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Abstract
A Photovoltaic (PV) energy is considered one of the most inexhaustible

renewable energy sources in the world due to its abundance and sustainability, as
well as its low operational costs. However, its power production depends on whether
factors such as irradiance, temperature, etc. Therefore, a PV power forecasting
prediction is a crucial stage to utilize the stability, quality and management of a
hybrid power grid. In this thesis, the PV forecasting prediction model based on
theoretical data and real data is designed using various machine learning techniques.
The theoretical data are obtained from the website of (climate one building), while
the real data are collected from the PV experimental prototype installed at the
engineering college of Misan University in Irag. To enhance the PV forecasting
prediction model, an artificial neural network (ANN) technique based on the gray
wolf optimization (GWO) and genetic algorithm (GA) as learning methods are
utilized. Then, the Python approach is used to design this PV forecasting based on
five fitness functions, R2, MAE, RMSE, MSE, and RE. Finally, the data are
analyzed and tested over short-term and medium-term time horizons to ensure model
performance and forecast accuracy, thus improving PV power production across
different times and weather conditions. The results indicate that the ANN model
based on the GA algorithm captures the PV power generation pattern with higher
accuracy across various weather conditions compared to traditional ANN and ANN-
GWO prediction models. This is evident from the higher Pearson correlation
coefficient (R?) values achieved during different months in the theoretical data for
medium-term photovoltaic power prediction. Additionally, the GA-based ANN
model achieved higher R? values under sunny, cloudy, and rainy conditions in the

experimental data for short-term photovoltaic power prediction.
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Chapter One Introduction

CHAPTER ONE

Introduction

1.1. Background

Over the past few years, the global population has caused a substantial rise in the
continuous energy consumption derived from coal, oil, natural gas, and other
resources[1]. These resources have become increasingly hazardous due to the
worsening of global warming caused by the large-scale emission of carbon
dioxide[2]. Currently, the primary source of worldwide electrical energy generation
Is derived from fossil fuels, which account for over 80%[3]. This ratio is projected
to result in about 40.4 gigatonnes of carbon dioxide emissions, by 2030[4]. To
address the issue of energy scarcity in the future and mitigate the adverse
consequences of fossil fuel combustion, several researchers have called for the use
of renewable energy sources . Therefore, solar energy is widely recognized as an
Important type of renewable energy due to its cleanliness, abundance, and ease of
access[5] PV power generation is a very efficient method of harnessing solar
energy[6]. This energy may be conveniently captured with the use of PV panels,
which can be installed on rooftops or in large-scale solar farms[7]. Solar energy is
converted into electricity and utilized to supply power to the building or incorporate
it into the electrical grid. The PV energy production is very competitive in electricity
generation. However, it faces significant limitations due to the instability of the
power system resulting from its production changing throughout the day in response
to the availability of solar radiation as the intensity of solar radiation fluctuates due
to factors such as geographical location, time of day, and season. Therefore, solar
radiation reaches its peak during the afternoon. In addition, the strength and spread

of solar radiation can also be affected by the sky conditions and wind speed[8]. The

1



Chapter One Introduction

geographical location of Iraq is characterized by a hot desert climate, especially in
Misan Governorate, where summer temperatures rise from 40 to 50 Celsius and may
increase during severe heat waves. In addition, it receives high levels of solar
radiation. Due to these unique climatic conditions, Misan Governorate is considered
one of the ideal areas for investing in PV power projects and generating power using

PV panels.

Therefore, this thesis is concerned with developing methods for predicting
energy production for solar PV systems in Misan. Specifically, this focuses on
forecasting solar energy production for 10 to 13 hours each day at 3-minute intervals
and also being taken at 1-hour intervals. The repeated use of this forecast-horizon
provides ample time for PV power plant operators and the energy market to evaluate
the situation and make informed decisions. All case studies included in this thesis
examine a particular forecasting problem and employ several approaches and
techniques, such as (a) persistence, (b) statistical, (c) machine learning (ML), and
(d) hybrid methods. These approaches are classified based on their use of historical
data on PV power production and associated climate factors as shown in Figure (1-
1). In the persistence model, the forecasted PV power output is equal to the real
power output from the previous day at a corresponding hour. This technique relies
only on past PV power production data to forecast PV power generation. Statistical
approaches are used to forecast PV power generation by conducting a statistical
analysis of various input data. Thus, these strategies are based on historical time
series data. In contrast, machine learning methods require a large dataset to provide
accurate predictions about PV power generation. A machine learning model is an
advanced technology capable of processing linear, non-linear, and non-stationary
data patterns. A hybrid model is created by combining two or more methodologies

to develop a forecast model. The hybrid model demonstrates superior performance
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compared to the single model across many forecasting challenges by using the
particular strengths of each technique. The time period over which the PV power
output is to be forecasted is called the forecast horizon. The forecast accuracy varies
with the change of the forecast horizon in the same model used with the same
parameters. However, according to most researchers’ reports, the PV power
generation forecast can be divided into four categories based on the time horizon, as
shown in Figure (1-2) and each part will be explained in the literature review.
Finally, the thesis outlines the process of collecting and analyzing the precise data
in the subsequent chapters.

Forecasting Techniques Based
on Historical Data

1

} ! . .

Persistence Statistical L“{:ﬁ:“g Hybrid
Method Approaches Approkches Techniques
~ ARMA . ANN N AgT
ANN+
| ARIMA L SVM gl it
Regressi SVM+
— Regression -
GA
L ANFLS

Figure 1-1 Classification of PV power forecasting based on historical data.



Chapter One Introduction

Types of PV
Forecasting
|
| ! | !
Very Short-Term Short-Term Medium-Term Long-Term
Forecasting Forecasting Forecasting Forecasting
(1 sec—< 1h) (1h —24h) (1 week — 1 month) (1 month — 1 year)

Figure 1-2 Time-based classification of PV power forecasts

1.2. Photovoltaic System

PV systems have achieved worldwide popularity for providing environmentally
friendly and sustainable energy[9]. Where the deployment of PV systems has seen
substantial growth in recent years [10]. Solar cells, sometimes referred to as PV cells,
convert sunlight into energy via the photon-voltage effect phenomenon[11], as seen
in Figure (1-3). The cells are organized in a grid-like formation and surrounded by
a strong frame, with a protective cover to protect them from external factors. These
solar cells have PV technology to catch sunlight and convert it into electrical power.
In actuality, without being exposed to solar radiation, the PV cell functions similarly
to a diode and does not produce any electrical current. When a PV cell is directly
exposed the solar radiation, photons with wavelengths longer than the energy of
silicon in layer n induce electrons to migrate from layer n to layer p, creating many
holes. By iteratively reproducing this situation, a voltage variation is generated
within the cell, which causes the movement of electrons and creates an electric
current. The intensity of the light incident on a PV cell directly affects the magnitude
of the electrical current produced. Moreover, the temperature and properties of
semiconductors have a significant influence on the performance of the solar cell[12].
Each class of solar power system has its own set of advantages and disadvantages,
and the choice depends on aspects such as efficiency requirements, space, and cost

concerns. However, PV power generation is dependent on fluctuating weather
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conditions and is impacted by factors such as time, air temperature, module
temperature, wind speed, direction, and humidity. The system largely depends on
the solar radiation absorbed by the panels. Nevertheless, this radiation is not uniform
[10]. Therefore, the unpredictability and instability of solar energy supply may be
ascribed to basic variables that contribute to the challenge of making accurate
predictions. These aspects must be tackled in order to guarantee the dependability of
the energy system. Accurately the forecasting of energy production in solar power
plants is essential for improving management, maximizing efficiency, and
guaranteeing the secure and steady operation of the power grid [13]-[14]. Accurate
predictions of PV power will help independent power producers or energy

authorities improve energy planning and management[15].

Sunlight
(photons)

Glass with anti-

reflective coating Top electrode

P-Type semiconductor

(electron holes) \ I

P-N Junction

(depletion region) ~~—__

‘1 Electric
current flow

N-Type semiconductor m—p
(free electrons)

Bottom electrode

Figure 1-3 The structure of a PV cell

1.3. Literature Review

The expansion of PV has several challenges such as the unpredictable nature of
energy production, influenced by meteorological factors, which can cause system
disparities and affect the stability of the electrical grid. So recent literature has
examined different approaches to produce and optimize PV power generation

estimates to enhance efficiency in the face of seasonal or geographical fluctuations.
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Researchers classify PV power forecasting based on factors such as forecast
duration, weather patterns, and forecasting techniques. Accordingly, the forecasting
of PV power generation can be classified into four groups according to the time

frame.

1.3.1. Very Short-Term Forecasting

This prediction which has been made over period of time from 1 second to less
than 1 hour, it will be clarified in below by research papers which has been suggested
it in the last years.

The paper [16], developed a hybrid model combining FFNN, GA, and ANFIS
for short-term PV generation forecasting, using data from Greece. The model
optimized ANFIS with GA, followed by FFNN for final prediction, achieving lower
error rates than separate models. It achieved an MAE of 0.4425% and an NRMSE
of 6.3426%.

In the paper [17], a deep learning approach combining CNN and LSTM was
presented to predict the electrical energy production of a 451.82 MW PV facility in
Limburg, Belgium. The model used data from March 2015 to March 2016, recorded
every 15 minutes, with data split by season for training and testing. The proposed
model demonstrated superior performance compared to reference methods,
achieving MAE of 1.028 and RMSE of 2.095, with better accuracy in summer due
to higher solar radiation.

In the paper [18], an improved ACO approach was suggested to optimize SVM
model parameters for forecasting energy production at the Desert Knowledge
Australia Solar Centre. The model utilized data from 38 locations, including
temperature, humidity, and solar radiation, recorded every 5 minutes. The I-ACO-
SVM model demonstrated high predictive accuracy, achieving an MSE of 0.0349,
RMSE of 0.1868, MAE of 0.1569, and an R2 value of 0.997.
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In the paper[19], a hybrid deep learning model combining WPD and LSTM was
proposed to predict PV power output one hour ahead with five-minute intervals. The
model was trained on data from a PV system in Alice Springs, Australia, collected
from June 2014 to May 2015, with testing from June 2015 to June 2016. The WPD-
LSTM technique outperformed other models, achieving better MBE, MAPE, and
RMSE values, demonstrating its potential for accurate PV power prediction.

The paper [20], suggested a hybrid model combining SR and MLP was
developed to forecast PV power one month ahead using meteorological data from
an Australian solar farm. The model utilized data from January 2017 to December
2018, with testing in January 2019. The hybrid algorithm outperformed individual
models, achieving an RMSE of 5.58 kW, MAE of 3.3 kW, and an R2 value of 0.993,
indicating superior forecasting performance.

In the paper[21], two models, ANFIS and ANFIS-PSO, were developed to
predict PV system performance at the National Polytechnic Institute in Mexico City.
The data, collected from 15 October 2020 to 12 December 2022, included weather
and energy variables recorded every 5 minutes. The results showed that
incorporating PSO into the ANFIS model significantly improved prediction
accuracy, with ANFIS-PSO achieving RMSE = 0.754 kW and MAPE = 0.556%,
demonstrating enhanced effectiveness for PV system performance prediction.

In the paper[22], an approach combining GAN and CAE was proposed to
improve PV power forecasting accuracy using data from Jiangsu Province, China.
The dataset, collected from January to December 2017 at 5-minute intervals, was
divided by weather conditions (sunny, cloudy, rainy). The CAE-GAN model
achieved superior performance with low errors, including an average MAE of
0.9215 and MAPE of 16.73%, effectively addressing challenges in PV forecasting.

In the paper[23], fifteen machine learning and deep learning algorithms were

evaluated for PV power prediction in five California cities using weather data and
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PV output from 2011 to 2020. The models were trained on data from one city and
tested on others. Among the models, LSTM and GRU showed the highest accuracy,
with GRU outperforming LSTM, consistently achieving an R2 score of 0.94,

indicating its superior performance for PV forecasting.

1.3.2. Short-Term Forecasting

This type of forecast includes predictions within a time frame of 1 to 24 hours.
The subsequent paragraphs provide a literature analysis of past short-term
projections.

The paper[24], employed a hybrid GA/PSO/ANFIS approach to predict PV
power generation in a microgrid in Beijing, using hourly data from 2015. The
model's performance was evaluated with a dataset from 2016, showing superior
accuracy with an RMSE of 7.89%, NMAE of 3.98%, and MAE of 5.31% compared
to other methods.

This paper[2], proposed a simulation-based energy prediction model for PV
systems using ANFIS. The model, tested with data from Thailand, demonstrated
superior accuracy, achieving an MAE of 11952 and RMSE of 0.1184,
outperforming the PSO-ANN hybrid model.

The paper[25], introduced DNN-GA hybrid models for solar irradiation
prediction in Morocco. The models showed the LSTM-GA approach outperformed
others, with MSE and MAE values of 0.0015 and 0.027 in summer, highlighting its
effectiveness in addressing vanishing gradient issues.

The paper[26], developed a hybrid PV power prediction model combining
DFFNN and RNN. Data from South Korea indicated that the PV Hybrid Network
(PVHybNet) significantly improved prediction accuracy, achieving an R2 value of

92.7%, surpassing individual network performances.
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The paper[27], compared ANFIS and MLP with empirical models for PV power
forecasting. The ANFIS model achieved an exceptionally low NRMSE of less than
5.35 x 10-4%, outperforming other models, especially the hybrid Al approach.

The paper[28], employed a stacked LSTM model to predict PV power output
1.5 hours in advance in Cyprus. The model outperformed others, with an RMSE of
0.09394 during cross-validation, demonstrating high predictive accuracy.

The paper[29], proposed the IMWOA-SVM model for PV power prediction,
optimized for both sunny and cloudy weather conditions. The model showed
exceptional accuracy, with an RMSE of 0.263 and R2 of 0.995 in sunlight,
demonstrating strong prediction capabilities.

The paper[7], compared ANN and MR models for PV power prediction using
data from Hungary. The ANN model exhibited higher accuracy, with a COD of 0.95,
MAE of 16.05, and RMSE of 28.90, showing improved performance with hybrid
input methods.

The paper[30], introduced the LSTM-GPR hybrid model for short-term PV
power prediction, using data from the University of Illinois. The hybrid model
showed superior performance, with MAPE of 9.43%, outperforming individual
LSTM and GPR models.

The paper[31], compared ANN algorithms (LM, RBP, SCG) using
meteorological data from Tamil Nadu, India. The ANN model trained with the LM
method achieved high efficiency, with R-values of 0.9376 for training and 0.9340
for testing data.

In the paper[14], enhanced PV power forecasting by combining WNN and GA.
The method optimized performance, achieving a 3.5% relative error, though
accuracy decreased on overcast and rainy days, with errors of 7.8% and 10.1%,

respectively.
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This paper[32], combined ANN with VMD and ACO for PV power prediction
in Beijing, using hourly data from 2019. The VMD-ACO-2NN model outperformed
others, with an RMSE of 0.0232 and R2 of 0.9768, showcasing high prediction
accuracy.

In the paper[33], developed an MLPNN model for daily PV power prediction
in Nigeria, with data from 2021. The model achieved high performance with an R2
of 93.53% during the rainy season but showed limited suitability for one-day

prediction in dry seasons.

1.3.3. Medium-Term Forecasting

In this type, forecasts are made one week to one month in advance. The following
research provides a review of the literature on medium-range forecasts in recent
years.

The paper[34], used a technique called CSO to adjust the nonlinear and linear
parameters of the RBFNN model. First, the data were collected from solar panels
installed on buildings in the Netherlands. They were recorded every 15 minutes from
1st May to 31th December 2018. The model was trained by incorporating weather
data from the three months of July, September, and December from the original
dataset. In conclusion, the CSO-RBFNN model achieved remarkable average RMSE
values of 3.843x102 in summer, 4.131x107 in autumn, and 2.846x107 in winter,
exceeding all other methods tested.

The paper[35], conducted a comprehensive investigation into how
meteorological factors affect performance parameters. They conducted correlation
and interdependence studies using a grid-connected solar PV plant in Zawiyat Konta,
Adrar Province, as a case study. Meteorological data were collected from February
2017 to January 2018, including ambient temperature, radiation, humidity,
atmospheric pressure, and wind speed. After data processing, they were used as
training input for a random forest model. The study showed remarkable prediction

10



Chapter One Introduction

accuracy, with a coefficient of determination of over 0.99, surpassing the highest

results of previous investigations that achieved 0.98.

1.3.4. Long-Term Forecasting

This type of forecast involves long-term of projections that extend from one year
to several years in the future. Some previous research has been conducted on the
topic of long-term expectations.

In the paper[36], developed an LSTM model optimized with EMD and SCA to
predict solar power output from a PV system in Alice Springs. Data from 2017 were
used, with meteorological inputs showing stronger prediction accuracy in August.
The EMD-SCA-LSTM model achieved high correlation with actual values, with
RMSE of 0.5283 and R2 of 0.9210.

The paper[37], proposed combining CNN with SSA to predict PV power, using
data from Taiwan’s 500 kW PV plant. The results showed that CNN-SSA
outperformed other methods like SVM-SSA and LSTM-SSA, achieving the best
prediction accuracy in sunny conditions with a MAPE of 5.34%.

The paper[38], introduced a hybrid model combining LSTM and CNN for long-
term solar energy prediction using data from 1990-2013. The model outperformed
traditional methods, achieving a low MAPE of 2.83 and an R-value of 0.9,
demonstrating high precision in forecasting PV system energy production.

In 2021, used a tree-based ML approach to predict solar PV power using
meteorological parameters by the paper[39]. used a tree-based ML approach for
predicting solar PV power in Saudi Arabia using five different models. The GWO-
FM and ENBS-FM models showed comparable performance, while the ENBG-FM
model performed best with low RMSE and fast prediction time.

The paper[40], proposed an SSA-based model to predict SPV power in Saudi
Arabia, comparing it with GWO and Levenberg—Marquardt ANN models. The SSA
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model demonstrated superior performance with lower RMSE and MSE values and

a high R2 value of 0.99312, showcasing its computational efficiency.

Table 1-1Summary of recent PV power forecasting studies

N | Authors | Location | Testes method | Data length | Result
Short-Term Forecasting

1 | (Panapakidis | Greece FFNN-GA- 2012 to | with MAE of 0.4425% and
and ANFIS 2014 MARNE of 2.6349%.
Christoforidis,
2017)

2 |(G. Li et al,|Limburg, CNN-LSTM | 2015-2016 | MAE and RMSE were
2020) Belgium, 15 minutes | 1.028 and 2.095

respectively.

3 | (M. Panetal., | Australian improved 2018-2019 | RMSE of 0.1868, MAE of
2020) ACO-SVM 5 minutes | 0.1569.

4 | (P. Li et al., | Australian WPD-LSTM | 2014-2016 | MBE=0.0067,MAPE=2.40
2020) 02, and RMSE=0.2357

5 | (Trabelsi et| Australian SR-MLP 2017-2019 | RMSE=5.58 kW, MAE =
al., 2022) 5 minutes | 3.3 KW

6 | (Lara- Mexico ANFIS-PSO | 2020-2022 | RMSE =0.754 kW, MAE =
Cerecedo et 0.325 kw,
al., 2023)

7 | (X. Panetal., | China GAN-CAE 2017, 5| MAE=0.9215, MAPE of
2023) minutes 16.73%.

