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Summary: 

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths and 

the third most commonly diagnosed cancer worldwide. The microbiome plays a 

role in influencing the development and progression of CRC, both positively and 

negaƟvely. In this study, stool samples were collected from 21 individuals divided 

into two groups: 12 with early-stage CRC and 9 healthy controls. 16S Amplicon-

based next-generaƟon sequencing (NGS) on Illumina NovaSeq (PE250-Seq) was 

performed on the samples and the results showed that there was a difference in 

the fecal bacterial microbiome between the two groups. Firmicutes, Bacteroidota, 

Actinobacteriota, Proteobacteria and Verrucomicrobiota were dominant in the gut 

microbiome in both groups, Firmicutes was the predominant phylum, representing 

55.68% in healthy individuals and 62.09% in paƟents with CRC. The less abundant 

phylum were Verrucomicrobiota 0.00% in healthy individuals and 3.89% in CRC 

patients. Statistically, the Bacteroidota phylum showed a decrease in CRC 

compared to healthy people (p=0.002), while the Desulfobacterota and 

Verrucomicrobiota phylum showed a significant increase in CRC compared to 

healthy people p=0.04, 0.01, respecƟvely. At the genera level, staƟsƟcally 

significant differences were observed where Actinomyces (p=0.02), Desulfovibrio 

(p=0.02), Bacteroides (p=0.03), Monoglobus (p=0.01), Eggerthella (p=0.02) and 

Akkermansia (p=0.005)  were significantly enriched in colorectal cancer paƟents 

compared to healthy controls, while Mitsuokella (p=0.001), Faecalibacterium 

(p=0.01), Roseburia (p=0.04), Lachnospiraceae_UCG_004 (p=0.01), Lachnospira 

(p=0.006), Eubacterium (p=0.01), Prevotella (p=0.001), Barnesiella (p=0.008) and 

sutterella (p=0.004) were less Enriched in colorectal cancer paƟents compared to 

healthy controls. On the other hand,to study the role of gut bacterial metabolites 



 
 

in  the development of colorectal cancer. A set of metabolites were identified by 

untargeted analysis using analyzed using Statistical Analysis of Metagenomic 

Profiles (STAMP version 2.1.3).  The results showed the following pathways were 

downregulated in CRC compared to healthy controls: adenosylcobalamin salvage 

from nicotinamide, Calvin-Benson-Bassham cycle, fatty acid &beta, fatty acid 

elongation – saturated, methylerythritol phosphate pathway, Reductive acetyl 

coenzyme A pathway, super pathway of polyamine biosynthesis and peptidoglycan 

biosynthesis.  Others were upregulated in CRC compared to healthy controls: D-

galactarate degradation, D-glucarate degradation, enterobactin biosynthesis, 

fucose degradation, super pathway of chorismate metabolism, super pathway of 

glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass, L-arginine 

degradation, heme biosynthesis, super pathway of hexanol degradation, and 

enterobactin biosynthesis. Based on the results of the microbiome present in stool 

samples of colorectal cancer patients and compared with stool samples of healthy 

people, it can be concluded that the gut microbiome plays a significant role in 

carcinogenesis. 
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Introduction 



1 
 

Introduction: 

The human microbiome refers to the collection of microorganisms, including 

bacteria, viruses, fungus, and protozoa, and their genetic material, that inhabit or are 

present on the human body. (Rahman et al., 2022)  

The gut microbiome consists of a diverse and  abundant population of bacteria (Saus 

et al., 2019), maturing into a stable  microbiome over 2 to 3 years (Loke et al., 2020). 

It is estimated that the  human gut harbors around 40 trillion different types of 

microorganisms (Pandey  et al., 2023). The colon being the most densely populated 

area of the  digestive system, housing approximately 70% of the human microbiota 

(Sekirov et al., 2010) 

The  eubiosis (balanced state )  plays a crucial role in several physiological  activities, 

including bolstering the host's immune system, aiding in nutrition  absorption, and 

defending the body from harmful microbes, Multiple studies have  shown a 

reciprocal relationship between gut microbiota and many organs in the  human body, 

including the intestines, lungs, brain, and skin, Depending on the  localized regions, 

microbiota can be classified into gut, oral, respiratory  ,and skin microbiota, the 

microbial communities are in symbiosis with the host,  contributing to homeostasis 

and regulating immune function, microbiota  animbalance (dysbiosis)  lead to 

dysregulation of bodily functions and  diseases including cardiovascular diseases 

(CVDs), respiratory diseases,  cancers ,etc  (Hou et al., 2022; Gebrayel et al., 2022) . 

The cancer is characterized by the dysfunction and  dysregulation of cell division in 

body fluids and specific tissues, leading to  uncontrolled cellular proliferation that 

can invade neighboring tissues  (Pelizzer et al., 2016). Colorectal cancer (CRC) is 

the third most diagnosed  cancer, accounting for 6.1% of diagnoses, and is the second 

leading cause of  cancer-related deaths, responsible for 9.2% of mortality (Sung et 
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al., 2021).  Risk factors for CRC include a family and genetic history of cancer or 

related  issues such as colon polyps, inflammatory bowel diseases, diabetes mellitus  ,

undergoing cholecystectomy, and various lifestyle factors, evidence suggests  that 

CRC risk is also heightened by overweight and obesity, lack of physical  activity, 

cigarette smoking, alcohol consumption, and poor dietary habits (low  in fiber, fruits, 

vegetables, calcium, and dairy products, and high in  processed and red meats), 

Recent studies reported that the gut microbiome and  their metabolites have a role 

influence colorectal cancer risk (Song et al.,   2020; Sawicki et al., 2021; Li et al., 

2022). 

Dysbiosis refers to a condition when the gut loses beneficial bacteria and becomes  

related behaviourssuch as-populated with harmful bacteria that promote cancer  

proliferation Thus, theangiogenesis, reduced apoptosis, and increased cell   

composition of the microbiome has an impact on the formation of tumours in the  

colon ( Lucas et al., 2017; teSherafat    al., 2018).   According to investigations, some  

bacteria are shown to be more abundant in individuals with CRC, while others are  

observed to decrease  (O'keefe, 2016; Temraz et al., 2019).   The colon microbiota 

Alistipescteria such as of a CRC patient showed an increase in the abundance of ba , 

, andCoriobacteridae, Fusobacteria, Porphyromonadaceaespp.,  Akkermansia  

Methanobacteriales   (O'keefe, 2016; Borges-Canha et al., 2015; Siddiqui et al., 

2022). Eubacterium, Lachnospiraceaeenrichment of  Subdoligranulum Blautia  ,

Faecalibacteriumand    Romboutsia,athobacterAg  decreased (Dikeocha et al., 2022; 

Du et al., 2022). The particular bacteria associated with colorectal cancer   (CRC)   

Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis include ,  

gallolyticus Streptococcus, and Enterococcus faecalis  (Alhinai et al., 2019). 

The   gut   microbiome produces many biologically active compounds such as bile  

c., andchain fatty acids, endotoxins, ammonia, polyamine, phenols, et-acids, short  
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in forming a connection between the intestinal microbiome and thethey play a role   

host (Schroeder and Bäckhed, 2016; Wu et al., 2021). These metabolites play a role 

in carcinogenesis or cancer prevention and reducing the risk of cancer (Cho and 

Blaser, 2012; Zhang et al., 2019). The production of some amino acids such as 

tryptophan develops cancer and tumor formation (Johnson et al., 2016). Some amino 

acid compounds such as ammonia and hydrogen sulfide increase the risk of DNA 

damage, intestinal inflammation and the development of CRC (Windey et al., 2012). 

Hydrogen sulfide is produced in the intestine by the bacteria Desulfovibrio, which is 

a harmful sulfur-reducing bacteria (Marquet et al., 2009). Cysteine and methionine 

are toxic and contribute to the spread of malignant cells and the development of 

cancer (Marchesi et al., 2016). Polyamine production is associated with CRC and is 

considered a toxic metabolite (Di Martino et al., 2013). Bile acids induce toxic 

effects and increase the invasion of cancer cells (Kahouli et al., 2013) 

 This study aimed to: 

 A-The study the impact of differences in gut bacterial microbiome on CRC patients 

as compared with healthy which was achieved by the following objectives 

B- Genetic identification of bacteria from stool samples from patients with colorectal 

cancer and healthy subjects. 

C- DNA extraction from stool specimens of CRC patients and compared with 

healthy control individuals. 

D- Performing meta-analysis using next-generation sequencing and software 

packages concerning assembly, processing, clustering, alpha, and beta diversity. 

E- Functional analysis of some bacterial metabolites and study their roles in 

Colorectal Cancer. 
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2- Literature Review  

2.1  Microbiome. 

Humans are  basically interdependent creatures. Since they are essentially sterile, at 

birth the humans encounter microbes and form a microbiota at the same time as their 

immune systems. All multicellular creatures, including plants, include an 

assemblage of microorganisms known as a microbiota ( Malard et al., 2021).That 

live in a specific location within the human body is referred to as the human 

microbiome. Numerous anatomical body locations, including the skin, mucosa, 

gastrointestinal system, respiratory tract, urogenital tract, and mammary gland, are 

colonised by microorganisms (figure 2-2). Together, they create a distinct and 

sophisticated ecosystem that adjusts to the environmental requirements of every 

niche (Whiteside et al., 2015; Hou et al., 2022), as show in figure (2-1) 
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 Figure (2-1): diagram illustrates the makeup of the microbiome (Berg et al., 2020). 

 

Human Microbiota is a collection of microorganisms living within and interacting 

with the human body (Grice and Segre, 2011; Berg et al., 2020). The many 

relationships might be harmful, mutualistic, or commensalistic,the genetic material 

of organisms (microbiota) (Whiteside et al., 2015) 
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Figure (2-2): Distribution of human microbiota at various anatomical sites. The            primary 
bacterial genera found in the mouth cavity, respiratory system, skin, stomach, and vagina are 

emphasized ( Hou et al., 2022). 

 

 

2.2-The gut microbiome 

The "gut microbiota" is the group of bacteria, archaea, and eukarya that inhabit the 

gastrointestinal system, over thousands of years, they have coevolved with the host 

to develop a complex and mutually beneficial interaction (Symbiosis) (Backhed et 

al., 2005; Neish, 2009; Rosenberg and Zilber-Rosenbreg, 2018; Donovan, 2020; 

Suárez and Triviño, 2020). 
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Each person has a unique microbiome that develops  from birth as a result of 

exposure to a complex bacteria in their gut that differs based on how it was delivered, 

vaginal birth is preferred because it exposes the baby's gut to the diverse microbiota 

of the mother, creating a maternal signature in the baby's early microbiome 

(Grenham et al., 2011; Wong and Yu,  2019).  

The gut microbiota in adult human's is an immensely varied and ever-changing 

ecosystem, estimated to consist of around 39 trillion microbial cells, which is almost 

similar to the amount of human cells in our body (Sender et al., 2016). Furthermore, 

it contains over 1,000 times more genes than the human genome (Sender et al., 2016; 

Tierney et al., 2019; Koh and Bäckhed, 2020). 

 

2.3.The  composition and significance  of the gut microbiome: 

The gastrointestinal system is home to a community of microorganisms known as 

the gut microbiota, which is present in greater quantity than human body cells 

(Breban et al., 2016; Al-Rashidi, 2022).  

Firmicutes, Bacteroidota, Verrucomicrobia, Actinobacteria, and Proteobacteria are 

the five phyla that makeup approximately half of the faecal bulk, with the first two 

accounting for 90% of the total (Wu et al., 2020). 

Firmicutes phylum are gram-positive bacteria characterised by their rod or spherical 

morphologies and reproduction by binary fission. This phylum comprises 

microorganisms with varied features that are well-suited to a wide range of 

biological niches, the Firmicutes phylum is classified into seven subphyla: Bacilli, 

Clostridia, Erysipelotrichia, Limnochordia, Negativicutes, Thermolithobacteria, 

and Tissierellia (Seong et al., 2018; Padayachee et al., 2020) 
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Bacteroidota  genes of this phylum is Bacteroides, can inhabit the colon and make 

up a significant portion of the bacteria in the gut. These bacteria, which cannot 

survive in the presence of oxygen and belong to the Gram-negative group, have 

various functions in collecting bacteria that reside in the human gut (Kim and Pamer, 

2017). They are essential contributors to the complex network of microorganisms 

that support the digestion process in the gut as established commensals, mutualists, 

and beneficial organisms; This genus includes many species, the most important of 

which is Bacteroides fragilis and Bacteroides vulgatus (Zafar and saier, 2021). 

 

Verrucomicrobia This phylum consists mostly of environmental microorganisms 

(Jakobsson et al., 2010) and is closely connected to the Planctomycetes and 

Chlamydiae phyla in terms of phylogeny. Akkermansia muciniphila is a Gram-

negative bacteria that belongs to this particular phylum (Glover et al., 2022). It has 

the ability to degrade mucin and was first discovered in human stools (Jernberg et 

al., 2010). 

 

Actinobacteria: The Gram-positive bacteria known as Actinobacteria  is one of 

the four main phyla of the gut microbiota. Even they being a very small 

percentage, they are essential for maintaining intestinal homeostasis. The classes 

within this phylum, especially Bifidobacteria, are widely utilized as probiotics, 

showcasing advantageous benefits in a number of clinical diseases (Binda et al., 

2018) 

Proteobacteria: Gram-negative bacteria, that are potentially dangerous and often 

found in low abundance, which made the majority of this phylum.  
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Some examples of these bacteria are Escherichia coli, Vibrio cholerae, Salmonella 

typhi, Pseudomonas aeruginosa and Helicobacter pylori (Shreiner et al., 2015).  

