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ABSTRACT 

An explosion is characterized as a sudden release of large energy over a very short duration. 

As the blast wave travels parallel to a surface, it creates a side-on pressure and when it hits a 

surface perpendicularly or at an angle, it creates a reflected pressure. Side-on pressure and reflected 

pressure are much higher than service loads for the structure. Thus, when a blast happens near a 

building that is not designed to withstand blast loads, it can cause catastrophic damage. 

The objective of this study is to present a formulation for the design optimization of framed 

steel structures subjected to blast loads. Also, a formulation is presented for the design 

optimization of structures that can withstand some possible damage due to blast loads. To this end, 

an optimization procedure that includes definitions of design variables, cost function, constraints, 

and structural analyses is discussed. The design variables for beams and columns are the discrete 

values of the W-shapes selected from American Institute of Steel Construction (AISC) tables. The 

optimization problem is to minimize the total structural weight subjected to AISC strength 

requirements and blast design displacement constraints. Linear static, linear dynamic, and 

nonlinear dynamic analyses are incorporated in the optimization process and optimum designs are 

compared. Due to design variables and some constraints discontinuity, gradient-based 

optimization algorithms cannot be used to solve the optimization problem.  

Therefore, metaheuristic algorithms are used that require only simulation results to solve 

problems with discrete variables and non-differentiable functions. Since the number of simulations 

and robustness to obtain good designs are important for the class of problems discussed in this 

research, a new hybrid optimization algorithm based on Harmony Search (HS) and Colliding 

Bodies Optimization (CBO) is developed and examined. The algorithm is named Hybrid Harmony 

Search - Colliding Bodies Optimization (HHC). Also, a novel design domain reduction technique 
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is incorporated in HHC. Some benchmark discrete variable structural design problems are used to 

evaluate HHC. In comparison with some popular metaheuristic optimization algorithms, HHC is 

shown to be robust, effective, and needs fewer structural analyses to obtain the best designs.  

Depending on the size of the structure to be designed, optimization of structures that require 

linear or nonlinear dynamic analyses using metaheuristic algorithms can be computationally 

expensive because these types of algorithms need large number of simulations to reach good 

designs. Equivalent Static Loads (ESL) approach, which has been used for optimization of 

structural systems subjected to dynamic loads using gradient-based algorithms, is examined for 

optimization of structures that have discrete design variables using metaheuristic algorithms. The 

proposed approach is named global optimization with equivalent static loads (GOESL). Solution 

of four numerical examples shows that GOESL can drastically reduce the number of dynamic 

analyses needed to reach the best design compared to an algorithm without the ESL approach. 

However, the ESL step alone cannot converge to the best design for the current formulation, even 

with many ESL cycles. Therefore, after a few ESL cycles, the procedure may switch to the original 

algorithm without the ESL cycles to improve designs further.  

HHC and GOESL are used to solve three-dimensional framed steel structures subjected to 

blast loads with linear and nonlinear dynamic analyses as separate solution cases. The source of 

the blast loads is a car carrying 250 lbs of Trinitrotoluene (TNT) with 50 ft standoff distance from 

the front face of a 4-bay x 4-bay x 3-story building. Optimum designs of the structure to withstand 

blast loads show that penalty on the optimum structural weight is substantial when linear dynamic 

analysis is used. With nonlinear dynamic analysis, the penalty on the structural weight is 

substantially reduced. When the stiffness of the walls is included in the analysis model, there is 
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very little penalty on the optimum structural weight with linear or nonlinear dynamic analysis 

models.  

The best designs obtained with the linear and nonlinear dynamic analysis models are 

checked for some possible damages due to a blast. Two types of damage conditions are defined: 

(i) complete removal of some key members from the analysis model, and (ii) reduction of stiffness 

of some members. It is shown that the best designs using linear or nonlinear dynamic analyses can 

withstand all damage conditions. Thus, resilience of the designs to withstand blast loads is 

observed.  
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PUBLIC ABSTRACT 

Blast-resistant analysis and design of structures has received greater attention during the 

last few decades as the terrorist attacks showed the great damage that could happen due to an 

explosion near the structure. In this study, optimum design of steel building to withstand blast 

loads is studied and discussed. The problem is formulated to minimize total structural cost while 

requiring sufficient strength to withstand blast loads. Since the computational effort to solve this 

problem can be substantial, considerable research is conducted to develop and evaluate more 

efficient procedures for numerical solution of the problem. It is shown that depending on the 

fidelity of structural analysis models used and the performance requirements for the structure, the 

penalty on the structural cost to withstand the blast loads can vary from substantial to minimal. 

Directions for future research to further improve the computational procedures are presented.  
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Interest in the behavior of structures subjected to blast loading has increased over the last 

few decades as the terrorist attacks increase around the globe. Attacks on the World Tarde Center 

in New York City in 1993 and Murrah Federal Building in Oklahoma City in 1995 showed the 

great damage that could happen due to a blast. In both attacks, structural failure caused more 

casualties and injuries than the blast wave itself (Cormie, 2009). Normally, conventional structures 

(many are moment resistance frames) are not designed to tolerate blast loads which are very high 

compared with service loads. For instance, a 10 lbs of TNT at a distance about 50 ft causes roughly 

peak pressure of 2.5 psi (360 psf) in very short time (less than a second) compared to natural 

periods of structures. In comparison, the design snow load in the Midwest ranges from 5 psf to 50 

psf (Longinow and Alfawakhiri, 2003). Therefore, even a small charge explosion can cause 

catastrophic local or global failure of the structure. Thus, it is important to design structures (at 

least some critical ones) that can with stand blast loads. 

1.2 Blast Phenomena and Blast Loads  

When a blast occurs in the air, it generates hot gas with high pressure and high temperature. 

A blast wave happens because the air around the explosion expands and its molecules pile-up. The 

blast wave carries large amount of energy and it travels fast. When the blast wave passes parallel 

to an object it causes what is called incident pressure. If the blast wave is opposed by an object 

(such as the façade of a building) it reflects. The reflected pressure is higher than the incident 

pressure.  
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The blast pressure is a time history loading. Scaling law is the most popular method to 

obtain blast pressure-time profile. It is a simplified empirical method that requires only charge 

weight and stand-off distance. The method is explained thoughtfully in DoD (2008) and it is briefly 

discussed and used in this study. Computational Fluid Dynamics (CFD) and semi-empirical 

methods are more accurate than the scaling law to estimate blast pressure, but they are more 

complex and require substantially more computational time.  

In the design of structure subjected to blast loads, like seismic design, some members are 

allowed to experience nonlinear response for more economical designs. Therefore, the blast design 

criteria are deformation based. In other words, members end rotations and deflections are the 

design criteria to design structures subjected to blast loads.  

1.3 Optimization of Framed Structures Subjected to Blast Loading 

It is desirable to design structures to minimize structural weight while all performance 

requirements are satisfied. In this study, the optimum design of three-dimensional (3D) framed 

steel structures subjected to blast loading is considered. Since the blast loads are much larger than 

the service loads, design of structure to withstand blast loads is expected to be much heavier than 

the design for service loads. Therefore, it is important to optimize the design for blast loads. In 

addition, for the design to be useful, constraints of the applicable design code must be included in 

the formulation. The formulation must also include direct selection of sections available in the 

commercial catalog. In such a formulation, the design variables are integers representing the 

section number in the catalog. Also, constraints of the design code are generally discontinuous 

because the limit values for them are based on checking various failure modes for the members.  

It is seen, based on the foregoing discussion, that the gradient-based optimization methods 

will not be suitable for the practical design optimization formulation. Therefore gradient-free 
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methods must be used. Stochastic or metaheuristic methods are good gradient-free methods that 

need only the simulation results. These methods will be explored for the structural optimization 

problem subjected to blast loads. This problem of optimum design of structures subjected to blast 

loads has not been studied in the literature before. 

1.4 Optimum Design of Framed Structures for Damage Tolerance  

It is desirable to anticipate certain amount of damage to the structure under blast loads and 

include that in the design process. A formulation is needed for optimum design of 3D framed 

structures that can withstand some future damage due to a blast near the structure. The main idea 

is that structure should still carry the service loads when some damage happens due to blast loads. 

However, how to define damage to the 3D framed structure needs to be investigated.  

1.5 Optimization Algorithms 

Three types of structural analyses need to be carried out in the optimization process: linear 

static analysis of the framed structure subjected to service loads only, linear dynamic analysis of 

the framed structure subjected to service and blast loads, and nonlinear dynamic analysis 

(geometrical and material nonlinearities) of the framed structure subjected to service and blast 

loads. Depending on the size of the structure and the finite element model used, the computational 

time for each analysis can be substantial. The metaheuristic algorithms use only analysis results in 

their calculations, but they require a large number of iterations to reach an optimum point. In 

addition, dynamic analysis of the structure can require large computational effort. Therefore, the 

wall-clock time required to solve problem of optimum design of structures subjected to blast loads 

can be enormous. 

Thus, it is desirable to explore ways to reduce the number of iterations of the metaheuristic 

algorithm so that the wall-clock time needed to solve the problem can be reduced. To achieve this 
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objective, combination of two metaheuristic algorithms will be explored in order to develop a more 

efficient hybrid algorithm. 

1.6 Optimization of Structures Subjected to Dynamic Loads Using Equivalent Static Loads 

Equivalent static loads (ESL) approach has been used successfully for optimizing many 

structural systems subjected to dynamic loads for continuous variable optimization problems using 

the gradient-based methods. In the ESL method, the dynamic load is transformed into multiple 

equivalent static load sets. Then the equivalent static loads are considered as multiple loading 

conditions in the linear static response optimization process (Kang et al., 2001). This process is 

repeated a few times until the optimum point is reached. 

For the nonlinear dynamics problem, there can be either convergence difficulties in the 

numerical integration algorithm or nonlinear structural analysis can take long time because of the 

material nonlinearity, geometrical nonlinearity, and size of the structure. Considering that the 

metaheuristic algorithms require many simulations (depending on the number of design variables 

and the number of elements in the discrete set), it is quite inefficient to carry out the nonlinear 

dynamic analysis in the optimization process with metaheuristic algorithms. Therefore, the ESL 

approach will be investigated for optimization of structures with discrete design variables using 

metaheuristic algorithms. The ESL approach has not been investigated with metaheuristic 

algorithms before. 

1.7 Motivation and Purpose 

Several research objectives are set up for this study: 

1- To develop and study a formulation for optimum design of 3D framed steel structures subjected 

to blast loads in addition to the service loads. To this end, design variables, cost function, and 
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constraints will be defined and discussed. Linear static, linear dynamic, and nonlinear dynamic 

analyses will be incorporated in the formulation and the optimization process. The formulation 

for this class of problems are discussed for the first time in this study. 

2- To develop a formulation for optimum design of framed structures that includes some possible 

future damage to the structures due to blast loads. How to define damage to the structure will 

be studied and incorporated into the optimum design formulation. 

3- To develop a hybrid metaheuristic algorithm by combining good features of two algorithms. 

Evaluate this new algorithm by solving a set of test structural optimization problems. 

4- To investigate the use of the equivalent static loads (ELS) approach with discrete design 

variables using metaheuristic algorithms. Evaluate the approach by solving a set of test 

problems. The ESL approach with metaheuristic algorithms is discussed for the first time in 

this study.  

1.8 Scope of Thesis 

Chapter two is a review of the literature on calculation of blast loads, structural modeling 

and analysis, and design requirements for structures to resist explosions. The review provides the 

reader with a concise reference to the analysis and design of structures for blast resistance. In 

Chapter three, metaheuristic algorithms that are used in this study are discussed. The focus is 

mainly on the development of a hybrid algorithm. The algorithm is evaluated by solving a set of 

five truss test structures. In Chapter four, the ESL approach for structures subjected to dynamic 

loads is investigated with metaheuristic optimization algorithms and discrete design variables. 

Performance of the new approach is studied using four numerical examples (2 linear and 2 

nonlinear dynamic response optimization problems). Chapter five presents a formulation for 

design optimization (design variables, cost function, and constraints) of 3D framed steel structure 
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subjected to blast loads. Five numerical design examples are solved, and the results are studied 

and compared. In Chapter six, a formulation for optimum design of 3D framed steel structures to 

withstand some possible future damages is presented and discussed. Chapter seven summarize the 

results obtained in this study and it includes some future work recommendations.    
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CHAPTER 2  

DESIGN OF STRUCTURES SUBJECTED TO BLAST LOADS: ANALYSIS AND DESIGN 
REVIEW 

Abstract 

When designing structures to withstand explosions, the main goals are to minimize the 

number and extent of occupant injuries and to reduce the chance of catastrophic damage to 

structures. Although there is uncertainty in the source, extent, and location of explosions, the 

assessment of blast loading and structural performance is important when designing blast-resistant 

structures. This chapter is a review of the literature on prediction of blast loads, structural modeling 

and analysis, and design criteria for structures to resist explosions. The chapter provides in one 

concise document the general guidelines, references, and tools that structural engineers and 

researchers need to analyze and design structures subjected to blast loading. References on the 

topics discussed in this work are provided for more detail. 

2.1 Introduction 

A small-charge explosion could cause catastrophic local or global failure of the structure. 

Analysis and design of blast-resistant structures requires good knowledge of the blast phenomena, 

dynamic response of structures, and design requirements. However, threats cannot be predicted 

accurately, and it is not possible to design a fully protected structure. Thus, an acceptable damage 

to the structure is expected according to a predefined level of protection (Goel and Matsagar, 

2014).  

The purpose of this chapter is to review the literature and provide the reader with a concise 

reference for analysis and design of structures for blast resistance. It provides basic considerations 

for blast load calculation, structural modeling and analysis, and design criteria. This study is 
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limited to surface bursts where the explosive charge is detonated close to ground level and the 

structure is regularly shaped.  

This chapter is organized into eight sections. Following this introduction, Section 2.2 

provides an overview of the literature. Section 2.3 discusses the blast phenomena and ways to 

assess blast load and its duration, and Section 2.4 provides a review of material strength under a 

high strain rate. Section 2.5 discusses stress increase and reduction factors, and Section 2.6 

discusses modeling and analysis of structural components and systems subjected to blast loads. In 

Section 2.7, design criteria for structural components and system are discussed, and Section 2.8 

provides a definition of progressive collapse that designers should be aware of. References on all 

topics are provided for more detail.  

2.2 Literature Review 

The subject areas of blast load prediction and blast-resistant design are quite broad. In this 

review, many references have been used to collect information on these subject areas and provide 

the reader with a concise document. This section provides a brief overview of the key references 

used in this study along with some information discussed in each reference. The U.S. Department 

of Defense (DoD) publication (U.S. Department of Defense, 2008) provides a manual for 

evaluating blast loads and design criteria for members and structural systems. It is considered one 

of the most important references for blast-resistant design. The American Society of Civil 

Engineers (ASCE) prepared a report (ASCE, 2010) to provide guidance for blast resistance of 

petrochemical facilities. The ASCE also wrote a standard (ASCE, 2011) that provides planning, 

design, construction, and assessment requirements for existing and new structures subjected to 

blast loading. Gilsanz et al. (2013) wrote a guide published by the American Institute of Steel 

Construction that focuses on blast resistance and progressive collapse mitigation of steel structures. 
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It provides a few detailed design examples. Pape et al. (2010a, 2010b, and 2010c) published a 

three-part paper on the blast phenomena and its effect on structures. The work provides a practical 

overview of types of explosions, prediction of explosion effects, and methods for analysis under 

blast conditions. Goel and Matsagar (2014) discussed different strategies for blast mitigation and 

the mechanics of sacrificial blast walls using different materials. Books by Smith and Hetherington 

(1994), Bangash and Bangash (2006), Cormie et al. (2009), and Dusenberry (2010) provide 

detailed information on the analysis and design of buildings subjected to blast conditions. This 

chapter summarizes the most important analysis and design information provided in these 

references and others with a MATLAB code to predict blast loads based on the method described 

by the DoD (2008).  

2.3 Prediction of Blast Loading 

This section provides the necessary background and references to calculate external blast 

loading. Although there is uncertainty in predicting the size, type, and location of the explosive, 

calculation of blast loads is essential in the design of blast-resistant structures. 

2.3.1 Blast Phenomena 

The explosion generates hot gas that can be at a pressure of 1450-4351 ksi and a 

temperature of 3000-4000 ℃ (Smith and Hetherington, 1994). If a blast happens in the air, the 

high-temperature gas that is produced by an explosive charge expands spherically to take up the 

available space. In other words, the violent expansion forces the surrounding air out of its occupied 

space. Simultaneously, the air around the explosion expands and its molecules pile up. What is 

known as a blast wave occurs next, and it carries a large amount of energy. As the wave front 

moves away from the source of the explosion, its pressure decreases at an exponential rate until it 

falls to the normal atmospheric pressure; this is called the positive phase. After that, it decreases 
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to less than the atmosphere pressure (negative phase) and finally back to the ambient value (see 

Figure 2.1). Thus, the blast pressure is a time history loading. In Figure 2.1, 𝑃𝑃𝑠𝑠𝑠𝑠 is the peak 

overpressure or the incident pressure, 𝑃𝑃𝑠𝑠 is the ambient pressure, 𝑃𝑃𝑠𝑠𝑠𝑠−  is the minimum negative 

pressure, 𝑃𝑃𝑟𝑟 is the reflected pressure, 𝑃𝑃𝑟𝑟− is the minimum negative reflected pressure, 𝑡𝑡𝑎𝑎 is the 

arrival time, 𝑡𝑡𝑠𝑠 is the positive phase duration, 𝑡𝑡𝑠𝑠− is the negative phase duration, 𝑖𝑖𝑠𝑠 is the positive 

reflected impulse, and 𝑖𝑖𝑠𝑠− is the negative incident impulse. When the blast wave travels parallel to 

a surface and is unimpeded by any object, free-field (side-on or incident) pressure is applied to the 

surface (see Figure 2.1 (a)). When a surface is struck by a blast wave perpendicularly or at an 

angle, reflected pressure is applied to the surface.  

    
Figure 2.1. Idealized pressure-time profile for blast wave: (a) free field pressure (b) reflected 

pressure (modified from DoD, 2008). 

Friedlander’s exponential equation is usually used to describe the pressure-time history of 

a blast wave (Cormie et al., 2009): 

 𝑃𝑃𝑠𝑠(t) = 𝑃𝑃𝑠𝑠𝑠𝑠 �1 −
𝑡𝑡
𝑡𝑡𝑠𝑠
�  𝑒𝑒−𝑏𝑏𝑏𝑏/𝑏𝑏0 (2.1) 

where 𝑏𝑏 is a decay coefficient of the waveform (calculated through a nonlinear fitting of an 

experimental pressure time curve over its positive phase). 

There are three techniques to calculate blast loads (Cormie et al., 2009): 

 First principle methods: These are the most accurate methods that involve solving the partial 

differential equations based on computational fluid dynamics (CFD). The CFD models 
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determine a numerical solution to fluid (air) flow equations. These equations are based on the 

principles of conservation of mass, momentum, and energy. The reader is referred to the work 

of Cormie et al. (2009) and Zienkiewicz et al. (2006) for more details on this topic. There are 

many computer codes available for modeling the detonation of explosives, such as LS-DYNA 

(2007), ABAQUS (2014), and Air3d (Rose, 2001). The blast loads calculated with CFD are 

used to compute the structural response. However, when the structure is expected to move 

significantly due to the blast event, the blast wave and the structural response could be coupled 

to obtain more accurate results (Pape et al., 2010b).  

 Semi-empirical or phenomenological methods: These are simplified methods that represent the 

essential physical phenomena of the explosion.  

 Empirical methods: These are based on an analysis of the experimental data (Goel and 

Matsagar, 2014). Scaling Law is the most common empirical method used in the analysis and 

design of blast-resistant structures. Blast parameters such as incident and reflected pressures 

are functions of the scaled distance (𝑍𝑍). Report UFC 3-340-02 developed by the DoD (2008) 

provides guidelines to predict blast loads using the empirical method. ConWep (Hyde, 1992) 

and ATBlast are examples of computer programs that are widely used to determine blast wave 

parameters. They are an implementation of the method described by the DoD (2008).  

The selection of an analysis method depends on the project requirements and type of 

components to be designed (Gilsanz et al., 2013).  

Blast load decreases rapidly with distance. Therefore, based on the distance from the source 

of the blast and the angle of incident, blast loads and their durations can change considerably over 

the surface of the structure. The common approach is to divide the surface into a grid and then 

calculate blast loads and their durations at the center of each section of the grid.  
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2.3.2 Scaling Law 

The distance of the structure from the detonation point is an important parameter in 

calculating the blast loads. The Hopkinson-Cranz scaling approach (cube-root scaling) is the most 

widely used approach for blast wave analysis for spherical explosions. The scaling distance is 

defined as follows: 

 𝑍𝑍 =
𝑅𝑅
√𝑊𝑊3  (2.2) 

where 𝑍𝑍 is the scaled distance, 𝑅𝑅 is the distance from the detonation source to the point of interest 

expressed in feet (ft.), and 𝑊𝑊 is the charge mass expressed in pounds (lbs) of TNT. 

There are many types of explosives. TNT was chosen to be the blast parameter, so an 

equivalent TNT weight needs to be computed in order to use Eq. (2.2). Equation (2.3) below is 

used to find the equivalent weight of TNT, and Table 2.1 shows the conversion factors for some 

explosives (DoD, 2008). 

 𝑊𝑊𝑒𝑒 = 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒  
𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑

𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑  2.3) 

where 𝑊𝑊𝑒𝑒 is the equivalent TNT weight, 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 is the weight of the explosive, 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑  is the heat of 

detonation of the explosive, and 𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑  is the heat of detonation of the TNT.  

Table 2.1. Heat of detonation for some explosives (DoD, 2008). 
Explosive name Heat of detonation, ft-lb/lb 

TNT 1.97 E+06 

Composition B 2.15 E+06 

Composition C4 2.22 E+06 

RDX 2.27 E+06 

HMX 2.27 E+06 
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Identifying explosive size is an important part of the threat assessment process. Table 2.2 

shows the estimated ranges of explosives. Bangash and Bangash (2006) categorize explosives as 

small, medium, large, and very large (Table 2.3). 

Table 2.2. Estimated quantities of explosive (FEMA 426, 2003). 
type Charge weight  

Luggage 10-100 lb TNT 
Automobile 100-450 lb TNT 

Van 450-4000 lb TNT 
Truck 4000-100000 lb TNT 

 
Table 2.3. Size of explosive (M. Bangash and T. Bangash, 2006). 

type Charge weight  
Small Up to 11 lb TNT 

Medium Up to 44 lb TNT 
Large Up to 220 lb TNT 

Very large Up to 5512 lb TNT 

2.3.3 Explosion and Blast-Loading Types 

There are three types of explosions, as shown in Figure 2.2 (Karlos et al., 2013): 

 Free-air bursts: In this case, the charge is detonated in the air away from any reflecting surface. 

The blast waves can be characterized by a spherical wave that moves outward from the source 

and impinges directly onto the structure. 

 Air bursts: The explosive charge is detonated in the air. The blast waves propagate spherically 

outward from and impinge on the structure after having interacted first with the ground. What 

is called Mach reflection might occur because of the interaction of the blast wave and the 

reflected wave.  

 Surface bursts: The explosive charge is detonated near the ground surface. The blast waves 

immediately interact locally with the ground and then propagate hemi-spherically outwards, 

impinging on the structure.  
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Figure 2.2. Types of explosions: (a) Free-air bursts. (b) Air bursts. (c) Surface bursts (modified 
from Karlos et al., 2013). 

2.3.4 Blast Wave Reflection 

The blast waves will reflect when they impact an object made of a medium denser than that 

carrying the wave. In this case, the pressure acting on the structure is not the same as the incident 

peak pressure (𝑃𝑃𝑠𝑠𝑠𝑠). In fact, the reflected pressure could be several times greater than the incident 

pressure, as shown in Figure 2.1 (Cormie et al., 2009).  

In the discussion above, the angle of the incident (𝛼𝛼) is taken as zero. When 𝛼𝛼 = 90𝑠𝑠, the 

blast wave travels parallel to the surface. That is, there is no reflection, and the structure is loaded 

with side-on pressure that is equal to the incident overpressure. If 𝛼𝛼 is between 0𝑠𝑠 and 90𝑠𝑠, either 

regular or Mach reflection happens. The effect of the angle of the incident on the reflection 

coefficient (𝐶𝐶𝑟𝑟𝑟𝑟 = 𝑃𝑃𝑟𝑟
𝑃𝑃𝑠𝑠𝑠𝑠

) is shown in Figure 2.3 (Karlos et al., 2013). 

The influence of the angle of incident can be ignored for the large pressure, and the 

structure can be studied under a normal reflected pressure, which is a conservative approach. In 

general, one can use Figure 2.3 to determine the reflection coefficient.  

The Mach reflection is a complex process. When the reflected wave catches up with the 

incident wave, the so-called Mach stem occurs. This is the reason for the jump in the angle of the 

incident-reflected pressure curves shown in Figure 2.3.  
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Figure 2.3. Influence of angle of incident on the reflection pressure (modified from DoD, 2008). 

Conventionally, facades are assumed to be perfectly rigid so that they perfectly reflect the 

blast wave front. In reality, however, facades displace when the blast wave impinges on them. This 

displacement reduces the effectiveness of the reflected pressure.  

2.3.5 Surface Burst and Loading 

When the explosive charge is placed close to the ground, a modification must be made to 

the charge weight. The incident wave is reflected immediately from the ground and interacts with 

the blast wave. This is called hemispherical burst. Practically, due to the creation of a crater, some 

energy absorption takes place from the ground. Figure 2.4 and 2.5 show the blast wave parameters 

of a hemispherical wave of TNT charge for the positive and negative phases, respectively. The 

wave parameters are presented on the y-axis while the x-axis represents the scaled distance (𝑍𝑍). 

In, Figure 2.4 𝑊𝑊 is the weight of the charge, Pso is the incident peak overpressure, Pr is the 

reflected pressure, ir is the positive reflected impulse, is is the positive incident impulse, tA is the 

arrival time, to is the positive duration, U is the wave speed, and Lw is the wave length. They are 
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presented on the y-axis, while the x-axis represents the scaled distance Z. In Figure 2.5, the 

superscript “-” refers to the negative phase. 

After calculating the scaled distance for a specified distance and charge weight, Figure 2.4 

and 2.5 can be used to determine the positive and negative parameters to plot the equivalent 

pressure time history for the front, roof, and side and rear walls (Figure 2.6). Numerical examples 

showing all the steps to find the equivalent load time history are available in the work of the DoD 

(2008), Gilsanz et. al. (2013), and Karlos et al. (2013). A MATLAB code that follows the methods 

presented by DoD (2008) is provided*. The code can be used to plot the triangular shape of the 

pressure time history (similar to those shown in Figure 2.6). Note that the scaled distance must be 

within the range of Figure 2.4 and 2.5. For close-in explosions, this simplified approach is not 

allowed. CFD or test data should be used to find the blast loading, and explicit nonlinear dynamic 

analysis should be performed to consider breach, diagonal tension, direct shear, and spall failure 

mode.  

 

 
* https://www.mathworks.com/matlabcentral/fileexchange/70105-matlab_code_blast_load_dod_2008 

https://www.mathworks.com/matlabcentral/fileexchange/70105-matlab_code_blast_load_dod_2008
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Figure 2.4. The positive phase parameters of hemispherical wave of TNT charges (DoD, 2008). 