8 | (Sauter et al., | California fifteen 2011-2020 | GRU outperforming the
2023) machine LSTM with a consistent R2

learning score of 0.94.
Short-Term Forecasting

9 | (Semero, Beijing GA/PSO/AN | 2015-2016 | RMSE=7.89%,MAE=5.31
Zhang, et al., FIS %
2018)

10 | (System et al., | Thailand ANFIS 2018 MAE=1.1952 and RMSE
2020) =0.1184

11 | (Bendalietal., | Morocco DNN-GA 2016-2019 | MSE=0.0015, and
2020) MAE=0.027 for LSTM-GA

12 | (Carreraetal., | South Korea | DFFNN-RNN | 2013-2015 | R2 value of 92.7%
2020) PVHybNet

12
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13 | (Ben Ammar | University of | ANFIS  and | three-day, | NRMSE below 0.00052%.
et al.,2021) Exeter. MLP August 11
to 13, 2017
14 | (Konstantinou | Nicosia, DRNN 2016-2019 | RMSE =0.11368
etal., 2021) Cyprus
15 | (Y. W. Liu et | Australia IMWOA- _ RMSE=0.263, MAE
al., 2021) SVM =0.212
16 | (AlShafeey & | Hungary ANN-MR 2017- 2020 | COD =0.95, MAE = 16.05,
Cséki, 2021) MSE = 835.68, and RMSE
= 28.90.
17 | (Y. Wang et | China LSTM-GPR | 2016 to | MAPE for LSTM_GPR of
al., 2021 2017 9.43%
18 | (Geetha et al., | India ANN _ a training data R-value of
2022) algorithms 0.9376 and a testing data R-
value of 0.9340.
19 | (Zhang & | China WNN-GA 30 min WNN with GA results in a
Zhang, 2022) relative error of 3.5 percent.
20 | (Netsanet et | Beijing, ANN-VMD- | Hourly data | RMSE = 0.0232 and R2=
al., 2022) China ACO from 2019 | 0.9768
21 | (Adeyemi et | Nigeria MLPNN and | 2021 R2=93.53%, and the
al., 2022) data pre- MAPE= 5.93% during the
processing. rainy season.
Medium-Term Forecasting
22 | (Yang et al., | Netherlands | RBFNN-CSO | Monthly The CSO-RBF  model
2020) weather produced summer, fall, and
data winter average RMSE
values of  0.003843,
0.004131, and 0.002846
respectively.
23 | (Ziane et al., | Adrar RF, PCA 2017-2018 | The study achieved a
2021) Province 15-minute | coefficient of determination
of over 0.99.
Long-Term Forecasting
24 | (Zhou et al., | Alice EMD-SCA- | 2017 RMSE=0.5283, MAE=
2020) Springs LSTM 0.3063
25 | (Aprilliaetal., | Taiwan CNN-SSA 2017 MAPE values of 5.34%,
2020 and 42.55% in the sunny

and rain model

respectively.
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26 | (Ray et al., | Australian LSTM-CNN | 1990-2013 | MAPE=2.83 and R2=0.9.
2020)
27 | (Alaraj et al., | Saudi Arabia | SVR-FM, four years | RMSEs=15.91 throughout
2021) DT-FM, training and 19.66 W during
ENBG-FM, testing for ENBG-FM.
ENBS-FM,
and GWO-FM
28 | (Alaraj et al., | Saudi Arabia | SSA Tenyears |R2=0.99312
2023)

1.4. Motivations

Due to world development, the traditional energy supply is fast depleting,
increasing the quantity of energy required for traditional energy and resulting in
problems like cost, energy crises, and environmental challenges. Solar energy,
despite its advantages, is highly variable due to its dependence on factors such as
solar radiation, temperature, cloud cover, and solar hours, and it is only available
intermittently during the day [41]. This variability, conditions, and intermittency of
solar energy can lead to variations within the PV system, affecting the stability of
the interconnected electrical grid. Due to the intermittent and uncontrollable nature
of solar energy production, accurate prediction of solar generation is critical for both
the grid and operators. The main duty of the network operator is to plan the supply
and demand of electricity to maintain a balance between them. Where adverse
weather conditions result in a rapid surge in demand. For example, demand typically
increases during daylight hours and in the summer or winter seasons when heating
or cooling systems are being utilized. An imbalance between supply and demand
could lead to blackouts or voltage drops, while inadequate production or excess
capacity without storage solutions can strain the grid. Thus, utilizing big data and
machine learning techniques to enhance the precision of demand and production

predictions might facilitate more effective planning and operation. Furthermore,
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enhanced meteorological predictions could provide more precise anticipation of
renewable energy generation, where batteries can store surplus energy during times
of low demand and discharge it during times of high demand. Hence, it is imperative
to precisely forecast solar energy production to avoid any variations or disruptions
in the provision and thereby sustain grid stability[42]. This thesis examines the
performance of advanced machine learning techniques, specifically artificial neural
networks (ANN), as well as optimization approaches like the genetic algorithm (GA)
and the gray wolf optimization (GWO) to enhance PV energy production forecasting
by accurately modeling non-linear relationships between weather conditions and
power output. ANN provides a flexible and powerful framework for modeling
complex patterns, while GA and GWO offer robust optimization strategies to refine
the ANN structure and parameters. These optimization algorithms help in achieving
optimal network performance by adjusting the number of hidden layers, neurons,
and other crucial parameters, leading to more reliable and precise forecasting results.
This combination of machine learning and optimization techniques contributes to
the advancement of renewable energy management and planning, especially in
regions where solar energy production is influenced by highly variable

meteorological conditions.

1.5. Aim and Objectives

The research aims to study the impact of changes in weather conditions in Iraq
on the performance of solar panels and the quantum of power production from PV
systems. Since changes in weather conditions lead to fluctuations in power
production, accurate forecasting contributes to achieve a balance between supply
and demand for power. Thus, the results help develop plans for the future expansion
of solar panels in Iraq, which helps achieve sustainability in electricity generation

from renewable energy sources and reduces dependence on fossil fuels.
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The main objectives of this thesis are as follows:

1. Enhancing forecast accuracy based on medium-term meteorological data for
2021, collected hourly and divided into four seasons in Misan, to explore the
impact of seasonal climate changes on PV power production. Then the short-term
experimental data for 2024, collected every 3 minutes and divided into weather
conditions in Misan, to analyze the impact of each type of weather on PV power
production. This data provides an accurate and comprehensive representation of
different weather conditions, helping to build accurate forecast models for
seasonal production fluctuations and different weather conditions based on solar
radiation and temperature.

2. Study the performance of current state-of-the-art machine learning methods for
solar energy forecasting and propose improvement methods to find the best
accuracy for forecasts of PV energy production based on data used.

3. Comparison of theoretical and experimental results to demonstrate the
effectiveness of the models used to predict PV power production under the

influence of different data and weather conditions.

1.6. Thesis Contributions

The main contributions of this research are as follows:

1. A MATLAB simulation model was created to gather actual power data by
importing solar radiation and temperature values from the website (climate
onebuilding). This model represents a solar system consisting of 4 PV modules.
The system was enhanced by incorporating a boost converter, which allows the
electricity produced by the panels to be used to power loads.

2. Asmall PV system is installed at the University of Misan College of Engineering

in Iraq, to collect a training and real data set from the PV array.
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The ANN methodology was formulated based on empirical data gathered from
the University of Misan in Iraq in 2024, specifically in the periods of January,
March, and June. Theoretical data, on the other hand, was sourced from the
website (climate onebuilding) of 2021.

The ANN was used to predict power production due to its ability to handle
nonlinear and complex data. In order to enhance the performance of the network,
the GA and GWO were used. The objective of using the two algorithms is to
explore the potential of both the old and modern algorithms in improving the
performance of NN and increasing the accuracy of predicting PV power
production.

The data were subjected to training by both algorithms followed by a comparative
analysis. The results indicated that the model utilizing the ANN-GA exhibited
superior performance compared to the model utilizing the ANN-GWO when

tested across different datasets and weather conditions.

1.7. The Thesis Structure

The thesis has been divided into six chapters, which are as follows:

X/
0.0

Chapter One: This chapter provides an overview of the study, including the
background of PV energy, the motivation behind the research, and the objectives
and contributions of the thesis. In addition, studies on the prediction of PV energy
generation are presented, including theoretical data and experimental data in
different prediction periods. Finally, a summary of the content in each chapter of
this thesis is provided.

Chapter Two: This chapter introduces a PV cell model. A MATLAB-SIMULINK
model was developed to simulate a PV system that captures real energy by
incorporating solar irradiance and temperature parameters in the embedded solar

panels. Additionally, the model includes a DC-DC boost converter, which is
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0

L)

L)

controlled using traditional Perturb and Observe (P&QO) methods. The chapter
further explains the process of collecting experimental data to validate the model.
Chapter Three: This chapter details the technology used, specifically the
enhanced ANN model optimized through a combination of GA and GWO. It
explains the processing and division of both experimental and theoretical data,
followed by a comprehensive outline of the methodology employed to achieve
accurate predictions and performance assessment.

Chapter Four: This chapter presents the experimental and theoretical results,
discussing each in detail before comparing them. The analysis highlights
differences and similarities between the two data sets, examining how each
method performs under various conditions. The comparison aims to validate the
model’s accuracy and assess its applicability in real-world scenarios.

Chapter Five: In conclusion, the most important conclusions are presented and
highlighted. Furthermore, some critical recommendations are made to extend and

enhance the current work with suggested avenues for future research.
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CHAPTER TWO

Mathematical Modeling of PV System

2.1. Introduction

This chapter focuses on the modeling and PV data collection for the solar energy
system utilized in this thesis. It begins with an overview of developing a solar cell
model, followed by the collection of theoretical data. This data is generated through
a MATLAB simulation model that includes solar panels connected to a boost
converter, with the power output regulated by a Maximum Power Point Tracking
(MPPT) system using the P&O algorithm. Details of the data collection
methodology are provided. Subsequently, experimental data is collected from a
small-scale PV system, comprising four PV panels equipped with sensors to measure
solar irradiance, temperature, and current. Finally, the most important performance

metrics used in this thesis are explained to evaluate the PV system’s performance.

2.2. Modelling of a PV Cell

The primary function of PV cells is to convert light into electrical energy through
the phenomena of photo-voltage effect. The most prevalent design is the single
diode configuration with both series and shunt resistors, as depicted in Figure (2-1).
The PV cell is depicted in the diagram as a current source, denoted as lp,, Which is
linked in parallel to a diode. The present source of current, denoted as lpp, IS
generated when light interacts with PV cells. The magnitude of Ip, is directly
proportional to the intensity of solar radiation. In a typical solar cell, resistances are
not explicitly incorporated but are integrated and linked with the PV diode in real-

world applications. The equations can quantitatively represent the PV module
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Figure 2-1 Single-diode model of the PV module

The total current (Ip},) generated by the module can be determined by applying
Kirchhoff's law, as stated in equations (2-1) [43]:
Ipy = Ipp — Ip — Isn (2-1)
Where the shunt current going through the shunt resistance is denoted as Iy, the

PV diode current is denoted as I, and the PV output current is denoted as I,y [43].

Where Ip,, represents the present generator as stated in equation (2-2):
G

Ipy = [Is¢ + K;(T — 298)] 1000

(2-2)

Where G represents the solar irradiation, T represents the ambient temperature
of the climate conditions, Is. represents the short circuit current of the PV cell, K;
represents the temperature coefficient, which is determined by Shockley's

Equation(2-3)[43].
Ip =1, (exp [EVT'; — 1) (2-3)
Where the saturation current of the PV diode is denoted as lo, the voltage across

the PV diode is represented by Vd, the electrical charge is symbolized as
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q (1.69x10?° C), the Boltzmann constant is denoted as k (1.38x10% J/K), and the
PV diode factor is represented by N[43]. The following equation depicts the leakage

current (Isn)

Ig, = (VPV‘;SI:V Rs) (2-4)

So, the output current of the PV cell resulting from substituting equation number (2-
3) and (2-4) in equation number (2-1)

_ _ q(Vev+lpy R9)] _ (Vpy+ Ipy Ry) )
lpv = Ipn =1l (exp[ nKNT 1) Rsh (2-5)

Where I,y represents the current output of the PV system, Rs the Series resistance of
PV cell, rg, the Shunt resistance of PV cell and Vpy, represents the voltage output of

the PV system.

2.3. Theoretical Test Data Components

In this section, the components of the theoretical work will be described. The
theoretical work is a crucial aspect of understanding how to design and improve the
performance of these systems. The theoretical work components include a
MATLAB simulation model for collecting real energy from meteorological data and
a set of key components that help build a comprehensive model that can be used to
analyze and improve performance. These components include the solar panels, the

DC/DC boost converter, and the method used to control it.

2.3.1. Proposed System Description

The main objective of this section is to collect the actual power by using the data
collected from meteorological in 2021 to make predictions for PV power generation.
More precisely, the data used in this thesis is related to the city of Amara, Iraq,
located at coordinates 31.54° N, and 47.2° E see Figure (2-2). The data can be
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obtained from the website (climate.onebuilding). In this section, a solar power
system scheme will be implemented using simulation in MATLAB/Simulink,
MATLAB is one of the main programs for modeling, analyzing, and solving
problems related to dynamic systems, through which the voltage, current, and actual
power are collected using solar radiation and temperature as inputs to the solar
panels. The collected data is used in an Excel file. The simulated model in
MATLAB/Simulink is shown in Appendix A.

The main component used in the simulation scheme includes the solar panel
array, in this thesis, four solar panels with a power of 1400 W are used for power
generation. Solar panels are one of the main components of the PV system, which
convert solar power into electrical power and the type of panels is selected based on
their efficiency and suitability for the target environment. The specific
characteristics of the solar panels utilized are outlined in Table (2-1) [44]. It is
Important to observe that many PV solar cells are connected in parallel and series to
obtain the required current and voltage for the solar panel[11]. In addition, to
determine the output power of the PV system, the temperature and solar radiation
data must be utilized as inputs for the solar panel and then actual PV power is
measured using a sensed voltage and current of a PV Simulink operation. For this
reason, with the increase in temperature, the voltage decreases and the current
increases slightly as a result, the PV power is reduced. On the other hand, with the
increase of solar radiation, the current of the PV system also increases because it is
directly proportional to the solar radiation, while the voltage of the PV systems
shows little change[45]. Therefore, a boost converter, a crucial element in enhancing

the solar panels' output voltage.
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Table 2-1 Overview of the Simulink PV module test

Characteristics Values
Cell Number 90
Open circuit voltage 41.07V
Maximum power voltage 3423V
Short circuit current 11.25 A
Maximum power current 10.23 A
Maximum power point 350 W

Temperature Coefficient (Voc) -0.272
Temperature Coefficient (Isc) +0.061%

10" 4
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Figure 2-2 Location at the city of Amara, Iraq(Coordinates: 31.54° N, and 47.2° E )

2.3.2. DC-DC Boost Converter

A DC-DC converter is built and connected to capture energy from PV arrays for
integration with the power grid, by utilizing a boost converter, as shown in Figure
(2-3). It is possible to make the PV source linear and extract the maximum power by
suitably altering the duty cycle. A boost converter is commonly used as a voltage
regulator to convert a fluctuating DC voltage into a stable DC value. As a result, the
output voltage experiences variations when there are changes in radiation or

temperature. The DC-DC boost converter is centered around a transistor that governs
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the amplified processing under the control of a controller. The MOSFET, BJT, and
IGBT are often used transistors in a DC-DC converter. Nevertheless, the MOSFET
transistor is commonly favored for the construction of the DC-DC boost converter
because it can efficiently function under demanding loads and higher frequency
situations [46][47], while also demonstrating reduced power losses[11]. In the
equation below, duty cycle (D) (let D=0.5) represents the ratio of conversion of input
voltage (V;) to output voltage (Vo) [48]:

V.
v, =2
0™ 1-p

(2-6)

The output voltage of the converter is denoted as (Vo), whereas the input voltage
of the converter is denoted as (V). The switching period is represented by the symbol
Ts. DTs indicate the duration when the switch is in the ON state, while (1-D)Ts
represents the length when the switch is in the OFF state[48]. In an ideal circuit, the
converter's input power is equal to the output power as shown equation.

P,=Ps = Vyl, = VI, (2-7)

Where Po is the output power and Psis the input power of the DC-DC converter,
lois the output current and Isis the input current of the DC-DC converter.

A-Inductor of the Boost Converter:

Where f =50 KHz is the frequency of switching, R=70 ohm.

__ D(1-D)?R

Lin = =—— (2-8)
*(1— 2y
_ 05:(1-05)*70 _ 4 qaoe 1
2x50

The boost converter intended for continuous-current operation will require an
inductor value that exceeds the minimum value, Lyir. From a design standpoint, it is
advantageous to express the inductor value, L, about desired change in current, Ai,
Is the ratio between the ripple of the input current to the output current, and the
optimal value is within 20% to 40% for this ratio[48].
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[ = VDT _ VsD
Ai;,  AiLf

(2-9)
B- Capacitor of the Boost converter:

where (AVo/V.) is the Voltage Ripple Factor, which is the ratio between the

ripple of the output voltage and the output voltage. Typically, this ratio is limited to

a range of 1% to 5%][48], let ratio 2%.

fr— D -
¢ = vy, (2-10)

Vo
0.5

= — = 0.00714 mF
70%(0.02)*50

where C is the capacitor, which is used to filter the ripple PV voltage, Ir is solar

radiation and Te is Temperature.
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Figure 2-3 Block Diagram of a PV System with MPPT Control and Boost Converter

2.3.3. Perturb and observe (P&QO) Algorithm
As mentioned previously, renewable energy sources, depend on environmental
factors such as temperature and radiation within solar energy systems. Therefore,

the optimization of system performance to operate at maximum power levels within
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specific timeframes is achieved through the implementation of Maximum Power
Point Tracking (MPPT). The control strategy in solar energy systems plays a crucial
role in enhancing the efficiency of solar panels by employing MPPT techniques.
These techniques involve using the boost converter mechanism to adjust the duty
cycle of power electronics switches. The P&O controller is a commonly used
method in MPPT, as depicted in Figure (2-4), which includes monitoring voltage
and current fluctuations from the solar panels and comparing them to previous PV
power and voltage values. This comparison allows for adjustments in the algorithm
to regulate the reference voltage for the power converter by introducing slight
disturbances to the duty cycle of the converter or MOSFET. Continual monitoring
and adjustment of the duty ratio based on output power variations ensure optimal
system performance. The affordability and simplicity of implementation make the
P&O algorithm a popular choice for PV-MPPT technologies, adapting effectively to

changes in solar irradiance and temperature to maintain consistent performance[49].
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Figure 2-4 Flowchart for MPPT Control System Using P&O Algorithm
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2.3.4. Collected Theoretical Data

The primary aim of this study is to create forecasts for PV power generation in
order to guarantee the robustness of grid-connected PV systems. The weather data
retrieved from the publicly accessible website (climate onebuilding), covering the
period from 2007 to 2021, is utilized. The data utilized for the year 2021 comprises
measurements taken on an hourly basis. To provide further clarification, the data
included in this analysis pertains only to Amara, a city situated in the southern part
of lIrag. The overall data collected during 2021 amounts to 8760 readings,
encompassing the entirety of each day. This dataset contains hourly measurements
of solar radiation, temperature, wind speed, and relative humidity, including data
collected during nighttime hours. Nevertheless, this thesis employs solar radiation
and temperature as inputs for the model utilized to forecast PV power generation.
Therefore, after constructing the simulation model in MATLAB/Simulink, the given
data is inputted into the MATLAB model to gather the active power values on an
hourly basis, specifically for the months that were included in the simulation. Next,
the data is extracted from the Excel file and placed in specified variables. The
temperature data is assigned to the variable "Te" and the solar radiation data is
assigned to the variable "le". Next, the Simulink model, which is the designated
name of the model saved in the computer, is invoked. The voltage (V_PV), current
(I_PV), and power (P_PV4) values are extracted using the (To Workspace block).
The values are then stored in the Ve, le, and P matrices, correspondingly. The data
Is structured in an Excel file for future usage. See the code in Appendix A and the
theoretical data for January in Appendix B or use the Google Drive link to view the
full data.
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2.4. Experimental Test Data Components

This section includes many elements of the experimental work, which involves
creating and utilizing a data acquisition system to monitor voltage, current, and
radiation in a DC circuit (specifically solar panels), as well as temperature. The main
processing unit for this system will be a Siemens S7-1200 PLC. The Programmable
Logic Controller (PLC) utilized in the system is equipped with 6 inputs and 6
outputs. The device is programmed using the development software (TIA PORTAL)
provided by the vendor. The system architecture is depicted in Figure (2-5).
Furthermore, the explanation can be divided into multiple sections covering topics
such as solar panels and devices used for measurement and control. The
experimental data collection phase occurred between December 2023 and June
2024,

Solar Panels

AC Power

Temperature Solar Radiation
Sensor sensor

E U-Inverter ‘

PLC-S7-1200

I ﬁ
Voltage
SENsor

Battery

Monitor Data

Figure 2-5 System Architecture
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Figure 2-6 The outdoor PV system installed at the gineering campus of University Misan, Iraq

2.4.1. Solar Panels (EU-M350W)

Solar panels convert sunlight into electricity through PV cells, which capture
photons and generate electricity via the PV effect. These PV cells are grouped into
modules, and several modules form an array or system. A typical PV system includes
four solar panels, an inverter to convert DC electricity to AC, and control and
monitoring devices. The solar cells are usually connected in series to achieve the
desired voltage, and then in parallel to enhance current. Solar panels are a sustainable
and eco-friendly energy source, reducing greenhouse gas emissions and lowering
energy costs. However, their efficiency is dependent on sunlight availability and
strength, and their performance is often evaluated under standard conditions that
differ from actual installation environments. In this study, the Euronet EU-M350W
solar panels are used, with four panels in total. Each panel has a maximum power
output of 350W, operates at 34.23V with a current of 10.23A at peak power. The

panels are connected in series to maximize voltage and positioned optimally to
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increase sunlight exposure. The installation of the outdoor PV system is located on
the engineering campus of the University of Misan in Iraq, as shown in Figure (2-

6). Detailed characteristics of the panels are provided in Table (2-2).