 

 The gut microbiota have three main functions are: metabolic, structural and 

protective, and (Grenham et al., 2011; Wong and Yu, 2019). The gut microbiota 

facilitates the  absorption of nutrients and minerals, the synthesis of various 

enzymes, vitamins, and amino acids, and the synthesis of short-chain fatty acids 

(SCFAs). Acetate, propionate, and butyrate are among the fermentation byproducts 

of gut microbiota that are crucial for gut health because they give epithelial cells 

energy, improve the integrity of the epithelial barrier, offer immunomodulation, and 

ward against infections (Wong and Yu, 2019). 

Numerous studies show a clear correlation between gut microbiota and certain 

illnesses as well as host health (Thakur et al., 2016; Ohadian Moghadam and 

Momeni, 2021). Age, nutrition, stress, and illnesses all affect how many different 

types and amounts of bacteria there are in the gastrointestinal tract and other body 

areas. Research on both human and animal models has demonstrated a link between 

dysbiosis a permanent imbalance of the gut's microbial community and conditions 

including diabetes, obesity, cancer, irritable bowel syndrome (IBS), inflammatory 

bowel diseases (IBD), and problems of the cardiovascular and central neurological 

systems (Belizário and Faintuch, 2020). 

 

2.4 Firmicutes/Bacteroidetes (F/B) Ratio: 

The Firmicutes/Bacteroidetes ratio is considered a vital biomarker (Mange et al., 

2020). The F/B ratio indicates the equilibrium of symbiotic bacteria in the intestines 

(An et al., 2023). The F/B ratio experiences a substantial rise in healthy individuals 
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as they age (Vaiserman et al., 2020), and it is notably greater in women compared 

to males (Koliada et al., 2021). Imbalances in the F/B ratio may lead to the 

development of illnesses such as inflammation, autoimmune disease, and cancer. 

For instance, obesity has a significant F/B ratio, but inflammatory bowel disease 

(IBD) shows a low F/B ratio (Stojanov et al., 2020). The F/B ratio exhibited a greater 

magnitude in the benign prostatic hyperplasia (BPH) population compared to the 

group without BPH (Takezawa et al., 2021). Non-alcoholic fatty liver disease 

(NAFLD)/nonalcoholic steatohepatitis (NASH) patients had a decreased F/B ratio 

compared to healthy controls (Vallianou et al., 2021). Furthermore, there was a 

positive correlation between a greater F/B ratio and a lower level of the genus 

Bacteroides with an increased left atrial diameter (Tsai et al., 2021). The F/B ratio 

was elevated in pregnant women with gestational diabetes mellitus (GDM) 

compared to those without GDM (Sililas et al., 2021).  

 

2.5. The human gastrointestinal microbiome's development: 

The prevailing belief is that the microbiota develops from birth, yet a few studies 

have shown that microorganisms can be found in womb tissues like the placenta, 

casting doubt on this belief (Aagaard et al., 2014; Rodriguez et al., 2015). The GI 

tract becomes colonised quickly after birth, and erratic alterations in the microbiota 

are caused by illnesses, antibiotic use, and dietary modifications (Koenig et al., 

2011; Rodriguez et al., 2015). Lactobacilli are abundant in the microbiota during the 

initial few days, which is indicative of the high Lactobacilli load in the vaginal flora 

(Aagaard et al., 2012; Avershina et al., 2014). On the other hand, facultative 

anaerobes such as Clostridium species colonise the microbiota of newborns 

delivered via cesarean section, depleting it and delaying the colonisation of the 

Bacteroides genus (Jakobsson et al., 2014; Amabebe et al., 2020). 
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While 72% of newborns delivered vaginally have faecal microbiota that is similar to 

their mothers', this ratio drops to 41% in babies delivered via cesarean section 

(Bäckhed et al., 2015). Actinobacteria and Proteobacteria are the two primary phyla 

that dominate the microbiota during the early phases of development (Bäckhed, 

2011; Rodriguez et al., 2015).  

The makeup, variety, and functional capacities of the baby microbiota approximate 

those of the adult microbiota by the time the child reaches the age of 2.5 years 

(Koenig et al., 2011; Rodriguez et al., 2015). Even while the gut microbiota's 

composition is generally stable throughout maturity, life experiences can 

nonetheless disturb it (Dethlefsen et al., 2011). In contrast to younger participants 

where Clostridium cluster XIVa is more common, the microbial community changes 

in adults over 65, with an increased number of Bacteroidetes phyla and Clostridium 

cluster IV (Claesson et al., 2011). 

On the other hand, a different research found that although the microbiota of a cohort 

of centenarians was much less diverse, the microbiota of a young cohort and an older 

population (70 years old) were reasonably comparable (Biagi, 2010; Rinninella et 

al., 2019). 

Additionally, group specific alterations in the centenarian microbiota were observed, 

including a shift in the profile of butyrate makers (Faecalibacterium prausnitzii 

declining, for example) and an increase in the number of facultative anaerobes 

(Escherichia coli, for example) (Biagi, 2010). Diversity and living circumstances, 

such as communal living or long-term residential care, have been found to be 

significantly correlated in the senior population (Claesson et al., 2012) 

In general, older people have less ability of their microbiota to perform metabolic 

functions such amylolysis and the synthesis of short-chain fatty acids (SCFAs), they 
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have more proteolytic activity (Woodmansey et al., 2004). As the body of research 

supporting the importance of SCFAs as important immunological and metabolic 

mediators grows, it was hypothesised that a decline in SCFAs would promote the 

inflammatory ageing process in the elderly's gut (Biagi et al., 2013). 

 

2.6.The microbiota's function in human health: 

Due to its extensive genetic makeup and metabolic complement, the gut microbiota 

offers several advantageous characteristics to the host. Among these bacteria' most 

significant functions are their assistance in preserving the mucosal barrier's integrity, 

their provision of nutrients including vitamins, and their defence against infections. 

Furthermore, for optimal immune function, commensal microbiota and the mucosal 

immune system must interact ( Thursby  and Juge, 2017). 

 

2.6.1 Short chain fatty acid production: 

The expression of carbohydrate  active enzymes by colonic bacteria allows them to 

digest complex carbohydrates and produce metabolites such SCFAs (Musso et al., 

2010 ). In the GI tract, the three main SCFAs propionate, butyrate, and acetate are 

normally present in a 1:1:3 ratio (Louis et al., 2014). In the gastrointestinal tract, 

these SCFAs are quickly absorbed by epithelial cells and have a role in the control 

of several biological processes, including gene expression, chemotaxis, 

differentiation, proliferation, and apoptosis (Corrêa‐Oliveira et al., 2016). While 

butyrate and propionate are generated by distinct gut bacterial subsets via various 

biochemical pathways, acetate is produced by the majority of gut anaerobes (Louis 

and Flint, 2017). Glycolysis and acetoacetyl-CoA convert carbohydrates into 
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butyrate, while the synthesis of propionate can occur by either the succinate or 

propanediol route, depending on the kind of sugar (Louis and Flint, 2017). 

Bacteroidetes is the primary producer of propionate in the human gut, while 

Firmicutes is mostly responsible for butyrate synthesis (Morrison and Preston, 2016; 

Louis and Flint, 2017). 

For instance, it is believed that both directly and through metabolic cross feeding, 

the fermentation of starch by specialized Actinobacteria and Firmicutes, such as 

Eubacterium rectale or Eubacterium hallii, greatly contributes to the formation of 

butyrate in the colon (Louis and Flint, 2017). One important propionate producer 

with a focus on mucin breakdown is Akkermansia muciniphila (Derrien et al., 2004). 

Acetate is discharged into peripheral tissues, whereas propionate is mostly absorbed 

by the liver (Guarner and Malagelada, 2003). A recent study examined the impact 

of SCFAs on human metabolism, anti-inflammatory and anti-cancer properties of 

butyrate are well known (Morrison and Preston, 2016; Lin and Zhang, 2017). For 

colonocytes, butyrate is a very crucial energy source (Corrêa‐Oliveira et al., 2016).  

 

2.6.2. Regulation of bile acid levels 

Bile acids, synthesised in the liver, facilitate the digestion of fats and the absorption 

of fat soluble vitamins when released into the small intestine, although primary bile 

acids are initially secreted in a conjugated form, certain commensal bacteria, such 

as Firmicutes (e.g., Clostridium, Lactobacillus, and Enterococcus species), 

Bacteroidetes (e.g., Bacteroides species), and Actinobacteria (e.g., Bifidobacterium 

species) ( Winston and Theriot, 2016). Possess a bile salt hydrolase enzyme that 

converts the acids back to an unconjugated form this facilitates the enterohepatic 

recirculation of the majority of the bile acid pool (Urdaneta and Casadesús, 2017) 
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Commensals convert a tiny portion of primary bile acids that reach the large intestine 

into secondary bile acids, this process is carried out by a specific group of 

microorganisms (<0.025% of the bacteria in the gut) that produce alpha 

dehydroxylase enzymes (Winston and Theriot, 2016). Clostridium scindens is the 

most extensively studied species in this particular function (Winston and Theriot, 

2016; Qian et al., 2020). Both primary and secondary bile acids play a role in glucose 

metabolism and possess antibacterial detergent characteristics that help prevent 

colonization by harmful microorganisms (Shah et al., 2021). Secondary bile acids 

have a significant impact in suppressing the development of Clostridioides difficile, 

specifically (Shen, 2015). Microbiota have a crucial function in maintaining the 

balance of bile acids in the body, therefore, it is becoming more important to use 

microbiota as a biomarker to differentiate between a "healthy" microbiome, where 

secondary bile acids are more prevalent than primary bile acids in the colon, and a 

"unhealthy" microbiome (Qian et al., 2020). 

2.6.3 Biosynthesis of vitamins 

The intestinal bacteria play a crucial role in the production of some vitamins, gut 

microbiota, including strains of Firmicutes, Actinobacteria, and Proteobacteria, 

synthesise endogenous B vitamins like cyanocobalamin (B12) and thiamine (B1) 

(Wexler and Gooman, 2017; oot and Werneke, 2020; Wan et al., 2022). These 

vitamins play a crucial role in several metabolic processes, such as DNA replication 

and repair, that are important for maintaining good health (Dattola et al., 2020). 

Various symbiotic bacteria, such as Bacteroides fragilis, Eubacterium lentum, 

Enterobacter agglomerans, Serratia marcescens, and Enterococcus faecium, also 

synthesise vitamin K (Kho et al., 2018). Changes in the quantities of these bacteria 

may therefore impact the availability of these naturally occurring vitamins (Bidell et 

al., 2022). 
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2.6.4. Protective role 

The gut microbiota primarily serves as a mechanism for pathogen displacement or 

"colonisation prevention", the gut microbiota inhibits the colonisation of pathogens 

by competing for attachment sites and nutrition, The gut bacteria play a role in the 

development of both innate and adaptive immunity by sending signals that assist 

maintain a balance between proinflammatory and anti-inflammatory responses (Min 

and Rhee, 2015; Scott, 2020). In addition to the native gut microbiota, microbial 

associated components also elicit an immune response, an instance of this is capsular 

polysaccharide A, which is generated by Bacteroides fragilis and has shown an anti-

inflammatory impact in the gastrointestinal tract, microbial metabolites such as 

butyrate have immunomodulatory effects via inhibiting the activation of nuclear 

factor-kb and/or by interacting with G protein coupled receptors, hence, the 

symbiotic microorganisms residing in the gastrointestinal tract actively contribute to 

the formation and maintenance of immune system reactions (Khan et al., 2021). 

 

2.7. The microbiota's function in human disease 

the microbiota provides several advantages to the host, nevertheless, dysbiosis a 

changed microbial composition has the potential to upset these processes, the 

microbiota has been implicated in several intestinal and extra-intestinal disorders 

(Chang and Lin, 2016; Schroeder and Bäckhed, 2016; Hou et al., 2022), as show in 

figure (2-3). 
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Figure (2-3): Diseases linked to dysbiosis (Dupont et al., 2020) 

 

 

 2.7.1. Diabetes and Obesity (Metabolic syndrome) 

Dysbiosis is linked to diseases including obesity, diabetes mellitus type 2, and the 

metabolic syndrome overall (Larsen et al., 2010; Qin et al., 2012; Relman, 2015). 

There are three processes linked to the development of these illnesses and the 

microbiota, a carbon source for energy production is one of them. the second relates 

to the modification of certain human genes and proteins that control how much 

energy is used, the regulation of bacterially derived lipopolysaccharide (LPS) levels 

in plasma, which can cause persistent subclinical inflammation, is the last 

mechanism, through the activation of Toll like receptor 4 (TLR4), the last one causes 

the development of insulin resistance (Blaut, 2015; Saad et al., 2016) 
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The majority of research on humans suggests that a rise in the 

Firmicutes/Bacteroidota ratio is associated with an increase in low-grade 

inflammation, also linked to increased insulin resistance, inflammation, and obesity 

is the gut microbiota's low diversity (Cornejo-Pareja et al., 2019; Pascale et al., 

2019). 

Studies on the metagenomic composition of the human intestinal microbiota have 

provided evidence to support the link between obesity, insulin resistance, and 

elevated levels of many proinflammatory cytokines including TNF-α and interleukin 

6 (Turnbaugh et al.,2009; Le Chatelier et al., 2013). 