 
Figure 2.5. The negative phase parameters of hemispherical wave of TNT charges (modified 

from DoD, 2008). 
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Figure 2.6. Triangular assumption of pressure time history on the (a) Front walls loading (b) 

Roof and sides walls loading (c) Rear walls loading (modified from DoD, 2008). 

Figure 2.6 shows the simplification of the pressure-time history profile of the blast wave 

(Figure 2.1). In Figure 2.6, 𝑤𝑤 is the width of the front wall and the back wall, 𝐻𝐻 is the height of all 

walls, 𝐿𝐿 is the length of the side wall, 𝑃𝑃𝑟𝑟 is the reflected pressure, 𝑃𝑃𝑠𝑠𝑠𝑠 is the incident peak, 𝐶𝐶𝐷𝐷 is the 

drag coefficient (𝐶𝐶𝐷𝐷 is 1 for the front wall), 𝑞𝑞𝑠𝑠 is the incident dynamic pressure, 𝑖𝑖𝑟𝑟 is the total 

reflected pressure impulse, 𝑡𝑡𝑟𝑟𝑟𝑟 is the duration of the reflected pressure, 𝑡𝑡𝑐𝑐 is the clearing time, 𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟 

is the actual positive phase duration, and 𝑡𝑡𝑠𝑠 is the positive phase duration. In the roof and side wall 

loading figure, 𝐿𝐿𝑤𝑤 is the wave length, 𝐶𝐶𝐸𝐸𝑟𝑟 is the equivalent load factor, 𝑃𝑃𝑠𝑠𝑠𝑠𝑟𝑟 is the incident pressure, 

𝐶𝐶𝐷𝐷𝑟𝑟 is the drag coefficient at point f, 𝑞𝑞𝑜𝑜𝑜𝑜 is the dynamic pressure, 𝑡𝑡𝑟𝑟 is the time when the blast wave 

reaches the point f, 𝑡𝑡𝑑𝑑𝑟𝑟 is the time when the peak equivalent uniform pressure is reached, 𝑡𝑡𝑠𝑠𝑟𝑟 is the 

actual positive phase duration, and 𝑡𝑡𝑠𝑠𝑒𝑒𝑟𝑟  is the positive phase duration. In the rear wall loading figure, 

the notations are similar to the roof and side wall loading figure, except that point b is used instead of 

point f. The superscript “−” refers to the negative phase.  
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2.3.6 Negative Phases 

Compared with the positive phase, the negative wave has a longer duration and a lower 

pressure magnitude, as shown in Figure 2.1. It reduces the effect of the peak response, and it is 

usually ignored in design because the main structural damage results from the positive phase loads 

(Karlos et al., 2013). However, its effect should be examined for members that have a shorter 

fundamental period in comparison with negative load duration (Gilsanz et al., 2013).  

2.3.7 Internal Pressure 

In the previous sections, blast pressure has been discussed with the assumption that there 

are no openings in the walls. Structures, however, have windows and doors that may leak pressure 

into the building, causing a reduction in the effective new load on the external walls. Internal 

pressure is important in evaluating the effects on personnel and the internal damage. The internal 

pressure effect is usually ignored when the openings are small (Gilsanz et al., 2013). The DoD 

(2008) provides a procedure to evaluate internal pressure.  

2.4 Material Design Strength  

Steel and reinforced concrete are the most commonly used materials in the construction of 

blast-resistant structures, but masonry and timber are permitted. For a close and high-impulse blast 

event, concrete structures are generally used to provide protection against fragments and to limit 

deformation (DoD, 2008; ASCE, 2011).  

The ductility of members (or general structures) is an essential factor in blast design: the 

greater the ductility, the greater the members’ resistance to failure. Low-carbon steel and properly 

reinforced concrete are suitable to blast resistant design because they can deform beyond the elastic 

limit without rupturing (ASCE, 2010).  
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The mechanical properties of material under high strain rate loadings such as blast loads 

are different from low rate and static loads. Generally, materials become stiffer under high rate 

loadings, which leads to an improvement in their mechanical properties. Also, in blast design, it is 

allowable to use the expected actual strength of the material instead of the minimum specified 

values.  

2.4.1 Material Properties for Steel 

The effects of high strain rate on some of the mechanical properties of steel are summarized 

as follows:  

 The modulus of elasticity (𝐸𝐸𝑠𝑠) remains the same. 

 The yield strength (𝑜𝑜𝑦𝑦) and ultimate tensile strength (𝑜𝑜𝑢𝑢) increase to the dynamic yield strength 

(𝑜𝑜𝑑𝑑𝑦𝑦) and the dynamic ultimate strength (𝑜𝑜𝑑𝑑𝑢𝑢), respectively. Figure 2.7 shows the effect of 

increasing strain rate on steel.  

  

  
Figure 2.7. The effect of high strain rate on mechanical properties of steel (modified from DoD, 

2008). 
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Dynamic increase factors (𝐷𝐷𝐷𝐷𝐷𝐷) are used to modify the static strength due to high rate 

dynamic loads. Table 2.4 presents the values of 𝐷𝐷𝐷𝐷𝐷𝐷 for different types of steel and different strain 

rates.  

Table 2.4.  Dynamic increasing factor (𝐷𝐷𝐷𝐷𝐷𝐷) for yield stress and ultimate stress for structural 
steel (DoD, 2008). 

Steel type 

Yield DIF 
Ultimate stress 

DIF 
Bendign Tension or compression 

Low Pressure 
(𝜀𝜀̇=0.1 in/in/sec) 

High Pressure 
(𝜀𝜀̇=0.3) 

Low Pressure 
(𝜀𝜀̇=0.02) 

High Pressure 
(𝜀𝜀̇=0.05) 

A36 1.29 1.36 1.19 1.24 1.10 
A588 1.19 1.24 1.12 1.26 1.05 
A514 1.09 1.12 1.05 1.07 1.00 

The average yield stress of steel of grades 50 ksi or less is about 10% higher than the stress 

value specified by ASTM. Thus, for blast-resistant design, the yield stress is 1.1 times the 

minimum yield stress. This factor is called the strength increase factor (𝑆𝑆𝐷𝐷𝐷𝐷) or the average strength 

factor (𝐴𝐴𝑆𝑆𝐷𝐷). The 𝑆𝑆𝐷𝐷𝐷𝐷 should not be used with high-strength steels (Gilsanz et al., 2013).  

2.4.2 Material Properties for Reinforce Concrete 

Similar to steel, reinforced concrete shows improvements in its mechanical properties 

when it is subjected to blast loadings. The effect of high strain rates on reinforced steel and concrete 

are shown in Figure 2.7 and 2.8, respectively. Table 2.5 provides the DIF values of reinforced steel 

and concrete. The 𝑆𝑆𝐷𝐷𝐷𝐷 of reinforced steel is discussed in Section 2.4.1, and the 𝑆𝑆𝐷𝐷𝐷𝐷 for compressive 

strength of concrete is 1.1 (ASCE, 2011).  
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Figure 2.8. The effect of high strain rate on mechanical properties of concrete (modified from 

DoD, 2008). 

Table 2.5. Dynamic increase factor (𝐷𝐷𝐷𝐷𝐷𝐷) for reinforced concrete design (DoD, 2008). 

Type of stress 
Reinforced bars 

Concrete 
Yield stress Ultimate stress 

Bending 1.17 1.05 1.19 
Diagonal tension 1.00 - 1.00 

Compression 1.10 - 1.12 

2.4.3 Plastic Hinge 

In design for blast loading, some members are allowed to have plastic behavior to achieve 

an economical design. Therefore, it is important to understand the local performance of members 

and the global performance of the structure when one or more plastic hinges start to form. Also, 

the locations and modeling of the plastic hinges are important. To allow a plastic hinge to form in 

a component, lateral supports must be provided to prevent premature buckling. It is good practice 

to design columns to remain elastic to prevent extended structural failure (Gilsanz et al., 2013). 

This is the “strong column, weak beam” approach. That is, beams are forced to fail before columns.  

A plastic hinge is formed at the point of maximum stress. It starts when the outer fiber 

reaches the material yield limit. Then, the interior of the section starts to yield gradually as the load 

increases and the stress-strain relationship becomes nonlinear. At other locations, the resistance 
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continues to increase as the load increases. That is, some points respond plastically while others 

respond elastically, and elastic-plastic conditions occur (ASCE, 2010).  

Modeling the nonlinear behavior of sections depends on the material to be used and the 

internal force in the section. For example, an ideal elastic-plastic behavior is accepted in the design 

of a single-degree-of-freedom (SDOF) system. Figure 2.9 shows the idealized resistance-

deflection curve, where 𝑅𝑅𝑚𝑚 is the ultimate dynamic resistance, 𝑋𝑋𝐸𝐸  is the deflection at the limit of 

elastic range, 𝐾𝐾𝑒𝑒 is the elastic stiffness, and 𝑋𝑋𝑚𝑚 is the maximum allowed deflection corresponding 

to the ductility ratio (𝑢𝑢) or rotation (𝜃𝜃) given in Section 2.6.  

 

Figure 2.9. Idealized resistance-deflection curve (Cormie et al., 2009). 

In more complex scenarios such as a steel member subjected to tension and compression, 

a plastic hinge can be modeled using FEMA 356 (ASCE and FEMA, 2000), as shown in Figure 

2.10 and Table 2.6, where a, b, and c are hinge parameters that are functions of the elongation, 𝑃𝑃𝑛𝑛 

is the tensile strength, 𝐷𝐷𝑐𝑐𝑟𝑟 is the critical buckling load, 𝑇𝑇  refers to axial deformation at tensile 

yield load, and 𝐶𝐶  refers to axial deformation at bucking yield load.  
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Figure 2.10. Tension-compression hinge properties (FEMA, 2000 and Gilsanz et al., 2013). 

Table 2.6. Tension-Compression hinge parameters (FEMA, 2000 and Gilsanz et al., 2013). 
loading a b c 
Tension 11�T 14�T 0.8Pn 

Compression 0.5�C 4.1�C 0.3Fcr 

When there are axial force and bending moments in one or two directions, the plastic hinge 

may be represented using a P-M-M yield surface (El-Tawil and Deierlein, 2001). Here, P is the 

axial force, and M-M are the minor and major bending moments.  

 The yield surface defines the strength of the material under biaxial stress. Any elastic-

plastic material has a yield surface. When the stress point is on the yield surface, the material has 

yielded, and its behavior is elastic-plastic. But when the stress point is inside the yield surface, the 

material is elastic. Stress points outside the yield surface are not allowed. Software such SAP2000 

(CSI, 2017) implements what is called Parametric P-M2-M3 based on the P-M-M yield surface 

method (CSI, 2016).   
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2.5 Strength Reduction Factors and Load Combination 

Because of the nature of the blast load and to achieve economical design, plastic 

deformations are allowed in the design of structures subjected to blast loads. Also, it is permissible 

to use the nominal strength without a strength reduction factor (i.e., 𝜙𝜙 =1) for all modes of failure 

(ASCE, 2011). Blast loads are not combined with loads that are not expected to be present when 

the blast happens. That is, wind, earthquake, part or all the live loads are not combined with blast 

loads; the basic load combination for all construction materials is as follows (ASCE, 2010): 

 1.0 𝐷𝐷𝐿𝐿 + 1.0 𝐿𝐿𝐿𝐿 + 1.0 𝐵𝐵𝐿𝐿 (2.4) 

 where DL is the dead load, LL is live load, and BL is blast load. In the absence of other governing 

criteria, Gilsanz et al. (2013) allow the following load combination: 

 1.0 𝐷𝐷𝐿𝐿 + 0.25 𝐿𝐿𝐿𝐿 + 1.0 𝐵𝐵𝐿𝐿 (2.5) 

2.6 Blast Load and Structure Interaction (Structural Response) 

For an isolated building, as the blast wave propagates, its front engulfs the structure. 

Therefore, all faces of the structure are subjected to positive and negative pressure at different 

times and for different durations. The structure resists the kinetic energy of moving components 

by converting it to strain energy in the resisting elements (Dusenberry, 2010). Due to high strain 

rates, nonlinear inelastic material behavior, time-dependent deformation, and uncertainties of blast 

load and location, the structural dynamic response is complex (Ngo et al., 2007). Depending on 

the predicted structural failure mechanism, designers can select the best analytical method to 

compute the structural response. Pressure-impulse (P-I) charts, single element response analysis, 

and detailed finite element analyses are the most common approaches to computing structural 
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response (ASCE, 2011). Designers must select an appropriate analytical approach based on 

expected failure mechanisms.   

2.6.1 Pressure-Impulse Charts    

Pressure-impulse or iso-damage curves are based on analytical or experimental data where 

the peak pressure and impulse represent the explosive loading on the P-I curve to check the 

performance condition of a target member. This simple method can be used to design secondary 

elements but not primary elements, and it is limited to flexural modes in response to blast loads 

(ASCE, 2011). Figure 2.11 shows a typical P-I diagram for an elastic SDOF component, where 𝐷𝐷 

is the impulse force, 𝐾𝐾 is the member stiffness, 𝑀𝑀 is the total mass of the member, I is the impulse 

(I=peak blast load×duration of idealized triangular blast load/2), 𝑢𝑢 is the displacement, and 

𝑢𝑢𝑚𝑚𝑎𝑎𝑒𝑒  is the maximum dynamic response. 

  

 Figure 2.11. Pressure-impulse diagram for elastic SDOF component (Smith & Hetherington, 
1994). 

Once the maximium response is specified (damage criterion), Figure 2.11 can be used to 

find the impulse and the load that cause failure or to check whether the section to be designed is 

damaged. That is, when the combinations of impulse and pressure fall to the right and above, the 
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curve will result in failure; when the combinations fall to the left and below, the curve will not 

induce failure. Note that axes 
2𝐹𝐹

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾
 and 

𝐼𝐼
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚√𝑀𝑀𝐾𝐾

 represent pressure and impulse, respectively, 

and they have no physical units. Smith and Hetherington (1994) discussed this approach with 

numerical examples. 

2.6.2 The Single-Element Analysis Method 

This method involves analyzing and designing individual members subjected to blast 

loading. This is either an SDOF or multi-degree-of-freedom (MDOF) system with elastic or 

inelastic dynamic analysis. 

The SDOF approach is the most common, and its accuracy depends on selecting a model 

that adequately represents the failure mechanism. In this approach, the member’s mass is 

concentrated at one point and is allowed to move along a single axis by assuming one response 

mode. The linear equation of motion for SDOF is: 

 𝑀𝑀�̈�𝑢(𝑡𝑡) + 𝐶𝐶�̇�𝑢 + 𝐾𝐾𝑢𝑢(𝑡𝑡) = 𝑜𝑜(𝑡𝑡) (2.6) 

where 𝑀𝑀 is the total mass of the member, 𝐶𝐶 is viscous damping, 𝐾𝐾 is the member stiffness, 𝑢𝑢 is 

displacement, �̇�𝑢 is velocity, and �̈�𝑢 is acceleration at time 𝑡𝑡. Equation (2.6) can be solved by 

numerical integration using structural analysis software programs such as ABAQUS, ANSYS 

(2013), LS-DYNA, and SAP2000. This model can be simplified further by considering an elastic 

undamped SDOF system subjected to a triangular pulse load (just the equivalent positive phase). 

Thus, Eq. (2.6) becomes (Cormie et al., 2009): 

 𝑀𝑀�̈�𝑢(𝑡𝑡) + 𝐾𝐾𝑢𝑢(𝑡𝑡) = 𝐷𝐷(1 −
𝑡𝑡
𝑡𝑡𝑑𝑑

) (2.7) 
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where 𝐷𝐷 is peak force and 𝑡𝑡𝑑𝑑 is positive phase duration. To solve Eqs. (2.6) and (2.7), the time 

increment should not be greater than 1/20 of the natural period of the member or 1/20 of the pulse 

duration 𝑡𝑡𝑑𝑑 to provide numerical stability (Gilsanz et al., 2013). The reader is referred to UFC 3-

340-02 (DoD, 2008) and the works of ASCE (2010) and Gilsanz et al. (2013) for more details.  

In Eq. (2.6), the damping effects are commonly ignored because the blast load duration is 

short and energy dissipates through inelastic deformation (ASCE, 2010). However, it is allowable 

to include the damping effect when the response is nearly elastic (ASCE, 2011). 

The MDOF approach, described in the next section, is more accurate than the SDOF 

approach because all potential modes of failure can be represented, especially when nonlinear 

finite element analysis is carried out with geometric nonlinearity.  

2.6.3 Multi Degree of Freedom Finite Element System 

The single-element modeling discussed above does not represent the actual boundary 

conditions, nor does it consider the interaction between elements and the phasing of their response 

or the dissipation of the energy of the whole structure (ASCE, 2010). On the other hand, MDOF 

modeling of structural systems does not ignore these important parameters. Moreover, the 

distribution of the mass and stiffness can be modeled throughout the structure instead of for only 

one member. In this approach, the linear or nonlinear time-history analysis methods can be used 

to determine the entire structural response. The complexity of the model depends on the type of 

the element used in finite element analysis, where the spring element is the simplest and the solid 

element is the most complex. 

Discrete System: In this type of structural modeling, a beam element can be used. 

Depending on the symmetry of the structure and the loading, and the model can be two- or three-
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dimensional. The relative flexibility and strength of the connected elements are considered. 

Moreover, this structural system analysis considers the phasing of the responses between structural 

elements (ASCE, 2011). Structural analysis outputs that include nodal and elements displacements 

and plastic hinge(s) rotations (when material nonlinearity is considered) can be used directly to 

check the design criteria.  

Implicit or Explicit Linear or Nonlinear Finite Element Analysis: This approach is 

necessary for complex structures and to obtain more accurate results. Linear or nonlinear 

plate/shell elements and solid elements can be used. Implicit, explicit, or mixed-hybrid modeling 

can be carried out (Bangash and Bangash, 2006). The implicit method involves a numerical solver 

to invert the stiffness matrix to directly find the displacement vector. Thus, the implicit scheme is 

not a function of time. This method is unconditionally stable, but it is computationally expensive 

when the structure is large. Implicit methods are used in software such as ABAQUS and ANSYS. 

An explicit scheme is a function of time since it involves solving for velocity and acceleration as 

well as the inverse of the mass matrix (diagonal matrix), but the inverse of the stiffness matrix is 

not needed. This approach is conditionally stable. That is, small time steps should be used to obtain 

accurate results. The explicit method is a good choice for large models and blast load problems 

because the propagation of the blast load through the structure requires small time steps (LS-

DYNA, 2007). The explicit method is used in software such as LS-DYNA and ABAQUS. 

For both approaches, the interaction between the primary structural system and the 

nonstructural components can be considered to avoid any possible local failure. ASCE (2011) 

recommends not directly connecting vertical load-carrying elements to exterior envelope 

components unless they are designed to have greater strength than the exterior envelope 
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components they are to be connected to. Also, one-way walls without backing elements can be 

designed to transfer loads directly into floor diaphragms.  

2.6.4 Equivalent Static Load Method 

 In this method, the blast load is transferred to its equivalent static load, and then the 

structural static analysis is carried out. This method does not represent the actual response because 

dynamic parameters such as stain rate, mass, plastic deformation, and time-varying load are 

ignored. However, when the blast source is far from the structure, the blast loading can be 

represented as an “equivalent wind” (ASCE, 2010). 

2.7 Criteria for Responses (Response Limits)  

In static design philosophy (the working stress, ultimate load, and limit state methods), the 

level of stress in components and deflection are typically the criteria to define failure. In blast 

design (similar to seismic design), it is expected that some of the components will experience a 

substantial nonlinear response because designing them to remain elastic is usually uneconomical. 

However, when a structure is required to be reused following a blast, it must be designed to remain 

elastic (ASCE, 2010). That is, in designing blast-resistant structures, the maximum dynamic 

deflection and rotation are the criteria to prevent component failure. The performance of the entire 

structure is defined by life safety, functionality, and reusability (Dusenberry, 2010). Moreover, 

designers must check that the failure of key members will not cause any progressive collapse by 

providing sufficient redundancy (alternate load paths). The level of protection (LOP) (see Table 

2.7) for the structure or component, the type of component, and the material to be used define the 

design criteria (ASCE, 2010). For example, the response limit of individual elements is less than 

the allowable response of individual frame elements because frames have higher redundancy. 
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Also, for structural components (such as beams and columns), the response limits are less than 

nonstructural components (such as purlins). 

Table 2.7. Damage and response level (ASCE, 2010). 
Damage 

level 
Description Response 

level 
Description 

Low Localized component damage. The 
structure can be utilized but it needs 

repairing. Total cost of repairs is 
moderate 

Low Component has none to slight visible 
permanent damage 

Medium Widespread component damage. Building 
should not be occupied until repaired. 

Total cost of repairs is significan 

Medium Component has some permanent 
deflection. It is generally repairable, if 

necessary, although replacement may be 
more economical and aesthetic. 

High Component has some permanent 
deflection. It is generally repairable, if 

necessary, although replacement may be 
more economical and aesthetic. 

High Component has not failed, but it has 
significant permanent deflections causing 

it to be unrepairable. 

There are several sources for response limits, including UFC 3-340-02 (DoD, 2008), 

Design of Blast-Resistant Buildings in Petrochemical Facilities (ASCE, 2010), FEMA 356 (ASCE 

and FEMA, 2000), and the New York City Building Code (NYCBC, 2008). Although all of these 

sources define the criteria based on deformation, the limiting values are different, so the designer 

may need to review these limits. This review, however, is limited a portion of what is provided in 

Design of Blast-Resistant Buildings in Petrochemical Facilities (ASCE, 2010). Before defining 

the response limit values, three important terminologies are defined: 

 Ductility ratio (𝜇𝜇): This is the ratio between the total displacement, 𝑋𝑋𝑚𝑚, and the elastic 

displacement,  𝑋𝑋𝐸𝐸, as follows:  

 𝜇𝜇 =  𝑋𝑋𝑚𝑚  𝑋𝑋𝐸𝐸⁄  (2.8) 

where displacement is the elongation of components subjected to axial load or the deflection 

of components subjected to bending, as shown in Figure 2.12 (ASCE, 2011). Ductility is a 

measure of how much a component can carry beyond the elastic range before it drops the load.  
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 Rotation (𝜃𝜃): This is the tangent angle at the support caused by the maximum deflection. Figure 

2.12 and 2.13 show the rotation of a single element and a frame, respectively. Note that plastic 

hinge can happen not just at the mid-span of a member but also at other locations. This criterion 

indicates the degree of stability in a component. 

 Side-sway deflection or lateral drift (𝛿𝛿): This is the movement of a vertical member relative to 

its bottom (Figure 2.13). Side-sway limits allow framed structures to minimize the P-delta 

effects on columns and the chance of progressive collapse (ASCE, 2010). Side-sway deflection 

limit can be defined follows: 

 𝛿𝛿 ≤ 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑒𝑒 𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡 (2.9) 

where the response limit is story height 𝐻𝐻 divided by some factor. 

 

Figure 2.12. Member (beam, slab, or panel) support rotations (DoD, 2008). 

 

Figure 2.13. Frame support rotations and side-sway deflection (DoD, 2008). 

Similar to the modeling and analysis methods discussed in Sections 2.6.2 and 2.6.3, there 

are two different types of criteria: for elements that are modeled and analyzed as SODF, and for 

MDOF systems such as framed structures (DoD, 2008). 
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2.7.1 Design Criteria for Individual Elements  

Most of the design criteria are provided for individual components. Table 2.8 shows the 

response criteria for some steel components for different levels of response. 

Table 2.8. Response limits for different components* (ASCE, 2010). 

Component 
Component response 

Low Medium High 
μ θ μ θ μ θ 

Steel Primary Frame Members 
(with significant compression)** 

1.5 1 2 1.5 3 2 

Steel Primary Frame Members 
(without significant compression) 

1.5 1 3 2 6 4 

R/C Beams, Slabs, & Wall Panels (no shear reinforcement) - 1 - 2 - 5 
* Response limits are for components responding primarily in flexure  
** Significant compression is when the axial compressive load is more than 20% of the dynamic axial capacity of 

the member. 

In Table 2.8, component response refers to the level of damage. Low response means there 

is no or only slight visible damage. Medium response refers to some permanent damage to the 

component that can be repaired. A component with high response has not failed, but it has 

experienced permanent damage that cannot be repaired (see Table 2.7). 

2.7.2 Design Criteria for Structural System  

The ductility ratio criteria concept for individual members is intractable in the design of 

frame structures because of the wide range and time-varying nature of the end conditions of 

components (DoD, 2008). That is, in addition to the support rotation criteria, the side-sway limits 

should be checked for framed structures. Table 2.9 presents side-sway deflection limits for 

different levels of response for steel-frame structures.  

 
Table 2.9. Side-sway limits for steel frame structures (ASCE, 2010). 

Response Low Response Medium Response High Response 
𝛿𝛿 𝐻𝐻/50 𝐻𝐻/35 𝐻𝐻/25 
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2.8 Progressive Collapse  

ASCE (2011) defines progressive collapse as “chain-reaction failure of a building’s 

structural system or elements as a result of, and to an extent disproportionate to, initial localized 

damage, such as that caused by an explosion.”  

As a result of a blast loading, structural components may fail, and their loads may be 

distributed to neighboring members. If the surrounding members cannot tolerate this extra load, 

failure can propagate vertically or horizontally. The entire structural system should be evaluated 

when a blast is expected to cause local failure or plastic hinges of structural components. In blast-

resistant design, local damage is expected, but the whole structural system should be stable.  

To prevent progressive collapse, the primary members or key elements must be 

strengthened, and/or the global structural redundancy should be increased, so that only local 

failures are permitted.  

The DoD (2016) requires that buildings of three or more stories must comply with 

progressive collapse standards. The reader is referred to work by the DoD (2016) and Marchand 

and Alfawakhiri (2005) for further details. 

2.9 Concluding Remarks 

In this review chapter, an overview of topics related to the design of blast-resistant 

structures is provided. Three methods to predict blast loading are discussed, and the modeling of 

structural response and material behavior under blast loading is reviewed. Design philosophies and 

criteria are explained, and basic concepts related to the blast-resistant design field are summarized. 

References on each topic are provided for further details.   
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CHAPTER 3  

METAHEURISTIC OPTIMIZATION ALGORITHMS 

Abstract 

In recent years, many nature-inspired metaheuristic optimization algorithms have been 

proposed in an effort to develop efficient and robust algorithms. The drawback in most of them is 

the large number of simulations required to obtain good designs. To reduce the number of 

structural analyses to reach the best design, a new two-phase algorithm is proposed and evaluated. 

This hybrid algorithm is based on the well-known Harmony Search (HS) algorithm and recently 

developed Colliding Bodied Optimization (CBO). HS analyzes and improves one design in every 

iteration whereas CBO generates and analyzes a new population of designs in every iteration. 

Based on the observed behavior of these two algorithms, a Hybrid Harmony Search - Colliding 

Bodies Optimization (HHC) is proposed. First phase of HHC uses the Improved Harmony Search 

(IHS) algorithm. A new design domain adjustment technique is also incorporated in IHS that 

dramatically reduces the number of possible combinations of discrete variables. This improves 

performance of the IHS algorithm. The second phase uses the Enhanced Colliding Bodies 

Optimization (ECBO). ECBO receives final designs from the first phase to enhance them further. 

This makes the second phase needing fewer iterations in comparison with the ECBO alone. The 

performance of the proposed algorithms is evaluated using some benchmark discrete structural 

optimization problems although the method is applicable to continuous variable problems as well. 