Table 2-2 Specifications of the PV module test

Characteristics Values
Cell Number 90
Open circuit voltage 41.07V
Maximum power voltage 3423V
Short circuit current 1125 A
Maximum power current 10.23 A
Maximum power point 350 W

Temperature Coefficient (Voc) -0.272
Temperature Coefficient (Isc) +0.061%

Dimension (mm) 1755*1038*35mm
PV cell model EU-M350W
Operating Temperature -40°C to +80°C

2.4.2. Sensors Used at Work

A solar radiation sensor measures the intensity of solar radiation or sunlight
received by the surface of a PV panel and is usually expressed in W/m?2, as shown in
Figure (2-7). It helps monitor the amount of solar energy received by PV panels,
which can be used to analyze their performance and efficiency[50]. It is commonly
used in meteorological, agricultural, and solar energy applications. The pyranometer
must be installed in an open area, away from any obstacles that may block sunlight.
It must be installed horizontally and properly leveled to ensure accurate
measurement. The pyranometer should also be calibrated regularly to maintain
accuracy. Data showed that on March 5 (a cloudy day), radiation peaked at 158
W/m2, while on March 9 (a sunny day), it reached 976 W/m?2, reflecting the impact
of varying weather on PV output, which rises with morning sunlight and declines by
afternoon, As shown in the figure below (2-8) to represent sunny weather and (2-9)
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to represent rainy weather. The specifications of the Pyranometer Solar Radiation
Sensor are shown in Table (2-3).

Figure 2-7 Solar pyranometer

Table 2-3 The specifications of the RS485 Modbus Pyranometer Solar Radiation Sensor

Attribute Value
Measuring range 0~1500W/m?
Sensitivity 7~14uV/wm
Output Type Digital, Relay
Temperature characteristics +2% (-10°C~40°C)
Response time <35 seconds (99%)
Working temperature -50°C~50°C
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Solar Radiation in Sun day
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Figure 2-8 Solar radiation on a Sunny day

Figure 2-9 Solar radiation on a Rainy day

In addition, a thermocouple sensor records ambient temperature around the PV

panels, generating voltage based on the temperature difference between connected

metal wires and the current sensor. The temperature sensor utilized is depicted in

Figure (2-10) and the current sensor in Figure (2-11). Finally, voltage readings,

ranging from 10 to 160 V, were collected from the inverter, as direct voltage sensors

were unavailable. This voltage powers the load and charges batteries, which then

light the area at night.

Figure 2-10 Temperature Sensor
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Figure 2-11 current sensors

2.4.3. PLC (S7-1200 Station)

A programmable logic controller (PLC) is a specialized computer designed to
control manufacturing processes and machinery, accommodating both AC and DC
power sources. Known for its reliability and robust construction, the PLC is durable
and well-suited to harsh industrial environments. Equipped with a powerful CPU
and high-speed communication features, it supports seamless data exchange and
efficient process management. Its programmable memory allows it to handle tasks
such as timing, sequencing, arithmetic, and data processing. The PLC S7-1200
AC/DC Relay, programmed using Siemens TIA Portal software, offers versatility
and supports complex programming with an intuitive interface, including ladder
logic and debugging tools. The PLC setup includes an external analog input card
with four inputs, enhancing its compatibility for various applications.[51].

The Siemens TIA Portal software is used to program the PLC S7-1200 AC/DC
Relay. Figure (2-12) below shows the TIA Portal software interface. Figure (2-13)
shows the PLC with its extension. The specifications of the Siemens S7-1200 PLC

are shown in Table (2-4).
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Table 2-4 The specifications of the Siemens S7-1200 PLC

Attribute Value
Brand Siemens

Memory 4 MB

Output Type Digital, Relay
Minimum Operating Temperature -20° C
Maximum Operating Temperature +60° C
Number of Outputs 10 (Digital Output, Relay Output)
Manufacturer Series S7-1200
Programming Language Used FBD, LAD, SCL
Output Current 2A

Input Type Analogue, Digital

Dimensions

Number of Inputs 14 (Digital Input, 2
switches as Analogue Input)
100 x 110 x 75 mm

Figure 2-12 Programmer PLC
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Figure 2-13 The Programmable Logic Controller (PLC) and the
extension it provides

2.4.4. Euronet 5.5kW Inverter Gold

The EuroNet 5.5k Gold inverter acts as a device that converts direct current (DC)
generated by PV panels into alternating current (AC), and is suitable for both
residential and industrial applications, as shown in Figure (2-14). The Euronet
5.5kW Gold power inverter is accurately designed to achieve an extremely high-
efficiency rate, featuring a conversion efficiency of up to 95%. This demonstrates
its ability to efficiently convert DC electricity into AC electricity, thus providing a
reliable and environmentally friendly power source. In addition, the device is
characterized by its ability to seamlessly switch to battery power in the event of a
power outage, thus ensuring continuous operation of devices even in the absence of
a power grid. Therefore, in this thesis, this inverter has been integrated with a charger
that allows direct charging of batteries from the power grid. This function improves

the process of maintaining a constant charge for the batteries.

36



Chapter Two Mathematical Modeling of PV System

One of the main features of the inverter is that the feature of interface designed

for ease of use, allowing real-time monitoring and management of operational
parameters. In addition, the device is made of flexible materials and a strong frame,
ensuring its durability and flexibility in harsh conditions. Moreover, its compact and
lightweight design makes it easy to install across different solar power systems. The
battery operates at 12 volts. The system is designed to operate alongside utility

power, and in the event of a power outage, it will seamlessly switch to PV electricity.

Figure 2-14 Inverter device for PV power System

2.4.5. Collected Real Data

The experimental data of this section are collected to predict the performance of
PV power generation from a small-scale PV system installed on the campus of the
College of Electrical Engineering, University of Misan, Irag. This system includes a

meteorological station containing on solar radiation and temperature sensors, which
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are used to record data which based on changes in weather conditions. The data is
collected for wusing a central controller, a Siemens Automation S7-1200
programmable logic controller, which is carefully organized to ensure the accuracy
of data collection at the meteorological station. The PLC receives data from solar
radiation, temperature, and current sensors. The PLC can then process this data,
perform calculations, and execute program instructions to control different aspects
of the system. In addition, it can perform programming and adjustments remotely
via a network interface. Based on the programming instructions, the PLC can record
the sensed data over time, and it has a user-friendly interface that allows for easy
programming and monitoring. In addition, the main computer controls the
movement of data, processes it, and stores it on the server. When data is received
from the PLC and network devices, the data blocks are classified based on protocols,
separated according to individual sensors, then organized, converted into physical
guantities, and stored along with metadata that enables comprehensive identification
of sensors and measurements. Within a main database containing temporal
information. Each record is systematically arranged and stored in memory daily. To
read the electrical power and weather data, a computer was connected to the PLC as
Figure (2-15). A supervisory control and data acquisition system was used to
monitor and control the system. The PLC reads the data every 3 minutes periodically
during the day and shuts down at night. The data was recorded on the computer and
stored in a Microsoft Excel sheet. Finally, a data set of approximately 12,613
readings from January, March, and June, at a rate of 3 minutes, was archived within
an electronic PLC device. The readings for variables such as temperature and solar
radiation are recorded and measured by dedicated temperature and radiation sensors.
Calculating the PV power generation parameters requires the use of a current sensor

to extract the current which is then accessed by the PLC via the data log generation
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directive while the voltage values are taken from the inverter across a range of

approximately 10 to 160 volts. See more information in Appendix C. Now, collected

the details are completed to the next contribution.

Figure 2-15 The computer connection to PLC to download PV
power system data

2.5. Evaluation Indicators

Choosing the appropriate evaluation metrics is essential to examine the
performance and effectiveness of the ANN model in predicting PV energy
generation. These metrics provide the model's accuracy, reliability, and predictive
ability, thus enhancing the credibility of the predictive results and their applicability.
This thesis has five commonly used evaluation metrics, R2, MAE, RMSE, MSE, and
RE, which can be called using the sklearn library in Python. It is worth noting that
the accuracy of the model shows an inverse relationship with the values of these
evaluation metrics. At the same time, the level of accuracy of the model shows a
direct relationship with R2[52].
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e Mean Square Error (MSE) is defined as [52]

_1yM 2
MSE = — 2. _,(Pa—Pf) (2-11)
where m ranges from 1 to M, with M being the total number of data points in the

test set, Pa actual power and Pf predicted power values in the test set.

e Root Mean Square Error (RMSE) is defined as[52]

M -
RMSE = /W (2-12)

e Mean Absolute Error (MAE) is defined as [52]

MAE = ¥ _,(Pa — Pf) (2-13)

The closer the MAE and RMSE values are to zero, the better the prediction

performance.

e Pearson’s coefficient of determination (R?) measures the degree to which a
statistical model successfully predicts an outcome. a model's predictive ability is
considered greater when its R2? value approaches 1, as demonstrated in Equation
(2-14) [52].

(Pa—mean(Pa))”
=1

M _
R2=1— \/ ZMzmzl(Pa - (2-14)

o Relative error is a metric employed to quantify the precision of a measurement
or estimation in comparison to the actual value or accepted norm. The error is
commonly quantified as a percentage, indicating its magnitude relative to the real

number. The equation for computing relative error is[52]:

Pa—Pf
Pa

Relative Error(%) = x 100 (2-15)
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2.6. Summary

The first part introduces the process of creating a model for the solar cell whilst
the second part describes how to create a simulation model in MATLAB based on
site data that contains radiation and temperature. The Four solar panels were used
and connected to a boost converter. The main goal of the model was to collect the
necessary PV current and PV voltage data through the use of solar radiation and
temperature. The model provided almost perfect measurements. Next, the most
important Python libraries used in this thesis are described. The fourth part explains
that a PV system was previously implemented that contains sensors, solar panels,
and a PLC controller. The data obtained from the four input channels of the
expansion unit are stored in their transfer registers, which are interrogated by the
PLC through data register generation instructions and data register writing
instructions. The communication method is based on transferring data from PLC to
computer via router interface. Using a web server interface to connect the data
acquisition system to the computer terminal provides a stable and fast enough
communication method. Therefore, linking the data acquisition system with the
computer terminal via the router standard results in a real-time monitoring and
control system, suitable for working in different environments. In the last part, the

most important evaluation indicators used in this thesis were presented.
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CHAPTER THREE

Machine Learning Forecasting Model
3.1. Introduction
In this section, ANN and optimization methods based on GA and GWO are
explained in detail, which are used in optimizing artificial neural networks. The GA
and GWO provide optimization of the number of layers and neurons in the ANN. In
this chapter, the most important Python libraries used to implement this work will
be presented. In addition to the mechanism of data collection, processing, and

implementation of the proposed methodologies.

3.2. Basic Principles of ANN, GA, and GWO

In this section, ANN and optimization methods based on GA and GWO are
explained in detail, which are used in ANN optimization. Where GWO and GA
provide optimization of the number of layers and neurons of the ANN based on
performance metrics such as R2, MAE, RMSE, and MSE values of the training
samples.

3.2.1. Artificial Neural Networks (ANN)

ANN is the model of information processing that imitates the operation of the
organic nervous system in the human brain [53]- [54]. The origin of ANN concepts
may be traced back to the previous century when they were first suggested as a
solution to complex issues [55]-[54]. This period was notable for the introduction of
the first McCulloch-Bates neural model in 1943[54]. The ANN has become
increasingly popular in various fields, with many institutions using it to tackle
challenges in different sectors of the economy and human activities that were
traditionally handled by operations research [56]-[53]. ANN is notable for its ability
to be applied in scientific and engineering fields[53]. In addition, the flexibility of
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ANN makes it highly relevant in the field of data analysis, leading to increased
interest in using it for energy prediction. However, this application relies on having
reliable data to estimate output functions that fit with real-world situations.

The ANN architectures can be classified into two primary categories:
feedforward networks (FFNN) and feedback networks as shown in Figure (3-1). Out
of these options, feedforward networks are more commonly used since they are more
efficient in terms of memory utilization during operation[11]. They have shown
significant resilience in managing nonlinear systems such as solar arrays. The FFNN
can be categorized into four types: single-layer, multi-layer, radial function
networks, and Bayesian regularized neural networks (BRANN). Each of these
networks can utilize distinct learning algorithms. Out of these options, the multilayer
ANN is the most frequently used variety since it can modify the weights of the
hidden layer [21]. A multilayer feedforward ANN usually consists of three layers:
input, hidden, and output, as shown in Figure (3-2). The neurons in each layer are
connected through weights and bias terms from the previous layers. Equation (3-1)
can be used to formally represent this interrelated processing structure.

m
Yi = zi=1 wiix; + b; (3-1)

Where the variable xi represents the input training node, whereas the connection
weights (w;;) are associated with the input nodes, hidden nodes, and layer nodes. The
bias(b;) pertains to the concealed nodes and output layer nodes, whereas m denotes

the quantity of input signals.
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Figure 3-1 Review framework for artificial neural networks classification.

The development of FFNN has two main challenges: The first challenge
optimizing the architecture of the NN by determining the optimal number of hidden
layers and neurons. The second challenge improving the initial weights of the
training nodes. This thesis aimed to improve the best arrangement the number of
layers and neurons. In this thesis, the model is trained by inputting the sun's radiation
and temperature information using the Keras library in Python. The model is
compiled with (Adam) optimizer and mean squared error (MSE) as the loss function.
In addition, the interconnections between neurons in each layer are established using
weights from other neurons and bias terms (b) from preceding layers. Random

weights are assigned to nodes to enhance the model's performance.

Neural Network

Hidden Output
layer 1 layer

Radiation ——
|

i » Output
Temperature ——

Figure 3-2 Neural Network Structures
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3.2.1.1. Activation Function

In ANNS, most neurons conduct nonlinear computations akin to their biological
counterparts. These neurons typically exhibit point-like behavior, governed by a
single nonlinear activation function, denoted as f(x), which connects the input
summation to the output activity. This nonlinearity is pivotal for the efficacy of
ANNI[57]. A widely adopted activation function is the Rectified Linear Unit (ReLU),
represented as f(x) = max(x, 0) [58]. The derivative of ReLU at x = 0 is technically
undefined but conventionally set to 0 in practical applications[59]. ReLU and its
variations are commonly employed in feedforward networks, whereas the hyperbolic

tangent (tanh) function is preferred for recurrent networks[60].

3.2.1.2. Hidden Layer Size

In the design process optimizing the hidden layers and neurons in the
feedforward ANN is crucial. Therefore, this improvement aims to find a balance
between computational efficiency and the model's ability to accurately represent the
data distribution [[61]-[62]]-[63]. If the hidden layers of an ANN contain too many
units, this can lead to significant computational problems and possible overfitting or
underfitting in the regression model. On the other hand, having too few units in the
hidden layers may result in faster computations but a suboptimal linear regression
fit. Traditionally, determining the appropriate size of hidden layers has involved a
trial-and-error approach. However, this method is considered inadequate due to its

long execution time[11].
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3.2.2. Genetic Algorithm (GA)

Throughout history, nature has consistently served as a profound wellspring of
inspiration for humans. John Holland initially proposed the optimization method
known as (GA)[64] and later acquired prominence through the research conducted
by David Goldberg in 1989. The concepts of natural selection and genetics influence
GA. The method has shown success in resolving optimization problems and has
proven to be efficient in intelligently exploring a large and complex search
space[65]. The main purpose of a GA is to create and manipulate several people
using appropriate genetic operators to discover the solutions. Therefore, GA is
categorized as a global search method that relies on the concept of gathering multiple
solutions rather than relying on a single solution[66]-[67] The GA commences by
initializing a population consisting of a collection of solutions represented as
chromosomes. A new population is formed by extracting solutions from an existing
population[68]. New solutions (offspring) are chosen based on their fitness, with the
more suited solutions having a higher chance of reproducing.

The genetic optimization process follows several stages to generate a new
population. Initially, a population size of 10 chromosomes is set, with a crossover
probability of 0.8 and a mutation probability of 0.1, allowing for a maximum of 5
iterations. In the selection phase, fitter individuals are given higher chances to
reproduce. Crossover involves the exchange of genes between two parents to
produce offspring, potentially with higher fitness. Mutation modifies genes within a
chromosome to increase diversity and prevent local optima. After mutation, the
fitness value of each individual is calculated, and the individual with the lowest
fitness value is considered optimal. The process iterates until a stopping criterion is
met, such as reaching the maximum number of iterations or achieving an improved

solution. The life cycle of GA progresses through various stages, beginning with
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population initialization, followed by selection, crossover, mutation, and ultimately

the termination condition, as depicted in Figure (3-3).
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Figure 3-3 The flowchart of GA
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3.2.3. Grey Wolf Optimization (GWO)

The GWO algorithm, which was introduced by Mirjalili et al. in 2014, is
designed to replicate the social structure and hunting behavior observed [69] and to
address optimization problems through the simulation of the hunting behavior of
gray wolves. In this model, the position of each wolf is considered as a potential
solution to the optimization problem. Grey wolves live primarily in social groupings,
with an average group size ranging from 5 to 12 individuals[70]. The social
hierarchy assumes a pivotal part in the act of hunting as shown in Figure (3-4)[71].
Thus, the population can be categorized into four different layers, namely alpha (o)
(the main and dominant leader who is responsible for decision-making, i.e., the best
manager who exerts the most effective control over the group), and beta (B) (alpha’s
adviser and are subordinate wolves who assist the alphas in group decision-making
and other duties), delta wolves (submit to alpha and beta) and omegas (the lowest in
the hierarchy)[72]- [73].