 

2.7.2 gastrointestinal disorders  

The gut microbiota's microorganisms and humans have a mutualistic connection, 

however certain bacteria can become virulent and alter their symbiotic 

characteristics as a result of nutritional, environmental, and genetic variables 

(Nagao-Kitamoto et al., 2016; Caruso et al., 2020). A number of studies indicate 

that changes in the gut microbiota and its metabolic processes are associated with 

the onset and development of gastrointestinal disorders, including but not limited to 

severe diarrhoea, celiac disease, and irritable bowel syndrome (Manichanh et al., 

2012; Palm et al., 2014). 

Therefore, intricate interactions between a number of variables, including host 

genetics, environmental hazards, and the status of the gut microbiota, influence the 

formation of disorders such intestinal inflammation (Fakhoury et al., 2014 

;Ananthakrishnan et al., 2015). As the number of Firmicutes decreases, the gut 

microbiota is the one that is directly impacted (Caruso et al., 2020). Clinical research 

has provided ample evidence for this claim, demonstrating that individuals with 
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intestinal inflammation have far less variety and richness in their microbiota 

(Manichanh et al., 2012; Shah et al., 2018; Caruso et al., 2020). In addition, the 

disease's pathophysiology is marked by the build up of certain pathobionts, including 

Ruminococcus gnavus and Escherichia coli (Frank et al., 2007; Kamada et al., 

2013). 

Microbial species including Bacteroides fragilis and Escherichia coli have been 

shown to adapt to ulcerative colitis, a condition marked by inflammation and 

ulceration of the colon's lining, the ileum's mucosa has developed to get adhered to 

by these microbes, which then crumble the wall (Darfeuille-Michaud et al., 2004; 

Pickard et al., 2017), It has also been shown that individuals with IBS  have harmful 

bacteria adherent to their intestinal wall (Caballero et al., 2015; Ahmed et al., 2016; 

Hall et al., 2017). In addition, there is a higher ratio of Firmicutes to Bacteroidetes 

than in healthy individuals (Ahmed et al., 2016; Patel et al., 2016). More precisely, 

there are more species in the Clostridium cluster XIVa and Ruminococcaceae 

families and fewer in the Bacteroides family (Jeffery et al., 2012). 

 

2.7.3. The nervous system and psychiatric disorders   

the microbiome-intestine-brain axis is a two-way communication network that 

comprises the gut microbiome, autonomic nervous system (ANS), central nervous 

system (CNS), enteric nervous system (ENS), the endocrine system and the 

immunological system, (Cryan and Dinan, 2012). 

Numerous neurological and psychiatric disorders, such as multiple sclerosis, 

anxiety, depression, Parkinson's disease, autism, and Alzheimer's disease, have been 

linked to dysbiosis of the gut microbiome (Sampson and Mazmanian, 2015; Sharon 

et al., 2016). Furthermore, some studies demonstrate that the intestinal microbiota 
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influences the gut-brain link, which may result in stress and anxiety symptoms 

(Frankiensztajn et al., 2020). 

Also, there seem to be a connection between pain tolerance mechanisms and the gut 

microbiome (Cryan and O’Mahony, 2011; Iebba et al., 2012). Similary, the circadian 

cycle, host behavior, mood, and neurological functions have all been shown to be 

closely linked to the gut microbiome (Sampson and Mazmanian, 2015). Though the 

exact processes underlying this relationship's generation stay unclear, the 

"microbiota-gut-brain axis" theory has been suggested as a possible explanation 

(Cryan and Dinan, 2012). The following are some of these mechanisms: 

Involvement of the vagus nerve, there is a connection between the ENS and the CNS 

that provides a direct communication pathway between gut microbiota and the CNS  

(Bravo et al.,2011; Forsythe et al., 2014). Involvement of the cardiovascular system, 

this system controls the influence of several metabolites generated by gut bacteria 

on CNS activities, including hormones, neurotransmitters, and SCFA (Sampson and 

Mazmanian, 2015). Regulation of signals and the synthesis of neurotransmitters, gut 

microbiota apparently modulates the expression of central neurotransmitters and 

related receptors, and some species produce neurotransmitters, such as 

acetylcholine, dopamine, and adrenaline, or induce their synthesis (Gershon, 2013; 

Yano et al., 2015). By producing SCFA, the gut microbiota can influence how 

quickly microglia mature and how permeable the blood brain barrier (Braniste et al., 

2014; Erny et al., 2015; Reigstad et al., 2015). Gut microbiota modulates the 

activation of peripheral immune cells that regulate CNS immune reactions (Dantzer 

et al., 2000; Fung et al., 2017).  Research has shown variations between neurological 

disease patients and healthy individuals (Du et al., 2020). An examination of 16s 

rRNA from faecal microbiota in healthy persons revealed that the percentage of 

bacteria belonging to the phyla Firmicutes and Bacteroidota is larger than that of the 
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phyla Proteobacteria, Actinobacteria, Fusobacteria, and Verrucomicrobia (Dash et 

al., 2015). Furthermore, patients with anxiety and depression have much lower 

microbial variety and abundance (Du et al., 2020). As a result, there is less 

concentration of the Ruminococcus and Lactobacillus genera, as well as the 

Lachnospiraceae and Ruminococcaceae families (Kelly et al., 2017). 

 

 

2.7.4 Cancer 

Recent studies have reported on the significance of the gut microbiota in the 

development of many cancer types (Loo et al., 2017; Wong et al., 2019). 

Pathogenesis has been shown to be caused by a variety of processes, including 

aberrant microbial translocation, molecular mimicry, and dysregulation of both local 

and systemic immunity (De Martel et al., 2012). Genetic susceptibilities are only 

one of these pathways, according to reports, some bacteria found in the gut 

microbiota have the ability to cause cancer or inhibit the growth of tumour cells, 

about 20% of cancer cases are caused by infectious organisms, such as bacteria  

(Zhang et al., 2020) 

Furthermore, a difference has been noted between cancer patients and healthy 

persons with regards to the population and microbial diversity that exist at the gut 

level (Xuan et al., 2014). There has been written on the connection between gut 

microbiota and carcinogenesis, with a focus on bacterial metabolites. Thus, the 

impacts of certain toxins or virulence factors produced serve as the primary basis for 

the processes of bacterial-mediated carcinogenesis (Arthur et al., 2012; Bultman, 

2014) 
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Moreover, microbial metabolites, such polyamines and secondary bile acids, also 

contribute to the development of cancer cells and the creation of tumours via the β-

catenin signalling pathway (Pai et al., 2004), the transactivation of the epidermal 

growth factor receptor (EGFR) (Cheng et al., 2005), and elevated COX-2 activity 

(Brown and DuBois, 2005). Because of this, the immune system of the intestinal 

mucosa is linked to cancer, and its relationship with the gut microbiota is thought to 

be crucial for maintaining homeostasis (Pickard et al., 2017; Wang et al., 2020). 

This interaction has an impact on the stimulation of cell differentiation and the 

prevention of bacterial adhesion and colonization ( Shui et al., 2020). Accordingly, 

microorganisms like Bacteroides fragilis cause T cells that are CD4+ to differentiate 

into regulatory T cells (Round and Mazmanian, 2010), which have the ability to 

identify antigenic compounds linked to the bacterial genera Clostridium and 

Bacteroides, as well as secrete significant quantities of anti-inflammatory cytokines, 

such as interleukin-10 (IL-10) ( Cebula et al., 2013; Yi  et al., 2019). The gut 

microbiota also affects immunity at the systemic level in addition to the local one 

(Wang et al., 2020). Because microorganism produced metabolites penetrate the 

circulation, they interact with toll like receptors (TLRs) to influence the immune 

response in distant organs (Shui et al., 2020). The gut microbiota's bacteria may 

interact with the immune system to indirectly encourage the growth of cancer cells, 

even if they do not directly cause carcinogenesis (Gagliani et al., 2014). As a result, 

a compromised immune system promotes the growth of certain bacterial taxa and 

initiates signalling cascades that result in oncogene transcription (Gagliani et 

al.,2014; Wang et al., 2020). Furthermore, by causing inflammation or 

immunosuppression via the generation of cytokines, gut microbiota may indirectly 

support cancer (Yu and Schwabe, 2017; Li et al., 2019). Finally, changes in the 

makeup of the gut microbiota are now linked to the development of a number of 
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malignant neoplasms, including certain cancers such as brain, gastric, colorectal, 

pancreatic, and breast cancer (Chen et al., 2019). 

 

 2.7.4.1 Ductal Adenocarcinoma of the Pancreas 

The overall survival rate for this illness is less than five years, making it one of the 

most dangerous malignant neoplasms (Zhang et al., 2020). Since surgical excision 

is often not feasible, chemotherapy is the mainstay of treatment, pancreatitis and 

pancreatic ductal adenocarcinoma are significantly impacted by gut microbiota, 

which may cause chemoresistance in some individuals (Amrutkar and Gladhaug, 

2017; Akshintala et al., 2019). In the events leading to pancreatic carcinogenesis, 

Fusobacterium nucleatum causes autophagy, inflammation, and chemoresistance 

(Yu and Schwabe, 2019; Zhang et al., 2019). Moreover, it has been shown that in 

patients with this disorder, there is a reduction in Firmicutes and Bacteroidota and 

an increase in Proteobacteria and Verrucomicrobia. These changes are followed by 

the activation of inflammatory pathways in tumour tissues (Panebianco et al., 2018). 

Additionally, it has been shown that a greater risk of pancreatic ductal 

adenocarcinoma presentation is linked to the presence of  intratumoral pathogens 

and bacteria, including Rahnella, Acinetobacter, Aquabacterium, and 

Oceanobacillus (Heikkilä et al., 2018; Mei et al., 2018). Development of this disease 

involves the intestinal mucosa, epithelial and dendritic cells (DC), and different cells 

from the immune system (Niess and Reinecker, 2006). The above mentioned 

microorganisms are part of the gut microbiota and promote the development of 

adenocarcinoma through the release of a large number of metabolites (Li et al., 

2019), which interact with TLRs and also induce systemic inflammation and 
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immune responses associated with pancreatic carcinogenesis and therapeutic 

resistance (Zhang et al., 2020). 

 

2.7.4.2 Breast Cancer  

Breast cancer is the most prevalent kind of cancer that affects women globally, 

despite considerable advancements in diagnosis and therapy, about 40,000 fatalities 

occur annually (Viale, 2020). Research has shown a robust correlation between 

dysbiosis and the development of neoplasms, including breast cancer (Bultman, 

2014). Therefore, beyond genetic, environmental, and lifestyle variables, current 

research has concentrated on the role of gut microbiota in the development of b+reast 

cancer (Van et al., 2015). Variations in Bifidobacterium, Faecalibacterium 

prausnitzii, and  Blautia numbers have been  used as biomarkers linked to the clinical 

stage of breast cancers (Luu et al., 2017). Furthermore, there is a correlation between 

these variations and the patient's BMI, compared to patients of average weight, it has 

been shown that obese and overweight women with breast tumours exhibit lower 

quantities of Firmicutes, Faecalibacterium prausnitzii, and Blautia spp., as well as 

a lower prevalence of Akkermansia muciniphila (Luu et al., 2017; Fruge et al., 

2020). Similarly, there is a change in the faecal microbiota's composition and a 

decrease in microbial diversity in postmenopausal women who have breast cancer 

(Laborda-Illanes et al., 2020). Particularly, there have been reports of decreased 

Dorea and Lachnospiraceae proportions and increased amounts of 

Ruminococcaceae, Faecalibacterium, and Clostridiaceae (Goedert et al., 2015). 

Comparably, it has been noted that the populations of many species, including 

Salmonella enterica, Fusobacterium nucleatum, Acinetobacter radioresistens, 

Citrobacter koseri, and E. coli, have increased (Zhu et al., 2018). However, various 

considerations, such age, ethnicity, and geographic location, must be made when 
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determining the features of the gut microbiota of patients with breast cancer 

(Laborda-Illanes et al., 2020). 

 

2.7.4.3 Stomach Cancer 

Gastric cancer is a prevalent kind of tumour that is distinguished by both sudden and 

long-lasting inflammation (Engstrand and Graham, 2020). Similarly to other forms 

of cancer, the gut microbiota is associated with the onset of this illness, and 

Helicobacter pylori is the primary carcinogenic factor (Graham, 2015). The 

inflammatory response caused by H. pylori is linked to the level of virulence shown 

by each strain (Miftahussurur et al., 2017). The process of carcinogenesis starts with 

genetic instability resulting from the disruption of the host's DNA chain (Rakoff-

Nahoum and Medzhitov, 2009)  

According to the latest research, it has been shown that H. pylori infection causes 

damage to genetic material via two potential processes (Kidane, 2018). Initially, 

there is an increase in the presence of immune cells, neutrophils and macrophages, 

which results in the generation of reactive oxygen and nitrogen species (RONS) 

(Suzuki et al., 1994). RONS, induce harm to the DNA by causing single strand 

breaks and promoting the upregulation of oncogenes (Feig et al., 1994). On the other 

hand, RONS activates the transcription factor NF-κB, which leads to the production 

of oncogenes and cell cycle regulators (D'Angio and Finkelstein, 2000). 

Furthermore, this factor migrates to the nucleus and combines with a Nucleotide 

excision repair protein complex ( endonucleases XPG and XPF) that cuts the 

promoter regions of genes, affecting gene expression due to double-strand breaks 

(Hartung et al., 2015) 
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While gastric acidity acts as a crucial barrier that prevents microbes from entering 

the gastrointestinal tract (Engstrand and Graham, 2020). H. pylori is able to survive 

in the stomach despite the harsh conditions. However, its ability to establish colonies 

in gastric glands is limited due to the excessive production of acid in these cavities 

(Hanada and Graham, 2014). Nevertheless, the simultaneous occurrence of 

inflammation and the presence of H. pylori exacerbates harm in different areas of 

the stomach. The consequence of this damage is the degeneration caused by the 

proliferation of this microbe, which is more prevalent in gastric cancer compared to 

gastritis and intestinal metaplasia (Eun et al., 2014; Wang et al., 2015). 