The results show HHC with design domain reduction to be quite effective, robust, and needing 

smaller number of structural analyses to solve optimization problems in comparison with IHS, 

ECBO, and some other metaheuristic optimization algorithms. HHC with design domain reduction 

is shown to be quite robust in the sense that different runs for a problem obtain same final design. 
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This is an important feature that leads to better confidence in the final solution from single run of 

the algorithm for a problem. 

3.1 Introduction 

Calculus-based optimization algorithms were developed more than 50 years ago and a vast 

amount of literature is available on the subject. Linear programming (LP), nonlinear programing 

(NLP), and dynamic programming (DP) methods need gradient information to improve the 

solution estimate (to find a search direction). These methods search for the optimum point in a 

neighborhood of the current estimate. In comparison with metaheuristic algorithms, these methods 

converge much faster and can find higher accuracy local solutions. 

Gradient-based methods are most appropriate for continuous variables and continuous 

functions. Many engineering problems have non-smooth functions in their formulation. As a result, 

gradient-based optimization methods cannot be used to solve such problem. On the other hand, 

stochastic, metaheuristic or nature-inspired algorithms use only simulation results to reach the final 

solution, such as the well-known Genetic Algorithms (GA), Ant Colony Optimization (ACO), 

Particle Swarm Optimization (PSO), and many others (Arora, 2017). The search is not near the 

current point and the discrete variables and non-differentiable functions can be treated routinely. 

They use an organized random search in the entire design space instead of gradient-based search 

in a neighborhood of the current point. Therefore, they are likely to converge to a global optimum 

point rather than a local optimum. Different runs for the same problem can take different paths to 

the final solution or even a different solution. The methods are suitable for both continuous and 

discrete variables and with one or more objective functions.  

Just like the gradient-based algorithms, stochastic algorithms have drawbacks. They 

require large computation time to obtain a reasonable solution. The computation time depends on 
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the number of the design variables and the range for each design variable; a larger design domain 

needs more iterations and thus more structural analyses. Increasing the number of iterations could 

be a good way to find a better design but there is no guarantee that a global optimum design will 

be found. Therefore, the best way is to run the algorithm more than once and choose the best 

solution from different runs. This, however, means that more computational effort is needed to 

solve a problem. A good metaheuristic algorithm has the ability to skip local optima, needs less 

number of simulations to find the best design, is applicable to different types of problems, and can 

obtain higher accuracy solutions (Kaveh, 2017).  

In an effort to reduce the number of structural analyses to reach the final design, a Hybrid 

Harmony Search - Colliding Bodies Optimization (HHC) algorithm is proposed and evaluated in 

this study. This proposal is based on the following observations about the behavior of two 

algorithms while solving some structural design problems: (1) Improved version of the harmony 

search algorithm (IHS) (Mahdavi, et al., 2007) makes rapid improvements towards the final design 

in the initial iterations and then its progress slows down once it is in a neighborhood of the best 

design, and (2) the enhanced version of the colliding bodies optimization (ECBO) makes steady 

improvement towards the final design requiring more structural analyses to reach a neighborhood 

of the final design compared to IHS. Therefore, the basic idea to be explored for the proposed 

hybrid algorithm is to determine if a combination of the two algorithms can reduce the number of 

structural analyses to reach the final design. That is, since IHS algorithm can reach neighborhood 

of the final design more rapidly, it will be used in phase one and its iterations will be terminated 

once the progress towards the final design slows down; in phase two, the improved designs from 

IHS will be passed on to the ECBO as its initial population (instead of random designs generated 

from the entire design domain) to improve the best design further. This may lead to fewer structural 



 
 

38 
 

analyses to reach the final design. In addition, a new design domain adjustment technique based 

on statistically analyzing some designs is added to IHS to increase the possibility of rapidly finding 

better designs. 

A new stopping criterion is also introduced in addition to a limit on the number of iterations 

for terminating phase one iterations. That is, when the algorithm is not able to find a better design 

for certain number of iterations, it is terminated.  

A major motivation for this work is to investigate procedures that can reduce the number 

of structural analyses to reach the final designs for the class of structural optimization problems 

that cannot be solved using the gradient-based algorithms. This becomes critically important while 

solving more complex structural optimization applications, such as nonlinear static response 

problems, nonlinear dynamic response problems and multidisciplinary problems. Each simulation 

of such problems can take enormous computational effort making meta-heuristic methods very 

time consuming.  

Some benchmark discrete variable truss optimization problems are solved using the 

proposed algorithm. These well-known examples are solved previously in the literature using 

different metaheuristic algorithms. The results are discussed and compared with the available 

results in the literature to study performance of the proposed algorithm.  

3.2 Formulation of Discrete Structural Optimization Problems  

In many practical design cases, design variables are discrete because members must be 

selected from the available sizes in a catalog. The formulation of the discrete design variables 

optimization problem is slightly different from continuous design variable optimization. In 

general, the problem can be stated as: 
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where 𝑿𝑿 is the vector of design variables with 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 unknowns, 𝐷𝐷𝑗𝑗  is a set of discrete values for 

the 𝑗𝑗𝑡𝑡ℎ design variable,  𝑜𝑜(𝑿𝑿) is a cost function (in this study, 𝑜𝑜(𝑿𝑿) is the total weight of the 

structure), and 𝑔𝑔𝑘𝑘(𝑿𝑿) is a constraint function. 

One way of treating constraints in metaheuristic algorithms is to combine constraints with 

the cost function to define a merit function (also called the penalty function) that is then minimized 

(Kaveh and Mahdavi, 2015):  

 𝐷𝐷(𝑿𝑿) = 𝑜𝑜(𝑿𝑿)[1 + 𝜓𝜓𝜓𝜓(𝑿𝑿)]𝜉𝜉   (3.4) 

 
𝜓𝜓(𝑿𝑿) = �𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘(𝑿𝑿))

𝑒𝑒

𝑘𝑘=1

 (3.5) 

where 𝜓𝜓(𝑿𝑿) is a constraint violation function, 𝜓𝜓 ≥ 1 is exploration penalty coefficient (𝜓𝜓 = 1 

unless another value is mentioned), 𝜉𝜉 > 1 is penalty function exponent (in this study, 𝜉𝜉 = 2), and 

max (0,𝑔𝑔𝑘𝑘(𝑿𝑿)) ≥ 0 is the violation value of the 𝑘𝑘𝑡𝑡ℎ inequality constraint. The present problem 

has just inequality constraints. However, if equality constraints are present in the problem 

formulation, they are treated by including their violations in Eq. (3.5). 

3.3 Metaheuristic Optimization Algorithms 

Over the years, many metaheuristic optimization algorithms have been explored. More 

recent techniques are based on observations about some natural phenomena, such as survival of 

the fittest and genetic inheritance in Genetic Algorithms (GA), which is inspired by the basic 

mechanism of natural evolution developed by Goldberg and Holland (1988); Simulated Annealing 

 𝐷𝐷𝑖𝑖𝑟𝑟𝐹𝐹   𝑿𝑿 = [𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟];     𝑚𝑚𝑗𝑗 ∈ 𝐷𝐷𝑗𝑗;   𝑗𝑗 = 1,2, … . ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟  (3.1) 

 to minimize    𝑜𝑜(𝑿𝑿)  (3.2) 

 subject to   𝑔𝑔𝑘𝑘(𝑿𝑿) ≤ 0;    𝑘𝑘 = 1,2, … ,𝑟𝑟   (3.3) 



 
 

40 
 

(SA) proposed by Kirkpatrick et al. (1983); Particle Swarm Optimization (PSO) proposed by 

Kennedy and Eberhart (2001); Ant Colony Optimization (ACO) introduced by Dorigo et al. 

(1996); Harmony Search (HS) algorithm invented by Geem et al. (2001); Big Bang–Big Crunch 

algorithm (BB–BC) introduced by Erol and Eksin (2006); Colliding Bodies Optimization (CBO) 

proposed by Kaveh and Mahdavi (2014); and Ray Optimization (RO), developed by Kaveh and 

Khayat (2012).  

In this study, HS algorithm and its improved version, and CBO and its enhanced version 

are summarized since the proposed hybrid algorithm HHC uses these procedures.  

3.3.1 Harmony Search Algorithm  

Geem, Kim, and Longanathan (2001) presented the HS algorithm based on music 

improvisation process of jazz musicians. The following five steps describe the HS algorithm: 

Step 1: Parameter setting 

The algorithm starts by initially generating a set of random designs from the design domain. 

Then in every iteration, a new design is generated and analyzed. If this design is better than the 

worst design in the current population, then it replaces that design; otherwise, another design is 

generated. The process is continued until a limit on the number of iterations is reached. 

HS has four parameters that need to be initialized before starting the algorithm. There are 

no general guidelines for their selection; they are selected depending on the problem (Degertekin, 

2008). Thus, the best way is to try different values to find the best combination for an application. 

The parameters are:  

1- Harmony memory size (𝐻𝐻𝑀𝑀𝑆𝑆). It is the initial number of candidate solutions selected randomly 

from the design domain. For example, if 𝐻𝐻𝑀𝑀𝑆𝑆 is 10, the algorithm starts by selecting 10 designs 
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and for every design evaluates the merit function 𝐷𝐷 if the problem is constrained or the objective 

function 𝑜𝑜 if the problem is unconstrained. This information is saved in a matrix called harmony 

memory (𝐇𝐇𝐇𝐇).  

2- Harmony memory consideration ratio (𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅): Its value ranges between 0 and 1. It is the 

probability of selecting design variables from the current 𝐇𝐇𝐇𝐇 to generate a new design. 

Variables selected from current HM may go through further adjustment depending on the pitch 

adjustment rate.   

3-  Pitch adjusting rate (𝑃𝑃𝐴𝐴𝑅𝑅): Its value ranges between 0 and 1 and it is the probability of mutation 

of the design variable selected from 𝐇𝐇𝐇𝐇 to a neighboring value. 

4- Maximum improvisations (𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑒𝑒𝑟𝑟𝑃𝑃1): It is a limit on the number of iterations for HS.  

Step 2: Initialization 

The HS starts with 𝐻𝐻𝑀𝑀𝑆𝑆 random designs to populate the harmony memory matrix HM as: 

 
HM= �

𝑚𝑚11 𝑚𝑚12    ⋯ 𝑚𝑚1𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟
⋮ ⋱ ⋮

𝑚𝑚𝐻𝐻𝑀𝑀𝐻𝐻1 𝑚𝑚HMS2 ⋯ 𝑚𝑚𝐻𝐻𝑀𝑀𝐻𝐻𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟
� (3.6) 

where 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 is the number of design variables. Thus each row of this matrix represents a design 

point and each column is associated with a design variable. 

Step 3: Harmony improvisation: 

A new design point is improvised where each design variable is selected from either the 

current population of designs in the matrix 𝐇𝐇𝐇𝐇 or from its possible range of values. These 

selections are based on harmony memory consideration, pitch adjustment, and random numbers.  

Using harmony memory consideration parameter 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅, the new value for the 𝑗𝑗𝑡𝑡ℎ design 

variable is chosen as 𝑚𝑚𝑖𝑖
𝑗𝑗  from either the 𝑗𝑗𝑡𝑡ℎ column of 𝐇𝐇𝐇𝐇 or from the allowable values for this 
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design variable (Degertekin, 2008). For each design variable 𝑗𝑗 (𝑗𝑗 =  1 to 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟), the row index 𝑖𝑖 

is selected randomly as follows: 

 𝑚𝑚𝑖𝑖
𝑗𝑗  ∈ �𝑚𝑚1

𝑗𝑗 , 𝑚𝑚2
𝑗𝑗 , … , 𝑚𝑚𝐻𝐻𝑀𝑀𝐻𝐻

𝑗𝑗 �;     𝑖𝑖𝑜𝑜 𝑟𝑟𝑟𝑟𝐻𝐻𝑀𝑀𝐶𝐶𝐻𝐻
𝑗𝑗  ≤  𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅 (3.7) 

 𝑚𝑚𝑖𝑖
𝑗𝑗  ∈ 𝐷𝐷𝑗𝑗;      𝑖𝑖𝑜𝑜 𝑟𝑟𝑟𝑟𝐻𝐻𝑀𝑀𝐶𝐶𝐻𝐻

𝑗𝑗  > 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅 (3.8) 

where 𝑟𝑟𝑟𝑟𝐻𝐻𝑀𝑀𝐶𝐶𝐻𝐻
𝑗𝑗  is a random number uniformly distributed over the interval [0,1] and 𝐷𝐷𝑗𝑗  is the 

allowable set of values for the 𝑗𝑗𝑡𝑡ℎ design variable.  

Every design variable selected from harmony memory is examined further to determine 

whether it should be pitch-adjusted or not. The parameter 𝑃𝑃𝐴𝐴𝑅𝑅 is used for this purpose as follows: 

 
Pitch adjusting decision for 𝑚𝑚𝑖𝑖

𝑗𝑗  �
yes   if    𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝐻𝐻

𝑗𝑗  ≤ 𝑃𝑃𝐴𝐴𝑅𝑅
No    if   𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝐻𝐻

𝑗𝑗  > 𝑃𝑃𝐴𝐴𝑅𝑅
                     (3.9) 

where  𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝐻𝐻
𝑗𝑗  is a random number uniformly distributed over the interval [0,1]. If the pitch 

adjustment decision is “𝑦𝑦𝑒𝑒𝑟𝑟” 𝑚𝑚𝑖𝑖
𝑗𝑗  is replaced as follow:  

    𝑚𝑚𝑖𝑖,𝑛𝑛𝑒𝑒𝑤𝑤
𝑗𝑗 =  𝑚𝑚𝑖𝑖

𝑗𝑗  + 1 𝑖𝑖𝑜𝑜 𝑃𝑃𝐴𝐴𝑅𝑅𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑
𝑗𝑗  < 0.5 

𝑚𝑚𝑖𝑖,𝑛𝑛𝑒𝑒𝑤𝑤
𝑗𝑗 =  𝑚𝑚𝑖𝑖

𝑗𝑗 − 1 𝑖𝑖𝑜𝑜 𝑃𝑃𝐴𝐴𝑅𝑅𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑
𝑗𝑗  ≥ 0.5 

(3.10) 

where 𝑃𝑃𝐴𝐴𝑅𝑅𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑
𝑗𝑗  is random number uniformly distributed over the interval [0,1], and +1 and -1 

means moving to the next higher or lower allowable value for this variable (Geem, 2009).  

Step 4: Update the harmony memory: 

The new design from step 3 is evaluated. If it is better than the worst design in 𝐇𝐇𝐇𝐇, the 

new design replaces the worst design in 𝐇𝐇𝐇𝐇; otherwise, a new design is improvised. 

Step 5: Termination criteria 



 
 

43 
 

If the limit on number of iterations is reached, terminate the algorithm; otherwise, go to 

step 3.  

3.3.2 Improved Harmony Search Algorithm (IHS)  

The concept of IHS is the same as HS (the five steps in Section 3.3.1). However, standard 

HS algorithm uses fixed value of 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅 and 𝑃𝑃𝐴𝐴𝑅𝑅. The main drawback of the standard HS 

algorithm is that it needs a large number of iterations to find an acceptable solution (Mahdavi et 

al., 2007). 

In IHS, 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅 and 𝑃𝑃𝐴𝐴𝑅𝑅 are adjusted with every iteration using Eqs. (3.11) and (3.12) to 

improve the performance of the HS algorithm by eliminating its drawbacks (Sun and Chang, 

2015).  

 
𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅(𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟) = 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅𝑚𝑚𝑎𝑎𝑒𝑒 −

(𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅𝑚𝑚𝑎𝑎𝑒𝑒 − 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛)
𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑒𝑒𝑟𝑟𝑃𝑃1

× 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 (3.11) 

 
𝑃𝑃𝐴𝐴𝑅𝑅(𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟) =

(𝑃𝑃𝐴𝐴𝑅𝑅𝑚𝑚𝑎𝑎𝑒𝑒 − 𝑃𝑃𝐴𝐴𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛)
𝜋𝜋/2

× 𝑛𝑛𝑟𝑟𝑎𝑎𝑡𝑡𝑛𝑛𝑟𝑟(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1) + 𝑃𝑃𝐴𝐴𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 (3.12) 

where 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 is the current iteration, 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅𝑚𝑚𝑎𝑎𝑒𝑒 and 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 are maximum and minimum 

harmony memory consideration ratios, respectively, 𝑃𝑃𝐴𝐴𝑅𝑅𝑚𝑚𝑎𝑎𝑒𝑒 and 𝑃𝑃𝐴𝐴𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 are maximum and 

minimum pitch adjacent ratios, respectively. Note that 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅 is a linearly decreasing function of 

iteration number. This increases the probability of selecting a design variable from its allowable 

range of values rather than from the harmony memory. Also, 𝑃𝑃𝐴𝐴𝑅𝑅 is an increasing function of the 

iteration number that increases the probability of pitch adjustment for a design variable when it is 

selected from the HM matrix. These processes introduce more diversity into the population of 

design in the HM matrix. 
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Just like HS, there are no guidelines that one can follow to select IHS parameters. 

Therefore, the best way is to start with a set of values then try different values to find the best 

combination. In this study, 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅𝑚𝑚𝑎𝑎𝑒𝑒 and 𝑃𝑃𝐴𝐴𝑅𝑅𝑚𝑚𝑎𝑎𝑒𝑒 of 0.85 and 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑃𝑃𝐴𝐴𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 of 0.35 

show good performance.  

3.3.3 Colliding Bodies Optimization (CBO) 

3.3.3.1 Background Material 

Kaveh and Mahdavi (2014) developed this metaheuristic algorithm that is inspired by the 

laws of one-dimensional collision. The algorithm works with a population of design at each 

iteration. Here each design in the population is considered as an object or body with mass and 

velocity 

Using laws of momentum and energy, collision can be simulated between objects such as 

two balls in a billiard game or two cars in an accident. If there are no external forces acting on the 

system, the momentum of all objects before the collision equals the momentum of all objects after 

the collision. Conservation of linear momentum of two bodies in one-dimensional collision is 

expressed as: 

 𝑙𝑙1𝑛𝑛1 + 𝑙𝑙2𝑛𝑛2 = 𝑙𝑙1𝑛𝑛1′ + 𝑙𝑙2𝑛𝑛2′  (3.13) 

where 𝑙𝑙1, 𝑛𝑛1, and 𝑛𝑛1′  are mass, initial velocity and final velocity of the first object, respectively, 

and 𝑙𝑙2, 𝑛𝑛2, and𝑛𝑛2′  are mass, initial velocity and final velocity of the second object, respectively. 

For one dimensional collision, let body 1 approach and collide with body 2; therefore 𝑛𝑛1 >

𝑛𝑛2. After the collision, the bodies separate; therefore 𝑛𝑛2′ > 𝑛𝑛1′ . The system loses some of its energy 

during the collision. The Coefficient of Restitution (COR) 𝜀𝜀 ≥ 0 indicates how much kinetic 

energy remains in the system after collision that is defined as:  
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𝜀𝜀 =

Velocity of separation after collision
Velocity of approach before collision

=
𝑛𝑛2′ − 𝑛𝑛1′

𝑛𝑛1 − 𝑛𝑛2
 (3.14) 

Using Eqs. (3.13) and (3.14) the velocities after collision are calculated as follows (Kaveh 

and Mahdavi, 2014):  

 
 𝑛𝑛1′ =

(𝑙𝑙1 − 𝜀𝜀 𝑙𝑙2)𝑛𝑛1 + (1 + 𝜀𝜀) 𝑙𝑙2𝑛𝑛2
𝑙𝑙1 +  𝑙𝑙2

   (3.15) 

 𝑛𝑛2′ =
(𝑙𝑙2 − 𝜀𝜀 𝑙𝑙1)𝑛𝑛2 + (1 + 𝜀𝜀 )𝑙𝑙1𝑛𝑛1

𝑙𝑙1 + 𝑙𝑙2
 (3.16) 

There are two cases of collision: 

i- A perfect elastic collision. There is no loss of kinetic energy in collision (𝜀𝜀 = 1).  

ii- An inelastic collision. There is part of the kinetic energy that is changed to some other form 

of energy (𝜀𝜀 < 1).  For the most real bodies, the value of 𝜀𝜀 is between 0 and 1.  

3.3.3.2 Colliding Bodies Optimization  

In Colliding Bodies Optimization (CBO), the Colliding Bodies (CBs) (the current 

population of designs) are divided into two equal groups: stationary and moving objects (Kaveh 

and Mahdavi, 2014). The moving objects move toward and collide the stationary objects causing: 

1- Stationary objects to move to another position. 

2- Moving objects to change their position.  

After the collision, the position of both colliding and stationary bodies (population of 

designs) are updated using new velocities from Eqs. (3.15) and (3.16). The CBO can be executed 

in following three steps: 

Step 1: Initialization. Initializing an array of CBs (initial population of designs) with random 

positions as follow: 
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 𝑚𝑚𝑖𝑖
𝑗𝑗 = 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛 + 𝑟𝑟𝑟𝑟𝑖𝑖

𝑗𝑗 × �𝑚𝑚𝑗𝑗,𝑚𝑚𝑎𝑎𝑒𝑒 − 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛�; 

 𝑖𝑖 = 1, 2, … , 2𝑟𝑟 and 𝑗𝑗 = 1, 2, … ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 
(3.17) 

where 𝑚𝑚𝑖𝑖
𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ variable of the 𝑖𝑖𝑡𝑡ℎ design in the CB matrix, 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑚𝑚𝑗𝑗,𝑚𝑚𝑎𝑎𝑒𝑒 are the lower and 

the upper bounds of 𝑗𝑗𝑡𝑡ℎ design variable, 𝑟𝑟𝑟𝑟𝑖𝑖
𝑗𝑗 is a random number between 0 and 1, 2𝑟𝑟 is the total 

number of CBs or the population size, and 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 is number of design variables. To obtain discrete 

values for design variables, 𝑚𝑚𝑖𝑖
𝑗𝑗  is rounded to the nearest permissible discrete value.   

Step 2: Search. This step is divided into 4 sub-steps: 

1- CBs ranking: use the merit function 𝐷𝐷(𝑿𝑿) to compute CBs’ masses (Eq. (3.18)), and sort the 

CBs’ in a descending order based on their calculated masses: 

 
 𝑙𝑙𝑖𝑖 =

1/𝐷𝐷𝑖𝑖(𝑿𝑿)
∑ 1/𝐷𝐷𝑘𝑘(𝑿𝑿)2𝑛𝑛
𝑘𝑘=1

 ;     𝑖𝑖 = 1, 2, … , 2𝑟𝑟 (3.18) 

where 𝑙𝑙𝑖𝑖 is the mass of the 𝑖𝑖𝑡𝑡ℎ body (design), 𝐷𝐷𝑖𝑖(𝑿𝑿) and 𝐷𝐷𝑘𝑘(𝑿𝑿) are the merit function values of 

the 𝑖𝑖𝑡𝑡ℎ and 𝑘𝑘𝑡𝑡ℎ bodies (designs), respectively. This way the designs are sorted from the best to the 

worst. Note that larger mass in Eq. (3.18) corresponds to a smaller value for the merit function. 

2- Groups creation. CBs are equally divided into two groups:  

(i) Stationary CBs: these are the upper half of CBs; these better designs that are assigned zero 

velocities before collision: 

 𝒗𝒗𝑠𝑠 = 𝟎𝟎;   𝑟𝑟 = 1, 2, … , 𝑟𝑟 (3.19) 

where 𝒗𝒗𝒔𝒔 is the velocity of the 𝑟𝑟𝑡𝑡ℎ CB in the stationary group. 

(ii) Moving group: these are the lower part of CBs and they move toward the stationary CBs 

with velocity before collision as: 
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 𝒗𝒗𝑚𝑚 = 𝑿𝑿𝑚𝑚 − 𝑿𝑿𝑠𝑠;     𝑙𝑙 = 𝑟𝑟 + 1, … , 2𝑟𝑟  and 𝑟𝑟 = 𝑙𝑙 − 𝑟𝑟 (3.20) 

 where 𝒗𝒗𝑚𝑚 and 𝑿𝑿𝑚𝑚 are the velocity and position of the 𝑙𝑙𝑡𝑡ℎ CB in the moving group, respectively, 

and 𝑿𝑿𝑠𝑠 is the 𝑟𝑟𝑡𝑡ℎ CB position in the stationary group. 

3- Evaluation after the collision. After the collision, velocities of stationary and moving CBs are 

calculated based on inelastic one dimensional collision of two bodies using Eqs. (3.15) and (3.16): 

 
    𝒗𝒗𝑠𝑠′ =

(1 + 𝜀𝜀 ) 𝑙𝑙𝑚𝑚 𝒗𝒗𝑚𝑚
𝑙𝑙𝑚𝑚 +  𝑙𝑙𝑠𝑠

;   𝑟𝑟 = 1, 2, … , 𝑟𝑟 𝑛𝑛𝑟𝑟𝐹𝐹 𝑙𝑙 = 𝑟𝑟 + 𝑟𝑟 (3.21) 

 and the velocity of the moving CBs is obtained as: 

 
𝒗𝒗𝑚𝑚′ =

(𝑙𝑙𝑚𝑚 − 𝜀𝜀 𝑙𝑙𝑠𝑠) 𝒗𝒗𝑚𝑚
𝑙𝑙𝑚𝑚 +  𝑙𝑙𝑠𝑠

;   𝑙𝑙 = 𝑟𝑟 + 1, … , 2𝑟𝑟  𝑛𝑛𝑟𝑟𝐹𝐹 𝑟𝑟 = 𝑙𝑙− 𝑟𝑟 (3.22) 

 𝜀𝜀 = 1 −
𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2

𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2
 (3.23) 

where 𝒗𝒗𝑠𝑠′  is the velocity of the 𝑟𝑟𝑡𝑡ℎ CB of stationary group after collision; 𝒗𝒗𝑚𝑚 and 𝒗𝒗𝑚𝑚′  are the 

velocity of the 𝑙𝑙𝑡𝑡ℎ CB of the moving group before and after collision, respectively; 𝑙𝑙𝑠𝑠 is the 

mass of the 𝑟𝑟𝑡𝑡ℎ CB of the stationary group; 𝑙𝑙𝑚𝑚 is the mass of the 𝑙𝑙𝑡𝑡ℎ CB of the moving group; 

𝜀𝜀 is the COR parameter; 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 is the current iteration of ECBO; and 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 is the limit on 

number of iterations for ECBO. Note that 𝜀𝜀 is a decreasing function of the iteration number.  

4- CBs updating. The new position of CBs are calculated as follows:  

   𝑿𝑿𝑠𝑠𝑛𝑛𝑒𝑒𝑤𝑤 = 𝑿𝑿𝑠𝑠 + [𝒓𝒓𝒓𝒓𝑠𝑠]𝒗𝒗𝑠𝑠′ ;    𝑟𝑟 = 1,2, … ,𝑟𝑟 (3.24) 

   𝑿𝑿𝑚𝑚𝑛𝑛𝑒𝑒𝑤𝑤 = 𝑿𝑿𝑚𝑚 + [𝒓𝒓𝒓𝒓𝑚𝑚]𝒗𝒗𝑚𝑚′ ;     𝑙𝑙 = 𝑟𝑟 + 1, … ,2𝑟𝑟 (3.25) 

where 𝑿𝑿𝑠𝑠𝑛𝑛𝑒𝑒𝑤𝑤 and 𝑿𝑿𝑚𝑚𝑛𝑛𝑒𝑒𝑤𝑤are the new positions of the stationary and moving bodies, respectively, 𝑿𝑿𝑠𝑠 

and 𝑿𝑿𝑚𝑚 are the old positions of the stationary and moving bodies, respectively, 𝒓𝒓𝒓𝒓𝑠𝑠 and 𝒓𝒓𝒓𝒓𝑚𝑚 are 

diagonal matrices with diagonal elements as random numbers between -1 and 1. To obtain discrete 

values of designs, 𝑿𝑿𝑠𝑠𝑛𝑛𝑒𝑒𝑤𝑤and  𝑿𝑿𝑚𝑚𝑛𝑛𝑒𝑒𝑤𝑤 are rounded to the nearest permissible discrete values.   
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Step 3: Terminating criterion control 

If the limit on number of iterations (𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2) is reached the algorithm is terminated. 