‘ Leaders
Subordinate y

wolves-advisors 4
_—

: . Scouts, sentinels, elders,
S hunters and caretakers

Lowest ranking
wolves-scapegoats

(40,

Figure 3-4 Hierarchy of grey wolf population[71]

The primary stages of grey wolf hunting are as follows:1) Tracking, chasing, and
moving towards the prey. 2) Pursuing, and persistently bothering the prey until it
ceases all movement. 3) Initiate an assault on the prey. The steps are depicted in
Figure (3-5), [69]. To simulate the hunting behavior of gray wolves [72]., the three
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most optimal solutions, namely alpha, beta, and delta, are selected based on the
assumption that these wolves possess superior knowledge regarding the prospective
location of their prey. Subsequently, it is guaranteed that additional search agents
adjust their placements based on the position of the optimal search agent[73]. Figure
(3-6) illustrates the process by which a search agent adjusts its position in a two-
dimensional search space based on the values of alpha, beta, and delta. The final
position will be randomly located within a circle determined by the positions of
alpha, beta, and delta in the search space. Alpha, beta, and delta wolves use their
sensory input to approximate the location of the prey, while the remaining wolves
randomly adjust their positions in the vicinity of the prey [73]. The steps of the
GWO Algorithm for addressing optimization issues are depicted in Figure (3-7).

Figure 3-5 The hunting behavior of grey wolves[69].

The GWO algorithm has several different definitions, which are performed using
the following equations. Equations (3-2) and (3-3) are utilized to represent the prey

surrounding behavior exhibited by gray wolves[73].

D =|C-%,(t) — 2(t)| (3-2)
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Xt+1)=%{t)—A-D (3-3)
In the given equations, the variable t denotes the quantity of current iterations.
The vectors 4, and C are, used to represent the coefficients[73]. The position vector

of the prey is denoted as X,, , whereas the position of a grey wolf is represented by x

[73]. The vectors A, and C are computed utilizing Equations (3-4) and (3-5). [73]
The value of a is linearly lowered from 2 to 0 during the iteration, while 7; and 7,
represent random vectors within the range of [0, 1].

A=2d-#—d (3-4)

c=271, (3-5)

In order to simulate the hunting behavior of gray wolves, the three most optimal
solutions, namely alpha, beta, and delta, are selected based on the assumption that
these wolves possess superior knowledge regarding the prospective location of their
prey. Subsequently, it is guaranteed that additional search agents adjust their
placements based on the position of the optimal search agent. These processes are

performed using the following equations[72].

—

Da:|61'9_5a—55|; BB=|623_C)B—9?, 55=|53'f5—f| (3'6)

—

%, =%, —A, Dy X, =3Xg—A, Dy %3 =7%5—A; Ds (3-7)
The three optimal solutions, X, the best search agent, X the second-best search
agent, and X the third best search agent, are chosen to simulate gray wolf hunting
behavior, with additional search agents adjusting their positions based on the optimal
search agent's position using equations (3-8).

%1 (6)+%,(t)+x5(t)

Xx(t+1)= ”

(3-8)
In the given equations, A represents a stochastic value inside the interval [-2a,

2a] [73]. When |7f| is less than 1, the grey wolves are compelled to attack their
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victim, however, when |/T| Is greater than 1, the grey wolves are compelled to
distance themselves from the prey to locate a more suitable prey. After satisfying a
termination requirement, the gray wolf optimization method is concluded[73].

5

. Alpha
O Bet
@ Delta
i prey

TN Omega

Figure 3-6 Graphical abstract of GWO[73]
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Figure 3-7 The flowchart of grey wolf optimization
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3.3. Python

Python, developed by Guido van Rossum in the late 1980s, has become a
fundamental programming language in Al due to its broad application, especially in
machine learning and neural network development. Key libraries like TensorFlow,
Keras, PyTorch, Matplotlib, Seaborn, Pandas, and NumPy support a wide range of
tasks from data manipulation and visualization to building complex predictive
models. In this thesis, Google Colab was used as the coding environment, leveraging
its free access to GPU and TPU resources and pre-installed packages to streamline
model creation. Key libraries include Matplotlib for visualizations, Seaborn for
statistical graphics, Pandas for data manipulation, and NumPy for numerical
processing. TensorFlow is specifically used to build prediction models, leveraging
machine learning to handle large datasets effectively. The process of building
models in Keras includes defining network layers, compiling the model with loss
functions and optimizers, fitting it to data, evaluating accuracy, and making
predictions. Together, these tools create a cohesive environment for data analysis,

visualization, and the development of Al-driven models.

3.4. Proposed Methodological Methods

Determining the number of hidden layers and neurons is an important step for
implementing an ANN model because the low MSE value can be learned quickly.
Therefore, in this work, the number of hidden layers and neurons was determined
based on the GA and GWO algorithms. Figure (3-10) shows the proposed GA
optimization framework to find the optimal structure (number of hidden layers and
neurons) of the ANN. Figure (3-11) shows the proposed framework of the GWO
model which is used to find the optimal structure (number of hidden layers and
neurons) of ANN.
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Table 3-1 shows the constant parameter settings for the models used.

Parameters Description
Activation function ReLU
Number of inputs Solar radiation and temperature
Number of outputs 1
Maximum epochs 1000
Number of Iteration 5
Number of populations 10
Optimization method Adam
Layer Number of NN 1
Hidden Neurons Number of NN 10
Mutation rate 0.1
Crossover rate 0.8
loss function MSE
Number of wolves 10

3.4.1. Theoretical Data Processing and Analysis

In this section, the data are pre-processed by extracting 7 specific columns from
the Excel file, which are date, time, solar radiation, temperature, voltage, current,
and actual power. The objective of this pre-processing is to improve the quality and
relevance of the data. In the filtering step, any anomalous data is eliminated, data
collected at nighttime are discarded, and only data collected during daytime is
considered, as the solar panels function based on the sunlight they get. Effective data
preparation is crucial for constructing precise prediction models as historical data
may contain erroneous information, which can negatively impact the performance
of the model. As a result, the data is processed and missing data is removed.

Additionally, if any errors are detected, the procedure is repeated to ensure the
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accuracy of the data, as shown in Figure (3-8).

/ PV Data /L~ Data Collection vﬁ/ Weather Data /

Data
Preprocessing

Yes

|

Input Variables
Selection

ﬁ Split Data

Training Dataset Testing Dataset
| | Neural Network

.
Building The
Forecasting
Models
|

Power Forecast
Result

I

Model Evaluation

Figure 3-8 The framework for the suggested approach of predicting PV power
accurately using Python language.
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The Pandas package in Python is utilized to parse Excel files and provide the
data in a tabular format, including the columns and rows. When completion of the
processing, the data is divided into a training set and a test set, which is an essential
initial stage in constructing a machine-learning model. The objective of this stage is
to divide a part of the data for training the model while reserving another part for
testing and assessing its performance on unseen data. The data is divided into
separate sections using manually defined indexes. Where the function range (A1,
A2) in Python is utilized to generate a list that includes numbers, such as those
ranging from Al to A2. These numbers indicate the indices of the rows that will be
allocated to the test set. The train_data includes rows that are outside the specified
test_indices. After partitioning the data into a training set and a test set, feature
variables, and a goal variable are generated for both sets. The solar radiation and
temperature data (third and fourth columns) are saved in the training and testing sets
as variables named X train and X_test. The variables y_train and y_test store the

last column, which indicates the actual power.

In the data analysis phase of this thesis, four specific months are chosen, with
each month reflecting one of the seasons in Irag. January was selected as the symbol
of the winter season, March as the symbol of spring, July as the symbol of summer
in Irag, and September as the symbol of autumn. The training of each class was
conducted independently, and the results were extracted and will be addressed in
Section 4.5. Subsequently, the monthly dataset was divided into training and testing
subsets. The training subset consisted of 60% of the data, representing samples from
the initial portion of the month. Conversely, the testing subset comprised 40% of the

data, representing the data from the latter part of the month.

After the divided data then trained using an FFNN that includes various layers,
namely the input layer, hidden layers, and output layer. The model is trained using
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a dataset of sun radiation and temperature as input. The process includes developing
and instructing an ANN model using the TensorFlow and Keras libraries. The neural
model is defined as a series of layers using the Sequential () function. Following this,
an initial hidden layer with 10 units is included. The Rectified Linear Unit (ReLU)
activation function, commonly employed in FFNN, incorporates a single unit into
the output layer. Moreover, the connectivity between neurons in each layer is
established by the weights of other neurons and bias terms (b) in the preceding
layers. The weights of the nodes are randomly given to enhance the performance of
the model. Subsequently, the loss function MSE is selected, followed by the
utilization of the Adam optimizer. The optimizer is highly regarded for its ability to
efficiently and effectively train deep learning models due to its combination of rapid
adaptation and stability. "Adaptive Moment Estimation" is abbreviated as "Adam".
The penultimate step is to train the model using training data for 1000 epochs.
Subsequently, the R2, MAE, RMSE, and MSE metrics are computed, followed by a

comparison between the actual and predicted values.

3.4.2. Experimental Data Processing and Analysis

Forecasting power generation in solar power plants is crucial for enhancing the
control and distribution efficiency of the plants and distributed the secure and steady
operation of the power grid. The data were collected at the University of Misan
College of Engineering building, and the data collecting methodology and tools
employed were elucidated in Chapter Three. Once the data collection is finished, it
Is examined and processed. In this section, the data is pre-processed by extracting
seven specific columns (date, time, solar radiation, temperature, current, voltage,
and actual power) from the Excel file. Abnormal data is removed through pre-

processing, collected data at nighttime is discarded, and only collected data during
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daytime is considered, as previously mentioned, using Excel. The objective of data
processing is to acquire datasets of superior quality, which is essential for
constructing a precise predictive model. Conversely, the purpose of training is to
provide the system with the power to utilize its knowledge of novel data, enabling it

to make predictions.

After processing, the data samples are categorized into three groups according to
weather patterns: cloudy, rainy, and sunny. These categories are spread across three
seasons, in 2024. It should be noted that the autumn season has not yet occurred in
Irag and is expected to arrive in late September. Weather types were classified by
sampling from two days in each season. The Python Pandas library is utilized for the
analysis Excel files and for presenting data in a structured fashion, comprising
columns and rows. Next, the data is divided into a training set and a test set. The
function alternating_indices in Python is defined to divided the data. This function
accepts two parameters: the number of samples, represented by the variable n, and
the training ratio, represented by the variable train_ratio. A training percentage of
60% was selected in this thesis. Subsequently, a collection of indicators is generated,
with indicators that span from 0 to n-1. Afterward, two lists, train_indices, and
test_indices, are initialized to store indices for training and testing. Ultimately, the
data is traversed in increments of 20 steps, and pointers are added to the two lists

based on the computed blocks.

Figure (3-9) displays the most recent PV and meteorological data utilized
throughout the testing process. The acquired dataset is examined and categorized to
determine the precise meteorological conditions that are pertinent to a specific day.
The sampling occurs at regular intervals of exactly 3 minutes, lasting for
approximately 12 hours every day. The frequency of sampling is adjusted based on
the quantity of radiation detected or the amount of sunshine that reaches the solar
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panels. There is a noticeable reduction in the length of daylight hours on some days,
particularly in January. Consequently, there is some unmeasured data, especially
during periods of heavy rainfall or when there are maintenance works inside the
Electrical Engineering College building, which hinders the correct collection
process. In addition, during the heavy rainfall case, the data readings became
unavailable due the radiation is very low and the radiation sensor was unable to read
it. Therefore, these measurements are removed from the data set in the absence of
solar radiation data. Subsequently, the input variables are introduced into the
respective ANN model, contingent upon the specific meteorological conditions. The
evaluation of the prediction model is conducted using metrics such as MAE, RMSE,
R2, and MSE.

PV Power . Weathgr
information
Data
Processing
Weather Type
|
Hour= 1:13 Hour
1
Rainy Cloudy Sunny
ANN. ANN ANN
Forecasting Forecasting Forecasting
model | mo‘del 2 model 3
R2, MAE.
RMSE, and

MSE Calculation
}
End
Figure 3-9 Testing stage
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3.4.3. A Framework Of NN-GA

A GA is a worldwide multi-agent optimization algorithm that relies on biological
evolution, and due to its robust exploration capabilities and high performance, GA
has been employed to identify the optimal topology for ANN. In this section, the
ANN architecture will be fine-tuned by utilizing a GA to determine the best number
of hidden layers and neurons, as explained in Figure (3-10). This procedure will be
carried out after acquiring the data, performing preprocessing tasks, and splitting the
data, as detailed in the current chapter. The method commences by defining
parameters, including the population size and the number of models to be generated
in each generation. Initially, the population size is set to 10. The mutation rate is
determined by selecting the value of 10% for the occurrence of a mutation in the
model. Subsequently, the crossover rate was established at 80%, representing the
likelihood of hybridization taking place between the two models. Finally, the
number of iterations is defined, and a total of five iterations are selected. The
permissible range for the number of hidden layers in the ANN is between 1 and 5
layers, while the range for the number of neurons in each layer is between 10 and
128 neurons to avoid overfitting. Then, this thesis utilized the performance measures
R2, MAE, RMSE, MSE, and RE as the fitness function.

The mutation function generates a new model by inserting random values into
the original model. These mutations occur as random alterations in the number of
neurons within the dense layers of the NN. The crossover function generates a
progeny model by randomly picking neurons from two-parent models. A few
individuals with exceptional physical fitness are chosen for direct genetic
transmission to the following generation. Subsequent, hybridization and mutations
are carried out using the existing population in order to produce the next generation.

Every model undergoes training using the training data and is then assessed using a
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fitness evaluation function. If the new model surpasses the current optimal model,
the optimal model is updated. This process continues until the specified number of
iterations is reached, and the final findings are then displayed. The code can be found

in Appendix D.

3.4.4. A Framework Of ANN-GWO

To enhance the accuracy of the ANN model, a hybrid approach is employed by
combining the GWO algorithm with ANN. Once the data processing and division
procedure is finished, the Python libraries are specified to carry out the training
process and extract the results. Subsequently, a function is established to construct
the ANN model, taking into account the specified quantities of hidden layers and
neurons, as explained in Figure (3-11). The ANN-GWO approach requires the
specification of two parameters: the number of wolves and the number of iterations,
as indicated in Table (3-1). The remaining parameters are assigned randomly.
During the initial stage, the ANN undergoes training utilizing the GWO algorithm.
The GWO algorithm utilizes particular functions called “Initialize Wolf" and
"Update Position” to represent and adjust the positions of wolves. The algorithm
stochastically assigns the positions of grey wolves within the defined intervals of the
hidden layer count and neuron count. The positions of the wolves are updated using
the GWO equations, which consider the three most optimal positions of the wolves
(alpha, beta, delta). The GWO algorithm is utilized to determine the optimal
configuration of hidden layers and the number of neurons. The process is iterated a
fixed number of times, and in each iteration, each wolf is assessed and their places
are adjusted according to the superior wolves. Ultimately, the ultimate model is
trained using the optimized parameters. Subsequently, the model is assessed by
employing the test suite and quantifying its performance using metrics such as MSE,
MAE, RMSE, R?, and RE. The code can be found in Appendix E.
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3.5. Summary

The thesis initially outlines the structure and fundamental concepts behind three
primary techniques used: the ANN, the GA, and the GWO algorithm. Each of these
techniques plays a specific role in improving the accuracy and adaptability of the
predictive model for PV energy generation. The ANN is introduced as a machine
learning method that mimics the human brain’s structure to process complex
patterns. The GA is described as an optimization method inspired by natural
selection, aimed at enhancing the ANN by identifying the optimal configuration for
hidden layers and neurons. Similarly, the GWO algorithm, inspired by the social
hierarchy and hunting behavior of gray wolves, is presented as another approach to
optimize the ANN, improving its performance in handling diverse weather
conditions. The thesis then provides an overview of the Python libraries and tools
essential to this study. Libraries such as keras, Pandas, and TensorFlow are
employed for data manipulation, model training, and evaluation, ensuring efficient
handling of both theoretical and experimental datasets. In the methodology section,
a detailed explanation of the data preprocessing steps is provided. This includes
dividing the theoretical and experimental data into distinct categories based on
weather conditions and seasons. The thesis then describes the process of integrating
ANN with GA and GWO. Both optimization techniques are used to refine the ANN
by adjusting the number of hidden layers and neurons, thereby improving the
model's accuracy in predicting energy production across different meteorological
conditions. This optimization process enables the ANN to adapt to fluctuations in

weather, resulting in a more reliable forecast model.
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CHAPTER FOUR
Theoretical and Experimental Results

4.1. Introduction

This chapter presents the theoretical results during January, March, July, and
September within one hour for 2021. The presented results cover the effect of using
monthly data on the accuracy of solar panel performance and the experimental
results during different weather conditions rainy, cloudy, and sunny within 3 minutes
for 2024. The presented results cover the effect of using different weather conditions
on the accuracy of solar panel performance by using the methods described above.
A comparison of the theoretical and experimental results from the current research

will be covered in the last part.

4.2. Results of The Theoretical Part

This section forecasts PV power generation using weather data from January 1
to December 31, 2021, with hourly intervals. Since solar energy generation in lIraq
is influenced by seasonal and climatic variations, data from four months January
(winter), March (spring), July (summer), and September (autumn) was analyzed to
predict PV energy output. The data was initially divided into separate training and
testing sets for each month, then trained using a NN with randomly assigned weights
via Python tools like TensorFlow and Keras. The models were evaluated against
actual PV energy outputs. GA and GWO techniques were applied to fine-tune the
number of hidden layers and neurons further to optimize the NN architecture.

Below are the results for those specific months:
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4.2.1. January Forecasting Term

The purpose of this assessment is to evaluate the effectiveness of the suggested
prediction model throughout the winter season. To provide a more accurate
representation, January was chosen to represent the winter season. A total of 310
sample data tests were collected in January to develop the prediction model for the
PV grid-connected system. The data were split into two sets: the training data,
spanning from 8:00 am on 1 January 2021, to 11:00 am on 19 January, and the test

data, covering the period from 12:00 pm on 19 January to 5:00 pm on 31 January.

Table (4-1) presents the MAE, RMSE, and MSE values from the ANN model,
which are approximately 114.8937W, 150.6157W, and 22685.0952W, respectively.
These metrics indicate a significant level of forecasting precision. Figure (4-1)(a)
shows the MAE across training epochs, where a substantial decrease is observed
during the first 600 epochs, from about 125W to 118W, with a slower decline from
118W to 114W as epochs increase from 600 to 1000, indicating the model is nearing
optimal performance. Figure (4-1)(b) depicts the MSE, which drops notably during
the first 400 epochs, continuing to decrease at a slower rate until stabilizing around
22685W from 600 to 1000 epochs. This suggests that the model is stabilizing and
the rate of improvement is slowing. Figure (4-1)(c) shows the R-squared value,
which increases gradually from 600 to 1000 epochs, reaching about 0.8246,
signaling that the model is approaching its ideal performance. There were also slight
declines in R-squared values for March (3.6%), July (0.77%), and September
(10.79%) during the ANN model training. Figure (4-1)(d) shows the RMSE, which
starts at approximately 163W and decreases to 150W as the epochs progress,
suggesting that further training could enhance performance but must be monitored

to avoid overfitting.
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Figure 4-1 The results obtained only by employing neural networks in January (a)
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The data shown in Table (4-1) demonstrates that the suggested ANN-GA model
surpasses both the ANN-GWO and ANN models in terms of performance, where
the MAE values recorded by ANN-GA, ANN, and ANN-GWO are 59.4175 W,
114.8937 W, and 75.6923 W, respectively. Figure (4-2) (a) illustrates the MAE
observed when comparing the predicted and actual power generation. The horizontal
axis (X) represents time in hourly increments, ranging from 3:00 PM on 19 January
2021, to 5:00 PM on 31 January 2021. The Y-axis indicates the MAE in watts,
ranging from 0 to 500 watts. The MAE-ANN-GA technique demonstrates superior
accuracy in forecasting PV power generation, exhibiting the lowest MAE values and
minimal volatility during the specified period. While the MAE-ANN-GWO
approach has a favorable level of accuracy, which is higher than that of MAE-ANN
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but lower than that of MAE-ANN-GA. This demonstrates that ANN-GA has a strong
correlation with the actual power, hence indicating the efficacy of the GA in
enhancing the accuracy of predictions. According to this analysis, the utilization of
enhanced algorithms such as the GWO and GA vyields greater precision and
Improved consistency in forecasting PV power generation, as opposed to employing

an unimproved ANN.