Furthermore, it has been discovered that individuals with H. pylori infection and 

precancerous gastric lesions have differences in the relative abundance of the main 

phyla, Bacteroidota, Firmicutes, and Proteobacteria, in their faecal microbiota (Li et 

al., 2017). Several other bacteria, including Peptostreptococcus stomatis, Slackia 

exigua, Parvimonas micra, Streptococcus anginosus, and Dialister pneumosintes, 

have been examined in relation to gastric cancer. However, Helicobacter pylori is 

the most widely linked bacterium to gastric carcinogenesis (Coker et al., 2018) 

 

2.7.4.4 Brain cancer 

The correlation between gut microbiota and brain cancer has been a subject of 

increasing study in recent years (Dehhaghi et al., 2020). The association between 

the microbiota-gut-brain axis and brain tumours has been attributed to the 

mechanisms play in this axis since studies have shown that these processes may 

either promote or inhibit the development of brain tumours (Fung et al., 2017). 

Intestinal microbes use tryptophan as a substrate to generate indoles. These 

molecules participate in the signalling pathways between the gastrointestinal tract 
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and the immune system (Agus et al., 2018). The metabolism of particular 

Tryptophan occurs in the kynurenine pathway, producing of nicotinamide adenine 

dinucleotide and other neuroactive compounds (Dehhaghi et al., 2020). According 

to reports, an imbalance in the kynurenine pathway may have a role in the 

development of brain cancer by disrupting the immune response to tumours (Adams 

et al., 2012; Platten et al., 2019). In a similar manner, the gut microbiota has the 

potential to impact the microenvironment of brain tumours through various 

mechanisms. These include: Regulating the growth and activation of T cells (Jin et 

al., 2019), influencing microglia (Schalper et al., 2017; Roesch et al., 2018), 

affecting the production of cytokines, arginine, and tryptophan through kynurenine 

(Martin-Gallausiaux et al., 2018; Kaur et al., 2019), generating reactive oxygen 

species (ROS) and antioxidants (Roesch et al., 2018; Mehrian-shai et al., 2019). 

 

2.7.4.5 Colorectal Cancer 

Several bacterial species, including Fusobacterium nucleatum, Peptostreptococcus 

anaerobius, and enterotoxigenic Bacteroides fragilis, have been found as being 

associated with the development of colorectal cancer (Fong et al., 2020) In addition, 

a higher abundance of F. nucleatum has been linked to a decreased likelihood of 

survival in individuals with colon cancer (Mima et al., 2016). This is because F. 

nucleatum promotes chemoresistance, which triggers autophagy (Yu et al., 2017), 

ultimately resulting in treatment failure or the return of the illness (Wang et al., 

2020). The aforementioned species stimulate tumour growth  (Yang et al., 2017), 

facilitate inflammation (Chung et al., 2018), shield the tumour from immune system 

responses (Long et al., 2019), and inflict harm on the DNA of host cells (Rubinstein 

et al., 2013). Each of these elements has a role in the development of cancer. In 

colorectal cancer, there has been significant focus on protein toxins generated by the 
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intestinal microbiota, similar to other forms of cancer (Fiorentini et al., 2020). The 

carcinogenic impact of these toxins may be attributed to their direct assault on DNA, 

resulting in genomic instability or increased cell proliferation and resistance to 

programmed cell death in cancer cells owing to abnormalities in cellular signalling 

pathways (Candela et al., 2014). 

 

2.7.4.5.1. Some bacteria contributing in colorectal cancer 

 

Sulfidogenic Bacteria 

Sulfidogenic bacteria such as Desulfovibrio, Fusobacterium, and Bilophila 

wadsworthia have been implicated in the development of colorectal cancer (CRC) 

due to their ability to produce hydrogen sulphide (H2S). H2S, a genotoxin, has been 

detected in more than 80% of sporadic CRC cases, it is recognised for its potential 

to harm DNA, resulting in genomic instability and a significant occurrence of 

mutations, the presence of hydrogen sulphide (H2S) may impede the functioning of 

mitochondria, leading to excessive cell formation via the Ras/MAPK pathway, 

which is a well-known mechanism of carcinogenesis, a diet that is rich in meat and 

fat is associated with an increased presence of sulfidogenic bacteria (Flemer et al., 

2017; Dahmus et al., 2018). 

 

Streptococcus bovis :  

Streptococcus bovis is a kind of bacteria that naturally resides in the gastrointestinal 

tract of around 16% of individuals. Proteins produced by S. bovis induce the 

excessive production of COX-2 and inflammation, which is often seen in colorectal 



28 
 

cancers (CRCs) and may impede programmed cell death and promote the growth of 

new blood vessels. The relate between S. bovis and colorectal cancer was first 

notarized  in 1966 (Dahmus et al., 2018). Research has shown that between 6% and 

71% of occurrences of S. bovis bacteremia are associated with colon neoplasia. As 

a result, colonoscopy is suggested for individuals in this category, a research 

discovered that 55% of instances of endocarditis caused by S. bovis were associated 

with colorectal neoplasia. Streptococcus bovis has a cell wall antigen that is 

specifically attracted to the collagen IV found in the mucosa of the colon. 

Additionally, it stimulates the production of pro-inflammatory cytokines such as 

interleukin (IL)-8, IL-1, and COX-2. These cytokines, in turn, promote the growth 

of new blood vessels (angiogenesis) and cell division (proliferation), while 

simultaneously reducing the programmed cell death (apoptosis) of cancerous cells, 

Streptococcus gallolyticus (S. bovis biotype I) was seen in 71% of CRC cases, while 

other subtypes of S. bovis had an occurrence rate of 17%. Out of all the tumour 

specimens of CRC , 49% had the DNA of S. gallolyticus, but only 8% of healthy 

tissues had this DNA, the presence of S. gallolyticus IgG antibodies was associated 

with increased risks of CRC. The study revealed that serum antibodies against S. 

gallolyticus were detected in 68% of patients with colorectal cancer (CRC), 78% of 

patients with adenomas, and only 17% of control individuals (Burnett-Hartman et 

al., 2008; Dahmus et al., 2018). 

 

Bacteroides fragilis : 

Bacteroides  fragilis is a prevalent anaerobic bacteria found in the human body. The 

Enterotoxigenic Bacteroides fragilis (ETBF) strain contains the B. fragilis toxin 

(BFT) (Dahmus et al., 2018). The underlying biological mechanisms of benign 

familial tumours (BFT) leading to the development of colorectal cancer have been 
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acknowledged (Figure 2-4). BFT stimulates the Wnt/β-catenin pathway, leading to 

an augmentation in cell proliferation. Additionally, it stimulates NFkB, which 

encourages the production of inflammatory mediators, resulting in inflammation and 

the development of cancer (Dulal et al., 2014; Flemer et al., 2017). ETBF binds to 

colonic epithelial cells and induces the splitting of the tumor-suppressor E-cadherin, 

leading to enhanced cell permeability, studies have also shown that ETBF stimulates 

the development of cancer via the T helper 17 (TH17) dependent pathway. Ulger-

Toprak et al. detected Bacteroides fragilis in the faecal samples of 56 out of 73 

individuals with CRC, and among them, 21 patients had the BFT gene associated 

with Bacteroides fragilis. This is much higher in comparison to five out of the 40 

healthy controls (Ulger-Toprak et al., 2006). A research conducted by Boleij et al. 

revealed that the mucosa of the patients had a considerably higher frequency of BFT 

positive results compared to the control biopsies. The presence of BFT was seen in 

100% of tissues from late-stage CRC, compared to 72.7% positive in early-stage 

CRC (Boleij et al., 2015). The presence of B. fragilis in colorectal cancer mucosa is 

a predictor of overall survival over a period of three years  (Flemer et al., 2017; 

Dahmus et al., 2018). 
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Figure (2-4): The pathophysiology of Bacteroides fragilis toxin leading to the development of 
colorectal cancer. (Artemev et al., 2022) 

 

Acidovorax spp: 

Acidovorax spp. belongs to the phylum Proteobacteria. It is strongly associated with 

a high risk for colorectal cancer (CRC). The organism breaks down nitro-aromatic 

chemicals, the flagellar proteins that cause inflammation in the immediate area 

(Dulal et al., 2014). 

 

Other bacteria: 

Peptostreptococcus bacteria act in a carcinogenic manner through their products, 

which contribute to their increased production and the formation of an anaerobic 

tumor environment, in addition to the proliferation of bacteria. Some types of 

bacteria, such as  E.coli, are genotoxic, which means they damage DNA ( Wong and 

Yu, 2019; Ternes et al., 2020). Some bacteria may be involved in cancer 



31 
 

development through their interaction with host immune receptors and cancer cells 

by secreting metabolites, and proteins known as secretomes, secretomes include 

growth factors, proteases, cytokines, and other proteins, metabolites include a 

variety of metabolic products resulting from gut microbiota metabolism, as well as 

cancer-associated metabolites that play a role in carcinogenesis (Wong and Yu, 

2019; Ternes et al., 2020). Cancer-associated metabolites include substances such 

as L-2-hydroxyglutarate, succinate, fumarate, D-2-hydroxyglutarate, and lactate, 

which accumulate in cancer cells as a result of metabolism, Some of these 

metabolites, such as lactic acid, have the ability to provide energy to cancer cells and 

promote cancer growth, while others, such as butyrate, contribute to decreased 

expression of genes involved in inflammation and tumor growth (Wong and Yu, 

2019; Ternes et al., 2020). 

 

2.8. Microbiome Diagnosis:  

The understanding of the makeup, dynamics, and function of human-associated 

microbiota has significantly advanced with the introduction of Next-Generation 

Sequencing (NGS), particularly metagenomic NGS, around fifteen years ago. 

Metagenomic NGS (also referred to as mNGS) offers a comprehensive methodology 

for examining microbial genomes within complex mixtures of microbial and host 

cells, in metagenomic uses varying software (Such as: QIIME/ QIIME2, Mothur, 

BaseSpace, RDP Classifier)  (Walker-Daniels, 2020; Schlaberg, 2020). 

There are many platforms used in NGS such as: Roche 454, ion torrent, oxford 

nanopore, IIIumina (MiSeq, HiSeq, NextSeq, NovaSeq) (Walker-Daniels, 2020). 
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Walker-Daniels, 2020 reported that Illumina is less expensive than other platforms 

and is used to generate short reads with high throughput and lower error rates, the 

reads are pooled to create a more accurate assembly. 

Microbiome research fundamentally revolves on two options: one focusses on 

structural features, such as the identification and abundance of bacterial species, 

while the other examines functional elements, namely the activities of the microbial 

community, marker gene analysis, commonly referred to as amplicon- based 

analysis, is the conventional method for structural microbiome investigations, this 

targeted sequencing technique encompasses 16S rRNA sequencing for bacteria 

(Baruch et al., 2021; Silva et al., 2021).   

 

2.8.1. Diagnostic Methods  

Amplicon Sequencing: rRNA  

The high-resolution characterization of bacterial communities has been primarily 

achieved through PCR amplification of bacterial marker genes, often the 

mitochondrial-encoded 16S rRNA gene, with NGS of the resulting amplification 

products, known as amplicon sequencing, much of the current microbiome research 

is based on 16S rRNA profiling. The use of the 16S rRNA gene for sequence-based 

bacterial identification began in the mid-1980s (Schlaberg, 2020). Initially, 

diagnostic laboratories adopted 16S rRNA gene sequencing to identify isolated 

bacterial colonies with Sanger sequencing as the conventional method that replaced 

Targeted Next-Generation Sequencing (Sikkema‐Raddatz et al., 2012). The 16S 

rRNA gene, which is approximately 1500 bp long, serves as a dominant taxonomic 

marker for bacterial classification because of its ubiquity in prokaryotes, its 

relatively slow evolutionary rate, and its structural characteristics. The 16S rRNA 
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gene contains nine highly variable sections interspersed with conserved regions 

essential for maintaining the secondary structure of 16S rRNA (Noller and Woese, 

1981) (figure 2-5). The alternating pattern makes the 16S rRNA gene an ideal target 

for amplification using PCR primers, facilitating the acquisition of conserved 

sections for sequencing by NGS techniques, while the hypervariable regions serve 

as taxonomic markers(Soergel et al., 2012), In most diagnostic methods only a 

portion of the 16S rRNA gene is amplified. Sequencing strategies may often be 

based on the V3′ and/or V4′ hypervariable regions (Soergel et al., 2012). 

 

 

 

    Figure (2-5): Diagram of bacterial rRNA genes (hypervariable regions and conserved regions) 

(Fukuda et al., 2016) 
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 Metagenomics   

16s rRNA sequencing is a prevalent method capable of determining the taxonomy 

of many bacterial taxa in a sample, and specifically identifying genus and species 

under certain conditions. Shotgun metagenomics techniques likewise assess DNA 

sequences but use more specific sequencing methods (Walker-Daniels, 2020). And 

compared to gene-based approaches, the shotgun has the advantage of detecting all 

classes of microorganisms (viruses, bacteria, fungi, etc.), with greater taxonomic 

accuracy overall, the ability to type and genotype strains, identify antimicrobial 

resistance  genes and pathogens, and predict the functional potential of microbial 

communities (Quince et al., 2017). By comparing sequence data to complete gene 

libraries and/or functionally annotated genes, it yields many complex results 

(Schlaberg, 2020).  