Otherwise, go to Step 2.  

3.3.3.3 Enhanced Colliding Bodies Optimization (ECBO) 

This metaheuristic algorithm is an enhancement of the standard CBO. It uses memory to 

save some good designs and a mechanism to escape from local optima to get better solutions faster. 

This is done by adding two more sub-steps to step 2 of the standard CBO as follows (Kaveh and 

Mahdavi, 2015): 

1- Saving: this sub-step is added between sub-steps i and ii in step 2 of the standard CBO. In this 

sub-step, some historically good designs (having smaller merit function values) and their 

related information are saved in a matrix called Colliding Memory (CM). The good designs 

saved in CM replace the worst designs in the current population at the beginning of every 

iteration. After that the CM is also updated. Number of designs saved is CMS. 

2- Escaping from local optima: this sub-step is added after the last sub-step of step 2 of the standard 

CBO. In this sub-step, a parameter called 𝑃𝑃𝑟𝑟𝑜𝑜 within [0, 1] is introduced. For each colliding body, 

𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 (𝑖𝑖 =  1, 2, … , 2𝑟𝑟), which is a random number uniformly distributed within [0, 1], is compared 

with 𝑃𝑃𝑟𝑟𝑜𝑜. If 𝑃𝑃𝑟𝑟𝑜𝑜 > 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖, one component of the 𝑖𝑖𝑡𝑡ℎ CB is selected randomly and its value is 

regenerated as:  

 𝑚𝑚𝑖𝑖
𝑗𝑗 = 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛 + 𝑟𝑟𝑟𝑟𝑟𝑟 × �𝑚𝑚𝑗𝑗,𝑚𝑚𝑎𝑎𝑒𝑒 − 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛�;   𝑖𝑖 = 1,2, … ,2𝑟𝑟 (3.26) 

where 𝑚𝑚𝑖𝑖
𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ variable of the 𝑖𝑖𝑡𝑡ℎ design, 𝑟𝑟𝑟𝑟𝑟𝑟 is a random number between 0 and 1, and 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛 

and 𝑚𝑚𝑗𝑗,𝑚𝑚𝑎𝑎𝑒𝑒 are the lower and upper bounds of the 𝑗𝑗𝑡𝑡ℎ variable, respectively. The reason to change 
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just one component of 𝑖𝑖𝑡𝑡ℎ CB is to protect the structures of CBs. This mechanism was shown to 

give diversity leading to better designs (Kaveh and Mahdavi, 2015). 

3.4 HHC: Hybrid Improved Harmony Search-Enhanced Colliding Bodies Algorithm  

3.4.1 Motivation for Hybrid Algorithm 

Compared to other metaheuristic algorithms, ECBO is simple, requires just one algorithmic 

parameter, and performs well in term of the quality of the solution. IHS is easy to implement and 

it works fine with any kind of problem. However, both have some shortcomings that were observed 

while solving some problems. IHS needs specification of several algorithmic parameters that can 

affect performance of the algorithm. ECBO makes steady progress towards the neighborhood of 

the final design whereas IHS makes quite rapid progress towards a similar neighborhood. 

Therefore, IHS requires fewer structural analyses compared to ECBO to reach a neighborhood of 

the final design. However, after reaching the neighborhood of the final design, progress of IHS is 

quite slow to reach the final design whereas ECBO continues to make good progress towards the 

solution.  

Basic idea of the proposed HHC algorithm is to use IHS in Phase 1 to reach the 

neighborhood of the solution quickly and then switch to the ECBO to reach the final design. This 

way ECBO starts with some improved designs in Phase 2. This combination could lead to the final 

solution in fewer structural analyses which will be very useful while solving more complex 

problems, such as dynamic response optimization problems with discrete variables and non-

differentiable functions. 

3.4.2 Phase 1: Improved Harmony Search (IHS)  

IHS is used in Phase 1 to obtain a good set of designs quickly for Phase 2. Two additional 

steps are added to IHS: 
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i- Stopping Criteria: In addition to a maximum number of iteration criterion discussed in step 5 in 

section 3.1, a new merit function improvement criterion is added. That is, when there is no or small 

improvement in the current merit function value after many iterations, this phase is terminated. 

The pseudo-code of this criterion is as follows: 

If1 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 ≥ 𝑟𝑟1 × 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 

If2 (𝑀𝑀𝑒𝑒𝑟𝑟𝑖𝑖𝑡𝑡(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1) −𝑀𝑀𝑒𝑒𝑟𝑟𝑖𝑖𝑡𝑡(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 − 𝑟𝑟2 × 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1))/𝑀𝑀𝑒𝑒𝑟𝑟𝑖𝑖𝑡𝑡(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1) ≤ 𝜀𝜀𝑃𝑃1 

Terminate Phase 1 

End2  

End1 

 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 = 10 × 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 × number of elements in the discrete set (3.27) 

where 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 is the current iteration, 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 is the limit number of iterations for Phase 1.  

Note that the parameters 𝑟𝑟1, 𝑟𝑟2 and 𝜀𝜀𝑃𝑃1 are selected so that premature termination of the algorithm 

does not occur. They do not affect performance of the algorithm in any other way. The limit on 

number of iterations, 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 in Eq. (3.27), is dependent on the number of design variables and 

the number of elements in the discrete set. When the number of design variables and/or the number 

of elements in the discrete set increase, the search space enlarges. Therefore, metaheuristic 

algorithms need more iterations. Thus, Eq. (3.27) is used instead of a fixed number for each 

problem.  

ii- Domain adjustment: During the first few iterations (compared with total number of iterations), 

IHS improves initial designs rapidly. Although, at this stage, the best design may be far from the 

final design, it was observed that some of the design variables in HM have the same or about the 

same values from iteration to iteration. These design variables are most likely at their best values 
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in this phase. That is, the allowable range for these design variables can be reduced based on their 

mean value and standard deviation. In other words, the design domain can be reduced based on 

the current state of HM. Section 3.4.4 provides more details for this step. 

3.4.3 Phase 2: Enhanced Colliding Bodies Optimization (ECBO) 

ECBO starts with 2𝑟𝑟 random designs and it keeps colliding them in search for a better 

solution, as explained earlier. Thus, if the initial population is not reasonably good, the algorithm 

most likely needs more iterations to find the final design. In each iteration, ECBO needs to evaluate 

the problem functions 2𝑟𝑟 times, where 2𝑟𝑟 is the population size.  

In HHC, some better designs generated by Phase 1 are passed on to the CB matrix. Then 

ECBO collides those designs to enhance them further. That is, starting with better designs, the 

total number of iterations for the ECBO algorithm can be reduced to obtain the final design. This 

is quite beneficial since ECBO needs to evaluate the problem functions 2𝑟𝑟 times in one iteration. 

For example, if the population size is 50 in ECBO and the number of iterations to enhance the 

initial population are 100, then ECBO alone needs 5000 structural analyses to improve the starting 

population. However, this improvement may be done with fewer structural analyses by replacing 

the initial population with some better designs of Phase 1 results. Using the same population sizes 

of 50, 75, and 100 for both phases (passing all Phase 1 designs to Phase 2) did not improve 

performance of the algorithm in term of quality of the solutions and the number of structural 

analyses needed to obtain the final designs. Overall, passing just some better designs of Phase 1 to 

Phase 2 makes the algorithm obtain the final design more often with smaller number of structural 

analyses.  

In this phase, the stopping criterion is a maximum number of iterations as follows: 



 
 

52 
 

 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 = 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 × number of elements in the discrete set  (3.28) 

Similar to Eq. (3.27), Eq. (3.28) is based on number of design variables and number of elements 

in the discrete set.  

3.4.4 Domain Adjustment Technique  

This additional step is added to Phase 1 to increase the possibility for IHS to find better 

designs faster to enhance the general performance of HHC in term of the number of structural 

analyses required to reliably find the best design. Domain reduction can be done by looking at the 

standard deviation of each design variable values for some better designs in the HM matrix. When 

a design variable has a small standard deviation, its upper and lower limits in the allowable set of 

discrete values 𝐷𝐷𝑗𝑗  for the 𝑗𝑗𝑡𝑡ℎ design variable is changed as follows: 

 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛 =  𝑚𝑚𝑗𝑗,𝑎𝑎𝑛𝑛𝑎𝑎 − 𝑚𝑚𝑗𝑗,𝑠𝑠𝑑𝑑   (3.29) 

 𝑚𝑚𝑗𝑗,𝑚𝑚𝑎𝑎𝑒𝑒 =  𝑚𝑚𝑗𝑗,𝑎𝑎𝑛𝑛𝑎𝑎 + 𝑚𝑚𝑗𝑗,𝑠𝑠𝑑𝑑  (3.30) 

 𝑚𝑚𝑗𝑗,𝑎𝑎𝑛𝑛𝑎𝑎 = 1
𝑛𝑛𝑑𝑑
∑ (𝑚𝑚𝑖𝑖

𝑗𝑗)𝑛𝑛𝑑𝑑
𝑖𝑖=1    (3.31) 

 
𝑚𝑚𝑗𝑗,𝑠𝑠𝑑𝑑 = � 1

𝑛𝑛𝑑𝑑−1
∑ (𝑚𝑚𝑖𝑖

𝑗𝑗 − 𝑚𝑚𝑗𝑗,𝑎𝑎𝑛𝑛𝑎𝑎)2𝑛𝑛𝑑𝑑
𝑖𝑖=1    (3.32) 

where 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑚𝑚𝑗𝑗,𝑚𝑚𝑎𝑎𝑒𝑒 are the lower and upper bounds of the 𝑗𝑗𝑡𝑡ℎ design variable, respectively, 

𝑚𝑚𝑗𝑗,𝑎𝑎𝑛𝑛𝑎𝑎 is the average of 𝑗𝑗𝑡𝑡ℎ design variable, 𝑚𝑚𝑗𝑗,𝑠𝑠𝑑𝑑  is the standard deviation of 𝑗𝑗𝑡𝑡ℎ design variable, 

and 𝑟𝑟𝐹𝐹 is number of designs that are considered in calculating the average and the standard 

deviation. Designs that are considered in this step to find the new upper and lower limits are 

important. Therefore, this step starts only after a certain number of iterations so that IHS has 

already improved initial designs enough. IHS with domain adjustment shows a better convergence 
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behavior over IHS without domain reduction. Domain reduction makes IHS obtain better designs 

in fewer iterations.   

Sometimes, the upper and lower limits of a design variables become equal (the standard 

deviation is zero). That is, to avoid trapping in local optima, at least five elements are kept in the 

discrete set by modifying the upper and lower limits as follows:  

 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛 =  𝑚𝑚𝑗𝑗,𝑎𝑎𝑛𝑛𝑎𝑎 − 2   (3.33) 

 𝑚𝑚𝑗𝑗,𝑚𝑚𝑎𝑎𝑒𝑒 =  𝑚𝑚𝑗𝑗,𝑎𝑎𝑛𝑛𝑎𝑎 + 2   (3.34) 

where -2 and +2 imply two elements below and two elements above the average value. Also, when 

the best design in the current HM has a design variable is at the modified lower or the upper bound, 

the current lower or upper bound is adjusted using Eq. (3.33) or Eq. (3.34), respectively. The 

proposed domain adjustment technique is dynamic. That is, the lower and upper bounds are 

adjusted based on the best design and the 𝑟𝑟𝐹𝐹 better designs in HM at each iteration. 

The domain reduction step starts when there are feasible and nearly feasible designs in the 

HM matrix (designs that have constraint violation of 5% or less). The minimum number of feasible 

or nearly feasible designs should not be one so that the upper and lower bounds become the same 

(in this study, 5% of the population is used as the minimum number of feasible or nearly feasible 

designs). After sorting of designs in HM from the best to the worst, the domain reduction 

procedure for each design variable is implemented using the following pseudo-code: 

If1 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 ≥ 𝑟𝑟3 × 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1   

If2 number of feasible or nearly feasible designs ≥ 5% of 𝐻𝐻𝑀𝑀𝑆𝑆   

change the lower and upper limits using Eqs. (3.29) and (3.30), respectively. 

If3 number of elements in the discrete set of the 𝑗𝑗𝑡𝑡ℎ design variable < 5 
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change the lower and upper limits using Eqs. (3.33) and (3.34), respectively. 

End3  

If4 𝑚𝑚𝑗𝑗,𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏 ≤ 𝑚𝑚𝑗𝑗,𝑚𝑚𝑖𝑖𝑛𝑛 or 𝑚𝑚𝑗𝑗,𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏 ≥ 𝑚𝑚𝑗𝑗,𝑚𝑚𝑎𝑎𝑒𝑒 

change the lower or upper limits using Eq. (3.33) or Eq. (3.34), respectively. 

End4  

End2 

End1 

Here 𝑟𝑟3 is the percentage of 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 to start this criterion. 𝑟𝑟3 should be selected so that IHS has 

already improved designs. Based on observing IHS convergence behavior, it is recommended to 

use 𝑟𝑟3 ≥10% of 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1. This way, the standard deviation can give more accurate results about 

the design variable state. 𝑚𝑚𝑗𝑗,𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏 is the value of the 𝑗𝑗𝑡𝑡ℎ design variable of the best design in HM. 

Reduction of the design variable bounds shrinks the feasible set for the problem. This 

increases the possibility of obtaining better designs at the end of Phase 1 with reduced number of 

structural analyses. Including this technique in Phase 2 showed no improvement in the 

performance of the algorithm since ECBO can efficiently treat larger domains for design variables. 

Therefore domain reduction scheme is not suggested for the ECBO. First numerical example in 

Section 3.5.1 is used to show how this step reduces the design domain and enhances the 

performance of the HHC significantly.  

3.4.5 Evaluation of the Algorithms  

Multiple runs for the same problem will be executed to study performance of the 

algorithms. Several metrics will be used in evaluations: 
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1- Average of the final merit function values obtained with different runs. Average value that is 

closer to the best solution will indicate ability of the algorithm to obtain the best design more 

often. 

2- Standard deviation of the final values of the merit functions obtained with different runs. Smaller 

value of the standard deviation will imply robustness of the algorithm to obtain the best design 

with different runs for the problem. 

3- Average of the number of structural analyses needed to reach the final solution. Smaller value 

will indicate more efficient algorithm. 

4- Standard deviation of the number of structural analyses. Smaller value will indicate robustness 

of the algorithm to obtain the final design in approximately same number of structural analyses 

with different runs for the same problem. 

3.5 Numerical Examples 

Before the proposed HHC algorithm can be used to solve more complex and larger 

problems, it needs to be tested to solve some standard test problems and study its performance. In 

the following sections, some of popular discrete truss optimization examples are solved for 

minimum structural weight to compare the performance of HHC with other metaheuristic 

optimization algorithms. Structures are analyzed using finite element (direct stiffness) method and 

algorithms are coded using MATLAB. For all problems, Phase 1 parameters are set as follows: 

𝐻𝐻𝑀𝑀𝑆𝑆 is 75, 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅𝑚𝑚𝑎𝑎𝑒𝑒 and 𝑃𝑃𝐴𝐴𝑅𝑅𝑚𝑚𝑎𝑎𝑒𝑒 are 0.85 and 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑃𝑃𝐴𝐴𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 are 0.35. Phase 2 

parameters are set as follows: population size (2𝑟𝑟) is 40, 𝑃𝑃𝑟𝑟𝑜𝑜 is 0.5, and the number of designs to 

be saved in CM (CMS) is 4 (2𝑟𝑟/10). Phase 1 improvement criterion ratios, 𝑟𝑟1 and 𝑟𝑟2, are 0.25 and 

0.10, respectively. Domain reduction ratios, 𝑟𝑟3 is 0.10 and 𝜀𝜀𝑃𝑃1 is 10-3. These parameters are 
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selected based on studying the convergence behavior of IHS. IHS obtains good and diverse designs 

(in comparison with initial random designs) after about 25% of the maximum number of iterations; 

then it converges very slowly. HHC’s performance was evaluated using population sizes of 50, 75 

and 100 for Phase 1 and population sizes of 20, 30, 40, and 50 for Phase 2 with 𝑃𝑃𝑟𝑟𝑜𝑜 of 0.25, 0.4 

and 0.5. The results showed that the combinations of these parameters worked well that showed 

stability and gave good quality solutions. It is noted that these parameters are not problem 

dependent and are kept fixed for all design examples. 

Since the optimization algorithms are stochastic in nature, 50 independent optimization 

runs were performed for each example to test the performance of HHC  

The number of maximum iterations varies based on the number of design variables and the 

number of elements in the discrete set (Eqs. (3.27) and (3.28)). For IHS and ECBO, the maximum 

numbers of iterations were set to 50000 and 1000, respectively to allow these algorithms to fully 

search for the best design. NSA (Number of Structural Analyses) is calculated as follows: 

 NSAHHC = 𝐻𝐻𝑀𝑀𝑆𝑆 + 𝑁𝑁𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1 + (𝑁𝑁𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 − 1) × poplution size (3.35) 

 NSAECBO = 𝑁𝑁𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟 × poplution size (3.36) 

 NSAIHS = 𝐻𝐻𝑀𝑀𝑆𝑆 + 𝑁𝑁𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟 (3.37) 

where 𝐻𝐻𝑀𝑀𝑆𝑆 is harmony memory size, 𝑁𝑁𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟 is the number of iterations and the subscript refers to 

the phase. In Eq. (3.35), (𝑁𝑁𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 − 1) implies that the designs passed to Phase 2 do not need to 

be evaluated again. 

To study the domain adjustment effects on the behavior of HHC, all numerical examples 

were tested without domain adjustment step as well. In the next sections, HHC refers to the 
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algorithm without domain adjustment step while HHCD refers to the algorithm with domain 

adjustment step.  

3.5.1 Planar 10-bar Truss 

Figure 3.1  shows the configuration of the 10-bar truss. This popular benchmark example 

has been solved by many researchers, e.g., Rajeev and Krishnamoorthy (1992), Li et al. (2009), 

Xiang et al. (2009), Camp (2009), and others. For all members, the modulus of elasticity is 10,000 

ksi and material density is 0.1 lb/in3. The allowable displacement for all nodes in both vertical and 

horizontal directions equals ±2.0 in. All members are subjected to stress limitations of 25 ksi for 

both tension and compression. The structure is subjected to two vertical downward loads, P=100 

kips, at joint 2 and 4. Cross-sectional areas of all members are the design variables that are selected 

form the discrete set of 42 elements as follows:  

D=[1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 

3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 

11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 

26.50, 30.00, 33.50] (in2).  

(3.38) 

 

As noted earlier, this study case is used to also show how HHCD works. In this illustrative 

example, 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1=10×10×42=4200 and 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2=10×42=420. The rest of the internal 

parameters are set as mentioned earlier. Phase 1 (IHS) starts with 75 random designs that are 

evaluated using Eq. (3.4). Table 3.1 gives the best design among these 75 initial designs. The total 

structural weights (and merit function values) for HHC and HHCD are 4888.346 lb (38724.564) 

and 4929.869 lb (26734.436) with values of the violation parameter 𝜓𝜓 as 1.815 and 1.329, 

respectively. After iteration 420 (0.1× 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃1), the domain reduction process starts. Table 3.1 

shows that at the end of Phase 1 some design variables bounds were reduced based on the method 



 
 

58 
 

discussed in Section 3.4.4. Due to this step, the possible design combinations are reduced from 

1.708e16 (4210) to 5.976e9 in Phase 1. For example, the bounds of the first design variable were 

changed many times after iteration 420 until its upper and lower limits became sections 28 and 42 

in the set D, respectively.  

At the end of the Phase 1, the structural weights for HHC and HHCD are 5959.483 lb and 

5788.563 lb, respectively. Since there is no violation of constraints, the merit function value is 

same as the structural weight. Phase 1 terminates at iteration 1051 for HHC and HHCD while the 

maximum number of iterations allowed for this phase is 4200. This implies that the proposed new 

stopping criterion terminates this phase due to no improvement in the current best design.  

 
Figure 3.1. Schematic of 10-bar planar truss. 
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The goal of the Phase 1 is to provide Phase 2 with better designs that may be closer to the 

best solution so that ECBO requires fewer iterations. Study of designs in HM shows that HHCD 

was able to improve not only the best design but also all the designs in HM. This explains the 

reason that HHCD needs fewer number of structural analyses. At the end of Phase 1, the best 40 

designs in HM are passed to the CB matrix. Therefore, the Phase 2 starts with improved designs 

instead of random designs. In this example, Phase 1 iterations of 1051 are equivalent to just 26 

iterations of ECBO with a population size of 40. At iteration 1126 (1051 for Phase 1 and 75 for 

Phase 2), the algorithm obtains the best structural weight of 5490.738 lb with no constraint 

violation. Phase 2 needs 76 iterations to find the best design that, generally, is less than what ECBO 

would need (see Table 3.2). HHCD shows similar behavior in all other numerical examples.  

Figure 3.2 demonstrates the convergence history of the best run of IHS, ECBO, HHC, and 

HHCD. It shows that IHS and Phase 1 of HHC and HHCD reach better designs faster than ECBO. 

HHCD convergences to the best design faster than ECBO and HHC because Phase 2 starts with 

better designs. When IHS stops improving design at iteration 4101. Note that every iteration in 

ECBO and Phase 2 of HHC and HHCD requires 40 structural analyses.  

Table 3.1. Domain  adjustment technique illustration for planar 10-bar truss structure.  

Design 
variables 

(in2) 

Best initial design 
Best design at end of 

Phase 1 

Best design at end of 

Phase 2 

Design variables 
bounds at end of 

Phase 1b 
HHCD 

HHC HHCD HHC HHCD HHC HHCD 
Lower 
bound 

Upper 
bound 

1 A1 15.50 (33a) 16.90 (35) 33.50 (42) 30.00 (41) 33.50 (42) 33.50 (42) 28 42 
2 A2 1.62 (1) 13.9 (31) 2.38 (5) 2.38 (5) 1.62 (1) 1.62 (1) 1 7 
3 A3 33.50 (42) 13.5 (30) 26.50 (40) 30.00 (41) 22.90 (39) 22.90 (39) 27 42 
4 A4 3.87 (17) 14.20 (32) 13.50 (30) 14.20 (32) 14.20 (32) 14.20 (32) 24 34 
5 A5 3.55 (14) 7.97 (28) 3.13 (11) 3.09 (10) 1.62 (1) 1.62 (1) 2 12 
6 A6 4.18 (19) 5.12 (25) 3.63 (15) 2.38 (5) 1.62 (1) 1.62 (1) 1 7 
7 A7 3.84 (16) 3.84 (16) 14.20 (32) 13.50 (30) 7.97 (28) 7.97 (28) 28 32 
8 A8 22.00 (38) 22.90 (39) 22..90 (39) 22.90 (39) 22.90 (39) 22.90 (39) 21 41 
9 A9 4.18 (19) 3.47 (13) 19.90 (37) 16.90 (35) 22.00 (38) 22.00 (38) 30 37 

10 A10 22.00 (38) 16.00 (34) 1.62 (1) 2.38 (5) 1.62 (1) 1.62 (1) 2 6 
Weight (lb) 4888.346 4929.869 5959.483 5788.563 5490.738 5490.738 - - 
𝜓𝜓 (Eq.5) 1.815 1.329 0.0 0.0 0.0 0.0 - - 
𝐷𝐷 (Eq.4) 38724.564 26734.436 5959.483 5788.563 5490.738 5490.738 - - 

aSection number in the set D.  bLower and upper bounds for HHC remain fixed at 1 and 42 for all members. 
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Table 3.2 summarizes results available in the literature with four different algorithms, and 

results from the present study. It also shows the mean values and standard deviations of the best 

structural weight from 50 independent runs for IHS, ECBO, HHC, and HHCD. The results show 

that GA, HPSO, and IHS did not obtain the best design. HHCD was able to find the best design 

after 4126 structural analyses. This is the same weight as obtained by SA, BB-BC, ECBO, and 

HHC; however, HHCD needs fewer structural analyses to obtain the best solution.  

Figure 3.3 shows the best merit function value for each of the 50 runs for IHS, ECBO, 

HHC, and HHCD. It is seen that IHS was not able to obtain the final design in any run; HHC was 

able to reach the final design 42 times; and ECBO reached the final design 26 times. It is seen that 

HHC performs better than ECBO as well as IHS.  

Figure 3.3 shows that HHCD was able to find the best solution 49 times. The average and 

the standard deviation of 50 runs (Table 3.2) and Figure 3.3 demonstrate that HHCD is very 

 
Figure 3.2. Comparison of convergence rates for planar 10-bar truss. 
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effective and robust algorithm. Its average for the structural weight is closest to the best solution 

and its standard deviation is the smallest. This is important because it shows that HHCD does not 

require multiple runs to find the best solution. The average and standard deviation of number of 

structural analyses shows that HHCD is efficient (Table 3.2). IHS has the lowest NSA average but 

the quality of the solution is not good. The complete code for this numerical example is given in 

the appendix. 

 

Table 3.2. Comparison of optimal designs for 10-bar truss problem. 

Design variable (in2) 

GA 
(Rajeev 

and 
Krishna
moorthy 

1992) 

HPSOf 
(Li et al., 

2009) 

SA 
(Xiang et 
al., 2009) 

BB-BC 
(Camp, 
2009) 

This work 

IHSd ECBOe HHC HHCD 

1 A1 33.50 30.00 33.50 33.50 30.00 33.50 33.50 33.50 
2 A2 1.62 1.62 1.62 1.62 2.62 1.62 1.62 1.62 
3 A3 22.00 22.90 22.90 22.90 22.90 22.90 22.90 22.90 
4 A4 15.50 13.50 14.20 14.20 14.20 14.20 14.20 14.20 
5 A5 1.62 1.62 1.62 1.62 1.80 1.62 1.62 1.62 
6 A6 1.62 1.62 1.62 1.62 1.80 1.62 1.62 1.62 
7 A7 14.20 7.97 7.97 7.97 11.50 7.97 7.97 7.97 
8 A8 19.90 26.50 22.90 22.90 22.00 22.90 22.90 22.90 
9 A9 19.90 22.00 22.00 22.00 22.00 22.00 22.00 22.00 
10 A10 2.62 1.80 1.62 1.62 2.38 1.62 1.62 1.62 
Best weight (lb) 5613.580 5531.984 5490.738 5490.738 5586.289 5490.738 5490.738 5490.738 

NSAa 800 50000 10500 8694 4176 7960 4566 4126 
𝜓𝜓 (Eq. 5) 3.77×10-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Weight 
(lb) 

Average N/A N/A N/A 5494.17c 5680.406 5519.357 5499.116 5490.873 
SDb N/A N/A N/A 12.42 40.582 53.183 30.732 0.943 

NSA 
Average N/A N/A N/A N/A 6999 19378 9821 8979 

SD N/A N/A N/A N/A 2728 6215 5038 3890 
aNSA is number of structural analyses. bSD is the standard deviation of 50 independent runs.  cThe average of 100 runs. 
dThe maximum number of iterations is 50000.  eThe maximum number of iterations is 1000. 
fHPSO is Harmony Particle Swarm Optimzation.  
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3.5.2 Planar 15-bar Truss 

Figure 3.4 shows the configuration of the 15-bar truss. Previously, this example was solved 

in Li et al. (2006) and Li et al. (2009). For all members, the modulus of elasticity is 200 GPa and 

material density is 7800 kg/m3. The allowable displacement for all nodes in both vertical and 

horizontal directions is ±10 mm. All members are subjected to stress limit of 120 MPa for both 

tension and compression. As shown in Figure 3.4, the structure is subjected to three vertical point 

loads with three independent load cases: case 1: P1 =35 kN, P2 =35 kN, and P3 =35, case 2: P1 =35 

kN, P2 =0 kN, and P3 =35, and case 3: P1 =35 kN, P2 =35 kN, and P3 =0. Design variables are 

selected form the discrete set of 16 elements:  

 D=[113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1, 308.6, 334.3, 338.2, 

497.8, 507.6, 736.7, 791.2, 1063.7] (mm2). 
(3.39) 

 
Figure 3.3. Comparison of best designs from 50 runs for the 10-bar truss structure. 
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In this study case, 𝜓𝜓 is 10 (Eq. (3.4)) because algorithms found some infeasible solutions 

with very small violation when 𝜓𝜓 is 1. Table 3.3 shows comparison of the cross-sectional areas, 

the best structural weights, NSA when the algorithms reach the best design. It also contains the 

mean values and standard deviations for structural weight from 50 independent runs for IHS, 

ECBO, HHC, and HHCD.  