Figure (4-2) (b) displays the passage of time in hourly intervals on the horizontal
axis (X), ranging from 2:00 PM on 19 January 2021, to 5:00 PM on 31 January 2021.
The Y-axis displays the MSE in watts, with a range of 0 to 250,000 watts. Between
the dates 2021-01-19 and 2021-01-21, the MSE-NN model exhibits significant
variations, suggesting a lack of accuracy throughout certain periods. The MSE-NN-
GWO model demonstrates a high level of stability, as evidenced by its low error
levels. while the model MSE-NN-GA has better performance in comparison to other
methods. Overall, the MSE-NN-GA method demonstrates superior accuracy in
forecasting PV power generation. This is evident from Table (4-1). It also has the
lowest MSE values and exhibits less variability over time. Specifically, the RMSE
values for the NN, NN-GA, and NN-GWO methods are 150.6157, 99.8946, and
115.0495 watts, respectively. In addition, the R2 values for the ANN, ANN-GA, and
ANN-GWO in Table (4-1) are 0.8246, 0.9228, and 0.8976, respectively, as indicated
in Scheme (4-13) (a).

Table 4-1 Summarized forecasting results in January days for the PV prediction model.

Days Method RMSE MSE MAE R?
ANN 150.6157 22685.0952 114.8937 0.8246

January ANN-GA 99.8946 9978.9501 59.4175 0.9228
ANN-GWO 115.0495 13236.4071  75.6923 0.8976
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Figure (4-3) (a) illustrates the temporal progression of electrical power (watts)
during a specific period. The power values range from 0 to 1200 watts at one-hour

intervals. The graph illustrates the Actual Power and forecasts generated by various
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neural network models (ANN-GA, ANN-GWO, ANN) throughout a specified
timeframe. Peaks in real power can be noted at specific periods of the day, such as
the morning, where it gradually increases until it reaches its highest value at noon.
This shows an increase in energy consumption during these times. Then, the power
output starts to gradually decrease around 1 pm due to the decrease in sunlight. The
data presented in this figure demonstrates that the enhanced models ANN-GA and
ANN-GWO exhibit higher levels of forecast stability in comparison to the basic
model but with minor discrepancies. These models offer a potent tool for enhancing
energy management by the provision of precise predictions of daily energy usage.
This can assist in optimizing resource allocation and minimizing waste. There was
a decline in output from 8:00 AM to 5:00 PM on 01-22-2021, with power production
predicted to reach approximately 390 watts during that period. This phenomenon
can be ascribed to the decrease in solar radiation resulting from the presence of thick
cloud cover due to rain. In addition, there are instances when the projected electricity
production in Iraq for January may be lower than the actual output due to constraints
such as reduced daylight hours and insufficient solar radiation. Figure (4-3) (b)
shows the relative error between the predicted PV output and the actual PV
generation for January. As depicted in Figure (4-3) (b), the ANN-GA prediction
model exhibits superior stability compared to the ANN-GWO and ANN prediction
models. Furthermore, the ANN technique exhibits prominent spikes, suggesting the
presence of significant flaws in the forecast. Hence, the ANN-GA prediction model
attains the minimum relative error of approximately 6.7%, whereas the ANN-GWO
and ANN prediction models obtain 7.5% and 14.29% respectively.
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4.2.2. March Forecasting Term

The objective of this assessment is to assess the efficacy of the proposed
prediction model throughout the spring season. To be more precise, March was
selected to symbolize the arrival of the spring season. A total of 371 samples were
taken hourly throughout the day. As stated in Section 4.3, the data is partitioned into
separate sets for training and testing purposes. The training data is collected from 3
March at 7:00 am until 19 March at 10:00 am. On the other hand, the test data
extends from 19 March at 11:00 am to the end of the month at 6:00 pm.

The results of training the neural network (NN) are summarized in Table (4-2),
showing the MAE, RMSE, and MSE values as 88.7082W, 139.6889W, and
19512.9818W, respectively. These values reflect the model's predictive accuracy,
with a reduction indicating better performance. Figure (4-4)(a) illustrates the MAE
across training epochs, where a significant decrease in error is observed during the
first 400 epochs, from about 102W to 94W. After 400 epochs, the improvement
slows down, reaching around 90W by 800 epochs, suggesting the model is nearing
its optimal performance. Figure (4-4)(c) shows the R-squared value, which increases
significantly during the first 400 epochs, indicating an initial rapid improvement.
Figure (4-4)(d) displays the RMSE, which decreases from 147 to 139.6889 as the
epochs increase. Additionally, the R-squared values increased by 3.6% for January
and 2.86% for July, reflecting the positive impact of longer daylight and sufficient
solar radiation on PV system efficiency. The correlation coefficient of 0.8555 in
Table (4-2) indicates a strong positive relationship between R-squared and forecast

accuracy.
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Figure 4-4 The results obtained only by employing neural networks in March (a)
MAE, (b) MSE, (c)R2, (d) RMSE

The data presented in Table (4-2) demonstrates that the proposed ANN-GA
model surpasses the ANN-GWO and ANN models in terms of performance. This is
evident from the MAE values reported by the ANN-GA, ANN, and ANN-GWO
models, which are 69.7706 W, 88.7082W, and 81.2287 W, respectively. Figure (4-
5) (a) displays the MAE obtained from the comparison between the predicted and
actual power generation. The X-axis depicts the time in hourly intervals, ranging
from 1:00 PM on 19 March 2021 to 6:00 PM on 31 March 2021. The Y axis
represents the MAE measured in watts. The chart illustrates significant oscillations
in the period from 2021-03-19 to 2021-03-23 model MAE-ANN, reaching up to 400
watts. This suggests low accuracy. Both MAE-ANN-GWO and MAE-ANN-GA

exhibit lesser fluctuations compared to MAE-NN, showing higher prediction

73



Chapter Four Theoretical and Experimental Results

accuracy. From 2021-03-24 to 2021-03-28, the model MAE-ANN exhibited
significant fluctuations, suggesting instability and low accuracy. In contrast, the
model MAE-ANN-GA performed well, displaying smaller fluctuations, the average,

and fluctuation have decreased over the period.

Figure (4-5) (b) represents the MSE in watts, ranging from 0 to 400,000 watts.
Table (4-2) demonstrates that the suggested ANN-GA model surpasses the ANN-
GWO and ANN models in terms of performance. The MSE values obtained from
the ANN-GA, ANN, and ANN-GWO models are 14926.9957 W, 19512.9818 W,
and 17554.4754 W, respectively, indicating clear differences amongst the models.
The stability of the model in MSE-ANN-GA (red line) is greater than that of the
other models. The consistent stability seen in the model suggests that the GA exhibits
a higher level of resilience when confronted with abrupt fluctuations in data since it
maintains a value near zero for the majority of the time. This characteristic signifies
its greater precision in forecasting solar energy production. The RMSE values for
the ANN, ANN-GA, and ANN-GWO approaches are 139.6889, 122.1761, and
132.4933, respectively, as shown in Table (4-2). In addition, the R2 values for the
ANN, ANN-GA, and ANN-GWO are 0.8555, 0.8894, and 0.8699, respectively, as
indicated in Scheme (4-13) (b).

Table 4-2 Summarized forecasting results in March days for the PV prediction model.

Days Method RMSE MSE MAE R?
ANN 139.6889 19512.9818 88.7082 0.8555

March ANN-GA 122.1761 14926.9957 69.7706 0.8894
ANN-GWO 132.4933 17554.4754  81.2287 0.8699
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Figure 4-5 (a) The Result MAE in March (b) The Result MSE in March

Figure (4-6) (a) shows a comparison between the real power and the prediction

power (in watts) for the three techniques for a specified time frame. The horizontal
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axis (X) reflects time in hourly intervals. All approaches exhibit strong performance
in identifying high and low points, demonstrating a high capability to forecast daily
patterns of PV energy. In addition, Figure (4-6) (a) exhibits a positive trajectory in
power generation between 7:00 a.m. and 12:00 p.m., followed by a progressive
decrease. Between 7:00 AM on the 27th and 5:00 PM on the 28th, there was a decline
in power generation. Throughout this time frame, the intensity of solar radiation
varied between 7.8 and 190 w/m? as a result of the dense cloud cover and
precipitation, as depicted in Figure (4-6) (a). Nevertheless, the correlation between
predicted and real energy demonstrated enhancement in comparison to January.
Based on this visual examination, it can be concluded that NN-GA and NN-GWO
exhibit a modest advantage over NN in some periods, mostly because they are closer
to the actual power. Figure (4-6) (b) shows the relative error between the predicted
PV power output and the real PV power generation for March. Figure (4-6) (b)
demonstrates that all approaches (ANN-GA, ANN, NN-GWO) consistently exhibit
values close to zero over the majority of the periods. This suggests that the
predictions acquired using these methods were extremely precise throughout this
time frame. A distinct peak is observed in the blue line (ANN-GA) at approximately
8:00 AM on 27 March 2021. Following the peak, there is a rapid decline in the
orange line (NN-GWO), reaching highly negative values (-150,000 W), due to an
abrupt shift in weather conditions and an escalation in solar radiation. This suggests
that NN-GWO might exhibit more sensitivity to certain variations in the data as
compared to ANN-GA. While the green line (ANN) remains consistently close to
zero. The ANN prediction model achieves a low relative error of approximately
54.9%, whereas the ANN-GWO and ANN-GA prediction models achieve 76.5%
and 40.8% respectively.
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Figure 4-6 (a) The Comparison between actual power and prediction power (b) Relative
errorwith ANN, ANN-GA, and ANN-GWO in March
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4.2.3. July Forecasting Term

The primary objective of this evaluation is to assess the accuracy of the proposed
forecast model during the summer, with July chosen as the representative month for
the season. Due to the longer daylight hours in Irag during summer, a larger sample
size of 435 was collected, exceeding previous months. The data was divided into
two sets: the first dataset, used for training the model, spans from 07/01 05:00:00 to
07/19 11:00:00, while the second dataset, for testing, covers 07/19 12:00:00 to 07/31
19:00:00.
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Figure 4-7 The results obtained only by employing neural networks in July(a) MAE,
(b) MSE, (c)R2, (d) RMSE

Root Mean Square Error (watts)

Table (4-3) and Figure (4-7) (a, b, d) display the respective values of MAE, MSE,
and RMSE. The MAE value is 88.0168 W, the MSE value is 14688.9915 W, and the
RMSE value is 121.1981 W. Therefore, a reduction in the specified evaluation
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measures signifies an improvement in the precision of the forecast. The decline
commences about 800 epochs and subsequently reaches a state of stabilization.
Furthermore, Figure (4-7) (c) presents the R2 value of the suggested model as

0.8310, suggesting that a higher R2 value equates to a higher level of prediction

accuracy.
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Figure 4-8 (a) The Result MAE in July (b) The Result MSE in July
The data presented in Table (4-3) demonstrates that the suggested ANN-GWO

model exhibits superior performance compared to the ANN-GA and ANN models.
The MAE values reported by the ANN-GA, ANN, and ANN-GWO models are
66.3552 W, 88.0168 W, and 62.9410 W, respectively, indicating an evident
difference in performance. The ANN-GWO model shows better performance during
this July, as shown in the results in Table (4-3). Figure (4-8) (a) illustrates the MAE

Maen Square Error (watt)

resulting from the comparison of predicted and actual power generation. The Y axis
displays MAE measured in watts, with a range from 0 watts to 400 watts. The
drawing exhibits a consistent pattern among the three lines, with minor variations
distinguishing them. The recurring pattern in the data may be attributed to variations
in solar radiation throughout the day, with solar energy intensifying from 7 a.m. and
peaking at 12 p.m., followed by a slow decline. This change has a direct impact on
the precision of the models, resulting in an elevation of the MAE during specific
time intervals, such as particular days. Figure (4-8) (b) displays the power output of
MSE in watts, with a range from 0 to 200,000 watts in hourly. Table (4-3)
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demonstrates that the suggested ANN-GWO model surpasses the ANN-GA and
ANN models in terms of performance. The MSE values derived from the ANN-GA,
ANN, and ANN-GWO models are 10309.3373W, 14688.9915W, and 9834.1092W,
respectively. These results indicate significant discrepancies between the models.
The stability of the MSE-NN-GWO model, represented by the green line, surpasses
that of the other models. The RMSE values for the ANN, ANN-GA, and ANN-GWO
techniques are 101.5349, 121.1981, and 99.1671, respectively, as indicated in Table
(4-3). In addition, the R2 values for the ANN, ANN-GA, and ANN-GWO are
0.8310, 0.8814, and 0.8869, respectively, as indicated in Scheme (4-13) (c).
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Figure 4-9 (a) The Comparison between actual power and prediction power (b) Relative
errorwith ANN, ANN-GA, and ANN-GWO in July

Table 4-3 Summarized forecasting results July days for PV prediction model.

Days Method RMSE MSE MAE R?
ANN 121.1981 14688.9915 88.0168 0.8310

July  ANN-GA 101.5349 10309.3373  66.3552 0.8814
ANN-GWO 99.1671 9834.1092 62.9410 0.8869

Figure (4-9) (a) compares the actual and predicted power for July. The X-axis

indicates the time in hour intervals, ranging from 2:00 PM on 19 July to 7:00 PM on

31 July. The Y-axis displays electrical power in watts, with a range from 0 to 900

watts. The graph exhibits a diurnal recurring pattern that mirrors the alternation of

daylight, with power growing during daylight hours and diminishing after 12:00 PM.
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The predicted lines (blue, orange, green) adhere closely to this pattern. During peak
periods, often around midday, all approaches demonstrate strong concurrence with
the real capacity. The blue and orange lines accurately track the peak, demonstrating
strong predictive accuracy during these periods. During periods of low power, such
as after 1 pm or early morning, there are minor variances between the predicted
power and the actual power. Where the green line exhibits fluctuations during these
time intervals, suggesting that enhanced techniques may provide more precise
predictions for periods characterized by quick shifts, and the enhanced techniques
(NN-GA and NN-GWO) exhibit a remarkable level of precision in forecasting solar
power, as it nearly aligns with the real power. Despite the higher quantity of samples,
energy production in this month did not surpass that of September. The decrease in
productivity can be ascribed to the elevated temperatures experienced in Iraq last
July. Figure (4-9) (a) demonstrates a consistent and balanced correlation between
actual and expected power, indicating that it is an opportune moment to generate
electricity utilizing PV systems. Figure (4-9) (b) displays the discrepancy between
the estimated PV power production and the actual PV power generation for July.
Figure (4-9) (b) demonstrates that the three models (ANN-GA, ANN, NN-GWO)
exhibit a recurring pattern in the predicted energy, which aligns with the daily
fluctuations in solar radiation. Nevertheless, the fundamental ANN model exhibits
marginally different performance, potentially attributable to the absence of
supplementary optimization approaches employed in the other two models. Finally,
the ANN-GWO prediction model demonstrates a significantly lower relative error
of approximately 8%, whereas the ANN and ANN-GA prediction models exhibit
relative errors of 16.77% and 8.1%, respectively.

4.2.4. September Forecasting Term
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In September, a substantial quantity of data, amounting to 390 samples, was
gathered to assess the efficacy of the suggested prediction model over the autumn
season. The data for this month was split into two categories: training data, which
was collected from 1 September at 06:00 to 18 September at 18:00, and testing data,
which was collected from 19 September at 6:00 a.m. to 30 September at 18:00 to

evaluate the model's effectiveness.

The optimal MAE, MSE, and RMSE values are around 71.6435W, 8574.6566\W,
and 92.5994W, respectively when using ANN, as indicated in Table (4-4). The value
represents the spectrum of training episodes that have been finished, spanning from
0 to 1000 epochs. The MAE, MSE, and RMSE axes are quantified in watts. During
the first 600 epochs, the average deviation for MAE reduced dramatically from
approximately 80 to approximately 73 W. This signifies a discernible enhancement
in the model's performance during this stage. The level of imprecision gradually
diminishes, albeit at a reduced pace, as the number of epochs rises from 600 to 1000.
Similarly, the RMSE and MSE drop with an increase in the number of epochs as
Figure (4-10). The data also indicated that the MAE and RMSE values were
significantly lower compared to the values recorded in January, with reductions of
37.64% W and 38.52%, respectively. In addition, the ANN model demonstrates an
outstanding R2 value of 0.9244, surpassing other findings.

The data in Table (4-4) demonstrates that the suggested ANN-GA model
surpasses the performance of both the ANN-GWO and ANN models. The MAE
values reported by the ANN-GA, ANN, and ANN-GWO models are 57.9227 W,
71.6435 W, and 63.6414 W, respectively, clearly indicating the differences in
performance amongst the models. Figure (4-11) (a) shows the MAE resulting from

the comparison between the predicted and actual power generation. The range is

84



Chapter Four Theoretical and Experimental Results

from 0 to 350 watts. The chart displays significant variations during the early hours
of 27 September, with the MAE-ANN model reaching a peak of 338.34 W, the
MAE-ANN-GA model reaching 304.06 W, and the MAE-ANN-GWO model
reaching 323.47 W due to these changes the increase in solar radiation during one
hour leads to large differences in the accuracy of weather forecasts. Thus, employing
the enhanced ANN-GA method yields superior precision and enhanced reliability in
forecasting PV power generation, as compared to utilizing the unimproved ANN and
the GWO algorithm.

Figure (4-11) (b) displays the MSE of three distinct approaches throughout an
hourly period on the horizontal (X) axis, covering the dates from 19 September 2021
to 30 September 2021. The Y axis represents the MSE in watts, ranging from 0 to
120,000 watts. From 19 September to 21 September, the three models exhibit low
values, suggesting a stable performance. However, on 27 September, there is a
significant surge in power consumption. The usage reaches a peak of over 92452.68
W while employing MSE-ANN-GA, around 104636.92 W when utilizing MSE-
ANN-GWO, and 114472.08 W when utilizing MSE-ANN. This surge in power
consumption corresponds to a substantial rise in the MSE caused by the rapid change
in solar radiation «and varies between 63 and 409 w/m? throughout one hour. In
general, the MSE-ANN-GA technique has a higher level of accuracy when it comes
to predicting PV power generation. This information is evident from Table (4-4).
Additionally, it exhibits the lowest MSE values and demonstrates less volatility over
time. The RMSE values for the ANN, ANN-GA, and ANN-GWO approaches are
92.5994 W, 82.0618 W, and 87.1780 W, respectively. The MSE values for the ANN,
ANN-GA, and ANN-GWO approaches are 8574.6566, 6734.1462, and 7600.0110
W, respectively. In addition, the R2 values for the ANN, ANN-GA, and ANN-GWO
are 0.9244, 0.9406, and 0.9329, respectively, as indicated in Scheme (4-13) (d).
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Figure 4-10 The results obtained only by employing neural networks in September
(a) MAE, (b) MSE, (c)R2, (d) RMSE

Table 4-4 Summarized forecasting results in September days for the PV prediction model.