Amplicon-based sequencing and shotgun metagenomic approaches to microbiome 

research both require sample preparation, amplicon-based sequencing requires intact 

DNA, while shotgun metagenomic approaches use DNA that has been sheared into 

small fragments that can be sampled from any site of the body's microbiome, the 

DNA must then be isolated, using a special DNA isolation kit (Douglas et al., 2020). 

 

Metatranscriptomic 

Metatranscriptomic methods utilise analogous analytical concepts to shotgun 

metagenomics but specifically focus on the RNA transcribed from microbial cells, 

enabling evaluations of the expression activities of these organisms. (Bashiardes et 

al., 2016). Shotgun metagenomics and metatranscriptomics predominantly utilise 

Illumina sequencing technologies, particularly the HiSeq or NovaSeq platforms, 

owing to their high throughput and economical cost per base. Nonetheless, there has 
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been a shift towards PacBio and Oxford Nanopore sequencing technologies to utilise 

longer read lengths that facilitate gene calling and genetic mapping to reference 

genomes. Total RNA extraction from the microbiome sample, RNA enrichment, 

fragmentation, cDNA synthesis, and the synthesis of transcriptome libraries for 

sequencing are common methods (Bikel et al., 2015). RNA sequence readings 

correspond to various genomes and pathways  (Kanehisa et al., 2000).  

 

Metabolomics and Metaproteomics 

The metabolites produced by bacteria and their interactions with the host's 

metabolism and microbiota are described by metabolomics investigations 

(Lamichhane et al., 2018; Zierer et al., 2018). Antibiotics, antibiotic byproducts, 

and intermediates of bacterial and host metabolism are among the small molecules 

that are often measured using these methods. 

To find known compounds, metabolomics often use mass spectrometry (Zierer et 

al., 2018). To identify and measure the proteins in a microbiome, metaproteomics 

employs mass spectrometry. (Blakeley-Ruiz et al., 2019; Lai et al., 2019). 

Metaproteomics and metabolomics are rapidly developing approaches for studying 

the microbiome (Galloway-Peña and Hanson, 2020). 

2.8.2. measurements diversity of  Alpha and Beta: 

Measures of Alpha and Beta Diversity: According to Kuczynski et al. (2012), alpha 

diversity measures the intra-sample variability and make group comparisons easier. 

Species richness estimators such observed OTUs, the Chao 1 index, and the Shannon 

and Inverse Simpson indices are often used alpha diversity measures that evaluate 

species richness and evenness (Chao, 1987; Kim et al., 2017).  
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Because they are less sensitive to the quantity of sequences in a sample, richness and 

evenness estimators like Shannon and Inverse Simpson are thought to be more 

reliable (Knight et al., 2018). While dominant or abundant operational taxonomic 

units (OTUs) predominantly influence the Inverse Simpson index, rare OTUs mostly 

affect the Shannon index (Bent and Forney, 2008). 

Beta diversity evaluates the differences in diversity between samples, typically 

computed throug evaluating feature dissimilarity, yielding a distance matrix for all 

sample pairings (Barwell et al., 2015). As a conventional measure of  beta diversity, 

the Bray-Curtis dissimilarity offers a numerical evaluation that takes taxonomic 

abundance into account when comparing two communities (Lozupone and Knight, 

2005). It is possible to investigate the extent of variation in community compositions 

between samples by evaluating taxonomic presence, absence, and abundances 

(Galloway-Peña and Hanson, 2020). 
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3. Meterials and methods:  

3.1.Meterials: 

3.1.1: Tools and apparatuses  

  Table (3-1): summarises the tools and apparatuses utilized in this study : 

 

 

3.1.2. The Kit. 

   Table (3-2): Kit used in study. 

No Kit  Objective Company/ origin 
1 QIAamp  DNA extraction 

from stool 
QIAGEN / 
Germany 

 

3.2. Methods: 

3.2.1. Sample Collection and Standards  

In this study, twenty-one indoor stool samples were collected from participants aged 

40 and 60 years in Governorate, Southeastern city of Iraq, during a period from 

September 2023 to January 2024. Twelve stool samples collected after first dose of 

chemotherapy from patients diagnosed with Colorectal Cancer (CRC) by oncologist 

No Tools and Apparatus Company/ origin 
1 Vortex mixture Medilab/ South Korea 
2 Microcentrifuges Hettich / Germany 
3 Micropipettes (10, 100 and 1000  μl) Dragon MED/ China 
4 Sensitive Balance Sartorius/ Germany 
5 Tips Sterling/Ltd./UK 
6 Gloves Broche/ Malaysia 
7 Eppendorf tubes Bioneer/ South Korea 
8 Nano drop 2000 Thermo Scientific / USA 
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who attended to the Oncology Department of Al-Sader Teaching Hospital in Maysan 

Governorate and another nine samples from healthy volunteers in the same city for 

comparison. 

 

3.2.2. Criteria for diagnosis 

For patients with CRC involved in  this study, the following criteria were excluded: 

a history of chronic diseases such as hypertension, diabetes, renal failure, irritable 

bowel syndrome, familial history of CRC, or recent use of antibiotics, anti 

inflammatory drugs, probiotics, prebiotics, radiotherapy, and chemotherapy within 

the past month prior to stool sample collection. (Appendix 1) 

 

3.2.3. Ethics Approval  

The approval for conducting this study was provided by the Ethical Committee of 

Missan Health Research Ethics at Missan Health Directorate Training and Human 

Development Center (No.: 3369, date 20/09/2023) (Appendix 2). This study was 

conducted in accordance with the local legislation and institutional requirements of 

a research Protocol, Ministry of Health Republic of Iraq (Form number 02/2021) . 

Written informed consent for each participant was requested in accordance with the 

local and national legislations and institutional requirements. 

3.2.4.Bacterial DNA Extraction and 16S rRNA sequencing  

During a short time at early morning and under cold conditions indoor stool samples 

were collected. the bacterial DNA was immediately isolated from roughly 250g 

human faecal samples using the QIAamp® PowerFecal® Pro DNA Kit  following the 

manufacturer’s protocol : 
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1. Tow hundred fifty milligrams of stool or biosolid was added to the Bead Tube 

provided. 

2. Four hundred  μl of CD1 was added, followed by vortexing for 5 minutes. The 

mixture was then placed on ice for a minute. Another 400 μl of CD1 was added, 

vortexed for 5 minutes. 

3. The PowerBead Pro Tube was centrifuged at 15,000 x g for 1 minute. 

4. The supernatant was transferred to a clean 2 ml Microcentrifuge Tube (provided), 

and this step was repeated. 

5. Tow hundred μl of Solution CD2 was added and vortexed for 5 seconds. 

6. The solution was centrifuged at 15,000 x g for 1 minute at room temperature. 

Avoiding the pellet, up to 700 μl of supernatant was transferred to a clean 2 ml 

Microcentrifuge Tube (provided). 

7. Six hundred μl of Solution CD3 was added and vortexed for 5 seconds. 

8. Six hundred fifty μl of the lysate was loaded onto an MB Spin Column and 

centrifuged at 15,000 x g for 1 minute. 

9. The flow-through was discarded, and step 8 was repeated to ensure all lysate 

passed through the MB Spin Column. 

10. The MB Spin Column was carefully placed into a clean 2 ml Collection Tube 

(provided), avoiding any splashing of the flow-through onto the MB Spin Column. 

11. Five hundred μl of Solution EA was added to the MB Spin Column and 

centrifuged at 15,000 x g for 1 minute. 

12. The flow-through was discarded, and the MB Spin Column was placed back into 

the same 2 ml Collection Tube. 
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13. Five hundred μl of Solution C5 was added to the MB Spin Column and 

centrifuged at 15,000 x g for 1 minute. 

14. The flow-through was discarded, and the MB Spin Column was placed into a 

new 2 ml Collection Tube (provided). 

15. The column was centrifuged at up to 16,000 x g for 2 minutes. The MB Spin 

Column was carefully placed into a new 1.5 ml Elution Tube (provided). 

16. Fifty μl of Solution C6 was added to the center of the white filter membrane, and 

this step was repeated. 

17. The column was centrifuged at 15,000 x g for 1 minute. The MB Spin Column 

was discarded, and the DNA was ready for downstream applications. 

. The extracted DNA was stored at −30°C. The concentration and quality of the 

extracted DNA were determined using a NanoDrop   

Purified bacterial DNA for Next Generation Sequencing (NGS)-based 16S 

Amplicon Sequencing on an Illumina NovaSeq (PE250-Seq) instrument with 2 x 

300 base paired-end reads at BMKGENE Biomarker Technologies (Hongkong) 

Company Limited China www.bmkgene.com. The universal primers of the 16S 

rRNA genes were amplified the V3-V4 hypervariable regions (5′-

ACTCCTACGGGAGGCAGCAG-3′, 5′-GGACTACHVGGGTWTCTAAT-3′). 

The raw sequences (Fastq file) were processed with QIIME2 as described previously 

(and Ibrahim et al., 2020; Cao et al., 2023), with exception for using 242 as the 

truncation length and both trims 20 in DADA2 (Callahan et al., 2016). The stand-

alone version of PICRUSt2 was used for the evaluating the potential, functional 

metagenome (Douglas et al., 2020).  
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 3.2.5. Statistical analysis 

The data were normalized for each sample and the relative abundance is presented 

as mean ± SD and differences within and between groups were assessed using the 

SRplot tool (https://www.bioinformatics.com.cn/srplot); Stack bars with fill was 

used to visualized taxa Relative Abundance and Wilcox test of two groups’ 

comparison of ratio between 2 taxa was used. The alpha and beta diversities and 

Heat tree analysis of the microbial communities were assessed using several 

methods available in the Microbiome Analyst. In addition 

(https://www.microbiomeanalyst.com), the taxa relative abundance and the 

MetaCyc pathways predict functional analysis in PICRUSt for metagenomic 

function imputation also analyzed using statistical analysis of Metagenomic 

Profiles (STAMP version 2.1.3) by Welch’s test no correction for checking the 

extend the error.  A p value of <0.05 was considered significant. 

 

 

 

 

 

4.1. Results: 

4.1.1. Nanodrop results  

 

    Table (4-1):  Nanodrop results 
    

Concentration 
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Sample 
ID 

Gender Age Health 
Condition 

ng/ul 260/280 260/230 

CRC1 M 54 CRC 113.4 1.72 0.83 
CRC 2 F 52 CRC 297.6 1.9 2.2 
CRC 3 M 49 CRC 297.9 1.73 1.21 
CRC 4 F 60 CRC 257.1 1.87 1.75 
CRC 5 F 45 CRC 356.1 1.88 1.83 
CRC 6 M 48 CRC 622 1.82 1.79 
CRC 7 F 60 CRC 589.1 1.79 0.82 
CRC 8 M 53 CRC 213.6 1.94 2.7 
CRC 9 M 55 CRC 155.5 1.96 2.13 
CRC 
10 

F 57 CRC 60.8 2 2.8 

CRC 
11 

M 60 CRC 422.1 1.9 1.92 

CRC 
12 

M 60 CRC 245.7 1.75 1.4 

Con1 M 43 Con 334.6 1.87 1.94 
Con2 M 49 Con 392 1.83 0.84 
Con3 M 48 Con 419.4 1.84 1.6 
Con4 M 45 Con 568.2 1.8 0.81 
Con5 M 43 Con 503.8 1.83 1.98 
Con6 M 40 Con 465.7 1.84 1.47 
Con7 M 38 Con 256 1.84 1.16 
Con8 M 39 Con 145 1.84 0.85 
Con9 M 41 Con 1326.8 1.83 1.63 
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4.1.2 Basic statistics of Sequence Reads in Stool Samples: 

Basic statistics for the number of reads and clusters of similar sequences from stool 

samples of twenty-two participants; 9 healthy and 12 colorectal cancer (CRC) 

patients (Table 4-2)  ,were analyzed using QIIME II software. Initially, the total 

number of reads was 1,439,888 for the healthy group and 1,920,681 for the CRC 

group. Good quality reads were overlapped to merge paired reads of each individual 

samples. Then, these sequences were assigned and filtered to remove un-combinable 

read-pairs, resulting in a total of 1,708,083 combined reads: 1,082,877 from CRC 

patients and a total of 1,139,200 combined reads from healthy volunteers (Table 4-

3). Using these combined readings, the final analysis of each individual sample was 

performed. 