 
Figure 3.5. Comparison of convergence rates for planar 15-bar truss. 

 
Figure 3.4. Schematic of 15-bar planar truss. 
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Table 3.3. Comparison of optimal designs for 15-bar truss problem. 

Design variables 
(mm2) 

PSO 
(Li et 
al., 

2006) 

HPSO 
(Li et 
al., 

2009) 

This work 

IHS ECBO HHC HHCD 

1 A1 185.9 113.2 113.2 113.2 113.2 113.2 
2 A2 113.2 113.2 113.2 113.2 113.2 113.2 
3 A3 143.2 113.2 113.2 113.2 113.2 113.2 
4 A4 113.2 113.2 113.2 113.2 113.2 113.2 
5 A5 736.7 736.7 736.7 736.7 736.7 736.7 
6 A6 143.2 113.2 113.2 113.2 113.2 113.2 
7 A7 113.2 113.2 113.2 113.2 113.2 113.2 
8 A8 736.7 736.7 736.7 736.7 736.7 736.7 
9 A9 113.2 113.2 113.2 113.2 113.2 113.2 
10 A10 113.2 113.2 113.2 113.2 113.2 113.2 
11 A11 113.2 113.2 113.2 113.2 113.2 113.2 
12 A12 113.2 113.2 113.2 113.2 113.2 113.2 
13 A13 113.2 113.2 113.2 113.2 113.2 113.2 
14 A14 334.3 334.3 334.3 334.3 334.3 334.3 

15 A15 334.3 334.3 334.3 334.3 334.3 334.3 

Best weight (kg) 108.841 105.735 105.735 105.735 105.735 105.735 
NSA N/A 25000 11861 4240 2836 2402 

G (Eq. 5) N/A N/A 0.0 0 0 0 

Weight 
(kg) 

Average N/A N/A 105.993 108.537 105.735 105.735 

SD  N/A N/A 0.341 5.441 0.0 0.0 

NSA 
Average N/A N/A 15734 4169 3986 3624 

SD N/A N/A 4781 790 757 764 
 

 
Figure 3.6. Comparison of best designs from 50 runs for the 15-bar truss structure. 
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Although, HPSO, ECBO and HHC also obtained the best design, HHCD needs fewer 

structural analyses. Figure 3.6 shows the penalized weight for each of the 50 runs for HIS, ECBO, 

HHC, and HHCD. In this numerical example, HHCD and HHC were able to find the best solution 

in every run as shown in Figure 3.6 and Table 3.3.  

3.5.3 Planar 52-bar Truss  

Figure 3.7 shows the configuration of the 52-bar truss. This example was solved in Lee et 

al. (2005), Li et al. (2009), and Kaveh and Talatahari (2009). For all members, the modulus of 

elasticity is 207 GPa and material density is 7860 kg/m3. All members are subjected to stress 

limitations of 180 MPa in both tension and compression. As shown in Figure 4.5, the structure is 

subjected to vertical and horizontal point loads at joints 17, 18, 19, and 20, where Px is 100 kN and 

Py is 200 kN. The structure includes 52 members organized into 12 groups (Table 3.4). Design 

variables are selected form the discrete set of 64 elements:  

 D=[71.613, 90.968, 126.451, 161.290, 198.064, 252.258, 285.161, 363.225, 

388.386, 494.193, 506.451, 641.289, 645.160, 792.256, 816.773, 939.998, 

1008.385, 1045.159, 1161.288, 1283.868, 1374.191, 1535.481, 1690.319, 

1696.771, 1858.061, 1890.319, 1993.544, 2019.351, 2180.641, 2238.705, 

2290.318, 2341.931, 2477.414, 2496.769, 2503.221, 2696.769, 2722.575, 

2896.768, 2961.284, 3096.768, 3206.445, 3303.219, 3703.218, 4658.055, 

5141.925,  5503.215, 5999.988,   6999.986, 7419.340, 8709.660, 8967.724, 

9161.272, 9999.980, 10322.560, 10903.204, 12129.008, 12838.684, 

14193.520, 14774.164, 15806.420, 17096.740, 18064.480, 19354.800, 

21612.860] (mm2) 

(3.40) 
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Table 3.4. Comparison of optimal designs for 52-bar truss problem. 

Design variable 
(mm2) 

HS (Lee 
et al., 
2005) 

HPSO 
(Li et al., 

2009) 

DHPSACO 
(Kaveh and 
Talatahari, 

2009) 

This work 

IHS ECBO HHC HHCD 

1 A1-A4 4658.055 4658.055 4658.005 4658.055 4658.055 4658.055 4658.055 

2 A5-A10 1161.288 1161.288 1161.288 1161.288 116.1288 116.1288 116.1288 
3 A11-A13 506.451 363.225 494.193 494.193 494.193 494.193 494.193 
4 A14-A17 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 
5 A18-A23 940 940 1008.385 939.998 939.998 939.998 939.998 
6 A24-A30 494.193 494.193 285.161 494.193 494.193 494.193 494.193 
7 A31-A34 2290.318 2238.705 2290.318 2238.705 2238.705 2238.705 2238.705 
8 A35-A36 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 
9 A37-A39 2290.318 388.386 388.386 363.225 494.193 494.193 494.193 
10 A40-A43 1535.481 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 

11 A44-A49 1045.159 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 

12 A50-A52 506.451 792.256 506.451 641.289 494.193 494.193 494.193 

Best weight (kg) 1906.76 1905.495 1904.83 1903.366 1902.605 1902.605 1902.605 

NSA 19104 150,000 5300 20724 33360 36988 32366 

G (Eq. 5) 0.027 0.00 0.003 0.00 0.00 0.00 0.00 

Weight 
(kg) 

Average  N/A N/A N/A 1997.191 1980.129 1935.136 1915.922 

SDb  N/A N/A N/A 77.96 123.773 55.734 16.950 

NSA 
Average N/A N/A N/A 21719 37584 36825 36526 

SD N/A N/A N/A 7198 5457 6277 4854 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.7. Schematic of 52-bar space truss. 
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In this study case, 𝜓𝜓 is 10 (in Eq. (3.4)) because algorithms found some infeasible solutions 

with very small violation when 𝜓𝜓 is 1. Table 3.4 shows that HHCD has the lowest average and 

standard division of NSA and the best average and standard division of final designs from 50 runs. 

 
Figure 3.8. Comparison of best designs from 50 runs for the 52-bar truss structure. 

 

 
Figure 3.9. Comparison of best designs from 50 runs for the 52-bar truss structure. 
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3.5.4 Spatial 25-bar Truss  

Figure 3.10 shows the configuration of the spatial 25-bar truss. This example was solved 

in Rajeev and Krishnamoorthy (1992), Lee et al. (2005), Li et al. (2009), Xiang et al. (2009), Camp 

(2009), and Kaveh and Mahdavi (2015). For all members, the modulus of elasticity is 10,000 ksi 

and material density is 0.1 lb/in3. The allowable displacement for all nodes in both vertical and 

horizontal directions is ±0.35 in. All members are subjected to stress limitations of 40 ksi for both 

tension and compression. This spatial truss was subjected to the two loading conditions shown in 

Table 3.5. The structure includes 25 members organized into 8 groups as given in Table 3.6. Design 

variables are selected form the discrete set of 30 elements as follows:  

 D=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 

1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4] (in2)  
(3.41) 

 Table 3.5. Load conditions of the spatial 25-bat truss. 

Case 
Load 

condition 
Nodes 

Loads (kips) 
Px Py Pz 

1 1 

1 1.0 -10.0 -10.0 
2 0.0 -10.0 -10.0 
3 0.5 0.0 0.0 
6 0.6 0.0 0.0 

2 

1 
1 0.0 20.0 -5.0 
2 0.0 -20.0 -5.0 

2 

1 1.0 10.0 -5.0 
2 0.0 10.0 -5.0 
3 0.5 0.0 0.0 
6 0.5 0.0 0.0 
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In this study case, 𝜓𝜓 was 10 (in Eq. (3.4)) because algorithms found some infeasible 

solutions with very small violation when 𝜓𝜓 was 1. HHCD was able to obtain the best design after 

2043 structural analyses (759 iterations) as shown in Figure 3.11 and Table 3.6. Figure 3.11 shows 

the convergence history of the best run of IHS, ECBO, HHC, and HHCD. It shows that HHCD 

and HHC convergence faster than ECBO to the best design where IHS did not obtain the best 

design. Table 3.6 shows that although HS, HPSO, SA, BB-BC and ECBO obtained the best design, 

both HHC and HHCD need fewer structural analyses. Also, Table 3.6 explains that HHCD has the 

lowest average and standard division of NSA and the best average and standard division of final 

designs from 50 runs while HHC is close second. Although, BB-BC shows slightly better stability 

than HHCD, it needs more structural analyses compared to HHCD to obtain the best design. GA 

did not reach the final design.  

 

 

 

  Figure 3.10. Schematic of 25-bar space truss. 
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Figure 3.12 shows the penalized weight for each of the 50 runs for IHS, ECBO, HHC, and 

HHCD. It shows that IHS did not reach the final design in any run. HHCD reached the final design 

more than HHC and ECBO. 

 
Figure 3.11. Comparison of best designs from 50 runs for the 25-bar truss structure. 

 
Figure 3.12. Comparison of best designs from 50 runs for the 25-bar truss structure. 
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3.5.5 Spatial 72-bar Truss  

Figure 3.13 shows the configuration of the spatial 72-bar truss. This example was solved 

in Li et al. (2009), Kaveh and Khayat (2012), and Kaveh and Mahdavi (2015). For all members, 

the modulus of elasticity is 10000 ksi and material density is 0.1 lb/in3. The allowable 

displacement for all nodes in both vertical and horizontal directions equals ±0.25 in. All members 

are subjected to stress limitations of 25 ksi for both tension and compression. This spatial truss 

was subjected to the two loading conditions as shown in Table 3.7. The structure includes 72 

members organized into 16 groups (Table 3.8). Design variables are selected from the discrete set 

of 64 elements as follows: 

 D=[0.111, 0.141, 0.196, 0.250, 0.307, 0.391, 0.442, 0.563, 0.602, 0.766, 0.785, 

0.994, 1.000, 1.228, 1.266, 1.457, 1.563, 1.620, 1.800, 1.990, 2.130, 2.380, 2.620, 

2.630, 2.880, 2.930, 3.090, 3.13, 3.380, 3.470, 3.550, 3.630, 3.840, 3.870, 3.880, 

4.180, 4.220, 4.490, 4.590, 4.800, 4.970, 5.120, 5.740, 7.220, 7.970, 8.530, 9.300, 

(3.42) 

Table 3.6. Performance comparison for the 25-bar spatial truss. 

Design variable 
(in2) 

GA 
(Rajeev 

and 
Krishn-
amoory, 
1992) 

HS 
(Lee, et 

al., 
2005) 

HPSO 
(Li et 
al., 

2009) 
 

SA 
(Xiang et 
al., 2009) 

 

BB-BC 
(Camp, 
2009) 

 

ECBO 
(Kaveh 

and 
Mahdavi, 

2015) 

This work 

IHSe ECBOf HHC HHCD 

1 A1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
2 A2-A5 1.8 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.3 
3 A6-A9 2.3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 
4 A10-A11 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
5 A12-A13 0.1 2.1 2.1 2.1 2.1 2.1 1.9 2.1 2.1 2.1 
6 A14-A17 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
7 A18-A21 1.8 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5 
8 A22-A25 3.0 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

Best weight (lb) 546.013 484.854 484.854 484.854 484.854 484.854 485.054 484.854 484.854 484.854 
NSA 800 13523 25000 7900 9090 61200a 13368 20280 2083 2043 

𝜓𝜓 (Eq. 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Weight 

(lb) 
Average N/A N/A N/A 486.354b 485.10c 485.89d 490.547 485.575 485.480 485.252 

SD N/A N/A N/A N/A 0.44 N/A 4.986 1.244 0.850 0.505 

NSA 
Average N/A N/A N/A N/A N/A N/A 23791 17694 8288 7045 

SD N/A N/A N/A N/A N/A N/A 12039 10876 4194 3233 
aPopulation size is 30. bThe average of 12 runs. cThe average of 100 runs. dThe average of 20 runs.  
eThe maximum number of iterations is 50000.  fThe maximum number of iterations is 1000.  
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10.850, 11.500, 13.500, 13.900, 14.200, 15.500, 16.000, 16.900, 18.800, 19.900, 

22.000, 22.900, 24.500, 26.500, 28.000, 30.000, 33.500] (in2). 

 
 

Table 3.7. Load conditions of the spatial 72-bat truss. 

Case Nodes 
Loads (kips) 

Px Py Pz 
1 17 5.0 5.0 -5.0 

2 

17 0.0 0.0 -5.0 
18 0.0 0.0 -5.0 
19 0.0 0.0 -5.0 
20 0.0 0.0 -5.0 

Table 3.8 provides a comparison between some best designs reported in the literature along 

with those obtained in this study. HHCD obtained best design after 20836 structural analyses (3017 

iteration). The best structural weight of 389.334 lb was obtained by IRO, ECBO, and HHC after 

17925, 95400 (35100 in this study), 26476 structural analyses, respectively. It is seen that both 

HHC and HHCD performed better than IHS and ECBO. Note that in ECBO (this work), HHC and 

HHCD, design variables 2 and 6 values are 0.442 and 0.563, respectively, whereas in IRO and 

ECBO (Kaveh and Mahdavi, 2015), they are 0.563 and 0.442. In this study case, HHCD needs 

 
Figure 3.13. Schematic of 72-bar space truss. 
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more analyses than IRO; however, HHCD has smaller average value of 50 independent runs (see 

Table 3.8).  

Figure 3.14 shows the convergence history of IHS, ECBO, HHC, and HHCD. It shows at 

HHCD convergences faster than IHS, ECBO, and HHC. Figure 3.15 and Table 3.8 demonstrate 

that HHCD is more stable than IRO, CBO, ECBO, IHS, and HHC in term of the quality of final 

designs. For a similar quality of design other algorithms needed more simulations (NSA averages 

in Table 3.8). 

 
Figure 3.14. Comparison of convergence rates for 72-bar spatial truss.  
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Figure 3.15.  Comparison of best designs from 50 runs for the 72-bar truss structure. 

 

Table 3.8. Performance comparison for the 72-bar spatial truss. 

Design variable (in2) 
HPSO 

(Li, 
2009) 

IRO 
(Kaveh et 

al., 
2013) 

CBO 
(Kaveh 

and 
Mahdavi, 

2015) 

ECBO 
(Kaveh 

and 
Mahdavi, 

2015) 

This work 

IHSc ECBOd HHC HHCD 

1 A1-A4 4.970 1.990 2.130 1.990 2.62 1.990 1.990 1.990 
2 A5-A12 1.228 0.563 0.563 0.563 0.442 0.442 0.442 0.442 
3 A13-A16 0.111 0.111 0.111 0.111 0.141 0.111 0.111 0.111 
4 A17-A18 0.111 0.111 0.111 0.111 0.141 0.111 0.111 0.111 
5 A19-A22 2.880 1.228 1.228 1.228 1.457 1.228 1.228 1.228 
6 A23-A30 1.457 0.442 0.442 0.442 0.563 0.563 0.563 0.563 
7 A31-A34 0.141 0.111 0.141 0.111 0.141 0.111 0.111 0.111 
8 A35-A36 0.111 0.111 0.111 0.111 0.196 0.111 0.111 0.111 
9 A37-A40 1.563 0.563 0.442 0.563 0.442 0.563 0.563 0.563 

10 A41-A48 1.228 0.563 0.563 0.563 0.602 0.563 0.563 0.563 
11 A49-A52 0.111 0.111 0.111 0.111 0.141 0.111 0.111 0.111 
12 A53-A54 0.196 0.111 0.111 0.111 0.141 0.111 0.111 0.111 
13 A55-A58 0.391 0.196 0.196 0.196 0.25 0.196 0.196 0.196 
14 A59-A66 1.457 0.563 0.563 0.563 0.563 0.563 0.563 0.563 
15 A67-A70 0.766 0.391 0.391 0.391 0.442 0.391 0.391 0.391 
16 A71-A72 1.563 0.563 0.563 0.563 0.391 0.563 0.563 0.563 
Best weight (lb) 933.094 389.334 391.230 389.334 418.380 389.334 389.334 389.334 

NSA 50000 17925 160200 95400a 16918 30240 26476 20836 
𝜓𝜓 (Eq. 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Weight (lb) 
Average N/A 408.17 456.69 391.59b 448.554 391.173 391.242 390.632 

SD N/A N/A N/A N/A 9.412 2.073 2.105 1.679 

NSA 
Average N/A N/A N/A N/A 14135 37531 32208 27442 

SD N/A N/A N/A N/A 6037 8858 7994 6884 
aPopulation size is 30. bThe average of 20 runs. cThe maximum number of iterations is 50000. 
dThe maximum number of iterations is 1000.  
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3.6 Discussion and Conclusions  

A new two-phase metaheuristic optimization algorithm was presented in this study. Phase 

1 used Improved Harmony Search (IHS) with a new domain reduction technique that used 

statistical analysis of some of the better designs in the current population. Phase 2 used the 

Enhanced Colliding Bodies Optimization (ECBO) where the initial population consisted of some 

of the better designs from Phase 1. With this better initial population, ECBO obtained the best 

design more efficiently. Also, in Phase 1, an improved stopping criterion was proposed that 

terminated the phase when there was no or small improvement in the best design after many 

iterations.  
Table 3.9. Comparative data for design examples. 

Design Example 
Optimization algorithm 

IHS ECBO HHC HHCD 

Planar 
10-bar 
truss 

Best weight (lb) 5586.289 5490.738 5490.738 5490.738 
Weight 

(lb) 
Average 5680.406 5519.357 5499.116 5490.873 

SD 40.582 53.183 30.732 0.943 

NSA 
Average 6999 19378 9821 8979 

SD 2728 6215 5038 3890 

Planar 
15-bat 
truss 

Best weight (lb) 105.735 105.735 105.735 105.735 
Weight 

(kg) 
Average 105.993 108.537 105.735 105.735 

SD 0.341 5.441 0 0 

NSA 
Average 15734 4169 3986 3624 

SD 4781 790 757 764 

Planar 
52-bar 
truss 

Best weight (lb) 1903.366 1902.605 1902.605 1902.605 
Weight 

(kg) 
Average 1997.191 1980.129 1935.136 1915.922 

SD 77.96 123.773 55.734 16.95 

NSA 
Average 21719 37584 36825 36526 

SD 7198 5457 6277 4854 

25-bar 
spatial 
truss 

Best weight (lb) 485.054 484.854 484.854 484.854 
Weight 

(lb) 
Average 490.547 485.575 485.480 485.252 

SD 4.986 1.244 0.850 0.505 

NSA 
Average 23791 17694 8288 7045 

SD 12039 10876 4194 3233 

72-bar 
spatial 
truss 

Best weight (lb) 418.380 389.334 389.334 389.334 
Weight 

(lb) 
Average 448.554 391.173 391.242 390.632 

SD 9.412 2.073 2.105 1.679 

NSA 
Average 14135 37531 32208 27442 

SD 6037 8858 7994 6884 
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Figure 3.16. Comparison of number of structural analyses to reach the best. 

Detailed results for three standard truss test structures were presented and discussed. Table 

3.9 summarize comparative data obtained with IHS, ECBO, HHC and HHCD for the three design 

examples. It shows, in term of the quality of the solution, HHCD obtained the best designs with 

the lowest averages and standard deviations from 50 independent runs. HHC is close second 

behind HHCD. Figure 3.16 is a bar chart representation of the number of structural analyses needed 

to reach final designs of the three numerical examples with the four methods. The best structural 

weight values are also shown with bar charts. It shows that IHS does not reach the best design for 

any of the examples. ECBO needs the largest number of analyses to obtain the final designs. 

However, HHC and HHCD need a smaller number of simulations to reach the final designs. Table 

3.9 and Figure 3.16 show that HHCD is quite stable and more efficient among all metaheuristic 

algorithms that are discussed in this study. For the 3-D truss problems (the last two examples), 
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HHCD shows an outstanding performance in terms of the number of structural analyses needed to 

obtain the best design. This is an attractive feature of the proposed metaheuristic algorithm with 

domain adjustment.  

Based on the comparison with other metaheuristic optimization algorithms for the 

numerical examples, the following conclusions are drawn:  

1- The 50 independent runs for each example showed that the proposed HHC algorithm was quite 

reliable in obtaining the best designs for each run. Also, HHCD had the lowest averages and 

standard deviations for the final cost function values. This implies that fewer runs are needed to 

obtain the best design compared to many other stochastic algorithms. 

2- The proposed domain adjustment approach worked very well with IHS. 

3- The proposed hybrid algorithm with domain adjustment was able to find the best design with 

fewer structural analyses, by substantial amount in some cases. This efficiency is critically 

important for solving more complex applications, such as nonlinear structural analysis 

problems, dynamic response optimization problems and multidisciplinary optimization 

problems. 

3.7 Reproducing Results 

To reproduce results provided in this work, all the necessary information about design 

examples are described in Section 3.5. Appendix A includes MATLAB code for the 10-bar truss 

design example.  
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CHAPTER 4  

DISCRETE VARIABLE OPTIMIZATION OF STRUCTURES SUBJECTED TO DYNAMIC 
LOADS USING EQUIVALENT STATIC LOADS AND METAHEURISTIC ALGORITHMS 

Abstract  

Equivalent static loads (ESL) approach has been used successfully for optimizing many 

structural systems subjected to dynamic loads. The approach has been used for continuous variable 

optimization problems using the gradient-based methods. It has been shown that the approach 

drastically reduces the number of dynamic analyses of the structure to reach a local optimum point. 

In this chapter, the ESL approach is investigated for optimization of structures with discrete design 

variables using metaheuristic algorithms. The focus is on a class of problems that cannot be solved 

using the gradient-based optimization methods. It is shown that for this class of problems, the ESL 

approach reaches near the best design with a drastically reduced number of dynamic analyses of 

the structure. However, it cannot converge to the best design because the ESLs calculated for a 

member of the population are not suitable for the remaining members of the population in 

metaheuristic algorithms. Moreover, the assumption of small change to design variables near the 

solution point does not hold in metaheuristic algorithms. Therefore, after a few ESL cycles, the 

procedure may switch to a full dynamic analysis of each member of the population, if desired, to 

further improve designs and reach the best design. Overall, better results are obtained by 

incorporating the ESL approach and the number of dynamic analyses is substantially reduced to 

solve this class of discrete variable optimization problems. 

4.1 Introduction 

It is important to consider transient dynamic loads in the design process of many structures 

in engineering applications since many loads in the real-world act dynamically. At the same time, 
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it is important to consider minimizing the total cost while achieving all the safety and performance 

requirements by optimizing the design of structures (Arora, 1999). 

Optimization of structures subjected to dynamic loads using gradient-based algorithms 

includes calculating the gradients of all the problem functions provided the functions are 

differentiable. Several methods can be used to calculate the gradients such as: direct method, the 

adjoint method, the modal approximation method (Kang et al., 2006). Then a gradient-based 

optimization algorithm can be used to determine the design improvement by solving a subproblem. 

This process involves the integration of the equations of motion and sensitivity equations. 

Numerical integration of these equations is computationally expensive. Moreover, for some 

problem with material and/or geometrical nonlinearities, the numerical integration methods can 

have convergence difficulties. Therefore, it can be difficult to optimize structures subjected to 

dynamic loads in a mathematical optimization process (Kang et al., 2001). To overcome these 

difficulties, efforts have been made to transform the dynamic load into static loads.  

One of the well-known dynamic to static loads transformation methods is based on the 

displacement field obtained using dynamic analysis of the structure (Kang et al., 2001). That is, 

the dynamic load is transformed into multiple equivalent static load sets. Then the equivalent static 

loads (ESL) are considered as multiple loading conditions in the linear static response optimization 

process. This is called an ESL cycle of the optimization process. These cycles are repeated until 

the final design is obtained. More details of this process are provided in Section 4.3. 

Calculus-based local optimization algorithms are applicable for continuous variables and 

differentiable functions. To solve a differentiable problem with discrete variables, many gradient-

based optimization strategies are available (Arora, 2017). One strategy is to initially treat the 

discrete variables as continuous (if possible) and then round-off their values at the optimum point 
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to get their discrete values. With such an approach, the final solution may be infeasible or far from 

the true optimum. Moreover, for some engineering problems with discrete variables, it is not 

possible to compute gradient information because the problem functions are not differentiable. 

Frame design optimization examples presented and discussed later in Sections 4.7.3 and 4.7.4 are 

a class of problems where gradient-based optimization methods are not applicable.   

Stochastic, metaheuristic or nature-inspired algorithms based on simulations do not require 

gradient information, such as the well-known Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), Harmony Search (HS), and many others. 

In these algorithms, the search is not limited to a neighborhood of the current point, and the discrete 

variables and nondifferentiable functions can be treated routinely. They use random search in the 

whole design space instead of gradient-based search in a neighborhood of the current point (this is 

why they are sometimes called global optimization methods (Weise, 2009). Therefore, they are 

applicable for both continuous and discrete variables and with one or more, simple or complex 

objective functions. Also they tend to converge to a global minimum (although there is no 

guarantee of this) for the problem instead of a local minimum as with the gradient-based methods. 