Days Method RMSE MSE MAE R?
ANN 92.5994 8574.6566 71.6435 0.9244

September ANN-GA 82.0618 6734.1462 57.9227 0.9406
ANN-GWO 87.1780 7600.0110 63.6414 0.9329

Figure (4-12) (a) presents a comparison between the actual power and prediction

power in September using three different approaches. In September, there is a

consistent daily pattern that mirrors the cycle of daylight. This is because the power
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improves during the daytime when there is ample sunlight and mild temperatures.
The NN-GA and NN-GWO models exhibit higher concordance with the actual
power, particularly during peak and off-peak periods. The NN, enhanced by the
utilization of the GA, exhibits superior performance in comparison to other results.
This can be attributed to the presence of optimal meteorological circumstances, such
as clear skies and ample sunlight, which are conducive to the compatibility of this
method. Figure (4-12) (b), displays the relative error over time during September,
ranging from -100 to 200 percent. The graph displays variations in the relative
inaccuracy throughout September. The ANN-GA prediction model has superior
stability when compared to the ANN-GWO and ANN prediction models.
Furthermore, the ANN technique demonstrates more pronounced oscillations,
indicating a significant variability in the forecasts, particularly in the troughs where
the power approaches substantial negative values. The NN-GWO model, shown by
the orange color, exhibits a comparable pattern to the ANN-GA model but displays
more significant oscillations, particularly near the peaks. Hence, the ANN-GA
prediction model attains the minimum relative error of approximately 6%, whereas
the ANN-GWO and ANN prediction models achieve 10% and 13.9% respectively.
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Figure 4-11 (a) The Result MAE in September (b) The Result MSE in September

Table 4-5 Relative percentage error for January, March, July, and September

Method January March July September
ANN-GA 6.7% 40.8% 8.1% 6%
ANN-GWO 7.5% 76.5% 8% 10%
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Figure 4-12 (a) The Comparison between actual power and prediction power with

ANN, ANN-GA, and ANN-GWO in September (b) Relative error with ANN, ANN-GA,
and ANN-GWO in September
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Figure 4-13 Scatter diagrams of ANN, ANN-GA, and ANN-GWO (a)January,
(b)March, (c) July, (d)September

4.2.5. Discussion

After reviewing the results for each month individually, it is evident that
September exhibited the most suitable values according to the defined criteria.
Consequently, September is forecasted to have the maximum potential for PV
generation, because there is a large amount of sun radiation caused by the absence
of clouds and mild temperatures. In contrast, solar generation in January decreased

due to the limited duration of daylight and the presence of unexpected weather
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patterns, which included weak sunlight, frequent showers, and gloomy skies. As a
result, it is regarded as the least favored month for forecasting. Nevertheless, solar
energy that is now accessible continues to contribute to electricity generation.
Conversely, July is characterized by high temperatures and abundant sunlight,
making it a favorable time frame for energy production in the solar system.
Although the ANN demonstrated satisfactory performance, it fell short of achieving
the intended level when compared to the other methods discussed in Chapter 2 of
this thesis. The reason for this is that certain techniques have undergone
enhancements and have been integrated with other technology, leading to increased
abilities in predicting future events. Hence, this thesis enhanced its performance by
employing two techniques: GA and GWO. Post-enhancement, the results
demonstrated that the enhanced neural network surpassed the unimproved neural
network in all chosen months. Upon comparing the GWO with the GA, we observe
that Table 6 presents the optimized selection of hidden layers and neurons, as well
as the corresponding time taken for each technique. It is evident that the GA exhibits
faster performance and higher accuracy compared to the GWQO. On the contrary, in
July, the GWO outperformed the GA. This suggests that the GWO is more adept at
handling high temperatures, particularly in the hotter climate of southern Irag during
July. Ultimately, the enhanced and integrated techniques proven to be superior in

accurately forecasting PV power generation across various circumstances.

Table 4-6 shows a comparison of results for the models used

Modeling | parameter January March July September
ANN-GA | Layer Number 4 4 3 4
Hidden Neurons Number | [34,101,44, |[30,102,1 |[13,115,86] |[11,120,82,86]
121] 03,51]
Time 14 mint 20 mint 17 mint 16 mint
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ANN-
GWO

Layer Number
Hidden Neurons Number

5
11

4
18

3
23

4
21

Time 30 mint 22 mint 53 mint 37 mint

4.3. Results of The Experimental Part

The data used in this study was collected in 2024 during experimental testing of
PV cells at the University of Misan College of Engineering, Iraq (31.8907° N,
47.1078° E), covering January, March, and June. Due to the variable nature of
weather conditions, the experimental data may contain errors or missing intervals.
To address this, ANN and optimization techniques were applied to adjust the number
of hidden layers and neurons. An experimental study was conducted to evaluate PV
power generation and the effectiveness of the proposed technique under various
weather conditions: six days of cloudy, rainy, and sunny weather. The fall season
was excluded due to the recency of the 2024 data, as the fall season in Iraq begins in
late September. Python, using Matplotlib and Seaborn libraries, was utilized to

create visual representations of the results.

4.3.1. Results for January

This analysis utilizes real data obtained in January 2024, the data sampling is
conducted at three-minute intervals, from 7 a.m. until 5 p.m., due to the absence of
energy generation by solar cells during nighttime hours. The data was classified into
three weather patterns (cloudy, rainy, and sunny), with three days chosen for each
pattern. The data samples were first partitioned, allocating 60% for training and the
remaining 40% for testing. Next, the number of hidden layers and neurons is
determined based on GWO because it converges strongly to find the correct
solutions and is a modern algorithm with good performance. Finally, the results of
the ANN-GWO model show high performance in all weather conditions (sunny,

rainy, and cloudy) compared to ANN through the Table and Figure below.
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Table 4-7 Summarized forecasting results Sunny days for PV prediction model.

Days  Method RMSE MSE MAE RE(%) R?
cloudy ANN 162648 2645423 122325  13%  0.9215
ANN-GWO  14.8086  210.2948 11.2481 12.3%  0.9349
rainy ANN 20.6886  428.0175 13.1810 16.8% 0.6754
ANN-GWO  20.0763  403.0617 11.6983 14.5%  0.6943
ANN 123783  153.2229  7.8102  7.2%  0.9870

sunny ANN-GWO  11.8840 141.2314  7.1700 5.1% 0.98799
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Figure 4-16(a)The Comparison between actual power and prediction power (b) Relative
error with ANN, and ANN-GWO in Rainy days

4.3.2. Sunny Days

This classification aims to evaluate the efficacy of the proposed forecasting
model under sunny weather conditions. To be more specific, a total of 1,158 samples
were chosen across a span of 6 days characterized by unobstructed skies. The
samples were evenly distributed throughout three seasons to represent sunny
weather. 361 samples were collected on 17 and 22 January to represent the winter
season. 12 March and 21 March were designated to symbolize the arrival of spring,

with a combined total of 384 samples. Similarly, 7 June and 8 June were picked to
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Time (month/day/hour)

(b)

95

represent the summer season, with a total of 413 samples. The number of samples

varies due to the impact of sunshine on the solar panels. Moreover, the length of
daylight varies over the different seasons. The data was partitioned with 60% of the
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Figure (4-17) (a), displays the MAE in watts on the y-axis, ranging from 0 to 60
W for all proposed approaches. The x-axis shows the monitoring hours, with data
collected every 3 minutes. Figure (4-17) (a), displays the difference in MAE between
the predicted and observed power generation during sunny weather circumstances.
The GA-ANN, ANN, and ANN-GWO approaches, which are introduced in this
thesis, are used for this analysis. The GA-ANN method occasionally yielded reduced
MSE and MAE values in comparison to alternative methods. On days characterized
by clear skies, the MAE values were 17.3919 for the ANN, 16.0403 for ANN-GA,
and 17.0240 for ANN-GWO. As indicated in Table (4-8). Furthermore, the graph
illustrates that the three models exhibit convergence in the MAE when it is sunny.
This convergence is attributed to the consistent stability of solar radiation and
temperature, resulting in a gradual decrease in error. The enhancements achieved
through the utilization of the genetic algorithm demonstrate efficacy in diminishing
errors and enhancing the precision of forecasts. Therefore, stable atmospheric
conditions contribute to minimizing mistakes in energy predictions, hence

enhancing the performance of the models.

Table 4-8 Summarized forecasting results Sunny days for PV prediction model.

Days Method RMSE MSE MAE R?
ANN 21.5097 462.6680 17.3919  0.9532
Sunny ANN-GA 20.5089 420.6154 16.0403  0.9574
ANN-GWO 21.8529 477.5520 17.0240  0.9516

Figure (4-17) (b), displays the MSE in watts on the y-axis, ranging from 0 to
4000 W for all proposed approaches. The x-axis depicts the monitoring hours, with
measurements taken every 3 minutes. Figure (4-17) (b), illustrates the difference in

MSE between the predicted and observed power generation during sunny weather
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conditions. The ANN-GA, ANN, and ANN-GWO approaches, which are introduced
In this thesis, are used for this analysis. The ANN-GA method occasionally yielded
reduced MSE and MAE values in comparison to alternative methods. On days when
the sky was clear, the MSE values were 462.6680 for the ANN, 420.6154 for ANN-
GA, and 477.5520 for ANN-GWO. As indicated in Table (4-8). Furthermore, the
diagram illustrates that the three models exhibit convergence in the MSE when it is
sunny, albeit with variations in performance across different time intervals. The
utilization of the GWO with the GA has demonstrated efficacy in minimizing errors
and enhancing the precision of predictions as compared to the rudimentary MSE-
ANN model. Moreover, Table (4-8) displays the R2 of the ANN-GA, ANN, and
ANN-GWO, with values of 0.9574, 0.9532, and 0.9516, as indicated in Scheme (4-
23) (b).

Table 4-9 Model Performance Comparison in Sunny Weather

Ratio (%) for Ratio (%) for

Indicator ANN  ANN-GA ANN-GA ANN-GWO ANN-GWO
MAE 17.3919 16.0403 1.77% 17.0240 2.11%
RMSE 215097 20.5089 4.65% 21.8529 1.57%
MSE 462.6680 420.6154 9.08% 477.5520 3.12%
R? 0.9532 0.9574 0.44% 0.9516 0.17%

The suggested ANN-GA technique has the lowest error rate in comparison to
ANN-GWO and ANN alone. The ANN-GA strategy effectively minimizes errors
and enhances forecast accuracy across various weather circumstances, making it the
most suitable option for predicting PV power generation. It consistently outperforms
other proposed methods in all performance indicators. The MAE of the ANN-GA is
lower than 7.77% compared to the regular ANN. On the other hand, the ANN-GWO
demonstrates an improvement of 2.11% compared to the regular ANN. Similarly,

the MSE shows a 9.08% improvement compared to ANN, however, the performance
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of ANN-GWO decreases by 3.12% compared to ANN. When considering the
RMSE, the ANN-GA model demonstrates a 4.65% enhancement over the ANN
model. Conversely, the performance of the ANN-GWO model declines by 1.57%
compared to the ANN model. Furthermore, about R2, ANN-GA showed a 0.44%
enhancement compared to ANN, whereas the performance of ANN-GWO declined
by 0.17% compared to ANN, as indicated in Table (4-9).
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Figure 4-18(a) The Comparison between actual power and prediction power (b)
Relative errorwith ANN, ANN-GA, and ANN-GWO in Sunny days

Furthermore, Figure (4-18) (a) displays the power generation of the PV plant

P 3 Mg o o A o b g P o B e P g A o AW

during bright weather. It also compares the expected and real power output using the
proposed models. The horizontal axis, known as the X-axis, depicts time in 3-minute
intervals. The vertical axis, known as the Y-axis, indicates electrical power measured
in watts, ranging from 0 to 450 watts. The true capacity can vary significantly
throughout different periods, reaching its highest point on 7 June at 11:27 AM and
its lowest point on 17 January at 5:03 PM. It is evident that all the suggested models
consistently generate energy on a sunny day. The energy output exhibits an upward
trend from 9:00 to 12:00, followed by a slow decline. These findings suggest that
the precision of all models is comparatively greater on days with clear weather. In
addition, Figure (4-18) (a) demonstrates that all of the proposed prediction models
align well with the actual power curve. Overall, the enhanced models utilizing GA
exhibit greater performance and accuracy by closely aligning with the real power

levels in both high and low situations, unlike the basic ANN model. This underscores
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the necessity of employing optimization techniques in ANN to improve the precision
of forecasts in energy-related applications. Enhanced models effectively track both
major and minor changes, making them efficient instruments for managing

electricity.

Figure (4-18) (b) depicts the discrepancy between the predicted PV output and
the actual PV generation on sunny days, expressed as the relative error. The X-axis
displays the testing period separated into 3-minute intervals, while the Y-axis
reflects the relative error percentage for three different methodological tests. Figure
(4-18) (b) indicates that the ANN-GA forecasting model exhibits superior stability
when compared to the ANN-GWO and ANN prediction models. Furthermore, the
ANN technique demonstrates more significant and noticeable fluctuations,
especially within the time intervals of 1/22 and 6/8, where the relative error surpasses
100% and drops below -100%. Therefore, the ANN-GA forecasting model obtains
the lowest relative percentage error of approximately 4.5%, whereas the ANN-GWO

and ANN prediction models have error rates of around 5.5% and 6.5%, respectively.

Based on the comparison, the ANN demonstrates higher accuracy in sunny
weather conditions than the ANN-GWO model. Upon comparing the ANN-GWO
model with the ANN model, it becomes apparent that the ANN-GWO model
exhibits greater performance in sunny weather conditions when assessed using the
MAE metric. Nevertheless, the analysis conducted using R2, MSE, and RMSE did
not meet the desired threshold. It is worth noting that as periods shift, specific
patterns may arise, which might have varying effects on the performance of each
model. However, it has been confirmed that the ANN-GWO model performs better

than ANN in situations marked by cloudiness and wetness.
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4.3.3. Cloudy Days

The purpose of this classification is to evaluate the effectiveness of the proposed
prediction model in forecasting outcomes during cloudy weather conditions. A total
of 1063 samples were gathered from 6 uniformly dispersed overcast days across
three seasons. A total of 330 samples were collected on the 2nd and 18th of January
to accurately reflect the winter season. Similarly, 356 samples were gathered on the
11th and 14th of March to represent the spring season, and 377 samples were
obtained on the 22nd and 24th of June to accurately represent the summer season.
During gloomy weather, the overall number of samples decreases compared to bright
weather because clouds obscure sunlight, preventing solar panels from obtaining
adequate light. Moreover, the sensor may lack sufficient sensitivity to precisely

assess the extent of radiation it detects leading to some readings not being recorded.

Figure (4-19) (a), the x-axis indicates time in 3-minute intervals. The y-axis
represents the average absolute error in watts, ranging from 0 to 80 watts. On January
2, the MAE-NN error varied between 0 and 70 W. The MAE-NN-GA error spans a
range of 0 to 60 watts. At the same time, the MAE-NN-GWO error spans a range of
0 to 70 watts. And between 18 January and 11 March, the MAE-NN error fluctuates
between 0 and 60 watts. The MAE-NN-GA error spans a range of 0 to 50 watts. The
MAE-NN-GWO model's inaccuracy range is between 0 and 55 watts. On cloudy
days, solar radiation is variable and irregular, making the energy output more
difficult to predict. Consequently, any abrupt fluctuations in solar radiation result in
heightened inaccuracies in forecasts. The MAE-NN model exhibits inconsistent
performance in the majority of periods, with error fluctuations ranging from 0 to 70
W. The MAE-NN-GA model outperforms MAE-NN, exhibiting an error range of 0

to 50 watts, this model has greater stability during periods characterized by overcast
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weather conditions. MAE-NN-GWO exhibits a moderate level of performance,
falling between MAE-NN and MAE-NN-GA, the error in this case varies from 0 to
55 watts. To summaries, the three models exhibit worse accuracy in overcast weather
as compared to sunny days, mostly due to significant variations in solar energy and
temperatures. Optimization strategies enhance the performance of models during

cloudy conditions, resulting in improved accuracy and stability of forecasts.

Figure (4-19) (b) displays the time-dependent mean square error values (in watts)
ranging from O to 6000 watts, with a frequency of 3 minutes. As stated before, on 2
January, the MSE-NN and MSE-NN-GWO models achieved an output of
approximately 5000 watts, but the MSE-NN-GA model achieved an output of
around 4000 watts. From 14 March to 22 June, all models consistently maintain a
stability of approximately 1000 watts. It is worth mentioning that ANN-GA
exhibited the highest inaccuracy during the beginning of period 2 and specifically
on 18 January. Nevertheless, the model's performance subsequently enhanced,
surpassing both ANN and ANN-GWO. The MAE is obtained by computing the
mean value of the ANN-GA, ANN, and ANN-GWO models, which yield 17.8099
W, 21.8080 W, and 18.1780 W, respectively. The MSE values for the models are
615.0131 W, 744.8360 W, and 629.6826 W, respectively, as Table (4-10).
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Figure 4-19 (a) The Result MAE of the cloudy Days, (b) The Result MSE of the cloudy
Days

Table 4-10 Summarized forecasting results in Cloudy days for PV prediction model.
Days  Method RMSE MSE MAE R?
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ANN 27.2917 744.8360 21.8080 0.9209

Cloud ANN-GA 24.7995 615.0131 17.8099 0.9347
ou

y ANN-GWO  25.0934 629.6826 18.1780 0.9332

Table (4-10) presents a concise overview of the forecast findings specifically for
cloudy weather conditions. The prediction outcomes are fully evaluated using MSE,
RMSE, MAE, and R2. The MSE of the ANN-GA is 615.0131 Watts. The RMSE is
24.7995 Watts, and the MAE is 17.8099 Watts. The R2 values for the ANN-GA,
ANN, and ANN-GWO models are presented in Table (5-4) as 0.9347, 0.9209, and
0.9332, respectively. The prediction result of ANN-GA is the most optimal, as
demonstrated in Scheme (4-23) (f).

Furthermore, the ANN-GA approach consistently outperformed both the ANN
and ANN-GWO methods across all performance indicators. The MAE value for
ANN-GA has decreased by 18.34% compared to ANN. Similarly, the ANN-GWO
method showed a notable improvement of 16.65% compared to the ANN method,
as shown in Table (4-11). Regarding the R2 index, both ANN-GA and ANN-GWO
exhibited enhancements of 1.48% and 1.32%, respectively, in comparison to ANN.
Both ANN-GA and ANN-GWO exhibited a 17.43% and 15.46% enhancement in
MSE as compared to ANN. In terms of the RMSE index, the ANN-GA approach
showed a 9.13% enhancement over the ANN method, whilst the ANN-GWO method

demonstrated an 8.05% improvement over the ANN method.