 

     Table (4-2):  BMI of the samples 

Sample 
ID 

Gender Age Health 
Condition 

BW 
(kg) 

Tall 
(cm) 

BMI (kg/m2) 
BMI = Wight (kg) / Tall 
(m2) 

CRC1 M 54 CRC 74  181 22.6 

CRC 2 F 52 CRC 66 170 22.84 
CRC 3 M 49 CRC 61 160 23.83 
CRC 4 F 60 CRC 52 153 22.21 
CRC 5 F 45 CRC 61 157 24.75 
CRC 6 M 48 CRC 73 179 22.78 
CRC 7 F 62 CRC 50 152 21.64 
CRC 8 M 53 CRC 64 170 22.15 
CRC 9 M 55 CRC 75 170 25.95 
CRC10 F 57 CRC 61 164 22.68 
CRC11 M 60 CRC 65 172 22 .0 
CRC12 M 60 CRC 63 170 21.8 
Con1 M 43 Con 76 172 25.69 
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Con2 M 49 Con 73 164 27.14 
Con3 M 52 Con 71 176 22.92 
Con4 M 49 Con 75 164 27.89 
Con5 M 43 Con 78 173 26.06 
Con6 M 40 Con 72 164 26.77 
Con 7 M 38 Con 71 170 24.57 
Con 8 M 39 Con 72 171 24.62 
Con 9 M 41 Con 68 172 22.99 

 

 

 

Table ( 4-3): Basic statistics reads of quality control of sequence data processing of 
healthy control (A) and CRC participants (B) 

A 

Sample-ID Input Filtered 

% of 
input 

passed 
filter 

Denoise
d 

Merged 
% of 
input 

merged 

non-
chimeric

percenta
ge of 
input 
non-

chimeric 
Healthy1 160127 145446 90.83 143589 130521 81.51 99439 62.1 
Healthy2 159925 143015 89.43 141324 130089 81.34 97141 60.74 
Healthy3 159830 144506 90.41 141962 124122 77.66 88011 55.07 
Healthy4 159977 144579 90.37 142989 131898 82.45 91449 57.16 
Healthy5 160226 144453 90.16 142594 128286 80.07 95735 59.75 
Healthy6 160040 143104 89.42 1q41416 131093 Q1 96820 60.5 
Healthy7 159885 145328 90.9 142114 120900 75.62 77079 48.21 
Healthy8 159937 145544 91 142793 121541 75.99 67078 41.94 
Healthy9 159941 145084 90.71 142123 120750 75.5 79407 49.65 

Total 14398881301059 813.23 1280904 1139200 712.05 792159 495.12 
B 
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4.1.3. Phylogenetic Composition and relative abundance 

A total of 451 taxa from 11 phyla (Actinobacteriota, Bacteroidota, 

Cyanobacteria, Desulfobacterota, Elusimicrobiota, Firmicutes, Fusobacteriota, 

Patescibacteria, Proteobacteria, Synergistota and Verrucomicrobiota), 

encompassing 182 genera, are illustrated in table (4-4). The composition and 

abundance of the gut microbiome differ significantly between healthy individuals 

and those with colorectal cancer (CRC), as showing in Figure (4-2) 

 

Sample-ID Input Filtered 

% of 
input 
passed 
filter 

Denoised Merged 
% of 
input 
merged 

non-
chimeric 

percentag
e of input 
non-
chimeric 

CRC1 160084 145194 90.7 142723 124425 77.72 79034 49.37 
CRC2 160113 144421 90.2 142331 127580 79.68 88626 55.35 
CRC3 160083 144893 90.51 143028 129896 81.14 91283 57.02 
CRC4 159890 144458 90.35 141600 121880 76.23 91015 56.92 
CRC5 160315 146013 91.08 143905 128387 80.08 92752 57.86 
CRC6 159862 140863 88.12 138053 119340 74.65 93431 58.44 
CRC7 159763 143335 89.72 140420 120133 75.19 87588 54.82 
CRC8 160123 144814 90.44 142761 129111 80.63 82967 51.81 
CRC9 160027 146159 91.33 145015 136773 85.47 99958 62.46 

CRC10 160289 145110 90.53 143694 135141 84.31 88555 55.25 
CRC11 159998 144410 90.26 143141 137022 85.64 104387 65.24 
CRC12 160134 145168 90.65 141412 117442 73.34 83281 52.01 

Total 1920681 1734838 1083.89 1708083 1527130 954.08 1082877 676.55 
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Figure (4-1): Bacterial taxonomy composition at Phyla  level of Healthy and CRC faecal samples 

 

The analysis of gut microbiota at the phylum level is illustrated in Figure (4-3) and 

table (4-3). Figure (4-3a) shows Firmicutes was the predominant phylum, 

representing 55.68% in healthy individuals and 62.09% in patients with CRC. This 

was followed by Bacteroidota, which comprised 36.25% in healthy participants and 

only 16.94% in CRC patients. The less abundant phyla were Actinobacteriota 
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(4.89% in healthy individuals and 9.29% in CRC patients), Proteobacteria (2.55% 

in healthy individuals and 6.33% in CRC patients), and Verrucomicrobiota (0.00% 

in healthy individuals and 3.89% in CRC patients). Additionally, less than 1% of 

other phyla were observed in both groups. The proportion of Bacteroidota was 

significantly reduced in CRC patients compared to healthy controls, while the 

abundance of Verrucomicrobiota was significantly increased (Figure 4-3b). Figure 

(4-3c) illustrates that the ratio of Firmicutes to Bacteroidota was higher in CRC 

patients compared to healthy individuals, whereas the ratio of Bacteroidota to both 

Actinobacteriota and Proteobacteria was lower in CRC patients.  
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Figure (4-2): Bacterial compositions at phylum level in fecal samples of healthy and CRC cases 
(a) the relative abundant (b) differences in abundance and (c) the ratios among phyla
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       Table ( 4-4)  A: Bacterial Phyla RelaƟve Abundance of in Healthy Control (A) and CRC Participant (B) 

 

 

 

 

 

A | 

Control 
Con1 Con2 Con3 Con4 Con5 Con6 Con7 Con8 Con9       Mean  

Standard 
Deviation 

p__Actinobacteriota 6.11 1.89 12.14 4.32 1.85 5.52 7.35 2.05 2.81       4.89 3.38 

p__Bacteroidota 21.50 49.40 20.26 31.54 39.00 45.48 50.33 37.03 31.69       36.25 11.07 

p__Cyanobacteria 0.11 0.08 0.00 0.00 0.00 0.00 0.00 1.08 0.18       0.16 0.35 

p__Desulfobacterota 0.00 0.00 0.00 0.71 0.04 0.08 0.02 2.14 0.61       0.40 0.71 

p__Elusimicrobiota 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.06       0.05 0.12 

p__Firmicutes 71.77 47.76 66.21 61.76 56.97 45.91 40.22 47.98 62.56       55.68 10.68 

p__Fusobacteriota 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00       0.01 0.03 

p__Patescibacteria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00       0.00 0.00 

p__Proteobacteria 0.49 0.86 1.39 1.57 2.13 3.02 2.07 9.36 2.10       2.55 2.66 

p__Synergistota 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00       0.00 0.01 

p__Verrucomicrobiota 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00       0.00 0.00 
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B | 
 
CRC 

CRC-
1 

CRC-
2 

CRC-
4 

CRC-
5 

CRC-
6 

CRC-
7 

CRC-
8 

CRC-
9 

CRC-
10 

CRC-
11 

CRC-
12 

CRC-
13 

Mean  
Standard 
Deviation 

p__Actinobacteriota 9.76 15.55 1.34 8.31 2.57 4.15 5.22 13.14 24.32 16.96 6.25 3.95 9.29 6.93 
p__Bacteroidota 20.77 4.02 42.45 24.13 25.60 33.22 17.87 4.32 0.65 12.36 1.21 16.74 16.94 13.20 
p__Cyanobacteria 0.00 0.01 0.00 1.29 0.99 0.24 0.45 0.18 0.00 0.00 0.17 0.24 0.30 0.42 
p__Desulfobacterota 1.13 1.18 0.24 1.96 0.61 2.56 0.05 0.14 0.33 0.00 0.97 0.77 0.83 0.79 
p__Elusimicrobiota 0.00 0.01 0.00 0.00 0.15 0.02 0.00 0.00 0.00 0.00 0.00 0.12 0.03 0.05 
p__Firmicutes 58.15 68.96 53.53 61.25 69.06 52.88 75.84 81.66 59.03 52.09 60.84 51.77 62.09 9.81 
p__Fusobacteriota 0.00 0.00 0.00 0.00 0.00 1.53 0.00 0.00 0.00 0.00 0.00 0.91 0.20 0.49 
p__Patescibacteria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 
p__Proteobacteria 4.81 10.18 2.44 2.74 0.83 3.39 0.56 0.57 4.32 18.59 2.22 25.32 6.33 7.88 
p__Synergistota 0.00 0.06 0.00 0.00 0.07 0.94 0.00 0.00 0.00 0.00 0.00 0.06 0.09 0.27 
p__Verrucomicrobiota 5.37 0.03 0.00 0.31 0.11 1.06 0.02 0.00 11.35 0.00 28.33 0.11 3.89 8.42 
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At the family level this study reveals notable differences between healthy individuals 

and those with colorectal cancer (CRC). The family Prevotellaceae is significantly 

more prevalent in healthy individuals (29.43%) compared to CRC patients (8.39%). 

The family Lachnospiraceae is relatively consistent in abundance, appearing in both 

groups at slightly below 20%. For healthy subjects, Ruminococcaceae is found at 

15.38%, while in CRC patients, it is somewhat lower 12.25%. Other families, such 

as Erysipelato clostridiaceae and Coriobacteriaceae, are present in lower 

abundances, 2.3% and 2.25%, respectively, in both groups. However, specific 

families show notable variations between healthy and CRC conditions. For instance, 

Veillonellaceae (4.5%), Selenomonadaceae (2.9%), Erysipelotrichaceae (2.5%), 

and Muribaculaceae (1.2%) are more prevalent in healthy individuals but are 

substantially reduced in CRC cases. Conversely, CRC patients have higher 

proportions of Oscillospiraceae, and Akkermansiaceae, each around 4.5%, 

compared to lower levels in healthy subjects. Notably, Eggerthellaceae and 

Christensenellaceae are found at 2.1% and 1.1%, respectively, in CRC patients, 

whereas their levels are 0.23% in healthy individuals as shown in figure (4-4a). 

Statistical analysis confirms that the abundance of Prevotellaceae is significantly 

reduced in CRC patients versus healthy, while Eggerthellaceae, Oscillospiraceae, 

and Akkermansiaceae are significantly increased, figure(4-4b). Furthermore, the 

ratios of Prevotellaceae and Ruminococcaceae to Eggerthellaceae, 

Oscillospiraceae, and Akkermansiaceae are significantly lower in CRC patients 

compared to healthy controls,  as show in figure (4-4c). 
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Figure (4-3): Bacterial compositions at family level in fecal samples of healthy and CRC cases 

(a) the relative abundant (b) differences in abundance and (c) the ratios among families. 

 

 

At the genus level as illustrates in details in Figure (4-5) , Prevotella (26.6%) is the 

most prevalent in healthy individuals, followed by Faecalibacterium (12.2%). In 

contrast, these genera are significantly less abundant in individuals with colorectal 
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cancer (CRC), where their prevalence drops to approximately 7.5%. Other genera, 

such as Bacteroides, Bifidobacterium, and Streptococcus, are found in lower 

amounts in CRC patients, around 4.7%, compared to their proportions in healthy 

individuals (3.4% Bacteroides, 2.1% Bifidobacterium, and 0.4% Streptococcus). 

Akkermansia is present in 3.8% of CRC cases but absent in healthy subjects. 

Conversely, in healthy individuals, genera like Dialister (3.3%), Mitsuokella 

(2.5%), Agathobacter (2.1%), and Alloprevotella (2.1%) are more abundant 

compared to CRC patients, where their proportions are reduced by at least half. 

Genera with less than 1% abundance were not included in (Figure 4-5a). The 

abundance of Prevotella, Faecalibacterium, and Mitsuokella was significantly 

reduced in CRC compared to healthy individuals. On the other hand, the levels of 

Eggerthella, Eubacterium hallii group, Blautia, Christensenellaceae R-7 group, 

Clostridia UCG-014, and Akkermansia are significantly elevated in CRC cases 

(Figure 4-5b). Figure (4-5c) illustrates that the ratios of Prevotella to Blautia and 

Christensenellaceae R-7 group, as well as the ratio of Prevotella to Bacteroides, are 

significantly reduced in CRC patients compared to healthy individuals, as showing 

in Figure (4-6). 
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Figure (4-4). Bacterial compositions at genus level in fecal samples of healthy and CRC cases (a) 
the relative abundant (b) differences in abundance and (c) the ratios among families. 
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Figure (4-5): Bacterial taxonomy composition at genus  level of Healthy and CRC faecal samples 
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4.2.4.Microbial Shifts Associated with Colorectal Cancer Detected 

by Metacoder Tree Analysis 

The analysis of microbial taxa using Metacoder Tree reveals significant reductions 

in various taxa between colorectal cancer (CRC) patients and healthy controls, 

spanning from the phylum to the genus level (Figure 4-7). Within the Bacteroidota 

phylum (p=0.003), remarkably reductions were observed at multiple taxonomic 

levels: Bacteroidia class (p=0.003), Bacteroidales order (p=0.002), and the families 

Prevotellaceae (p=0.001) and Barnesiellaceae (p=0.021). Specifically, the genera 

Barnesiella (p=0.008) and Prevotella (p=0.002) within these families showed 

significant decreases. Although no significant change was detected at the phylum 

level for Firmicutes, several taxa at different levels within this phylum exhibited 

substantial reductions. These include the Negativicutes class (p=0.006), the 

Veillonellales_Selenomonadales order (p=0.005), and the families Veillonellaceae 

(p=0.009) and Selenomonadaceae (p=0.003). Within the Selenomonadaceae 

family, the genus Mitsuokella (p=0.001) was notably reduced. Additionally, in the 

Clostridia class, five genera showed significant reductions, particularly within the 

Lachnospiraceae family of the Lachnospirales order and they are including 

Eubacterium eligens group (p=0.016), Coprococcus (p=0.021), Lachnospira 

(p=0.006), and Lachnospiraceae UCG 004 (p=0.013). The genus Faecalibacterium 

(p=0.019) from the Ruminococcaceae family in the Oscillospirales order also 

showed significant reduction. In the Bacilli class, a notable decrease was observed 

in the genus Asteroleplasma (p=0.049) from the Erysipelatoclostridiaceae family in 

the Erysipelotrichales order. In addition, within the Proteobacteria phylum, the 

genus Sutterella (p=0.004), from the Sutterellaceae family (p=0.004) and the 

Burkholderiales order (p=0.002), was significantly reduced.  
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In contrast, several taxa show significant increases at various levels in patients with 

CRC compared to healthy controls. Notably, within the Firmicutes phylum and 

Clostridia class, three genera exhibit marked increases across different orders. These 

include Monoglobus (p=0.018) from the Monoglobaceae family in the 

Monoglobales order (p=0.019), Sporobacter (p=0.013) from the Oscillospiraceae 

family in the Oscillospirales order, and Family_XIII_AD3011_group (p=0.011) 

from the Anaerovoracaceae family in the Peptostreptococcales-Tissierellales 

order (p=0.017). 