Since only the structural response is required in the optimization process, these methods can handle 

any kind of problems (linear, nonlinear, static, dynamic, differentiable, nondifferentiable). Similar 

to gradient-based optimization method, the computation cost of linear or nonlinear dynamic 

analysis is more than that for linear static analysis. Therefore, using metaheuristic algorithms could 

be impractical for dynamic response optimization problems since they generally require many 

structural analyses to reach the final design.  
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4.2 Objective of This Work 

In this study, the ESL approach for structures subjected to dynamic loads is investigated 

with metaheuristic optimization algorithms and discrete design variables. This has not been 

investigated before in the literature. Also, the problem functions are assumed to be 

nondifferentiable which is the case with some practical problems as discussed in Sections 4.7.3 

and 4.7.4. The idea is to study if the number of transient structural analyses required to reach the 

best design can be reduced compared to those with a standard metaheuristic algorithm. The method 

is named global optimization with equivalent static loads (GOESL). That is, the dynamic load for 

linear or nonlinear transient problems will be transformed into multiple equivalent static load sets 

using the ESL approach. Then the linear static problem will be optimized using a metaheuristic 

optimization algorithm. These ESL cycles will be repeated until the best design is reached. 

Enhanced Colliding Bodies Optimization (ECBO) algorithm will be used as the metaheuristic 

algorithm, although any other such algorithm may also be used.  

ESL method with gradient-based optimization obtains one solution at the end of an ESL 

cycle. That solution is used to generate new ESLs for the next cycle. Metaheuristic algorithms, 

however, deal with a population of designs. Therefore, at the end of an ESL cycle, there is a 

population of designs that has been improved based on linear static analysis process. For the next 

cycle, only one design should be used to generate new ESLs. The question is which one? There 

are several possibilities for this. Three approaches are examined to select the design that is used to 

generate the ESLs for the next cycle (Section 4.7). Example problems are solved to evaluate these 

approaches and, in general, the ESL approach with metaheuristic algorithms. It is important to note 

that since the focus of this work is on discrete variable problems with nondifferentiable functions, 

example problems will not be solved or compared with the gradient-based methods. 
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4.3 Transformation of Dynamic Loads into Equivalent Static Loads (ESLs) 

Dynamic analysis is needed when the magnitude of the loads changes with time. In this 

section, we describe the basic concepts and steps of the ESL method for continuous design 

variables using the gradient-based optimization algorithms (Kang, Choi & Park, 2001). The 

dynamic response of a structure subjected to dynamic load is described by the following 

differential equation obtained after a finite element model for the structure has been developed: 

 𝑴𝑴(𝑿𝑿)�̈�𝒖(𝑡𝑡) + 𝑪𝑪(𝑿𝑿)�̇�𝒖(𝑡𝑡) + 𝑲𝑲(𝑿𝑿,𝒖𝒖(𝑡𝑡))𝒖𝒖(𝑡𝑡) = 𝒑𝒑(𝑡𝑡);  𝑡𝑡 = 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛   (4.1) 

where 𝑴𝑴 is the mass matrix, 𝑲𝑲 is the stiffness matrix (𝑲𝑲 is a function of the design variables and 

displacement vector for nonlinear dynamic analysis and just the design variables for linear 

dynamic analysis), 𝑪𝑪 is the damping matrix, 𝒖𝒖 is the dynamic displacements vector, �̇�𝒖 is the 

velocities vector, �̈�𝒖 is the accelerations vector, 𝑿𝑿 is the vector of design variables, 𝒑𝒑(𝑡𝑡) is the 

applied load vector, 𝑡𝑡 is time (generally discretized for numerical integration), and 𝑟𝑟 is the total 

number of the time steps.  

The static analysis with the finite element method is described by the following equation: 

 𝑲𝑲(𝑿𝑿)𝒛𝒛 = 𝒑𝒑𝑠𝑠 (4.2) 

where 𝒛𝒛 is the static displacement vector and 𝒑𝒑𝑠𝑠 is the external static load vector. ESLs are static 

loads that generate the same displacement field as from dynamic loads at a given design X. Using 

Eq. (4.2), an ESL vector at an arbitrary time (𝑡𝑡𝑟𝑟) is calculated as follows: 

 𝒑𝒑𝑟𝑟 = 𝑲𝑲(𝑿𝑿)𝒖𝒖(𝑡𝑡𝑟𝑟);     𝛼𝛼 = 1, 2, … , 𝑟𝑟 (4.3) 

Figure 4.1 describes the concept of ESL approach. That is, after linear or nonlinear dynamic 

analysis of the structure, an equivalent load vector (𝒑𝒑𝑟𝑟) is generated at each time step using Eq. 

(4.3). It is seen that for a given design 𝑿𝑿, the linear static response from the 𝛼𝛼𝑡𝑡ℎ load set (𝒑𝒑𝑟𝑟) is 
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the same as the dynamic response at the 𝛼𝛼𝑡𝑡ℎ time step. Therefore, the displacement profile of the 

dynamic response is exactly the same as the displacement profile calculated from the linear static 

analysis (Kim & Park, 2010).  However, the profile of the ESLs is quite different from those of 

the dynamic loads because the ESLs are applied at each degree of freedom of the model even if 

the dynamic load is applied along only one degree of freedom. After the design is changed during 

the optimization iterations, the static and dynamic displacement profiles would be different 

because the ESLs are based on the starting design.  

Optimum design of structures subjected to dynamic loads using the ESLs proceeds as 

follows (this will be called the ESL method):  

Step 1. Select an initial design for the structure. Perform dynamic analysis of the structure to 

generate the displacement profile 𝒖𝒖(𝑡𝑡) using Eq. (4.1). 

Step 2. Calculate the ESLs using Eq. (4.3). 

Step 3. Perform static response optimization of the structure using ESLs calculated in Step 2. These 

loads are kept fixed during this optimization process. This is called an ESL cycle of the ESL 

method. 

Step 4. Check the stopping criteria; if satisfied stop; otherwise continue. 

Step 5. Since the final design from Step 3 is different from the starting design, the static 

displacements will be different from dynamic displacements for the final design. Therefore, 

perform the dynamic analysis of the structure and go to Step 2. 

After a few cycles of the above process, the design changes are quite small such that the 

ESLs do not change much and a solution to the original dynamic response optimization problem 

is achieved. 
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Figure 4.1. Dynamic response vs ESL response for a given design (Kim & Park, 2010). 

4.4 Formulation for Discrete Structural Optimization Problems 

In many practical design cases, design variables are discrete because members must be 

selected from the available sizes in a catalog. The formulation of the discrete design variables 

optimization problem is different from the continuous design variables optimization. In general, 

the nonlinear dynamic response optimization problem with discrete design variables can be stated 

as: 

 𝐷𝐷𝑖𝑖𝑟𝑟𝐹𝐹   𝑿𝑿 = [𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟];     𝑚𝑚𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖;   𝑖𝑖 = 1, 2, … ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟   (4.4) 

 to minimize    𝑜𝑜(𝑿𝑿) (4.5) 

 subject to     𝑴𝑴(𝑿𝑿)�̈�𝒖(𝑡𝑡) + 𝑪𝑪(𝑿𝑿)�̇�𝒖(𝑡𝑡) + 𝑲𝑲(𝑿𝑿,𝒖𝒖(𝑡𝑡))𝒖𝒖(𝑡𝑡) = 𝒑𝒑(𝑡𝑡)               

   𝑔𝑔𝑘𝑘(𝑿𝑿,𝒖𝒖(𝑡𝑡), �̇�𝒖(𝑡𝑡), �̈�𝒖(𝑡𝑡), 𝑡𝑡) ≤ 0;   for all 𝑡𝑡 and  𝑘𝑘 = 1,2, … , 𝑙𝑙   
(4.6) 
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where 𝑿𝑿 is the vector of design variables with 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 unknowns, 𝐷𝐷𝑖𝑖 is a set of discrete values for 

the 𝑖𝑖𝑡𝑡ℎ design variable, 𝑜𝑜(𝑿𝑿) is a cost function (in this study, 𝑜𝑜(𝑿𝑿) is the total weight of the 

structure), and 𝑔𝑔𝑘𝑘 is a constraint function that needs to be imposed at all time points.  

One way of treating constraints in metaheuristic algorithms is to combine constraints with 

the cost function to define a merit function (also called the penalty function) 𝐷𝐷(𝑿𝑿) that is then 

minimized: 

 𝐷𝐷(𝑿𝑿) = 𝑜𝑜(𝑿𝑿)[1 + 𝜓𝜓𝜓𝜓(𝑿𝑿)]𝜉𝜉   (4.7) 

 𝜓𝜓(𝑿𝑿) = ∑ ∑ 𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘(𝑡𝑡𝑖𝑖))𝑙𝑙
𝑘𝑘=1

𝑛𝑛
𝑖𝑖=1   (4.8) 

where 𝜓𝜓(𝑿𝑿) is a constraint violation function, 𝜓𝜓 ≥ 1 is exploration penalty coefficient (in this 

study, 𝜓𝜓 = 1), 𝜉𝜉 > 1 is penalty function exponent (in this study, 𝜉𝜉 = 2), and 𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘(𝑡𝑡𝑖𝑖)) ≥ 0 

is the violation value of the 𝑘𝑘𝑡𝑡ℎ inequality constraint at the time point 𝑡𝑡𝑖𝑖. The present problem has 

just inequality constraints. However, if equality constraints are present in the problem formulation, 

they are treated by including their violations in Eq. (4.8). The linear dynamic response problem is 

the same as the nonlinear dynamic response problem except that 𝑲𝑲 is not a function of the 

displacement vector 𝒖𝒖.  

The linear static response optimization problem subjected to ESLs can be stated as: 

𝐷𝐷𝑖𝑖𝑟𝑟𝐹𝐹   𝑿𝑿 = [𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟];     𝑚𝑚𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖;   𝑖𝑖 = 1,2, … . ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟   (4.9) 

to minimize    𝑜𝑜(𝑿𝑿) (4.10) 

subject to  𝑲𝑲(𝑿𝑿)𝒖𝒖𝑟𝑟 = 𝒑𝒑𝑟𝑟 

𝑔𝑔𝑘𝑘𝑟𝑟(𝑿𝑿) ≤ 0;    𝑘𝑘 = 1,2, … , 𝑙𝑙;   𝛼𝛼 = 1,2, … ,𝑟𝑟 
(4.11) 
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For this problem, the merit function 𝐷𝐷(𝑿𝑿) for the metaheuristic algorithms is defined as: 

4.5 Enhanced Colliding Bodies Optimization (ECBO) 

Kaveh and Mahdavi (2014) developed this metaheuristic algorithm that is inspired by the 

laws of one-dimensional collision. The algorithm works with a population of designs at each 

iteration. The initial population is generated randomly, and the designs are stored in a matrix CB, 

called the colliding bodies’ matrix. Each design in the population is considered as an object or 

body having pseudo-mass that is calculated using the merit function value for each design. The 

entire population is ranked and divided into moving objects and stationary objects. Using the 

conservation law of linear momentum and the coefficient of restitution, one dimensional collision 

between the bodies is simulated. Based on that, new velocities of the stationary and moving objects 

are calculated. Using these velocities and random numbers, each design in the population is 

updated. This process is repeated until a limit on the iterations is reached or there is very little 

change in the best design for several iterations. 

In the enhanced version of the colliding bodies optimization (ECBO), a colliding memory 

matrix called CM is used to store some good designs. These designs replace the worst designs in 

the CB matrix at every iteration. This way the good designs are always preserved. In addition, a 

parameter 𝑃𝑃𝑟𝑟𝑜𝑜 ∈ [0,1] is introduced that is used along with random numbers to regenerate a 

component of selected designs in the CB matrix. This mechanism is shown to give diversity to the 

design population leading to a better final design (Kaveh & Ghazaan, 2014).  

 𝐷𝐷(𝑿𝑿) = 𝑜𝑜(𝑿𝑿)[1 + 𝜓𝜓𝜓𝜓]𝜉𝜉    (4.12) 

 𝜓𝜓(𝑿𝑿) = � � 𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘𝑟𝑟)
𝑒𝑒

𝑘𝑘=1

𝑛𝑛

𝑟𝑟=1
 (4.13) 
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Many metaheuristic algorithms need selection of several algorithmic parameters in their 

calculations. This is a major drawback of these algorithms because their performance depends on 

the values for the parameters. ECBO, however, requires just one algorithmic parameter 

specification, and performs well in term of the quality of solutions and convergence time. In 

addition, ECBO has been used to solve truss, frame, and other engineering optimization problems. 

It has shown very good convergence behavior compared to other metaheuristic algorithms such as 

genetic algorithm, particle swarm and harmony search (Kaveh & Mahdavi, 2015). Therefore, this 

metaheuristic algorithm is elected for use in this study. 

4.6 Discrete Variable Optimization Using ESL for Transient Problems 

As mentioned earlier,  metaheuristic optimization algorithms search not only in the 

neighborhood of the current design point but also in the entire design space. That is, small changes 

in design variables are not guaranteed which is an important assumption in the ESL method (at 

least near the local optimum point) with gradient-based optimization (Kang et al., 2001). Also, in 

ESL method with gradient-based optimization, there is one solution at the end of an ESL cycle. 

That solution is used to generate new ESLs for the next cycle. In metaheuristic algorithms, 

however, there is a population of designs at the end of an ESL cycle. Since most metaheuristic 

optimization algorithms deal with a population of designs, it is not obvious which design should 

be used to calculate the ESLs for the static response optimization cycle. One choice could be to 

use the best design from the population based on the merit function value. However, the ESLs 

calculated for the best design may not be suitable for the remaining designs of the population. 

Therefore, three approaches are investigated: 

1- The best design from static analysis – ESL1. 
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 Design that has the lowest merit function value based on linear static analyses (the best 

design at the end of an ESL cycle) is used to generate ESLs for the next cycle. In each cycle, only 

one dynamic analysis is needed in this approach. 

2- The best design from dynamic analysis – ESL2.  

 It was observed that the best design from the ESL cycle (which is based on linear static 

analyses) may not be the best design when a transient analysis is performed for the final population. 

Therefore, dynamic analyses are performed for designs in CM (4 designs in this study) and the 

first 25% of CB (the first 10 designs in this study). Just the first 25% of CB is used instead of the 

entire population because it is expected that the best design will be in this range. Then design that 

has the lowest merit function is used to generate ESLs for the next cycle. In each cycle, the number 

of dynamic analyses is 14 in this approach. 

3- The heaviest feasible design from dynamic analysis – ESL3.  

 This approach is similar to ESL2 except that heaviest feasible design is used to generate 

ESLs for the next cycle. This design usually generates smaller ESLs values because the heavier 

structure is usually stiffer giving smaller displacements. If there is no feasible design (which 

usually happens in the first few cycles), ESL2 is used to generate ESLs for the next cycle. In each 

cycle, the number of dynamic analyses is 14 in this approach. 

In the proposed algorithm, ESL method is used to transform the problem to linear static 

response optimization problem subjected to load cases that give the same displacement field as for 

the transient problem for the selected design (Section 4.3). Then the linear static problem is 

optimized using ECBO. This results in fewer transient structural analyses for the metaheuristic 
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optimization algorithm to find the best design. Figure 5.2 shows the flowchart of GOESL that is 

explained as follows:  

Step 1. Generation of an initial population. 

 A population of designs is randomly generated from the design domain and saved in the 

CB matrix.  

Step 2. Evaluation of designs in CB. 

 In this step, designs in CB are analyzed using a transient solver. Using the simulation 

results and Eqs. (4.7) and (4.8), the merit function 𝐷𝐷(𝑿𝑿) is calculated for each design. Then the 

designs are arranged in an ascending order based on their merit function values. The colliding 

memory matrix CM is generated. The best design of the population is used to generate the ESLs; 

CB and CM are passed to ECBO with ESL method block in Figure 4.2. Also, two matrices CBESL 

and CMESL are set to CB and CM, respectively. At the end of ECBO with ESL method, CBESL 

and CMESL will be passed to ECBO without the ESL block.   

Step 3. Optimum design with the calculated ESLs. 

 Using linear static analyses of the structure, optimum design is found with the formulation 

given in Eqs. (4.9) to (4.13). This completes a cycle of the ESL method. 

The termination criteria for one ESL cycle are as follows: 

If1 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝐸𝐸𝐻𝐻𝐸𝐸 ≥ 0.25 × 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝐸𝐸𝐻𝐻𝐸𝐸 

If2 (𝑀𝑀𝑒𝑒𝑟𝑟𝑖𝑖𝑡𝑡(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝐸𝐸𝐻𝐻𝐸𝐸) −𝑀𝑀𝑒𝑒𝑟𝑟𝑖𝑖𝑡𝑡(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟 − 0.1 × 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝐸𝐸𝐻𝐻𝐸𝐸))/𝑀𝑀𝑒𝑒𝑟𝑟𝑖𝑖𝑡𝑡(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝐸𝐸𝐻𝐻𝐸𝐸) ≤ 𝜖𝜖 

Terminate the current cycle 
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End2  

End1  

 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝐸𝐸𝐻𝐻𝐸𝐸 = 0.5 × 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑏𝑏𝑟𝑟𝑎𝑎𝑛𝑛𝑠𝑠𝑖𝑖𝑒𝑒𝑛𝑛𝑏𝑏 (4.14) 

 
𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑏𝑏𝑟𝑟𝑎𝑎𝑛𝑛𝑠𝑠𝑖𝑖𝑒𝑒𝑛𝑛𝑏𝑏 = � 𝑁𝑁𝑖𝑖

𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟

𝑖𝑖

 (4.15) 

where 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝐸𝐸𝐻𝐻𝐸𝐸 is the current iteration, 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝐸𝐸𝐻𝐻𝐸𝐸 is the limit on number of iterations for the ESL 

cycle, 𝜖𝜖 is a small number (in this study 𝜖𝜖=10-3), 𝑁𝑁𝑖𝑖 is the number of elements in the discrete set 

𝐷𝐷𝑖𝑖, and 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 is number of design variables. That is, when there is no or small improvement in the 

current merit function value after several iterations, the current ESL cycle is terminated.  

Step 4. Transient analysis of final design(s). 

Perform transient analysis of a design or multiple designs depending on ESL1, ESL2, or 

ESL3 approach used.  

Step 5. Updating CBESL and CMESL. 

In this step, CBESL and CMESL matrices are updated depending on the approach as follows: 

1- ESL1: if the transient analysis for the best design from static analysis at the end of an ESL cycle 

shows this design to be better than the best design in CMESL, update CBESL and CMESL as follows: 

 CBESL=CB (colliding bodies matrix of the current ESL cycle) 

CMESL=CM (colliding memory matrix of the current ESL cycle) 
(4.16) 

2- ESL2: in this approach, the design that has the lowest merit function is used to generate ESLs 

for the next cycle (as described above). If this design is better that the best design in CMESL, update 

CBESL and CMESL as follows: 
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 CBESL=CB (colliding bodies matrix of the current ESL cycle) 

CMESL=best 4 designs from {previous CMESL (4 designs), CM (4 designs) of 

the current ESL cycle, or 25% of CB of the current ESL cycle (10 designs)} 

(4.17) 

3- ESL3: in this approach, the heaviest feasible design is used to generate ESLs for the next cycle 

(as described above). If the design that has the lowest merit function is better that the best design 

in CMESL, update CBESL and CMESL as follows: 

 CBESL=CB (colliding bodies matrix of the current ESL cycle) 

CMESL=best 4 designs from {previous CMESL (4 designs), CM (4 designs) 

of the current ESL cycle, or 25% of CB of the current ESL cycle (10 designs)} 

(4.18) 

This way, the population that generate the best design (CBESL) and the best designs that 

saved from cycle to cycle (CMESL) are passed to ECBO at the end of ESL method.   

To terminate the ESL method, the following criterion is used (note that the minimum 

number of ESL cycles is set to 5): no better design is found for two ESL cycles. The stopping 

criteria are checked at this stage; if satisfied, the ESL method is terminated and we go to the ECBO 

block (Step 7) with full transient analyses; otherwise, we continue to Step 6. 

Step 6. Initialization for a new ESL cycle. 

In this step, new ESLs are re-calculated based on ESL1, ESL2, or ESL3 approach, new 

population of designs is generated from the design domains in the CB matrix. This shows better 

convergence behavior than passing the last CB to the next cycle because new designs are explored 

by generating new CB when the best designs (so far) are preserved by setting CM=CMESL. The 

updated CMESL is passed to the next cycle as CM.  
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Step 7. ECBO without ESL cycles. 

If the stopping criteria for the ESL step are satisfied, CBESL matrix and the CMESL are 

passed to ECBO block with full transient analyses. These two matrices have improved designs 

using ECBO with ESL method. Then, the formulation given in Eqs. (4.4) to (4.8) is used to find 

the final best design. It was found that with just the ESL cycles, the algorithm could not reach the 

best design. Therefore, Step 7 was necessary to further improve the design. It is observed however, 

that the best design at the end of ESL cycles is usually close to the final best design. Therefore, for 

practical applications, it may be appropriate to stop the algorithm after the ESL cycles. 

The foregoing procedure significantly reduces the number of transient analyses needed to 

reach the best design compared to the procedure without the use of ESLs (as shown in Section 7). 

In other words, the time needed to reach the best design is reduced because computation times for 

linear static analyses (solving system of linear equations) are much shorter than those for the 

transient analyses (numerically solving system of differential equations). For large problems, one 

transient analysis might require hours which makes the metaheuristic optimization algorithms very 

time consuming.  

In nonlinear dynamic problems, ESLs generate the same displacements as those from 

nonlinear dynamic analysis; however, they do not generate the same stress responses because of 

the nonlinear relationship between stress and strain and strain and displacement (Kim & Park, 

2010). Therefore, when there are stress constraints, the difference in stresses can be adjusted to 

𝜎𝜎�𝐸𝐸𝛼𝛼 as follows: 

 𝛽𝛽𝑟𝑟,𝑖𝑖 =
𝜎𝜎𝑁𝑁𝛼𝛼,𝑖𝑖
𝜎𝜎𝐿𝐿𝛼𝛼,𝑖𝑖

   (4.19) 
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𝜎𝜎�𝐸𝐸𝛼𝛼,𝑖𝑖
𝑗𝑗 = 𝜎𝜎𝐸𝐸𝛼𝛼,𝑖𝑖

𝑗𝑗 × 𝛽𝛽𝑟𝑟,𝑖𝑖;  𝛼𝛼 = 1,2, … , 𝑟𝑟 

where 𝛽𝛽 the stress correction factor, 𝜎𝜎𝐸𝐸𝛼𝛼,𝑖𝑖 and 𝜎𝜎𝑇𝑇𝛼𝛼,𝑖𝑖 are the linear and nonlinear stress responses, 

respectively, 𝑖𝑖 is the element number, and 𝑗𝑗 is the iteration number. This procedure is used in 

nonlinear truss design example (Section 4.7.2).  

 
Figure 4.2. GOESL process. 
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4.7 Numerical Examples 

In the following sections, four discrete structural optimization examples are solved for 

minimum structural weight to test the performance of the proposed algorithm. ECBO and the first 

two design examples (truss structures) are coded using MATLAB and the models and simulation 

are verified using the commercial finite element analysis program ANSYS (Bhatti, 2006). The 

frame design examples are coded in MATLAB and interfaced with the structural analysis program 

SAP2000 using the Open Application Programing Interface (OAPI).  

The first numerical example is solved using the two simultaneous single-step Runge-Kutta 

method (ODE23 MATLAB function). For the rest of the examples, Newmark’s method (β=1/4 

and γ=1/2) is used for linear and nonlinear dynamic analysis while direct stiffness method is used 

for linear static analysis. 

ECBO parameters are set as follows: population size is 40, 𝑃𝑃𝑟𝑟𝑜𝑜 is 0.4, and the number of 

designs to be saved in CM (CMS) is 4 (10% of the population) (Kaveh & Mahdavi, 2015). For 

all design examples, the time duration for dynamic analysis is set so that the maximum response 

is covered. 

Since the optimization algorithms are stochastic in nature, 10 independent optimization 

runs were performed for each case to test the performance of ECBO with ESL. In each individual 

run, the initial population was the same for ECBO without the ESL cycles and GOESL to make a 

fair comparison. 

The quality of proposed method is determined based on the final cost function value, the 

cost function value after the ESL step, and the total number of transient structural analyses needed 

to reach the best design.  
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4.7.1 Eighteen-bar Truss 

Figure 4.3 shows the configuration of the 18-bar truss subjected to a half sine wave load at 

nodes 1, 2, 4, 6, 8. This example was solved in Choi and Park (2002) for continuous design 

variables and gradient-based optimization. The modulus of elasticity and the density are 69 GPa 

and 2765 kg/m3, respectively. All members are subjected to stress limitations of 138 MPa in both 

tension and compression. The allowable displacement for all nodes in both vertical and horizontal 

directions is ±203 mm. The optimization problem is to minimize the total mass of the structure. 

Four size variables and eight shape variables are selected as the design variables.  

To test performance of the proposed algorithm, this example is re-formulated as a discrete 

variable optimization problem. The sizing variables are selected from the discrete set of 100 

elements where the range of the cross-sectional area is from 1 to 150 cm2 with 1.505 cm2 

increment. The shape variables are the x and y coordinates of nodes 3, 5, 7, 9. The shape variables 

are selected from the discrete set of 100 elements where the range is from -317.5 (half the span of 

635 cm) to 317.5 cm with 6.141 cm increment. All members of the truss are divided into 4 groups 

giving 4 sizing design variables (Choi and Park, 2002): all top chord members, all bottom chord 

members, all vertical members and all diagonal members. Considering the peaks of the 

displacements and the stresses, the time duration for dynamic analysis is set from 0 to 8 second. 

The time interval is divided into 100 increments giving 100 loading conditions for static response 

optimization with the ESL approach. Each loading condition vector has 18 elements since there 

are 18 degrees of freedom for the truss. 
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Figure 4.3. Schematic of the 18-bar truss and the applied dynamic load. 

 
Figure 4.4. Convergence history of 18-bar truss of the first run. 

Table 4.1 summarizes results for 10 different runs for ECBO without the ESL cycles and 

for the three ESL methods. The data in the table for the 10 runs for each ESL method includes: 

Final mass (kg), mass at the end of ESL cycles (kg), number of ECBO iterations without the ESL 

cycles, number of dynamic analyses, and number of static analyses. It is interesting to note that of 

the total 30 runs, 6 runs converged to the best mass value, 17 runs converged to the mass that was 

within 0.1% of the best value and the remaining 7 runs converged to within 0.2% of the best value. 

This shows robustness of the proposed algorithm for this example because all the designs would 

be acceptable from practical applications point of view. 
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It is noted from the data in Table 4.1  that at the end of ESL cycles, the best design has not 

been reached for all runs. Therefore, the algorithm must switch to ECBO with dynamic analysis 

of the entire population to obtain the final design. It is noted that many more ESL cycles beyond 

the ones shown in Table 4.1, did not result in improved designs.  

To compare the ECBO with and without ESL cycles, averages and standard deviations of 

some key parameters for 10 runs for each method are examined. These data are summarized in 

Table 4.2. The averages of the final masses and the total number of dynamic analyses show that 

the proposed method (GOESL with ESL1, ESL2 or ESL3) obtains not only better final designs 

but also needs a significantly smaller number of dynamic analyses compared to ECBO without the 

ESL cycles. That is, the average of dynamic analyses of ECBO without ESL cycles is 42524 

analyses whereas ESL1, ESL2, and ESL3 have averages of 20964, 22616, and 23000 analyses, 

respectively.  

To study the performance of three proposed ESL approaches, averages and standard 

deviations for the 10 runs of each ESL method given in Table 4.2 are examined. It is seen that 

ESL2 has the smallest averages and standard deviations for the final mass as well as the mass at 

the end of ESL cycles. This shows that ESL2 approach is more reliable in obtaining the final 

solution. Although ESL2 approach has a slightly higher average for the number of dynamic 

analyses, it is preferred because of its reliability in obtaining the final design. Performance of ESL1 

is a close second to ESL2 for this example. 