Table 4-11 Model Performance Comparison in Cloudy Weather
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ANN- Ratio (%) Ratio (%) for

Indicator ANN GA for ANN-GA ANN-GWO ANN-GWO
MAE 21.8080 17.8099 18.34% 18.1780 16.65%
RMSE 27.2917 24.7995 9.13% 25.0934 8.05%
MSE 7448360 615.0131 17.43% 629.6826 15.46%

R? 0.9209 0.9347 1.48% 0.9332 1.32%

Figure (4-20) (a) depicts a comparative analysis of power generation under
overcast weather conditions throughout time, divided into 3-minute intervals. The
analysis includes the use of short-term ANN, ANN-GA, and ANN-GWO models to
predict and compare the actual power generation. Noticeable surges in energy usage
can be observed during specific periods, such as on January 18th at 12:19 p.m. These
peaks are caused by increased energy demand. At some time intervals, such as 3/14
at 8:36 AM, discernible decreases in energy levels may be noticed. These periods
arise due to reduced activity produced by cloud cover that obstructs sun energy.
Furthermore, solar panels encounter reduced solar radiation under overcast
conditions in contrast to clear and sunny days. Consequently, the generation of
electricity from these solar panels declines during these certain time intervals. It can
be concluded that the improved models NN-GA and NN-GWO exhibit marginally
superior performance in comparison to the basic model ANN, hence emphasizing
the significance of employing optimization techniques in neural networks to enhance
prediction accuracy. These models can effectively monitor substantial fluctuations
in real capacity, demonstrating their capability to generate precise predictions of
future energy usage. Finally, during calm times, the models provide good
predictions. However, when there are quick fluctuations, the ANN-GA and ANN-
GWO algorithms exhibit superior performance with higher accuracy and greater

adaptability to changes in weather conditions.
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Figure (4-20) (b), displays several surprising changes, marked by significant
increments and decrements in relative error when comparing the actual power and
the forecasted power during cloudy days. The green line (ANN) exhibits significant
volatility, characterized by substantial spikes and dips in relative error reaching up
to 400% and -100% respectively, suggesting substantial inaccuracies in the forecast
and revealing significant deficiencies in the projection. The blue line, representing
(NN-GA), and the orange line, representing (NN-GWO), exhibit comparatively
stable patterns with fewer significant changes when compared to the green line. The
relative error of these methods ranges around zero, and most values fall between -
100% and 100%. Therefore, it can be inferred that ANN-GA methods exhibit
superior accuracy and stability in generating PV predictions when compared to
ANN-GWO and ANN approaches. The ANN-GA prediction model achieves the
lowest relative error of approximately 6.5%, whilst the ANN-GWO and ANN
prediction models achieve 7% and 12.5% respectively. Although solar panels do not
operate at full efficiency on cloudy days, they still generate some energy, but at a

lower rate compared to clear days.

4.3.4. Rainy Days

The purpose of this classification is to evaluate the efficacy of the proposed
forecasting model under rainy weather conditions. Specifically, 809 samples were
taken on specific rainy days, with the collection period spanning 6 days and the
samples uniformly dispersed over three seasons. To depict the winter season,
deliberately selected the days with the most intense precipitation, namely 11th and
30th January, and gathered a total of 212 samples from these days. In addition, a
total of 210 samples were gathered on 19th and 24th March to accurately represent

the spring season. Furthermore, an additional 387 samples were collected on 10th
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and 20th June to effectively depict the summer season. In January, the length of
daylight hours fell due to rainy weather, and there were periods of time during the
day where no measurements were taken. The lack of certain measurements in
January and March resulted from intense precipitation, which led to the entire
shutdown of the system for many hours due to rain-saturated clouds obstructing
radiation. On 10 June, there was a slight precipitation caused by the increasing
temperature. Furthermore, a day with overcast skies was also incorporated. Today
marks the twentieth day of compensating for the lack of days with a mix of bright
and cloudy weather. This is because June usually encounters strong sunlight and

elevated temperatures in southern Irag.

Table 4-12 Summarized forecasting results Rainy days for PV prediction model.

Days Method RMSE MSE MAE R?
ANN 29.0796 845.6225 16.4599 0.8250
] ANN-GA  22.3597 499.9573 14.3067 0.8965
Rainy ANN-GWO 25.4140 645.8738 15.8127 0.8663

Figure (4-21) (a) displays the MAE between the expected and actual power
generation specifically in rainy weather circumstances. Figure (4-12) (a) depicts the
MAE of power, measured in watts, which spans a range of 0 to 200 watts. The three
models exhibit variability in their performance, occasionally converging during
certain periods and diverging during others. The two methodologies, MAE-NN-
GWO and MAE-NN-GA, exhibit comparable efficacy in the majority of time
intervals, although MAE-NN displays certain inconsistencies, suggesting its lower
adaptability to abrupt fluctuations in rainy conditions. According to the data
presented in Figure (4-21) (a), it is evident from Table (4-12) that the MAE
associated with ANN-GA is occasionally lower than both ANN and ANN-GWO.
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On days with rain, the ANN-GA, ANN, and ANN-GWO had MAE values of

Theoretical and Experimental Results
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Figure (4-21) (b), displays the difference in MSE between the projected and
observed power generation specifically during rainy weather conditions. The
horizontal axis, also known as the X-axis, shows time in 3-minute intervals. On the
other hand, the vertical axis, or the Y-axis, represents the MSE of power measured
in watts. The range of values on this axis goes from 0 to 50,000 watts. From the
figure, certain periods show a clear increase in the MSE. The data in Figure (4-21)
(b), show that the MSE for all models is nearly zero. However, there are two specific
periods where the MSE deviates significantly. From 8 AM to 12 PM on 11 January,
the MSE value for the ANN-GWO model reaches 30,000 W. Similarly, during the
period from 10 to 11 AM on the morning of 10 June, there is a spike in the ANN
model, with the MSE increasing up to 50,000 W, due to the excessive energy use
during these periods, where the peak solar radiation level was recorded at 467.5926
w/m2 on 10 June at 10:32 a.m. On the other side, the solar irradiance level was
recorded at 193.8658 w/m2, and 133.9699 w/m?, between this point, in 3-minute
intervalley. In this case, the fluctuation in the ANN prediction is due to this rapid
change in solar irradiance. This sudden fluctuation in the input irradiance indicates
a limitation in its ability to handle rapid variations in the input data. Furthermore,
changes in solar radiation and temperatures caused by rainy weather contribute to
higher absolute error and thus lead to inaccurate forecasts. Thus, GA-ANN is
comparatively more effective than both ANN and ANN-GWO, as demonstrated in
Table (4-12). It is important to highlight that GA regularly demonstrates higher
performance in many settings. The MSE values for the ANN-GA, ANN, and ANN-
GWO are 499.9573 W, 845.6225 W, and 645.8738 W, respectively. Table (4-12)
presents the R2 values of the ANN-GA, ANN, and ANN-GWO, which are presented
as 0.8965, 0.8250, and 0.8663, respectively. These values indicate a significantly

weaker correlation compared to clear-sky conditions, as seen in Figure (4-23) (d)
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Figure (4-22) (a), displays the comparison between the real capacity and the
produced capacity of the three models over a specified testing period. The horizontal
axis, referred to in the figure, the time is split into intervals of 3 minutes. The vertical
axis, sometimes known as the Power axis, represents the measurement of electrical
power in watts. Figure (4-22) (a), illustrates that the forecasts generated by the ANN-
GA, ANN-GWO, and ANN models aim to track variations in real power. These
many models exhibit similarities in certain areas and display minor variations in
other areas. Moreover, there are substantial enhancements in energy levels in
particular instances, particularly on 11 January at 10:18 p.m. and 10 June at 10:18
a.m., due to an abrupt alteration in solar radiation. Consequently, there is a rise in
energy use throughout these periods. In contrast, the 3/24 dates exhibit a reduced
number of low regions due to the occurrence of continuous heavy rainfall throughout
the day. Power generation was significantly affected on 24 March at 4:04 p.m. The
solar radiation reached 19.8206 w/m?. This decrease was a sunset result, which
reduced the amount of solar energy reaching the solar panels, leading to a significant
decrease in power generation. In addition, energy output is reduced in comparison
to sunny and cloudy days as a result of the presence of rain and clouds, which might
Impede the solar radiation from reaching the solar panels. Furthermore, the presence
of water droplets on solar panels can generate reflecting regions, leading to an
increase in light reflection and a decrease in light absorption. This decrease can result
in reduced solar energy efficiency on days with rainfall. Nevertheless, the projected
values generated by the suggested model persistently align with actual energy
measurements, and the prediction values with the ANN optimization models still
provide a good prediction of the actual power measurement compared to the
independent ANN. While Figure (4-22) (b), illustrates the correlation between time
(x-axis) and relative error (y-axis) for three distinct models: ANN-GA (blue), ANN-
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GWO (orange), and ANN (green). Time encompasses certain intervals inside the
calendar months. Most of the time, modest relative errors close to zero are commonly
found. However, there are occasional significant departures in the relative error,
particularly for the ANN-GWO (in orange) and the ANN (in green). There is a
distinct period, specifically on 03/24 at 9:24 am, when significant and abrupt
downward changes occur. These oscillations result in a substantial reduction in the
relative inaccuracy, with values as low as -4820.6% recorded on 24 March at 11:34
a.m. or the model ANN-GWO. During the same time frame, the ANN model (shown
by the color green) has variances of approximately -4628.5%. Due to sudden changes
in the environment in which the data was collected, leading to difficulty in
forecasting accurately. As a result, the ANN-GA forecasting model acquires the
lowest relative percentage error about 40%, while, the ANN and ANN-GWO
prediction model reaches 44% and 56.5%, respectively.

It was expected that the performance of the rainy and heavy cloud models would
be lower than the rest of the models due to the greater variation in PV energy.
However, the GA-ANN method maintained a superior MAE value of 13.08% of
ANN while the ANN-GWO method, improved by 3.93% compared to ANN, and
ANN-GA achieved 9.52% of ANN-GWO and performed better when finding the
MAE value in cloudy weather. For R2, ANN-GA and ANN-GWO show 8.68% and
5.02% improvement over ANN respectively. Similarly, for MSE, ANN-GA, and
ANN-GWO show 40.88% and 23.61% improvement over ANN respectively. The
RMSE value of the ANN-GA method shows a 23.12% improvement compared to
ANN while the ANN-GWO method shows a 12.61% improvement compared to
ANN. Thus, ANN-GA is the best performer in all performance indicators (MAE,
RMSE, R2, MSE) ,as shown in the model performance comparison Table(4-13).

Table 4-13 Model Performance Comparison in Rainy Weather
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Finally, Table (4-15) provides a summary of the comparison of PV energy in
terms of relative percentage error for three classification tests. Improving PV
prediction is essential for increasing the accuracy of weather forecasts on rainy and
cloudy days. Consequently, the ANN has been created by the utilization of two
distinct algorithms. Therefore, the ANN-GA prediction model demonstrated
superior performance compared to other approaches in all weather conditions. This
was evident from the much lower measured values, suggesting the impressive
performance of this model. In addition, Table (4-14) contains the best number of

hidden layers and neurons extracted from each algorithm along with the execution

time.
Table 4-14 shows a comparison of results for the models used
Modeling parameter Sunny Cloudy Rainy
ANN-GA Layer Number 1 3 3
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Hidden Neurons Number 49 [32,52,48] [17,67,31]

Time 40 Min 33 Min 32 Min

Layer Number 1 1 4
ANN-GWO Hidden Neurons Number 49 56 69

Time 54 Min 56 Min 57 Min

Table 4-15 Relative percentage error for sunny, cloudy, and rainy days
Method Sunny days Cloudy days Rainy days

ANN-GA 4.5% 6.5% 40%
ANN-GWO 5.5% 7% 56.5%
ANN 6.5% 12.5% 44%

4.3.5. Discussion

In general, a PV system is affected by production under variable weather
conditions, as it highly depends on the amount of radiation. Therefore, on rainy days,
the solar radiation was feeble, while on cloudy days, there were obvious fluctuations
in solar radiation, which presented great challenges for the stable prediction of PV
energy. Moreover, the performance accuracy on sunny days is relatively better than
in other weather conditions. This is due to the nature of the weather conditions in
Irag. As a result, two machine training algorithms were implemented to evaluate the
overall performance of the proposed neural network for PV energy prediction.
Specifically, it identifies improvements in NN achieved through GA and GWO
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across three distinct weather categories. Then the two algorithms were compared to

ensure their performance in different weather conditions.

Based on the comparison condition, the traditional artificial neural network
performs well and accurately during sunny weather conditions. However, the
accuracy decreases in rainy and cloudy weather conditions. On the other hand, the
ANN-GWO model shows high performance during all weather conditions (rainy,
cloudy) compared to ANN. Therefore, ANN-GA shows the best performance in the
weather conditions in Irag, especially since Iraq weather has different conditions in
different seasons of the year, this model can handle high performance during the
weather conditions. In addition, ANN-GA has a good running speed compared to
other models, for example, the running time for the ANN-GA model ranges from 32
to 40 minutes, whereas the ANN-GWO model takes from 54 to 57 minutes.
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Figure 4-23 Comparison of MAE and R2 performance measurements across different
meteorological seasons.
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4.4. Comparison between Theoretical and Experimental Results

The thesis aims to predict PV power generation in the southern Iraq region,
particularly in Misan Governorate, by analyzing weather conditions and enhancing
ANN. The effectiveness of prediction models was evaluated using hourly weather
data from 2021 and 3-minute actual data from 2024. For the theoretical results during
(January, March, and September), the GA achieved the best performance among
other methods, while in July the GWO achieved the best performance due to the
nature of the climate in Misan province, which enjoys high solar radiation and
temperature, so the GWO may be able to adapt better to high temperatures. On the
other hand, September is considered one of the most accurate and performing
months because the values of MAE, RMSE, MSE were the lowest and R2 was the
highest for the ANN-GA method, and the improvement rate ranged between 2.51%
to 32.83% for improving RMSE. Additionally, it ranged from 32.49% to 54.87%
concerning the amelioration of MSE. Moreover, the improvement varied from
2.51% to 16.97% for the enhancement of MAE. Lastly, a range of 1.89% to 6.29%
was observed for the enhancement of R2.

For the experimental results, the genetic algorithm was also the best in accuracy
and performance compared to ANN, and ANN-GWO in all types of weather (sunny,
rainy, and cloudy). In addition, sunny weather was the best in terms of overall model
performance, achieving the highest value of R2 and the lowest value of MSE,
RMSE, while rainy weather achieved the best performance in terms of MAE. In
summary, the improvement percentage ranged between 1.17% to 23.12% for
improving RMSE. Additionally, the range for the enhancement of MSE was
observed to be between 2.33% and 40.89%. Furthermore, the improvement for MAE
was quantified between 2.02% and 18.35%. Lastly, the improvement percentages
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for R2 were found to span from 0.16% to 7.98%. Furthermore, Table (4-16)
compares the methods used. The GA algorithm performs better in all weather
conditions because it has proven effective in avoiding falling into local maximum
solutions due to its random mechanisms, such as mutations. This makes it suitable
for dealing with PV power production forecasting data.

In both cases, the experimental results (short-term) taken based on weather
conditions (sunny, cloudy, and rainy) were generally better than the theoretical
results (medium-term) measured by season (January, March, July, and September)
based on the values of RMSE, MSE, MAE was lower in the experimental results and
these values ranged from 72.3% to 94.6%, while the R2 value was close, but
sometimes the experimental results were better. The difference was small, equivalent
to about 1.75%, as seen in Table (4-17) and Figure (4-24), the comparison between
experimental and theoretical results can be observed when comparing September
with Sunny weather, this comparison was made based on the best result obtained
from theoretical and experimental results. Therefore, the table reveals a large
difference between theoretical and experimental results due to the difference in the
data collection mechanism and time intervals, as well as due to the difference in the
load used when collecting theoretical and experimental data. However, the
performance was good in both cases, but the theoretical results do not take the rapid
fluctuations in solar radiation resulting from cloud movement. In addition, the results
appear ideal and more accurate and convergence than the experimental results,
which are affected by the change in solar radiation as it is captured every 3 minutes.
This shows that relying on experimental data, especially in fluctuating weather
conditions, provides a more accurate and better representation of reality than
theoretical models. Table (4-18) shows a comparison between experimental and

theoretical results.
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Table 4-16 The characteristics as a comparison between ANN, ANN-GA, and ANN-GWO

Characteristics ANN Result ANN-GA Result ANN-GWO Result

Performance Good (Satisfactory) | Best Performance Very Good (but lower
than ANN-GA)

Speed Fastest Medium Speed Slowest

Accuracy Good Accuracy Highest Accuracy High Accuracy (lower

than ANN-GA)

Training Time

Shortest

Moderate

Longest

Model Complexity

Complexity

increases with more
layers and neurons

Complexity
increases with more
layers and neurons

Complexity increases
with more layers and
neurons

Python Implementation

Used

Used

Used

Flexibility

Less flexible

Highly flexible

Flexible but complex

Table 4-17 The comparison between the experimental and theoretical data in September
and Sunny days

Methods Parameter EZESIrtetical E)éspljzlrtimental Difference E(i:ge:’n(t;ge
MAE 71.6435 17.3919 54.2516 76.04%
RMSE 92.5994 21.5097 71.0897 76.8%
ANN R2 0.9244 0.9532 0.0288 3.05 %
MSE 8574.6566  462.6680 8111.9886 94.6%
MAE 57.9227 16.0403 41.8824 72.3%
ANN-GA RMSE 82.0618 20.5089 61.5529 75.00%
R2 0.9406 0.9574 0.0168 1.75%
MSE 6734.1462  420.6154 6313.5308 93.75%
MAE 63.6414 17.0240 46.6174 73.25%
ANN- RMSE 87.1780 21.8529 65.3251 74.93%
GWO R2 0.9329 0.9516 0.0187 1.97%
MSE 7600.0110 477.5520 7122.459 93.72%
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Figure 4-24 The comparison between the experimental and theoretical data in September
and Sunny days

4.5. Summary

The enhanced ANN technique, which utilized the hidden layer and neuron
optimization algorithm, was employed. The optimization was performed using two
methods: the GA and the GWO. Consequently, the artificial neural network model
experienced a decrease in the mean square error, MAE, and RMSE. Therefore, the
results indicate that September has the highest performance, providing MAE
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improvement from 2.51% to 16.97% compared to other month for theoretical data
while the proposed MSE of ANN-GA model, which resulted in 40.88%, 9.08% and

18.34% improvement compared to ANN model for rainy, sunny and permanent days

respectively for experimental data. Furthermore, experimental evidence has

demonstrated that the utilization of ANN-GA for optimization yields superior

performance. This approach effectively minimizes errors across all performance

metrics and substantially enhances forecast accuracy across various weather

circumstances, surpassing both ANN and ANN-GWO.

Table 4-18 The comparison between theoretical and experimental results

Characteristics

Theoretical Results

Experimental Results

Forecasting Time Interval

Hourly (Seasonal: January,
March, July, September)

Every 3 minutes (Weather-
based: Rainy, Cloudy, Sunny)

Production range Power(W)

0 to 1200

0 to 400

Forecasting Methods

ANN, ANN-GA, ANN-
GWO

ANN, ANN-GA, ANN-GWO

Best Performing Method

ANN-GA

ANN-GA

MAE, MSE, RMSE, R2
Values

Large (Not close to zero,
but a good fit overall)

Small (Close to zero, better
fit)

Accuracy

There is a good match
between predicted and
actual values, as data does
not capture rapid changes in
solar irradiance

Some slight fluctuations
between predicted and actual
values due to rapid changes in
solar radiation.