Moreover, significant increases are observed in genera from various phyla and 

classes. Bacteroides (p=0.032) from the Bacteroidaceae family (p=0.014), within 

the Bacteroidales order of the Bacteroidia class in the Bacteroidota phylum, shows 

an in-crease. Similarly, Eggerthella (p=0.027) from the Eggerthellaceae family in 

the Coriobacteriales order of the Coriobacteriia class within the Actinobacteriota 

phylum is elevated. Additionally, Dickeya (p=0.014) from the Pectobacteriaceae 

family (p=0.014) in the Enterobacterales order (p=0.042) of the 

Gammaproteobacteria class within the Proteobacteria phylum is increased. 

Finally, Akkermansia (p=0.005) from the Akkermansiaceae family (p=0.006) in the 

Verrucomicrobiales order (p=0.006) of the Verrucomicrobiae class (p=0.003) 

within the Verrucomicrobiota phylum (p=0.017) also demonstrates a significant 

rise. 
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Figure (4-6). The heat tree analysis of microbial taxa showing the taxonomic differences of fecal 
microbiota between CRC and healthy controls using Metacoder 
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4.2.5. The Diversity of the bacterial communities 

The diversity of taxa between healthy individuals and those with CRC involved were 

analyzed by both α-diversity and β-diversity metrics. For α-diversity, metrics such 

as Observed Features, Pielou Evenness, and Doubles showed significant reductions 

in CRC patients compared to healthy individuals. However, Shannon, Chao1, and 

Simpson indices did not reveal any notable differences between the two groups 

(Figure 4-8a). For β-diversity, bacterial community differences between CRC and 

healthy individuals were assessed using the Bray-Curtis Index, Jaccard Index, and 

Jensen-Shannon Divergence (Figure 4-8b). In all three β-diversity measures, there 

was a clear clustering of healthy individuals, with distinct separation from CRC 

patients in the distance matrices, as show in Figure (4-9). 
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Figure (4-7). Figure( 4-8a) Alpha Diversity of Colorectal cancer (CRC) patients exhibit lower 
species richness (Ob-served Features), evenness (Pielou’s Evenness), and "doubles" metrics 
compared to healthy indi-viduals. However, similar Alpha diversity of the Shannon, Simpson, and 
Chao1 indices show no significant differences between the two groups. A p value of <0.05 was 
considered significant. Figure( 4-8b) Beta Diversity: PCoA plots illustrate between-sample 
diversity using three distance metrics (Bray-Curtis, Jaccard Index, and Jensen-Shannon 
Divergence). Healthy individuals (red) display a distinct, narrower clustering pattern, indicating a 
more consistent microbial community structure. In contrast, CRC patients (blue) show a clear 
separation, highlighting the divergent microbiome composition associated with CRC. 
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Figure (4-8): Dendrogram Analysis (a) Bray-Curtis Index  (b)   Jensen-Shannon Divergence  (c )  
Jaccard Index 

 

a b 

c 
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4.1.6. The MetaCyc pathways 

 Data were analyzed using Statistical Analysis of Metagenomic Profiles (STAMP 

version 2.1.3) to identify a number of MetaCyc pathways by untargeted analysis, as 

show in Table (4-5). 

Table (4-5): MetaCyc pathways of CRC patients 

MetaCyc pathways 
Upregulated of CRC 

MetaCyc pathways 
Downregulated of CRC 

D-galactarate degradation I 
(p = 0.02)  

adenosylcobalamin salvage from cobinamide  
(p = 0.03) 

D-glucarate degradation I 
( p = 0.02 )  

Calvin-Benson-Bassham cycle 
(p = 0.01) 

enterobacterial common antigen biosynthesis  
(p = 0.04 ) 

Reductive acetyl coenzyme A pathway 
(p= 0.02) 

enterobactin biosynthesis  
(p = 0.01 )  

superpathway of polyamine biosynthesis 
( p = 0.007) 

Fucose degradation 
(p= 0.02) 

fatty acid &beta 
( p = 0.03)  

superpathway of hexitol degradation  
 (p = 0.03) 

fatty acid elongation – saturated 
(p = 0.03)  

heme biosynthesis  (anaerobic) 
(p = 0.004) 

methylerythritol phosphate pathway 
(p =0.03) 

L-arginine degradation 
( p = 0.04) 

peptidoglycan biosynthesis  
(p = 0.04) 

superpathway of glycolysis, pyruvate dehydrogenase, 
TCA, and glyoxylate bypass (p = 0.02)   

superpathway of chorismate metabolism 
(p = 0.009)  
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4.2. Discussion: 

It has been previously described that the gut microbiome as the “forgotten organ” of 

the human body (O’Hara and Shanahan, 2006). Due to lack of knowledge regarding 

direct impact roles of gut microbiome on health and disease conditions by Iraqi 

academics and researchers. Therefore, this study for the first time describes the 

composition and metabolic potential of gut microbiota in healthy and CRC patients 

in Iraq.  

In this study, the Firmicutes was the predominant phylum, followed by Bacteroidota, 

while other phyla being much less abundant in both participants groups. Although 

an increase in Firmicutes was observed in CRC patients, this difference was not 

statistically significant when compared to healthy controls while a significantly 

reduction of Bacteroidota phylum in CRC patients, and these similar changes have 

been observed  in previous findings (Qin et al., 2010; Wang, 2012). Additionally, 

Verrucomicrobiota was found significantly higher in CRC compared to healthy 

individual and this is consonance with previously studies recorded by (Baxter et al., 

2014; Weir et al., 2014; Wang et al., 2023), as shown in table (4-2). Furthermore, 

the ratio of Firmicutes to Bacteroidota was higher in CRC patients compared to 

healthy individuals, which aligns with findings from previous studies (Sun and Kato, 

2016; Pandey et al., 2023). These studies recorded that the bacterial relatives 

abundant and their ratio are a key indicator of gut health, and with any significant 

changes indicating a positive biomarker of gut dysbiosis. Indeed, the 

Firmicutes/Bacteroidetes ratio is closely associated with the development of 

inflammatory bowel diseases (IBDs) and the progression of CRC (Sun and Kato 

2016; Pandey et al., 2023). Although there was no significant increase found of both 

Actinobacteriota and Proteobacteria in CRC patients, the ratio of these phyla to 

Bacteroidota was significantly reduced in these patients, and these ratios had not 
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been previously documented in CRC cases. A study indicated that Proteobacteria 

may promote the risk of metabolic diseases and CRC, and playing a crucial role in 

tumors with proficient mismatch repair and other phyla were more common in 

tumors with deficient mismatch repair (Xu et al., 2023). 

Further analysis revealed significant differences at the genus level between healthy 

people and CRC patients. Notably, there was a marked decline in the genus of 

Roseburia in CRC compared to healthy, which aligns with findings from previous 

conducted studies (Tamanai-Shaccori et al., 2017; Kang et al., 2023). This bacterium 

is a Gram-positive anaerobic with crucial roles in digestion and production of short-

chain fatty acids (Tamanai-Shaccori et al., 2017). Additionally, Roseburia 

contributes to host immune regulation and exhibts anti-inflammatory properties, as 

it acts as a PD-1 (programmed death 1) antagonist that stimulates T cells to target 

and kill cancer cells (Tamanai-Shaccori et al., 2017). Similarly, a reduction in 

Sutterella was also observed in CRC and this bacterium an anaerobic Gram-negative 

bacterium and linked to the pathogenesis of inflammatory bowel disease, and 

metabolic diseases (Hiippala et al., 2016).  This reduction further underscores the 

potential role of gut microbiota in CRC pathogenesis. Furthermore, Barnicella levels 

was also reduced in CRC patients and this result is in line with the recent study by 

Sarhadi et al. (2020). This bacterium has been associated with an anti-cancer 

immune response by enhancing the response of some types of helper T cells (Sarhadi 

et al., 2020). Similarly, Faecalibacterium relative abundant was also decreased in 

CRC patients compared to healthy people, which aligns with findings from previous 

conducted studies Ma et al. (2020). These studies have confirmed that a positive 

correlation between  Faecalibacterium and healthy subjects and it has a crucial role 

as anti-tumor bacteria, which it works to prevent invasion, promote programmed cell 

death, and limit the spread of various cancer cells in various organ, such as breast, 
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lung, colorectal, and colon cells (Ma et al., 2020). In addition, the abundance of 

Prevotella also reduced in CRC patients and this finding was supported by Yang et 

al. (2019). Yang and his colleagues noted that presence of Prevotella is linked to a 

diet rich in fiber, and its levels increased after the diagnosis of CRC of reduces 

mortality cases. Other genera such as Eubacterium, Lachnospira, and 

Lachnospiraceae_UCG_004, also found less abundant in CRC and these finding 

were identical similar with the recent studies (Liu et al., 2020; Ma et al., 2020; Du, 

2022; Lu  et al., 2022). A reduced abundance of Eubacterium and Lachnospira 

species in intestine and leads to deficit in SCFAs such as valerate and butyrate and 

other metabolites like folic acid. This deficit may promote intestinal 

lymphomagenesis (Ma et al., 2020; Lu  et al., 2022). 

In contrast, several genera revealed an increase in CRC patients compared to healthy 

individuals. Cleary, Bacteroides and Blautia were more abundant in CRC cases and 

these finding are similar to previous studies (Cuív PÓ et al., 2017; Yuan et al., 2018; 

Cai et al., 2021). Indeed, certain Bacteroides species have the ability to invade 

colonic epithelial cells and induce pro-inflammatory cytokines, which are major 

contributes to ulcerative colitis and the pathogenesis of IBD (Cuív PÓ et al., 2017). 

Additionally, these bacteria may promote colorectal carcinogens by an increasing 

aberrant crypt focus by this bacterium nay promotes colorectal carcinogenesis (Yuan 

et al., 2018). Cai et al. (2021) reported that the relative abundance of Blautia was 

significantly higher in colorectal neoplasms. This bacterium is positively correlated 

with the expression of two types of cytokines, which is associated with a poorer 

prognosis in colorectal cancer treatments. Furthermore, Actinomyces levels are also 

elevated in CRC patients compared to healthy people and this result is in line with 

the recent study by Xu et al. (2022). This bacterium activates the TLR2/NF-κB 

signaling pathway and diminishing the effectiveness number of CD8+ T cells against 
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the CRC environment, particular in co-localized with cancer-associated fibroblasts 

in colorectal cancer (Xu et al., 2022). Consequently, this bacterium is considered a 

tumoral microbiota that facilitates tumor formation. Xu and his colleagues’ also 

further emphased that higher abundant of Actinomyces along with other pro-tumor 

taxa and these changes is considered the key microbiota in the young CRC patients. 

A significant increase in Akkermansia spp. has been observed in CRC patients 

compared with healthy people, and this result was matched to recent human and 

mice studeis (Siddiqui et al. 2022; Wang et al., 2022). Wang and his colleagues 

reported that a high abundance of Akkermansia in the gastrointestinal tract of mice 

elevated early level of inflammation and promoted proliferation of intestinal 

epithelial cells and this enhances the formation of CRC (Wong et al., 2022). 

However, other studies have shown reduction in Akkermansia abundance associated 

with severe symptoms of CRC. Some studies indicates that Akkermansia did not 

play a role in the development of CRC (Faghfuri and Gholizadeh, 2024). This the 

role of Akkermansia in promoting or inhibiting CRC remains unclear and need 

further investigation (Faghfuri and Gholizadeh, 2024). Similarly, an increase in 

Desulfovibrio abundance also have been noted in CRC patients compared with 

healthy people, and this result consistent with the recent finding of research by Li et 

al. (2024). Yan et al. (2020). Kushkevych et al.  (2021). Species of Desulfovibrio, a 

known intestinal sulfate-reducing bacteria (Kushkevych et al., 2021), exhibit high 

abundance that leads to elevated the production of hydrogen sulfide (Windey et al., 

2012), an increase of the H2S levels in the intestine have toxic effects on intestinal 

cells, impacting the mucosal lining, progression of leaky gut, and then cause 

intestinal cell DNA damage, and potentially contributing to inflammatory bowel 

diseases and carcinogenesis (Marchesi et al., 2016). Eggerthella are anaerobic 

Gram-positive bacteria that are commonly found in the human gastrointestinal tract, 

they can cause life-threatening infections (Wong and Rubinstein, 2014). They have 
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been previously reported as biomarkers for CRC ( Yu et al., 2017 , Qin et al., 2024). 

The results showed an increase in Eggerthella in CRC compared to healthy controls, 

the result is consistent with what was published by Qin et al. (2024) 

On the other hand, gut health is  linked to metabolic pathways that the microbiome 

is responsible for. Some of them are beneficial and reduce the disease in general and 

colorectal cancer in particular, while others increase the severity of the disease. In 

the results, there were significant differences in metabolic pathways between CRC 

patients and healthy controls. 