The best initial and final designs of the first run of ECBO without the ESL cycles and 

GOESL using ESL2 approach are shown in Table 4.3. For the same initial population, GOESL 

found a lighter design of 2521.75 kg. After 6 ESL cycles (6×14+40=124 dynamic analyses), the 
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total structure mass became 2571.70 kg (this is just 1.98 % heavier than the best design). As shown 

in Figure 4.4, GOESL converges faster than ECBO without ESLs. That is, when ECBO obtains 

the total mass of 2531.17 kg at iteration 1153, and ECBO with ESL needs just 236 iterations to 

reach the same mass. That is, with a population of 40 designs, ECBO without ESL cycles needs 

917 iterations (917×40-6×14=36596 dynamic analyses) more than GOESL to reach a mass of 

2531.17 kg. GOESL final design configuration is depicted in Figure 4.5. The total time needed for 

ECBO without ESL cycles and for GOESL to obtain the total mass of 2531.17 are 37.21 minutes 

and 9.13 minutes, respectively (ESL step took only 1.51 minutes) on a desk top computer. 
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Table 4.1. Data for 10 different runs of the18-bar truss. 

 
Run 

1 2 3 4 5 6 7 8 9 10 

ECBO without 
ESL cycles 

Mass (kg) 2531.2 2535.7 2525.4 2526.3 2521.8 2524.0 2525.6 2522.7 2523.0 2527.5 
No. of iterationsa 1153 1198 1163 1182 840 1097 1133 1186 482 1197 

No. of dynamic analyses 46120 47920 46520 47280 33600 43880 45320 47440 19280 47880 

G
O

E
SL

 

 
E

SL
1  

Final mass (kg) 2523.5 2521.2 2521.1 2521.1 2523.5 2523.9 2520.5 2520.5 2522.9 2520.8 
Mass at end of ESL cycles (kg) 2594.2 2607.5 2591.0 2594.8 2588.4 2600.5 2585.3 2590.1 2589.4 2585.7 

No. of iterationsa 452 591 568 424 568 583 573 545 433 475 
No. of cycles 7 7 12 7 13 5 9 6 6 11 

No. of dynamic analyses 18178 23738 22888 17058 22902 23390 23046 21884 17404 19154 
No. of static analyses 61360 51240 84960 71840 87000 32960 71880 45960 44400 78280 

E
SL

2 

Final mass (kg) 2521.8 2523.0 2520.5 2521.5 2522.9 2521.5 2521.4 2522.2 2523.9 2520.6 
Mass at end of ESL cycles (kg) 2570.6 2589.3 2589.1 2580.7 2585.5 2580.0 2590.4 2579.3 2577.7 2578.7 

No. of iterationsa 826 539 379 600 563 598 480 597 600 442 
No. of cycles 6 6 11 11 8 7 7 9 7 14 

No. of dynamic analyses 33124 21644 15314 24154 22632 24018 19298 24006 24098 17876 
No. of static analyses 45920 43240 82480 67840 50320 56960 46320 56240 50440 104320 

E
SL

3 

Final mass (kg) 2522.3 2522.5 2525.5 2524.1 2520.8 2523.8 2525.5 2523.3 2524.8 2522.6 
Mass at end of ESL cycles (kg) 2594.9 2618.8 2607.4 2613.4 2597.8 2603.8 2619.4 2610.2 2598.8 2615.3 

No. of iterationsa 559 535 588 561 594 598 541 565 589 600 
No. of cycles 7 5 6 5 7 5 5 5 5 7 

No. of dynamic analyses 22458 21470 23604 22510 23858 23990 21710 22670 23630 24098 
No. of static analyses 45720 30920 52160 45160 43240 35880 38640 38720 38880 52080 

a ECBO iterations without ESL cycles. 
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Table 4.2. Comparison of averages and standard deviations for 10 runs of the18-bar truss. 

Metric 
Averages Standard deviation 

ECBO Alone ESL1 ESL2 ESL3 ECBO Alone ESL1 ESL2 ESL3 
Final mass (kg) 2526.32 2521.92 2521.85 2523.5 4.28 1.37 1.10 1.50 

Mass at end of ESL cycles (kg) - 2592.68 2583.41 2607.97 - 6.90 5.13 8.90 
No. of dynamic analyses 42524 20964 22616 23000 9208 2691 4791 962 

No. of static analyses - 62988 60408 42140 - 18644 19488 6848 
 

Table 4.3. Initial and final designs of 18-bar truss for the first run. 

Design variables 
Best initial 

design 
ECBO GOESL (ESL2) 

Final design Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Final design 
1 Areatop (mm2) 9431.31 10635.35 14548.48 10484.85 10484.85 10785.86 11237.37 11237.37 10334.34 
2 Areabottom (mm2) 13946.46 10635.35 10033.33 10785.86 10785.86 11688.89 11538.38 11538.38 11387.88 
3 Areavertical (mm2) 14698.99 4013.13 2207.07 3561.62 3561.62 3561.62 3260.61 3260.61 3561.62 
4 Areadiagonal (mm2) 7324.24 4314.14 4163.64 5518.18 5518.18 4314.14 4314.14 4314.14 4163.64 
5 X3 (mm) 2533.59 737.63 -3175.00 1250.76 1250.76 -3110.86 -2854.29 -2854.29 416.92 
6 Y3 (mm) -2277.02 3175.00 2726.01 2148.74 2148.74 2148.74 2277.02 2277.02 3175.00 
7 X5 (mm) -96.21 -865.91 -3175.00 -3046.72 -3046.72 -3110.86 -3175.00 -3175.00 -994.19 
8 Y5 (mm) -1186.62 481.06 1250.76 865.91 865.91 930.05 1058.33 1058.33 673.48 
9 X7 (mm) 2341.16 -2341.16 -1956.31 -2405.30 -2405.30 -2597.73 -2533.59 -2533.59 -2212.88 
10 Y7 (mm) -1571.46 -224.49 224.49 -32.07 -32.07 -32.07 224.49 224.49 -160.35 
11 X9 (mm) -2084.60 -3175.00 -1699.75 -2341.16 -2341.16 -2148.74 -2277.02 -2277.02 -2854.29 
12 Y9 (mm) -1250.76 -96.21 -288.64 -288.64 -288.64 -224.49 -160.35 -160.35 -160.35 
Max. Displacement (mm) 14.76 (1a) 203.00 (1) 205.12 (1) 202.50 (1) 202.50 (1) 202.46 (1) 202.76 (1) 202.76 (1) 203.00 (1) 

Max. Stress (MPa) 86.98 (17b) 111.18 (18) 130.13 (15) 110.11 (18) 110.11 (18) 116.93 (17) 109.86 (17) 109.86 (17) 114.01 (17) 
Mass (kg) 4470.86 2531.17 2621.58 2621.58 2621.58 2577.38 2570.62 2570.62 2521.75 

Merit 4470.86 2531.17 2621.58 2621.58 2621.58 2577.38 2570.62 2570.62 2521.75 
Iteration - 1153c 233d 233d 232d 150d 150d 150d 826c 

Dynamic, static analyses - 46120, 0 14, 9320 14, 9320 14, 9280 14, 6000 14, 6000 14, 6000 33040, 0 
Top members: 1, 4, 5, 12, and 16. Bottom members: 2, 6, 10, 14, and 18. Vertical members: 3, 7, 11, and 15. Diagonal members: 5, 9, 13, and 17. 
a Node number where the maximum displacement occurs. b Member number where the maximum stress occurs. c Transient analysis.  
d Linear static analysis. 
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Figure 4.5. Optimum configuration for the 18-bar truss. 

4.7.2 Ten-bar Truss with Material Nonlinearity 

Figure 4.6 shows the configuration of the 10-bar truss subjected to a half sine wave load at 

nodes 2 and 4. This example was solved in Kim and Park (2010) for continuous design variables 

using a gradient-based optimization algorithm. The material nonlinearity is considered in this 

problem. The Young’s modulus is 200 GPa, the tangent modulus is 50 GPa, the yield stress is 200 

MPa, the Poisson ratio is 0.3, and the mass density is 7860 kg/m3.  

To evaluate the proposed algorithm, this problem is also re-formulated as a discrete 

variable problem. The optimization problem is to minimize the total mass of the structure. The 

design variables are the cross-sectional areas of the members (Table 4.6). The size variables are 

selected from the discrete set of 100 elements where the range of the cross-sectional areas is from 

78.5 to 2826 cm2 with 27.752 mm2 increment. All members are subjected to stress limitations of 

250 MPa in both tension and compression. Considering the peaks of the displacements and the 

stresses, the time duration for the analysis is set from 0 to 0.03 second with time step of 0.0002 

second. This gives 150 loading conditions for static response optimization with the ESL approach. 

Each loading condition vector has 8 elements since there are 8 degrees of freedom for the truss.  
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Figure 4.6. Schematic of the 10-bar truss and the applied dynamic load. 

Table 4.4 shows results for 10 different runs of ECBO without the ESL cycles and the 

results of GOESL with the three approaches, ESL1, ESL2 and ESL3. The data in the table for all 

the 30 runs includes: final mass (kg), mass at end of ESL cycles (kg), number of ECBO iterations 

without the ESL cycles, number of dynamic analyses, and number of static analyses. It is 

interesting to note that of the 30 runs, 4 runs converged to the best mass value, 10 runs converged 

to the mass that was within 2.5% of the best value and 8 runs converged to within 5.0% of the best 

value.  

An examination of the averages and standard deviations in Table 4.5 for this example leads 

to the same conclusion as for Example 1: GOESL obtains better designs with less number of 

dynamic analyses compared to ECBO without the ESL cycles, and ESL2 approach performs more 

reliably in obtaining the final design than ESL1 and ESL3.  
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Table 4.4. Data for 10 different runs of the10-bar truss. 
 Run 

1 2 3 4 5 6 7 8 9 10 
ECBO 
without 

ESL cycles 

Mass (kg) 26.9 30.0 26.2 25.6 25.4 31.2 25.9 26.0 25.5 25.4 
No. of iterationsa 765 395 624 936 406 772 833 380 422 664 

No. of dynamic analyses 30600 15800 24960 37440 16240 30880 33320 15200 16880 26560 

G
O

E
SL

 

E
SL

1 

Final mass (kg) 29.6 25.8 25.2 25.4 25.4 25.6 27.7 25.8 25.9 25.6 
Mass at end of ESL cycles (kg) 61.7 58.3 47.0 63.6 43.5 87.4 77.0 45.9 140.4 54.9 

No. of iterationsa 465 252 313 187 219 202 180 351 363 194 
No. of cycles 6 7 14 8 7 7 5 7 7 5 

No. of dynamic analyses 18606 10087 12534 7488 8767 8087 7205 14047 14527 7765 
No. of static analyses 37640 44800 81360 42960 50160 45240 30720 48480 59120 33720 

E
SL

2 

Final mass (kg) 26.1 25.2 26.1 25.7 26.1 26.1 25.2 25.3 25.7 25.9 
Mass at end of ESL cycles (kg) 41.6 29.6 39.0 36.1 45.2 61.1 68.9 35.0 51.6 39.6 

No. of iterationsa 374 294 227 251 267 258 417 162 339 345 
No. of cycles 7 21 9 10 6 6 5 11 5 14 

No. of dynamic analyses 15058 12054 9206 10180 10764 10404 16750 6634 13630 13996 
No. of static analyses 46200 119080 59720 63200 47640 33120 29000 66000 39720 80120 

E
SL

3 

Final mass (kg) 27.7 25.2 27.0 25.9 27.6 30.2 28.7 27.1 25.3 26.2 
Mass at end of ESL cycles (kg) 54.3 79.4 63.7 74.6 83.8 86.1 77.7 63.2 65.2 75.3 

No. of iterationsa 255 242 341 204 283 354 138 113 324 409 
No. of cycles 5 5 5 7 6 5 5 5 5 5 

No. of dynamic analyses 10270 9750 13710 8258 11404 14230 5590 4590 13030 16430 
No. of static analyses 29280 25480 27160 35280 30560 25520 27240 26120 35200 33560 

a ECBO iterations without ESL cycles. 
 

 

 

 



 
 

104 
 

Table 4.5. Comparison of averages and standard deviations for 10 runs of the10-bar truss. 

Metric 
Averages Standard deviation 

ECBO 
Alone 

ESL1 ESL2 ESL3 
ECBO 
Alone 

ESL1 ESL2 ESL3 

Final mass (kg) 26.8 26.2 25.73 27.08 2.1 1.36 0.39 1.56 
Mass at end of ESL cycles (kg) - 67.96 44.75 72.32 - 28.97 12.33 10.26 

No. of dynamic analyses 24788 10911 11869 10726 8268 3849 3025 3812 
No. of static analyses - 47420 58380 29540 - 14496 26569 3909 

 

Table 4.6. Initial and final design of 10-bar truss of the first run. 

Design variables 
(mm2) 

Best initial 
design 

ECBO GOESL (ESL2) 

Final design Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 
Final 

design 
1 A1 439.28 439.28 855.57 855.57 661.30 661.30 661.30 661.30 661.30 605.80 
2 A2 494.79 300.52 411.53 272.77 134.01 134.01 161.76 189.51 189.51 134.01 
3 A3 1632.64 661.30 550.29 550.29 550.29 550.29 550.29 550.29 550.29 522.54 
4 A4 1771.40 78.50 439.28 411.53 217.26 217.26 217.26 189.51 189.51 161.76 
5 A5 1632.64 106.25 411.53 217.26 134.01 134.01 134.01 134.01 134.01 161.76 
6 A6 1382.87 217.26 1438.37 356.03 161.76 161.76 161.76 217.26 217.26 106.25 
7 A7 383.78 550.29 1188.60 800.07 689.06 689.06 689.06 661.30 661.30 328.27 
8 A8 134.01 189.51 1327.36 1327.36 1299.61 1299.61 1299.61 1299.61 1299.61 439.28 
9 A9 605.80 78.50 189.51 633.55 245.02 245.02 245.02 217.26 217.26 217.26 
10 A10 1299.61 328.27 494.79 439.28 217.26 217.26 189.51 189.51 189.51 161.76 

Max. Stress (MPa) 242.60 (7a) 249.88 (9) 243.92 (3) 248.57 (3) 252.37 (2) 252.37 (2) 250.50 (3) 246.16 (3) 246.16 (3) 249.15 (7) 
Mass (kg) 84.74 26.92 67.85 56.51 41.83 41.83 41.76 41.58 41.58 26.05 

Merit 84.74 26.92 67.85 56.51 43.10 43.10 41.93 41.58 41.58 26.05 
Iteration - 765 285 163 125 207 125 125 125 374 

Dynamic, static analyses - 30600, 0 14, 11400 14, 6520 14, 5000 14, 8280 14, 5000 14, 5000 14, 5000 14960, 0 
a Member number where the maximum stress occurs. 
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Figure 4.7. Convergence history of 10-bar of the first run. 

The best initial and final designs of the first run of ECBO without ESL cycles and GOESL 

using ESL2 are shown in Table 4.6. For the same initial population ECBO with ESL2 found a 

lighter design of 26.05 kg. After 8 ESL cycles, the total structure mass became 41.58 kg (the best 

design is 59.62% lighter). As shown in Figure 4.7, GOESL converges faster than ECBO without 

ESL cycles. ECBO reaches the best design of 26.92 kg at iteration 765 and GOESL needs just 119 

iterations to obtain a similar mass. That is, with a population of 40 designs, ECBO needs 25728 

more dynamic analyses (646 iterations) than GOESL. The total time needed for ECBO without 

ESL cycles and for ECBO with ESL2 to reach the best design are 18.36 minutes and 10.16 minutes, 

respectively (ESL step took only 1.18 minutes). 

The average of final masses and the average of total number of dynamic analyses of the 

proceeding two examples show that the proposed method (GOESL) gives better results. The best 

design from dynamic analysis approach (the second approach, ESL2) shows better convergence 
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behavior and final designs of the three approaches. Therefore, this approach is used in the next two 

examples.  

4.7.3 Two-story Two-bay Frame   

This design example is a 2-story, 2 bays planar steel frame having 4 beams and 6 columns 

and has not been solved in the literature before. It is modeled using SAP2000 and MATLAB with 

19 nodes and 20 elements. Note that in order to get more accurate analysis results intermediate 

nodes are introduced for each member of the frame. The frame has 48 degrees of freedom that is 

subjected to a half sine wave load at nodes 2 and 3 and uniformly distributed static load of 5 kip/ft 

on members 13 to 20 as shown in Figure 4.8. All ground supports are fixed. Material properties 

are: Young’s modulus, 𝐸𝐸=29000 ksi, yield stress, 𝐷𝐷𝑦𝑦=50 ksi, and Poison’s ratio, 𝑛𝑛=0.3.  

 

Figure 4.8. Schematic of the 2-story 2-bay frame and the applied dynamic load. 

Columns and beams are selected from the first lightest 100 standard W-shapes provided in 

AISC tables (ASIC, 2017). The sections are rearranged in an ascending order based on their 

weight. The problem is formulated as an integer variable optimization problem where the section 

number is treated as a design variable. To further explain the design variables, consider a small 

part of the AISC (2017) wide-flange sections table shown in Error! Reference source not found.. 
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Once an integer value is assigned to a design variable, a section is specified. For example, if a 

design variable is assigned value of 4, then the section from the Table 4.7 is W44X230. For this 

section, the weight per foot is 230 lbs, the cross-sectional area is 67.8 inch2, total depth is 42.9 

inches, and so on. In other words, all the cross-sectional properties are available to formulate and 

check the performance constraints. It is seen that there is no continuous functional relationship 

between the section number and the cross-sectional properties. Therefore, it is not possible to 

formulate and differentiate the problem functions with respect to the design variables. 

Table 4.7. ASIC W-Shapes Database (partial). 

Section 
number 

Shape 
W 

(lb/ft) 
A (in2) 

d 
(in) 

Web Flange Axis X-X 
… 

ho 

(in) 
PA 

(in) 
PB 

(in) tw 
(in) 

tw/2 
(in) 

bf 
(in) 

tf 

(in) 

Ix 

(in4) 
Zx 

(in3) 
Sx

 

(in3) 
rx 

(in) 

1 W44X335 335 98.5 44.0 1.030 1/2 15.9 1.77 31100 1620 1410 17.8 … 42.2 132 148 

2 X290 290 85.4 43.6 0.865 7/16 15.8 1.58 27000 1410 1240 17.8 … 42.0 131 147 

3 X262 262 77.2 43.3 0.785 7/16 15.8 1.42 24100 1270 1110 17.7 … 41.9 131 147 

4 X230 230 67.8 42.9 0.710 3/8 15.8 1.22 20800 1100 971 17.5 … 41.7 130 146 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

273 W4X13 13 2.83 4.16 0.280 1/8 4.06 0.345 11.3 6.28 5.46 1.72 … 97 495 599 

The strength requirement for the members is based on the AISC interaction ratio constraint 

expressed as follows: 

 𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

+ 8
9
� 𝑀𝑀𝑢𝑢𝑢𝑢
𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑢𝑢

� − 1 ≤ 0  if  
𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

≥ 0.2 

𝑃𝑃𝑢𝑢
2𝜙𝜙𝑃𝑃𝑛𝑛

+ � 𝑀𝑀𝑢𝑢𝑢𝑢
𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑢𝑢

� − 1 ≤ 0  if  
𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

< 0.2 

(4.20) 

here 𝜙𝜙 is the resistance factor (𝜙𝜙𝑐𝑐  = 0.85 and 𝜙𝜙𝑏𝑏 = 0.90 for compression and tension, respectively). 

𝜙𝜙𝑏𝑏=0.90 is the flexural resistance factor. 𝑃𝑃𝑢𝑢 and 𝑃𝑃𝑛𝑛 are the required and the nominal axial strengths 

(compression or tension) (kips), respectively. 𝑀𝑀𝑢𝑢𝑢𝑢 is the required flexural strength (kip-ft). 𝑀𝑀𝑛𝑛𝑢𝑢 is 

the nominal flexural strength (kip-ft). Constraints in Eq. (4.20) needs to be imposed at each point 

along the axis of every member in the structure. Thus, the equation represents infinite constraints. 
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In the numerical process, the constraints are evaluated at several points along the axis of the 

member and they imposed at the point where they have maximum value. These constraint values 

are then used to evaluate the penalty function.  

In Eq. (4.20), evaluation of 𝑃𝑃𝑛𝑛 and 𝑀𝑀𝑛𝑛𝑢𝑢 is an involved process (AISC, 2017) that requires 

checking of several failure modes (i.e., several “if then else” requirements). For example, to find 

𝑃𝑃𝑛𝑛, first one needs to find whether the member force is tensile or compressive. For tension 

members, 𝑃𝑃𝑛𝑛 is calculated based on whether the gross section yields or the net section ruptures. 

For compression members, 𝑃𝑃𝑛𝑛 is calculated based on consideration of several failure modes, such 

as yielding of the material, local buckling of flanges or the web (elastic or inelastic), and global 

buckling (elastic or inelastic). Similarly, calculation of 𝑀𝑀𝑛𝑛𝑢𝑢 invoves checking several flexural 

failure modes. All the foregoing calculations involve various cross-sectional properties of the 

sections that are available in Table 4.7. 

Thus, it is concluded that it is not possible to obtain a functional expression for the 

constraints in Eq. (4.20) in terms of the design variables, the integer number of the sections. Even 

if that were somehow possible, there would be several discontinuities in the functions due to all 

the “if then else” requirements mentioned in the foregoing paragraph. Also notice that constraints 

in Eq. (4.20) have a discontinuity at 
𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

= 0.2. Therefore, Due to all these reasons, the gradient-

based methods are not applicable for this class of applications.   

Considering the peaks of the displacements and the stresses, the time range for the analysis 

is set from 0 to 4 second with time step of 0.04 second. This gives 100 loading conditions for static 

response optimization with the ESL approach. Each loading condition vector has 48 elements since 

there are 48 degrees of freedom for the frame. 
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This example was also solved without the intermediate nodes for the members. That model 

was more efficient to solve. However, the final designs were not as good as with the increased 

degrees of freedom. The reason is that with more degrees of freedom a more accurate dynamic 

response is obtained resulting in better ESLs as well. 

Table 4.9Table 4.8 gives the best initial and final designs of the first run. For the same 

initial population GOESL found a lighter design of 9108 lb. After 6 ESL cycles, the total structure 

weight becomes 9996 lb (the best design is 9.75% lighter). As shown in Figure 4.9, GOESL 

converges faster than ECBO without ESL cycles. ECBO reaches the best design of 9492 lb at 

iteration 207 whereas GOESL needs 43 iterations to obtain a similar design of 9492 lb. From Table 

4.9, the average of 10 individual runs for final weight is better with GOESL than with ECBO 

without the ESL approach. The average of total number of dynamic analyses shows that GOESL 

needs about half the number dynamic analyses than ECBO without ESL cycles to reach the final 

design. 

 
Figure 4.9. Convergence history of 2-story 2-bay frame. 
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Table 4.8 Initial and final design of 2-story 2-bar frame of the first run. 
Design 
variable 

no. 
Member no. 

Best initial 
design 

ECBO  GOESL (ESL2) 

Final design Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Final design 

1 1-2 W27X281 W24X229 W40X167 W24X229 W30X90 W27X281 W36X160 W36X160 W40X167 
2 3-4 W30X261 W36X529 W36X302 W27X129 W33X354 W36X182 W33X354 W33X354 W36X302 
3 5-6 W36X135 W24X229 W24X306 W24X229 W27X129 W30X108 W24X306 W24X306 W24X306 
4 7-8 W40X324 W33X241 W36X282 W27X539 W27X307 W30X90 W36X182 W36X182 W36X282 
5 9-10 W36X160 W36X282 W36X247 W36X135 W30X99 W33X130 W36X256 W36X256 W36X247 
6 11-12 W27X539 W33X354 W36X160 W33X318 W30X173 W36X256 W36X182 W36X182 W36X160 
7 13-14 W27X258 W27X281 W24X306 W24X306 W24X250 W27X217 W24X306 W24X306 W24X306 
8 15-16 W30X148 W27X336 W27X258 W27X258 W27X336 W27X281 W27X258 W27X258 W27X258 
9 17-18 W24X335 W33X318 W33X130 W27X217 W27X258 W30X108 W30X90 W30X90 W33X130 

10 19-20 W24X250 W30X235 W30X211 W27X161 W30X108 W30X124 W30X90 W30X90 W30X211 
Max. interaction ratio 3.953 (6a) 0.999 (4) 1.050 (8) 0.920 (5) 3.531 (6) 1.155 (14) 0.985 (10) 0.985 (10) 0.998 (5) 

Weight (lb) 10476 9492 10596 11832 11184 9948 9996 9996 9108 
Merit 907201.4 9492 12928.15 11832 424985.4 17378.3 9996 9996 9108 

Iteration - 207 142 214 121 154 154 63 171 
Dynamic, static analyses - 8280, 0 14, 5680 14, 8560 14, 4840 14, 6160 14, 6160 14, 2520 6840, 0 
a Member number where the maximum interaction ratio occurs. 
 

Table 4.9. 10 individual runs data of the 2-story 2-bay frame. 
   Run   
   1 2 3 4 5 6 7 8 9 10 Average SD 
ECBO 
without 

ESL cycles 

Weight (lb) 9492 9708 9720 9972 9240 9168 9744 9924 9468 9708 9614.4 254.0 
No. of iteration 207 271 297 303 214 215 277 278 328 347 274 46 

No. of dynamic analyses 8280 10840 11880 12120 8560 8600 11080 11120 13120 13880 10948 1843 

G
O

E
SL

 

ESL2 

Final weight (lb) 9108 9216 9372 9264 9288 9132 9144 9552 9132 8988 9219.6 159.0 
ESL final weight (lb) 9996 10152 10488 11360 10100 10440 10020 10224 9996 10572 10334.8 417.8 

No. of iterations 171 160 117 158 175 121 124 90 160 178 145 30 
No. of cycles 6 5 7 5 5 8 9 5 5 7 6.2 1.5 

No. of dynamic analyses 6924 6470 4778 6390 7070 4952 5086 3670 6470 7218 5903 1194 
No. of static analyses 33920 19440 36480 29720 28880 42040 35800 18640 17600 33920 29644 8470 
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4.7.4 Two-story Two-bay Frame Subjected to Blast Loads with Material and Geometric 
Nonlinearity 

The configuration of this numerical example is the same as the previous example except 

that it is subjected to blast load. This example has also not been solved in the literature. For 

simplicity, the blast load is modeled as triangle and the negative pressure phase is neglected. In 

addition, a uniformly distributed static load of 5 kip/ft on members 13 to 20 is added as shown in 

Figure 4.10. All ground supports are fixed. Young’s modulus, 𝐸𝐸=29000 ksi, yield stress, 𝐷𝐷𝑦𝑦=50 

ksi, ultimate stresses, 𝐷𝐷𝑢𝑢=65 ksi and Poison’s ratio, 𝑛𝑛=0.3. Due to the dynamic effects resulting 

from the high strain rates, the dynamic increase factors (𝐷𝐷𝐷𝐷𝐷𝐷) for yield and ultimate stresses of 

1.19 and 1.05, respectively, are used (Gilsanz et al., 2013). Since the average yield stress for 

structural steels having a specified minimum yield stress of 50 ksi or less is generally higher than 

the specified minimum, it is recommended that the minimum design yield stress, as specified by 

the AISC (2011) specification, be increased by 10 percent. This increasing factor is called the 

strength increase factor (𝑆𝑆𝐷𝐷𝐷𝐷). Also, for all modes of failure, it shall be permissible to use a strength 

reduction factor (𝜙𝜙) of 1.0 instead of smaller than 1 value (ASCE, 2011). The reader is referred to 

ASCE (2010), ASCE (2011), Dusenberry (2010), Gilsanz et al. (2013), and DoD (2008) for more 

details. Therefore, the new strength values are as follows: 

 𝐷𝐷𝑑𝑑𝑦𝑦 = (𝑆𝑆𝐷𝐷𝐷𝐷)(𝐷𝐷𝐷𝐷𝐷𝐷)𝐷𝐷𝑦𝑦 = (1.1)(1.19)(50) = 65.45 𝑘𝑘𝑟𝑟𝑖𝑖 (4.21) 

 𝐷𝐷𝑑𝑑𝑢𝑢 = (𝐷𝐷𝐷𝐷𝐷𝐷)𝐷𝐷𝑢𝑢 = (1.05)(65) = 68.25 𝑘𝑘𝑟𝑟𝑖𝑖 (4.22) 

 Columns and beams are selected from the first lightest 150 standard W-shapes provided 

in AISC tables (ASIC, 2017) after rearranging sections in an ascending order based on their weight. 