Impact of Time Resolution

Longer time resolution
obscure variations and rapid
fluctuations in solar
radiation

Shorter time resolution takes
rapid fluctuations in solar
radiation more effectively

Complexity of Prediction

Lower

Higher

Performance (Overall)

Good performance

Good performance
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CHAPTER FIVE
Conclusion and Suggestions for Future Work

5.1. Conclusions

In this thesis, machine learning techniques were used to design the PV power
forecasting model based on theoretical data and experimental data for the geographic
areas of Iraq (Misan) for the first time. To sum up, the PV data is collected from
multiple sources, including meteorological theoretical data and PV experimental
data. Then, the effectiveness of artificial neural network technology in predicting PV
power generation was investigated. Next, two optimization techniques, Genetic
Algorithm (GA) and Grey Wolf Optimizer (GWO), were applied to enhance the
ANN model's structure by optimizing the layers and neuron counts for improved
prediction accuracy. The PV forecasting model is focused on the impact of solar
radiation and temperature prediction at 3-minute and 1-hour timescales. Python is
also used to obtain experimental and theoretical results in the process of minimizing
MAE, MSE, RMSE, and R2. Data was processed seasonally, focusing on selected
months (January, March, June, and September) to analyze theoretical results, and
segmented by weather conditions (rainy, cloudy, sunny) to analyze experimental
results. Results revealed that the ANN-GA model outperformed ANN and ANN-
GWO in forecasting PV power under varying weather, demonstrating a superior
ability to minimize errors across performance metrics. The experimental data, more
accurate due to its sensitivity to weather changes, showed that ANN-GA achieved
notable error reductions (MSE) under all weather conditions compared to ANN
(9.08% in sunny, 17.40% in cloudy, and 40.88% in rainy conditions). Similarly,
theoretical data showed MSE improvements across seasons for ANN-GA over
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ANN, with notable gains in January (58.38%) and March (27.19%). Overall, the
findings underscore that using GA for ANN optimization yielded more substantial
performance improvements than GWO, underscoring the effectiveness of intelligent
optimization techniques for achieving precise PV power predictions.

Current PV energy prediction models mainly consider solar radiation and
temperature, overlooking other environmental factors like dust, humidity, and
atmospheric pressure that impact solar panel performance. Future work could
enhance prediction accuracy by integrating these factors, along with effects like
partial shading and dust accumulation. Additionally, neural network performance
plateaued after five training iterations, suggesting potential saturation. To address
this, hybrid models combining optimization algorithms like ALO-MLP or WOA-
MLP can improve weight tuning and predictive accuracy, offering a promising

direction for model enhancement.

5.2. Future Directions

Future work will include several key directions:

1. Urban PV Production Prediction: Investigate energy production predictions for
PV panels in urban areas, addressing specific challenges such as shading from
buildings and pollution.

2. PV Expansion on Grid Efficiency: Analyze the impact of expanding PV systems
on grid stability and efficiency, focusing on the effects of series and parallel
configurations on voltage, current management, and load performance.

3. Long-Term Climate Change and Solar Prediction: Develop models to assess how
long-term climate change forecasts affect the accuracy of solar radiation

predictions, utilizing advanced forecasting methods.
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4. Hybrid Prediction Models: Improve prediction accuracy by combining statistical
and machine learning models, with real data from various locations to validate

and compare model effectiveness.
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Appendix

Appendix A
The Simulink model of the PV system is linked to the electrical
grid.
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Figure B.1. The Simulink model of the PV system is linked to the electrical grid based on
MATLAB simulation

Figure B.2. P&O algorithm
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clc

%] Block Parameters: 2V Array

Allows moaeling of a variety of preset PV moduies avalliable rrom NKEL System AQvisor Model (Jan. ZUl4) as well as user-aenned Py module.

Input 1 = Sun irradiance, in W/m2, and input 2 = Cell temperature, in deg.C.

Parameters  Advanced
Array data

Parallel strings |1

Display 1-V and P-V characteristics of ...
array @ 1000 wkmz & specified temperatures

T_cell (deg. ) [ 4525 ]

Series-connected modules per string |4

Module data
Module: |User-defined

Maximum Power (W) |350.1729

Cells per module (Ncell) |90

Plot

Model parameters

Light-generated current IL (A} 11.276

Diode saturation current 10 (A) 5.3262e-10

Open dircuit voltage Voc (V) [41.07
Short-circuit current Isc (A} | 11.25

Diode ideality factor 0.745878

Voltage at maximum power point Vmp (V) |34.23

Current at maximum power point Imp (A} 10.23

Temperature coefficient of Voc (%/deg.C) |-0.36901

Temperature coefficient of Isc (%/deg.C) 0.086995

Serles resistance Rs (ohms) 0.15637

Figure B.3. Block parameters PV array

Code Used to Collected Data in Workspace

clear all
Te=xlsread('name file', 'sheetl'

for

end

i=1l:n

T=Te (i, :);
assignin('base','Ir',T);
sim('PV.slx");

sV (1i)= V_PV4 (length(V_PV4))
sI(1i)= I PV4(length(I PV4))
Ve (i)= V PV (length(V _PV));
Ie(1)= I PV (length(I PV));
P(i)= P PV4 (length (P PV4));
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01/01
01/01
01/01
01/01
01/01
01/01
01/01
01/01
01/01
01/01
01/02
01/02
01/02
01/02
01/02
01/02
01/02
01/02
01/02
01/02
01/03
01/03
01/03
01/03
01/03
01/03
01/03
01/03
01/03
01/03
01/04
01/04
01/04
01/04
01/04

08:00:00
09:00:00
10:00:00
11:00:00
12:00:00
13:00:00
14:00:00
15:00:00
16:00:00
17:00:00
08:00:00
09:00:00
10:00:00
11:00:00
12:00:00
13:00:00
14:00:00
15:00:00
16:00:00
17:00:00
08:00:00
09:00:00
10:00:00
11:00:00
12:00:00
13:00:00
14:00:00
15:00:00
16:00:00
17:00:00
08:00:00
09:00:00
10:00:00
11:00:00
12:00:00

428.5125
643.6
751.3125
783.2125
782.9
744.075
621.35
438.1625
227.175
26.55
247.75
271.6375
231.425
265.7125
353.7375
345.575
233.4625
133.8875
70.125
8.325
460.5625
648.3
733.475
770.9875
785.5625
778.125
710.9625
604.3375
409.6875
51.075
187.5
299.05
370.9375
383.5
381.325

Appendix B
Theoretical Data for January

9.6125
9.74
10.6575
11.01
12.5125
15.485
17.835
18.605
17.755
16.69
9.2625
9.815
10.3625
11.65
13.65
15.65
16.8625
17.3625
17.8625
17.575
10.2725
11.12
11.9725
13.7125
16.16
18.6125
20.115
20.715
21.315
20.8125
11.92
12.7725
13.62
14.9975
16.845
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161.744583
166.6279923
158.1940481
159.7334388
151.6820686
156.0272031
161.6426773
156.7409952
144.6611191
20.323617
151.7551233
153.9585827
148.865102
152.4246909
156.742829
155.2246832
146.0292647
97.36946673
52.07132004
6.968836313
162.2389145
165.9576939
156.282231
158.6856871
150.440588
149.092749
151.791163
159.6262505
154.3052702
38.38710863
132.8278538
154.3814766
157.4615749
157.1275321
155.9689602

2.30079293

2.11671074

5.889781171
5.660780009
7.244240612
5.625860998
1.996946122
2.229264088
2.058459455
0.294840682
2.158767553
2.189692453
2.11991703

2.167808152
2.229290199
2.207587541
2.077268179
1.448788346
0.771313786
0.092952866
2.30785965

2.069964489
6.003002009
5.369897188
7.132284902
7.045288998
5.702947106
1.99711807

2.194444158
0.566138818
1.960435684
2.195556974
2.239565103
2.234789823
2.218227445

372.1407929
352.7032608
931.728326

904.2158572
1098.821401
877.7873568
322.7917177
349.4170716
297.7790485
5.992229097
327.6040362
337.1219466
315.5816648
330.4274875
349.4252524
342.6720768
303.3419449
141.0677487
40.16332697
0.647773309
374.4246444
343.526533

938.1625466
852.1258249
1072.985134
1050.401504
865.6569738
318.7924693
338.6142988
21.73243231
260.4004644
338.9533275
352.6454483
351.1470097
345.9746281
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Appendix C
Experimental Data for Sunny Days
Date LOC_T radiation Temperature current voltage Power

01/17/2024 7:46 AM 472.51 10.4 1.1 133 146.3
01/17/2024 7:49 AM 530.53 13 1.23 133  163.59
01/17/2024 7:53 AM 546.88 13.5 1.27 133  168.91
01/17/2024 7:56 AM 382.81 14 0.89 133 118.37
01/17/2024 7:59 AM 574.8 14 1.34 133 178.22
01/17/2024 8:03 AM 603.44 15.6 1.4 133 186.2
01/17/2024 8:06 AM 631.8 16.5 1.47 133  195.51
01/17/2024 8:09 AM 643.95 17.2 1.5 131 196.5
01/17/2024 8:13 AM 656.11 17.4 1.53 131  200.43
01/17/2024 8:16 AM 672.31 17.5 1.56 131  204.36
01/17/2024 8:19 AM 676.36 18 1.57 131  205.67
01/17/2024 8:23 AM 720.92 18.8 1.68 131 220.08
01/17/2024 8:26 AM 736.83 18.9 1.71 131  224.01
01/17/2024 8:29 AM 759.26 18.8 1.77 131  231.87
01/17/2024 8:33 AM 785.59 19 1.83 131  239.73
01/17/2024 8:36 AM 809.9 20.1 1.88 135 253.8
01/17/2024 8:39 AM 830.01 20.4 1.93 135  260.55
01/17/2024 8:43 AM 838.4 20.6 1.95 135  263.25
01/17/2024 8:46 AM 845.05 19.8 1.97 135  265.95
01/17/2024 8:49 AM 854.46 20.9 1.99 135  268.65
01/17/2024 8:53 AM 878.62 19.8 2.05 135  276.75
01/17/2024 8:56 AM 890.91 20 2.07 135  279.45
01/17/2024 8:59 AM 899.16 20.5 2.09 135  282.15
01/17/2024 9:03 AM 899.31 20.7 2.09 135  282.15
01/17/2024 9:06 AM 911.02 20.3 2.12 135 286.2
01/17/2024 9:09 AM 935.33 213 2.18 140 305.2
01/17/2024 9:13 AM 947.77 21.7 2.21 140 309.4
01/17/2024 9:16 AM 955.73 21.8 2.23 140 312.2

To view the full data used, please click on the link below.

e ((https://drive.google.com/drive/folders/1pfdXrwwMT47bTcFr IjWULtI

OEKYhmQO4-?usp=drive link))
e (https://climate.onebuilding.org/)
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Appendix D
ANN-GA Algorithm (python code)

#Install all necessary Libraries resources

import numpy as np
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import time
# Load your dataset
data = pd.read_excel('Name File') # Replace 'your_dataset.csv' with your dataset
file
col names=['columnl', 'column2', 'column3', 'column4', ‘column5', ‘columné6',
‘column7']
data.columns = col_names
data.head()
# Specify the indexes by which you want to partition the data for theoretical
data.
test_indices = list(range(234, 390))
#Splitting data into training and test set based on indexes
train_data = data[~data.index.isin(test_indices)]
test_data = data[data.index.isin(test_indices)]
# Create the required variables
t_train = train_data.iloc[:, 9]
X_train = train_data.iloc[:,1:3]
y_train = train_data.iloc[:, -1]
t _test = test_data.iloc[:, 9]
X_test = test_data.iloc[:, 1:3]
y _test = test _data.iloc[:, -1]
# Specify the indexes by which you want to partition the data for Experimental
data.
def alternating indices(n, train_ratio=0.6):

indices = np.arange(n)

train_indices = []

test_indices = []

block_size = int(train_ratio * 20)

test block size = 20 - block size

for i in range(@, n, 20):

train_indices.extend(indices[i:i+block_size])
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test_indices.extend(indices[i+block size:i+block_size+test block size])
return train_indices, test indices
train_indices, test_indices = alternating_indices(len(data))
train_data = data.iloc[train_indices]
test _data = data.iloc[test_indices]
# Create the required variables
t_train = train_data.iloc[:, 90:1]
X _train = train_data.iloc[:, 2:4]
y_train = train_data.iloc[:, -1]
t _test = test data.iloc[:, 90:1]
X_test = test_data.iloc[:, 2:4]
y_test = test_data.iloc[:, -1]

# Define parameters
population_size = 10
mutation_rate = 0.1
crossover_rate 0.8
num_iterations 5
num_hidden_layers_range = (1, 5) # Range for number of hidden layers
num_neurons_range = (10, 128) # Range for number of neurons in each layer
# Fitness function (Example: R2, MAE, RMSE)
def evaluate_fitness(model, X_test, y_test):

y_preds_GA = model.predict(X_test)

r2 = r2_score(y_test, y preds_GA)

mae = mean_absolute_error(y_test, y preds_GA)

rmse = np.sqrt(mean_squared error(y_test, y preds GA))

mse = (mean_squared_error(y_test, y preds_GA))

return r2, mae, rmse,mse, y preds GA
# Mutation function
def mutate(model):

mutated_model = Sequential.from_config(model.get_config())

for layer in mutated_model.layers:

if isinstance(layer, Dense):
if np.random.rand() < mutation_rate:
num_neurons = np.random.randint(*num_neurons_range)
layer.units = num_neurons

return mutated_model
# Crossover function
def crossover(parentl, parent2):

child = Sequential()

for layerl, layer2 in zip(parentl.layers, parent2.layers):

if isinstance(layerl, Dense) and isinstance(layer2, Dense):
units = min(layerl.units, layer2.units) # Choose the minimum units
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child.add(Dense(units=units, input_dim=layerl.input_shape[1],
activation="relu')) # Input layer or hidden layer
child.add(Dense(units=1)) # Output layer
return child
# Genetic Algorithm
best_model = None
best r2 = -float('inf'")
best mae = float('inf'")
best_rmse = float('inf")
best mse = float('inf'")
r2_history = []
mae_history = []
rmse_history = []
mse_history = []
best_r2_history = []
for iteration in range(num_iterations):
# Generate population
population = []
for _ in range(population_size):
num_hidden_layers = np.random.randint(*num_hidden_layers range)
model = Sequential()
model.add(Dense(np.random.randint(*num_neurons_range),
input_dim=X_train.shape[1l], activation="relu')) # Input layer
for _ in range(num_hidden_layers):
model.add(Dense(np.random.randint(*num_neurons_range),
activation="relu')) # Hidden layers
model.add(Dense(1l)) # Output layer
model.compile(optimizer="adam', loss='mse') # Using mean squared error
as loss for regression task
population.append(model)
# Evaluate fitness
for model in population:
model.fit(X train, y train, epochs=1000, batch _size=32, verbose=0)
r2, mae, rmse, mse, y preds_GA = evaluate_fitness(model, X test, y_test)
r2_history.append(r2)
mae_history.append(mae)
rmse_history.append(rmse)
mse_history.append(mse)
if r2 > best_r2:
best r2 = r2
best _model = model
best_mae = mae
best _rmse = rmse
best mse = mse
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best_y preds_GA = y preds_GA
best_r2_history.append(best_r2)
# Crossover
for i in range(1, len(population)):
if np.random.rand() < crossover rate:
parentl = population[i-1]
parent2 = population[i]
population[i] = crossover(parentl, parent2)
# Mutation
for i in range(1l, len(population)):
population[i] = mutate(population[i])
# Elitism: Keep the best individual
population[@] = best_model
print("Iteration:", iteration + 1)
print("Best R2:", best_r2)
print("Best MAE:", best_mae)
print("Best RMSE:", best_rmse)
print("Best MSE:", best_mse)
print()
# Print the optimized number of hidden layers and neurons
print("Optimized number of hidden layers:", len(best_model.layers) - 2)
for i, layer in enumerate(best_model.layers[1:-1]):
print(f"Number of neurons in hidden layer {i+1}: {layer.units}")
_, best_mae, best_rmse, best_mse, _ = evaluate_fitness(best_model, X_test,
y_test)
print("Best MAE:", best_mae)
print("Best RMSE:", best_rmse)
print("Best MSE:", best mse)
# Record start time
start_time = time.time()
# Record end time and calculate execution time
end_time = time.time()
execution_time = end_time - start_time
print("Execution time:", execution_time, "seconds")
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Appendix E
ANN-GWO (Python code)

# Define the neural network model
def create_model(num_hidden_layers, num_neurons):
model = Sequential()
model.add(Dense(num_neurons, input_dim=X_train.shape[1],
activation="relu')) # Input layer
for _ in range(num_hidden_layers):
model.add(Dense(num_neurons, activation='relu')) # Hidden layers
model.add(Dense(1)) # Output layer
model.compile(optimizer="adam', loss='mse', metrics=['mae'])
return model
# Define the objective function to minimize (Mean Squared Error)
def objective_function(num_hidden_layers, num_neurons):
model = create_model(num_hidden_layers, num_neurons)
model.fit(X_train, y_train, epochs=1000, verbose=0)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y pred)
return mse
# Initialize gray wolf positions
def initialize_wolves(num_wolves, num_dimensions):
wolves = np.random.rand(num_wolves, num_dimensions)
wolves[:, ©] = wolves[:, ©] * 4 + 1 # Hidden layers between 1 and 5
wolves[:, 1] = wolves[:, 1] * 127 + 10 # Neurons between 10 and 128
return wolves
# Update wolf positions using GWO equations
def update positions(alpha, beta, delta, wolves, a=2):
for wolf in wolves:
for i in range(len(wolf)):
rl = np.random.random()
r2 = np.random.random()
Al =2 *a*rl - a
Cl=2%*r2
D_alpha = abs(Cl1 * alpha[i] - wolf[i])

X1 = alpha[i] - A1 * D_alpha

rl = np.random.random()

r2 = np.random.random()

A2 =2 *a*rl - a

C2 =2 *rpr2

D_beta = abs(C2 * beta[i] - wolf[i])

X2 = beta[i] - A2 * D_beta
rl = np.random.random()
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r2 = np.random.random()
A3 =2 *a*rprl - a
C3=2%*r2
D_delta = abs(C3 * delta[i] - wolf[i])
X3 = delta[i] - A3 * D _delta
wolf[i] = (X1 + X2 + X3) / 3
wolf[@] = np.clip(wolf[@©], 1, 5) # Hidden layers between 1 and 5
wolf[1] = np.clip(wolf[1], 10, 128) # Neurons between 10 and 128
return wolves
# Perform GWO optimization
def gray wolf optimization(max_iter, num_wolves):
num_dimensions = 2

wolves = initialize_wolves(num_wolves, num_dimensions)
best_position = None
best_error = float('inf"')
errors = []
for _ in range(max_iter):
for wolf in wolves:
num_hidden_layers = int(wolf[@])
num_neurons = int(wolf[1])
error = objective_function(num_hidden_layers, num_neurons)
if error < best_error:
best_error = error
best_position = wolf.copy()
errors.append(best_error)
alpha, beta, delta = wolves[np.argsort([objective_function(int(wolf[0]),
int(wolf[1])) for wolf in wolves])[:3]]
wolves = update_positions(alpha, beta, delta, wolves)
best_num_hidden_layers, best_num_neurons = int(best_position[9]),
int(best_position[1])
return best_num_hidden_layers, best_num_neurons, best_error, errors
# Run GWO optimization
best_hidden_layers, best neurons, best error, errors =
gray_wolf _optimization(max_iter=5, num_wolves=10)
# Train the neural network with the optimized parameters
best model = create model(best hidden_layers, best neurons)
history = best_model.fit(X_train, y_train, epochs=1000, verbose=0)
# Evaluate the model
best_y pred = best_model.predict(X_test)
best_mae = mean_absolute_error(y_test, best_y pred)
best mse = mean_squared _error(y test, best y pred)
best_rmse = np.sqrt(best_mse)
best_r2 = r2_score(y_test, best_y pred)
print("Best MSE MAE RMSE R2:",best mse, best mae, best rmse, best_
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