Calvin-Benson-Bassham cycle decreased  in CRC patients compared to healthy 

controls. It is considered a beneficial pathway and is associated with improved 

diagnosis of CRC (Huh et al., 2022). The result is consistent with what was 

published in a study conducted by Kim et al. (2024) which confirmed that the Kelvin 

pathway is beneficial for reducing the risk of CRC (Kim et al., 2024). 

Fatty acid elongation - saturated decreased in CRC patients compared to healthy 

controls. Research has shown that fatty acid elongation - saturated is important in 

promoting bowel movements (Zhao et al., 2018). 

Peptidoglycan biosynthesis was decreased in CRC patients compared to healthy 

controls. Peptidoglycan are molecules that make up the bacterial cell wall and have 

antitumor effects in the host by promoting apoptosis (Chen and Li, 2020). Heme 

biosynthesis II (anaerobic) was decreased in CRC patients compared to healthy 

controls. Heme biosynthesis is important in the pathogenesis of disease by 

pathogenic bacteria (Choby and Skaar, 2016). 

The metabolism of adenosylcobalamin salvage from cobinamide  was decreased in 

CRC patients compared to healthy controls, and this result is consistent with what 

was published by Liu et al. (2024). 
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The superpathway of polyamine biosynthesis II was decreased in CRC patients 

compared to healthy controls. This is congruent with findings by Kulecka et al. 2024 

The superpathway of hexitol degradation  and fatty acid beta decreased in CRC 

patients compared to healthy controls. This result is not congruent with what was 

found by Kulecka et al. (2024).  

Methyl erythritol phosphate pathway I was decreased in CRC patients compared to 

healthy controls. This pathway is found in most bacteria and is important in oxidative 

stress responses and detection and also acts as an antioxidant (Perez-Gil et al., 

2024).The reductive acetyl coenzyme A pathway was decreased in CRC patients 

compared to healthy controls, in general This pathway is used in cancer treatment 

(Guertin and Wellen, 2023). 

In a study conducted on stool samples by Arcila-Galvis et al., which mapped the 

microbial biomarkers of patients with gastrointestinal disorders, showed an increase 

in D-glucarate degradation I and D-galactarate degradation I, which bacteria use as 

an energy source  (Arcila-Galvis et al., 2022). In our results, an increase in D-

galactarate degradation I and D-glucarate degradation I was observed in CRC 

patients compared to healthy controls. Enterobacterial common antigen (ECA) 

biosynthesis was increased in CRC patients compared to healthy controls. ECA  is 

an antigen present on the outer membrane of the Enterobacteriaceae family and is 

considered a virulence factor (Goździewicz et al., 2015). ECA a proinflammatory 

agent, is able to induce the secretion of large amounts of pro-inflammatory 

cytokines, such as TNF-α, IL-8, and IL-1β (Mirsepasi-Lauridsen et al., 2019; 

Khorsand et al., 2022). 

L-arginine degradation increased in CRC patients compared to healthy controls. L- 

arginine deficiency causes many intestinal problems as it increases bacterial 
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resistance, perpetuates chronic inflammation, affects the disruption of beneficial 

intestinal microbes, and increases pathogenic microbes  (Nüse et al., 2023). 

The results showed an increase in Enterobactin biosynthesis in CRC patients 

compared to healthy controls and these results were congruent with a study of 

Mathlouthi et al. (2022). Enterobactin is a type of sidrophare and is one of the 

pathways of virulence factors. Enterobactin plays a role in enhancing the 

inflammatory response and reducing the generation of essential reactive oxygen 

species in intestinal epithelial cells (Saha et al., 2020). Reducing ROS helps bacteria 

form colonies and protects them from pyochelin toxicity (Adler et al., 2012). 

Chorismate biosynthesis was shown to be increased in CRC patients compared to 

healthy controls.  Chorismate is a common precursor of three aromatic amino acids: 

tryptophan, tyrosine and  phenylalanine (Ashniev et al., 2022). Tryptophan supports 

the environment necessary for the formation of colorectal cancer. Yang et al. (2019), 

found in their study increased tryptophan metabolism in CRC patients. Wang et al. 

(2010) confirmed the role of Phenylalanine in CRC as it contributes to the spread 

and migration of cancer cells. Coker et al. (2022) demonstrated an increasing in 

tyrosine metabolism in CRC patients compared to healthy controls and demonstrated 

that tyrosine is associated with carcinogenesis. 

The superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate 

bypass was increased in CRC patients compared to healthy controls. This finding is 

consistent with what Khattab et al. found in a study conducted on Egyptian CRC 

patients ( Khattab et al., 2023), it was found that increased glycolysis helps in the 

development of CRC (Wang et al., 2019). This is also supported by the decrease in 

bacteria that produce short-chain fatty acids such as Roseburia.  

Fucose degradation increased in CRC compared to healthy controls. Fucose 
improved colitis and downregulated pro-inflammatory cytokines (He et al., 2019; 
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Sitkin et al., 2021), fucose is useful in intestinal inflammation and participates in a 
range of interactions between the host and the microbiome such as the production of 
short-chain fatty acids such as butyrate and propionate (Sitkin et al., 2021). 
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5.1 Conclusion: 

 1- It is noted the observed differences in alpha diversity, with certain indices 

showing a significant difference of some parameter in CRC patients compared to 

healthy controls, highlight notable alteration in the gut microbiota. In CRC, there 

was increased enrichment of  Actinomyces, Desulfovibrio, Bacteroides, 

Monoglobus,  Akkermansia and  Eggerthella compared to healthy controls.  

2- These change, along with the clear differences and separations of β-diversity in 

bacterial communities between CRC vs Healthy as well as the significant changes 

whether up or down in these gut microbiotas, suggested marked gut microbiome 

dysbiosis in those patients with CRC, the gut microbiota of CRC patients remains 

distinct from that healthy individual.  

3- Metabolites resulting from intestinal bacteria of patients with colorectal cancer 

might affect cancer and its development, such as increased metabolism D-galactarate 

degradation I, D-glucarate degradation I, enterobactin biosynthesis, fucose 

degradation and superpathway of chorismate metabolism, in CRC. 

4- The limitation of this study is the relatively concerned with sample size which 

arises from difficulties in obtaining stool samples from both group participants in 

our region, particularly from CRC patients.  
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 5.2. Recommendations: 

1-In the future  It is preferred to collect longer samples as possible to draw more 

clear picture, as this requires  a longer study period.  

2- Study other types of cancer than CRC. 

3- Study  the impact of microbiome on other diseases such as obesity, autism, 

asthma, etc. 

4- Study the influence of other type of microbiome such as virobiome , archeabiome 

or other than bacteriobiome 

5- Study the correlation between CRC progression and some types of cytokines. 

6- Study the role of the most common tumorigenic bacteria detected in the study. 

7- More study details about the impact of pathway which have role in up regulation 

and down regulation of cancer 
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Appendices (2): Questionnaire sheet 

Date of completion 

/           / 2023 

Identification code of participant 

    Personal details 

1.Name :  

2.Sex :  male                         female         

3. Age: 

4. Chronic diseases: 

-  hypertension  

 - Renal failure 

 - Diabetes mellitus: Type 1         Type 2    

5. STAGE OF CANCER: 

              Stage 1    stage 2    stage 3       stage 4         

 6. DURATION OF DISEASE:   

 7. Drug (Antibiotic ): the patient treatment period  

                                          3       7        10        15       30    

8. type of antibiotic used :  

9. THE WEIGHT: 

Participant consent :  

                          Name…………………………………………………. 

                         Signature ………………………………………………. 

 Data ……………………………………………………. 
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ᢝ للماᘌكروᗖيوم المعوي لمرᣃ ᡧᣔطان القولون والمستقᘭم  لتحلᘭلا
ᡧᣛᘭوالوظ ᢝᣤنوᚏالجي  

ᢝ محافظة مᛳسان
ᡧᣚ  ͭ جنوب العراق  

 رسالة مقدمة 

   اᣠ مجلس لᘭة العلوم ͭ جامعة مᛳسان

ᢝ علوم الحᘭاة 
ᡧᣚ علوم ᢕᣂل درجة الماجستᘭات نᘘجزء من متطل ᢝᣦو 
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 الخلاصة:  

ا   سـرطان القولون والمسـتقيم ثاني أكبر سـبب للوفيات المرتبطة بالسـرطان وثالث أكثر أنواع السـرطان تشـخيصًـ
التأثير على تطور وتقدم ســرطان القولون والمســتقيم، ســواء  على مســتوى العالم. يلعب الميكروبيوم دورًا في 

ــلبي. في هذه الدراســة، تم جمع عينات البراز من  ــكل إيجابي أو س ــمين إلى مجموعتين:    21بش   12فرداً مقس
من الضــوابط الأصــحاء. تم إجراء تســلســل الجيل   9مصــابًا بســرطان القولون والمســتقيم في مرحلة مبكرة و

على العينات   Illumina NovaSeq (PE250-Seq) على    Amplicon  s16ئم على  القا (NGS)   التالي
رو كـ يـ مـ ي  فـ تـلاف  اخـ ود  وجـ ج  ــائـ ت نـ الـ رت  ــت  وأظـهـ ــان ك ن.  يـ تـ وعـ مـ جـ مـ الـ ن  يـ بـ راز  بـ الـ وم  يـ    ,Firmicutesبـ

Bacteroidota, Actinobacteriota , Proteobacteria و Verrucomicrobiota ــائدة في  هي الســ
%  62.09% في الافراد الاصحاء و  Firmicutes  55.68شعبة   مثلت   ميكروبيوم الأمعاء لكلا المجموعتين.

ــعبة  ــتقيم, كانت شـ ــرطان القولون والمسـ ــى سـ % في  0.00الأقل وفرة   Verrucomicrobiota في مرضـ
  Bacteroidota% في مرضـى سـرطان القولون والمسـتقيم. احصـائياَ أظهرت شـعبة  3.89الافراد الاصـحاء و 

,بينما أظهرت (p= 0.002) لدى مرضـى سـرطان القولون والمسـتقيم مقارنة بالاشـخاص الاصـحاء  اانخفاضـ
زيادة كبيرة لدى مرضى سرطان قولون والمستقيم    Desulfobacteroteaو    Verrucomicrobiotaشعبة  

ــحاء  ــخاص الاصـ ــتوى الأجناس لوحظت فروق على   على التوالي. (p= 0.004,0.01 )  مقارنة بالاشـ مسـ
 Actinomyces (p=0.02)  ,Desulfovibrio (p=0.02)   , Bacteroides معنوية حيث كانت البكتيريا

(p=0.03) , Eggerthella (p=0.02)    ,Monoglobus (p=0.01) و Akkermansia (p=0.005) 
بينما    الصـحية، بينما كانت البكتيرياابط  غنية بشـكل كبير في مرضـى سـرطان القولون والمسـتقيم مقارنة بالضـو

Mitsuokella (p=0.001)  ،Faecalibacterium (p=0.01)  ،Roseburia (p=0.04)  ،
Lachnospiraceae_UCG_004 (p=0.01)  ،Lachnospira (p=0.006)  ،Eubacterium 

(p=0.01) ،Prevotella (p=0.001) ،Barnesiella (p=0.008) وsutterella (p=0.004)  

اءً في مرضى سرطان القولون والمستقيم مقارنة بالضوابط الصحية. من ناحية أخرى، يرتبط تطور  أقل ثر
سرطان القولون والمستقيم بالتمثيل الغذائي وتغيراته. تم التعرف على مجموعة من المستقلبات من خلال التحليل 

الميتاجينوم  التعريفية  للملفات  الإحصائي  التحليل  باستخدام  المستهدف   Statistical Analysis of يةغير 
Metagenomic Profiles (STAMP version 2.1.3) .انخفاض   أظهرت النتائج أن المسارات التالية تم

 adenosylcobalamin salvage from:  في سرطان القولون والمستقيم مقارنة بالضوابط الصحية   تنظيمها
nicotinamide, Calvin-Benson-Bassham cycle, fatty acid &beta, fatty acid elongation 
– saturated, methylerythritol phosphate pathway, Reductive acetyl coenzyme A 

pathway, super pathway of polyamine biosynthesis  و peptidoglycan biosynthesis 

 D-galactarate:  تنظيم مسارات أخرى في سرطان القولون والمستقيم مقارنة بالضوابط الصحية   ارتفاعوتم  
degradation, D-glucarate degradation, enterobactin biosynthesis, fucose 
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degradation, super pathway of chorismate metabolism, super pathway of glycolysis, 
pyruvate dehydrogenase, TCA, and glyoxylate bypass, L-arginine degradation, 

heme biosynthesis, super pathway of hexanol degradation,   و enterobactin 
biosynthesis.    بناءً على نتائج الميكروبيوم الموجود في عينات البراز لمرضى سرطان القولون والمستقيم

للأشخ البراز  بعينات  في  ومقارنتها  مهمًا  دورًا  يلعب  الأمعاء  ميكروبيوم  أن  الاستنتاج  يمكن  الأصحاء،  اص 
الميكروبيوم على تطور  لتأثير  الآليات الأساسية  المستقبلية على توضيح  يجب أن تركز الأبحاث  التسرطن. 

توازن    السرطان. ويمكن أن تمهد مثل هذه الدراسات الطريق لتطوير التدخلات العلاجية التي تهدف إلى استعادة
  ميكروبيوم الأمعاء، مما قد يقلل من حدوث السرطان وتطوره 

  

  

  

  

  

  

 


