغاٚح تانُغثح نُظاو

. ْٔزا كى  (19.4911تُفظ انطٕل ْٙ ) ANN ، تًُٛا نخظ َممكى ANFIS ( ْٙ19.99101) كى فٙ 04َمم تطٕل 

ٚظُٓش اخرثاس ٔيماسَح ًَٕرظٍٛ يٍ انرمُٛاخ فٙ ذؽذٚذ  .ANN أكصش دلح ٔأعشع يٍ ANFIS ٕٚضػ تٕضٕغ أٌ

يٍ ؼٛس دلح انرُثؤ ٔاذغاق انُرائط ٔيذج انرذسٚة. ٔنكُٓا لا ذضال  ANN ٚرفٕق ػهٗ ANFIS انؼٕٛب ٔذٕطُٛٓا أٌ

ذٕفش أداءً كافًٛا نهرطثٛماخ انرٙ ذرضًٍ يشالثح انُمم ٔانرٕصٚغ ٔانرؽكى ٔانؽًاٚح. الأداء نهرطثٛماخ تًا فٙ رنك ؼًاٚح 

  .        انًشالثح
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سعانح يمذيح انٗ يعهظ كهٛح انُٓذعح فٙ ظايؼح يٛغاٌ كعضء يٍ يرطهثاخ انؽصٕل ػهٗ شٓادج 

 انًاظغرٛش فٙ ػهٕو انُٓذعح انكٓشتائٛح ) لذسج(
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 تتىل عثد انمطهة مسهط
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