Columns are designed to remain elastic and subjected to the AISC interaction ratio constraint (Eq. 

(4.20)) while beams are allowed to develop plastic hinges. Steel Beams-Flexure elastic-perfectly 
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plastic hinges provided by SAP2000 v.20 are modeled near the start of members 13, 15, 17, and 

19 and near the end of members 14, 16, 18, and 20 as shown in Figure 4.10. The locations of these 

plastic hinges are chosen based on observing where maximum bending moments occur. The 

maximum member end rotation shall be 1 degree and the maximum side-sway deflection (or inter-

story drift (𝐷𝐷𝑆𝑆𝐷𝐷)) is limited to 1/50 of the story height (low response design (ASCE, 2010)).  

 𝐷𝐷𝑆𝑆𝐷𝐷 ≤ 𝐻𝐻
50

 (2.9 in) (4.23) 

where 𝐻𝐻 is the height of the story. It was noticed that when there are many plastic hinges the 

numerical solver stops converging before reaching the maximum analysis time which indicates 

the structure becomes unstable. In this case, 𝜓𝜓 (in Eq. (4.7)) is set to 10 to eliminate structurally 

unstable designs in the optimization process.  

 
Figure 4.10. Schematic of the 2-story 2-bay frame and the applied blast load. 

Considering the blast load duration and the peaks of the response, the time range from the 

analysis is set from 0 to 1.25 second with time step of 0.0025. This gives 500 loading conditions 

for static response optimization with the ESL approach. Each loading condition vector has 48 

elements since there are 48 degrees of freedom for the frame. 
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This example was solved with 9 joints and 10 members (no intermediate nodes). Similar 

to the previous example, it was observed that increasing the degrees of freedom makes GOESL 

converges to better designs for the same reasons as noted earlier.  

 
Figure 4.11. Convergence history of 2-story 2-bay frame subjected to blast load. 

Table 4.10 gives the best initial and final designs for the first run of the problem. For the 

same initial population, GOESL found lighter design of 13296 lb. After 5 ESL cycles, the total 

structure mass becomes 15264 lb (the best design is 14.8% lighter). As shown in Figure 4.11, 

GOESL converges faster than ECBO without ESL cucles. That is, when ECBO without ESL 

cycles obtains the total weight of 14160 lb at iteration 232, GOESL needs 102 iterations to reach 

a similar structural weight. That is, with population of 40 designs, ECBO without ESL cycles 

needs 130 more iterations (5130 dynamic analyses) than ECBO with ESLs. Table 4.11 summarizes 

results for 10 different runs for ECBO without the ESL cycles and for GOESL. The average of the 

final weights and the total number of dynamic analyses show that GOESL obtains not only better 

average but also needs significantly smaller number of dynamic analyses (less than half) compared 

to ECBO without the ESL cycles. 
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Table 4.10. Initial and final design of 2-story 2-bar frame subjected to blast load of the first run. 

Design 
variable no. 

Member 
no. 

Best 
initial 
design 

ECBO GOESL (ESL2) 
Final 

design 
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

Final 
design 

1 1-2 W21X101 W21X147 W10X77 W24X76 W36X150 W36X150 W36X150 W18X130 
2 3-4 W21X57 W33X130 W21X83 W18X76 W36X150 W36X150 W36X150 W36X135 
3 5-6 W21X44 W14X82 W21X111 W14X109 W36X150 W36X150 W36X150 W16X89 
4 7-8 W14X120 W18X50 W18X86 W24X84 W12X120 W12X120 W12X120 W27X102 
5 9-10 W10X39 W14X61 W24X104 W24X103 W10X68 W10X68 W10X68 W12X50 
6 11-12 W10X100 W33X118 W30X90 W10X88 W10X68 W10X68 W10X68 W24X62 
7 13-14 W33X130 W27X129 W12X45 W21X44 W40X149 W40X149 W40X149 W40X149 
8 15-16 W12X53 W14X48 W6X25 W10X26 W12X45 W12X45 W12X45 W18X50 
9 17-18 W14X74 W8X40 W21X50 W10X54 W10X45 W10X45 W10X45 W12X35 
10 19-20 W18X65 W12X79 W21X50 W21X50 W21X44 W21X44 W21X44 W16X36 

Max. interaction ratio 2.798 (6a) 0.979 (7) 
Unstablec Unstablec 

1.000 (3) 1.000 (3) 1.000 (3) 0.934 (5) 
Max. rotation (degree) 1.449 (2b) 1.000 (2) 0.964 (6) 0.964 (6) 0.964 (6) 0.8697 (2) 

Max. ISD (in) 2. 578 2.343 2.155 2.155 2.155 1.964 
Weight (lb) 13260 14160 10692 10608 15264 15264 15264 13296 

Merit 1441347 14160 1293732 1283568 15264 15264 15264 13296 
Iteration - 232 136 92 133 84 152 125 

Dynamic, static analyses - 9280, 0 14, 5440 14, 3680 14, 5320 14, 3360 14, 6080 5000, 0 
a Member number where the maximum interaction ratio occurs. b Node number where the maximum rotation occurs. 
c The numerical solver stops converging (𝜓𝜓=10).  

  
Table 4.11. 10 individual runs data of the 2-story 2-bar frame subjected to blast load. 

   Run   
   1 2 3 4 5 6 7 8 9 10 Average SD 

ECBO without 
ESL cycles 

Weight (lb) 14160 10680 11868 13080 15785 12840 11496 11724 12960 12468 12706 1382 
No. of iteration 232 388 400 188 296 187 366 370 353 393 317 81 

No. of dynamic analyses 9280 15520 16000 7520 11840 7480 14640 14800 14120 15720 12692 3235 

G
O

E
SL

 

ESL2 

Final weight (lb) 13296 11976 12180 12348 12192 11604 12160 13956 13980 11940 12563 858 
ESL final weight (lb) 15264 15044 21177 19774 15636 18183 18028 20182 16566 15108 17496 2303 

No. of iterations 125 126 174 200 209 165 171 162 96 87 152 41 
No. of cycles 5 5 7 5 5 5 5 5 5 5 5.2 0.6 

No. of dynamic analyses 5070 5110 7058 8070 8430 6670 6910 6550 3910 3550 6132.8 1658 
No. of static analyses 23880 29240 24920 19200 20320 19120 23400 15960 20640 15760 21244 4176 
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4.8 Concluding Remarks 

Metaheuristic algorithms are often used to optimize problems when it is not possible to 

compute gradients of the cost and/or constraints functions and/or design variables are not 

continuous. However, depending on the number of design variables and number of elements in the 

allowable discrete set, these stochastic algorithms require too many structural analyses. Also, more 

than one individual run is needed to ensure that the best design has been obtained (since these 

algorithms are stochastic in nature). That is, optimizing transient problems using metaheuristic 

algorithms is computationally expensive because every simulation requires solving a system of 

differential equations. One way to reduce the wall-clock time to solve problems using 

metaheuristic algorithms is to use parallel processing. This aspect has not been addressed in the 

current research.  

In search for a more efficient method for dynamic response structural optimization, the 

Equivalent Static Load (ESL) approach with gradient-free algorithms was examined in this study. 

In the proposed method, the transient problem was transformed to ESL sets that generated the 

same displacement field as with the transient analysis for a given design. Then, the sets of 

generated ESLs were used as a multiple loading conditions in the static response structural 

optimization process. Since it was not clear which design should be used at the end of each ESL 

cycle to generate ESLs in metaheuristic algorithms, three approaches were studied: the best design 

from static analysis (ESL1), the best design from dynamic analysis (ESL2), and the heaviest 

feasible design from dynamic analysis (ESL3). 

Based on the analysis of results of four numerical examples (2 linear and 2 nonlinear), the 

following conclusions are drawn: 
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 ESL approach with metaheuristic algorithms is not able to obtain the best design because the 

ESLs calculated for the chosen member of the population are not suitable for the remaining 

members of the population. Also, a small change in design variables is not guaranteed in 

metaheuristic algorithms from one ESL cycle to the next. This violates the assumption of 

small changes in design from one ESL cycles to the next with the gradient-based methods (at 

least near the local minimum point).  

 At the end of ESL cycles, improved designs are obtained although not the best design. 

 At the end of ESL cycles, the better designs and the improved population may be passed on to 

the metaheuristic method without the ESL cycles to improve these designs further, if desired.  

 In most cases, it is shown that the proposed method can reach the best design with substantially 

less number of dynamic analyses than with the metaheuristic algorithm without the ESL cycles.  

 Among the three ESL approaches investigated, ESL2 ranked first, ESL1 was close second and 

ESL3 was third based on reliability of obtaining the best design.  

4.9 Reproducing Results 

To reproduce results provided in this work, all the necessary information about design 

examples are described in Section 4.7, the steps to implement GOESL is shown in Section 6, and 

the implementation of ECBO is provided in Kaveh & Ghazaa (2014). Appendix B includes 

MATLAB code for the 18-bar truss design example.  
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CHAPTER 5  

OPTIMIZATION OF FRAMED STRUCTURES SUBJECTED TO BLAST LOADING 

Abstract 

In this chapter, optimum design of three-dimensional (3D) framed steel structure subjected 

to blast loading is considered. The basic idea of this research is to develop a practical formulation 

for the design optimization problem and to study the effect of including blast loads in the design 

process. The optimization problem is formulated to minimize the total weight of the structure 

subjected to American Institution of Steel Construction (AISC) strength requirements and blast 

design displacement constraints. The design variables for beams and columns are the discrete 

values of the W-shapes selected from the AISC tables. A car carrying 250 lbs of Trinitrotoluene 

(TNT) with 50 ft standoff distance from the front face is modeled as the source of the blast loading. 

Pressure-time histories are calculated on the front, sides, roof, and rear faces of the structure. Then 

linear and nonlinear dynamic analyses are carried out in the optimization process. Since the 

problem functions are not differentiable with respect to the design variables, the gradient-based 

optimization algorithms cannot be used to solve the problem. Therefore, metaheuristic algorithms 

are used to solve the optimization problem. These algorithms are coded in MATLAB and 

interfaced with the structural analysis program SAP2000 using its Open Application Programming 

Interface (OAPI). Example problems are solved to study the formulation of the optimization 

problem and its solutions. The problems are 4-bay x 4-bay x 3-story frames under serviceability 

and blast loading. It is shown that penalty on the optimum structural weight is substantial for 

designing structures to withstand blast loads 
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5.1 Introduction 

As explained in Chapter 2, a small charge explosion could cause catastrophic local or 

global failure of the structure. The attacks on the World Tarde Center in New York City in 1993 

and Murrah Federal Building in Oklahoma City in 1995 showed the great damage that could 

happen due to a blast. In both attacks, structural failure caused more casualties and injuries than 

the blast wave itself (Cormie, 2009). 

The main objective of this work is to present a practical formulation for optimum design 

of 3D framed steel structures subjected to blast loading. To this end, design variables, cost 

function, and constraints are studied and explained. The design variables are frames members 

(beams and columns) which are considered to be discrete (specifically, W-shapes selected from 

the AISC tables (AISC, 2017)) and are organized in groups based on structural symmetry. The 

objective function is the total weight of the structure which depends on the discrete design variable 

values. Constraints are the AISC code strength requirements and DoD (2008) displacement 

requirements. They are also dependent on the discrete design variables; however, their functional 

form is not possible. Thus, the gradient-based optimization algorithms are unsuitable for this 

application because the problem functions cannot be differentiated with respect to the design 

variables. Therefore, metaheuristics (stochastic) optimization algorithms are used. In these 

algorithms, gradients are not needed to find an optimum solution. Instead, they search the entire 

design space for the best solution based on some stochastic strategy. There are many metaheuristics 

algorithms; however, in this study, Hybrid Harmony Search - Colliding Bodies Optimization 

(HHC) is utilized to find the minimum weight structure. 

MATLAB is used to implement the algorithms and to model design examples by 

interfacing with the structural analysis program SAP2000 using its Open Application 
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Programming Interface (OAPI). That is, algorithms start with random design vectors that are sent 

to SAP2000 for structural analysis; then SAP2000 sends back information needed (nodal 

displacement, interaction ratio, etc.) to evaluate problem functions. Following this, MATLAB uses 

this data to arrange and update design vectors using optimization algorithms and then send them 

back to SAP2000 for re-evaluation.  

5.2 Review of Literature 

Blast-resistant analysis of structures has been pursued in the literature for many years. Most 

of the research has focused on dynamic analysis, progressive collapse situations, and members 

(such as columns, beams or slabs) subjected to blast loading. However, no study is available that 

considers the optimum design of 3D structures subjected to blast loading.  

Stea et al. (1977) presented a report that provided criteria and procedure for the design of 

framed steel structures subjected to blast loading based on dynamic analysis. Inelastic behavior of 

the frame members and second order effects were considered in the analysis. Numerical examples 

were discussed and solved using a FORTRAN computer program called Dynamic Nonlinear 

Frame Analysis (DYNFA). Lee et al. (2011) studied the dynamic collapse behavior of two moment 

steel frames using nonlinear finite element analysis. The first model represented a blast and post-

blast scenario and the second frame was modeled with a missing column. The study showed that 

the strain rate should be considered to predict more exact progressive collapse response. Jeyarajan 

et al. (2015) investigated the response of a 10-story framed steel building subjected high blast 

pressure using ABAQUS.  The source of the blast load was a charge of 500 kg TNT placed at a 

distance of 20 m from the building. Various lateral bracing systems were studied to show their 

contributions to progressive collapse analysis. The study showed that higher redundancy in frames 

could redistribute the damaged members’ loads to other floor levels and the vertical displacement 
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could be reduced. On the other hand, unbraced frame needs rigid beam-column connections to 

avoid very large displacement due to members’ loss. Khaledy et al. (2018) study the optimum 

design of 2D steel moment frames under blast loading using three techniques: Nonlinear 

Programming by Quadratic Lagrangian (NLPQL), Particle Swarm Optimization (PSO), and Multi 

Island Genetic Algorithm (MIGA). The weight of the structure is considered as the objective 

function and design variables are cross-sectional area of members. Design variables are continuous 

and other geometrical properties of members are formulated based on polynomial functions of the 

cross-sectional areas. Only displacement constraints are considered. It is seen that this formulation 

of the problem is not practical since the members cannot be directly selected from the AISC tables 

and the design code constraints cannot be imposed. 

5.3 Blast Design  

 Similar to seismic design, it is expected that some of components will experience 

substantial nonlinear response because designing structures subjected to blast loading to remain 

elastic is usually uneconomical (ASCE, 2010). Therefore, in designing blast-resistance structures, 

the maximum dynamic deflection and rotation are the criterion to prevent components failure. 

5.3.1 Material Design Strength 

Material under high strain rate loadings, such as blast loads, behaves differently from low 

rate and static loads. Generally, materials become stiffer under high rate loadings which means 

improvement in their mechanical properties. In addition, in design for blast loads, it is allowed to 

use the expected actual strength of the material instead of the minimum specified values in blast 

design.  

The high strain rate effect on some mechanical properties of steel is summarized as follows:   

 The modulus of elasticity (𝐸𝐸𝑠𝑠) remains the same. 



 
 

121 
 

 The yield strength (𝑜𝑜𝑦𝑦) and ultimate tensile strength (𝑜𝑜𝑢𝑢) increase to the dynamic yield 

strength (𝑜𝑜𝑑𝑑𝑦𝑦) and the dynamic ultimate strength (𝑜𝑜𝑑𝑑𝑢𝑢), respectively.  

Dynamic increase factors, 𝐷𝐷𝐷𝐷𝐷𝐷, are used to modify the static strength due to high rate 

dynamic loads (DoD, 2008). 

The average yield stress of steel grades 50 ksi or less is about 10% higher than the stress 

value specified by ASTM. Thus, for blast-resistant design, the yield stress is 1.1 times the 

minimum yield stress. This factor is called the strength increase factor (𝑆𝑆𝐷𝐷𝐷𝐷) or average strength 

factor (𝐴𝐴𝑆𝑆𝐷𝐷). SIF should not be used with high strength steels (Gilsanz et al., 2013).  

5.3.2 Strength Reduction Factors and Load Combinations 

As mentioned above, plastic deformations are allowed in the design of structures subjected 

to blast loads because of the nature of the blast load and to achieve an economical design. Also, it 

can use the nominal strength without the strength reduction factor (i.e. 𝜙𝜙 =1) for all modes of 

failure (ASCE, 2011). Blast loads are not combined with the loads that are not expected to be 

present when the blast happens. That is, wind, earthquake, part or all the live loads are not 

combined with blast loads. The basic load combination for all construction materials is as follows 

(ASCE, 2010): 

 1.0 𝐷𝐷𝐿𝐿 + 1.0 𝐿𝐿𝐿𝐿 + 1.0 𝐵𝐵𝐿𝐿 (5.1) 

where 𝐷𝐷𝐿𝐿 is the dead load, 𝐿𝐿𝐿𝐿 is live load, and 𝐵𝐵𝐿𝐿 is blast load. In the absence of other governing 

criteria, Gilsanz et al. (2013) allow the following load combination: 

 1.0 𝐷𝐷𝐿𝐿 + 0.25 𝐿𝐿𝐿𝐿 + 1.0 𝐵𝐵𝐿𝐿 (5.2) 
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5.3.3 Performance Requirements  

There are many sources for response limits such as UFC 3-340-02 (DoD, 2008), Design of 

Blast Resistant Buildings in Petrochemical Facilities (ASCE, 2010), FEMA 356 (ASCE and 

FEMA, 2000), and New York City Building Code (NYCBC, 2008). In this study, design criteria 

for a structural system are used with a medium response design (ASCE, 2010). That is, the 

maximum member end rotation shall be 2 degrees and the maximum side-sway deflection (or inter-

story drift (𝐷𝐷𝑆𝑆𝐷𝐷)) is limited to 1/25 of the story height. To prevent extended structural collapse, 

beams are allowed to develop plastic hinges when columns are designed to remain elastic (Gilsanz 

et al., 2013). 

5.4 Blast Loading 

When a blast occurs in the air, it forces the surrounding air out of its volume it occupies 

and the air molecules pile-up. A blast wave happens after that and it carries a huge amount of 

energy (Cormie et al., 2009). The blast wave travels fast and its pressure decays exponentially until 

it falls to the atmospheric pressure (positive phase). After that, the front wave pressure decreases 

further to be less than the atmospheric pressure (negative phase) and finally back to ambient value 

(Figure 5.1). In Figure 5.1, 𝑃𝑃𝑠𝑠𝑠𝑠 is the peak overpressure or the incident pressure, 𝑃𝑃𝑠𝑠 is the ambient 

pressure, and 𝑃𝑃𝑠𝑠𝑠𝑠−   is the minimum negative pressure, 𝑃𝑃𝑟𝑟 is the reflected pressure, 𝑃𝑃𝑟𝑟−  is the 

minimum negative reflected pressure, 𝑡𝑡𝑎𝑎 is the arrival time, 𝑡𝑡𝑠𝑠 is the positive phase duration, and 

𝑡𝑡𝑠𝑠− is the negative phase duration.  



 
 

123 
 

 

Figure 5.1. Blast wave pressure (Ngo, et al., 2007). 

The most commonly used approach for blast wave scaling is Hopkinson-Cranz scaling (or 

cube-root scaling). It is expressed as follows (Cormie, et al., 2009): 

 𝑍𝑍 =
𝑅𝑅
√𝑊𝑊3  (5.3) 

where 𝑍𝑍 is the scaled distance, 𝑅𝑅 is the distance from the detonation source center to the point of 

interest, and 𝑊𝑊 is the charge mass expressed in pounds of TNT. There are many types of 

explosives. TNT was chosen to be the blast load source. If another explosive is used, an equivalent 

TNT weight needs to be computed to use Eq. (5.3); these are provided in conversion tables for 

different explosives (Cormie, et al., 2009). 

Hemispherical burst is considered in this work. It happens when an explosive charge is 

close to the ground, so the incident wave reflects immediately from the ground and interacts with 

the blast wave. To find blast wave properties of a hemispherical burst for a given scaled distance 

(Z), one can use Figure 5.2. 
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Figure 5.2. The positive phase parameters of hemispherical wave of TNT charges (modified 
from DoD, 2008). 

In Figure 5.2, Pso is the incident peak overpressure, Pr is the reflected pressure, ir is the 

positive reflected impulse, is is the positive incident impulse, tA is the arrival time, to is the positive 

duration, U is the wave speed, and Lw is the wavelength. They are presented on the y-axis while 

the x-axis represents the scaled distance Z. Blast loading calculations used in this study follow the 

methods presented in DoD (2008). For simplicity, a triangular simplification of pressure-time 

history profile is used and the negative phase is ignored as shown in Section 5.8.2. 

5.5 Formulation for Discrete Structural Optimization Problems 

The problem is to find American Institute of Steel Construction (AISC) standard W-shape 

for each member of a framed steel structure and optimize its performance. In general, the nonlinear 
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undamped dynamic response optimization problem with discrete design variables can be expressed 

as: 

 𝐷𝐷𝑖𝑖𝑟𝑟𝐹𝐹   𝑿𝑿 = [𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟];    𝑚𝑚𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖;   𝑖𝑖 = 1, 2, … ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 (5.4) 

 to minimize    𝑜𝑜(𝑿𝑿) (5.5) 

 subject to     𝑴𝑴(𝑿𝑿)�̈�𝒖(𝑡𝑡) + 𝑲𝑲(𝑿𝑿,𝒖𝒖(𝑡𝑡))𝒖𝒖(𝑡𝑡) = 𝒑𝒑(𝑡𝑡); 𝑡𝑡 = 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛  

𝑔𝑔𝑘𝑘(𝑿𝑿,𝒖𝒖(𝑡𝑡), �̇�𝒖(𝑡𝑡), �̈�𝒖(𝑡𝑡), 𝑡𝑡) ≤ 0;   for all 𝑡𝑡 and  𝑘𝑘 = 1,2, … , 𝑙𝑙 
(5.6) 

where 𝑿𝑿 is the vector of design variables with 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 unknowns, 𝐷𝐷𝑖𝑖 is a set of discrete values for 

the 𝑖𝑖𝑡𝑡ℎ design variable, 𝑜𝑜(𝑿𝑿) is a cost function (in this study, 𝑜𝑜(𝑿𝑿) is the total weight of the 

structure), 𝑴𝑴 is the mass matrix, 𝑲𝑲 is the stiffness matrix (𝑲𝑲 is a function of the design variables 

and displacement vector for nonlinear dynamic analysis and just the design variables for linear 

dynamic analysis), 𝒖𝒖 is the dynamic displacements vector, �̇�𝒖 is the velocity vector, �̈�𝒖 is the 

acceleration vector, 𝒑𝒑(𝑡𝑡) is the applied load vector, 𝑡𝑡 is time (generally discretized for numerical 

integration), 𝑟𝑟 is the total number of the time steps, and 𝑔𝑔𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ constraint function that needs 

to be imposed at all time points. The linear dynamic response problem is the same as the nonlinear 

dynamic response problem except that 𝑲𝑲 is not a function of the displacement vector 𝒖𝒖.  

The constrained optimization problem defined in Eqs. (5.4) to (5.6) needs to be transformed 

into an unconstrained problem so that the metaheuristic algorithms can be used to solve the 

problem. This can be done by defining a modified cost function 𝐷𝐷(𝑿𝑿) to account for the constraint 

violations, as follows:  

 𝐷𝐷(𝑿𝑿) = 𝑜𝑜(𝑿𝑿)[1 + 𝜓𝜓𝜓𝜓(𝑿𝑿)]𝜉𝜉 (5.7) 
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𝜓𝜓(𝑿𝑿) = �� 𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘(𝑡𝑡𝑖𝑖))

𝑙𝑙

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 (5.8) 

where 𝜓𝜓(𝑿𝑿) is a constraint violation function, 𝜓𝜓 ≥ 1 is exploration penalty coefficient (in this 

study, 𝜓𝜓 = 10), 𝜉𝜉 > 1 is penalty function exponent (in this study, 𝜉𝜉 = 2), and 𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘(𝑡𝑡𝑖𝑖)) ≥

0 is the violation value of the 𝑘𝑘𝑡𝑡ℎ inequality constraint at the time point 𝑡𝑡𝑖𝑖. The present problem 

has just inequality constraints.  

 A linear static response optimization formulation is used in Section 5.8.1and in equivalent 

static loads and metaheuristic optimization (see Section 5.6). The linear static response 

optimization problem subjected to 𝑟𝑟 loading conditions can be stated as: 

 𝐷𝐷𝑖𝑖𝑟𝑟𝐹𝐹   𝑿𝑿 = [𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟];    𝑚𝑚𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖;   𝑖𝑖 = 1,2, … . ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 (5.9) 

 to minimize    𝑜𝑜(𝑿𝑿) (5.10) 

 subject to  𝑲𝑲(𝑿𝑿)𝒖𝒖𝑟𝑟 = 𝒑𝒑𝑟𝑟 

𝑔𝑔𝑘𝑘𝑟𝑟(𝑿𝑿) ≤ 0;    𝑘𝑘 = 1,2, … , 𝑙𝑙;   𝛼𝛼 = 1,2, … ,𝑟𝑟 
(5.11) 

 𝐷𝐷(𝑿𝑿) = 𝑜𝑜(𝑿𝑿)[1 + 𝜓𝜓𝜓𝜓]𝜉𝜉  (5.12) 

 𝜓𝜓(𝑿𝑿) = � � 𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘𝑟𝑟)
𝑒𝑒

𝑘𝑘=1

𝑛𝑛

𝑟𝑟=1
 (5.13) 

where 𝑿𝑿 is the vector of design variables with 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 unknowns, 𝐷𝐷𝑖𝑖 is a set of discrete values for 

the 𝑖𝑖𝑡𝑡ℎ design variable, 𝑜𝑜(𝑿𝑿) is a cost function (in this study, 𝑜𝑜(𝑿𝑿) is the total weight of the 

structure), 𝑲𝑲 is the stiffness matrix, 𝒑𝒑𝑟𝑟 is the 𝛼𝛼𝑡𝑡ℎ loading condition, 𝑘𝑘 is the total number of 

constraints, 𝑟𝑟 is the total number of the loading conditions (time steps), 𝐷𝐷(𝑿𝑿) is a modified cost 

function, 𝜓𝜓(𝑿𝑿) is a constraint violation function, 𝜓𝜓 ≥ 1 is exploration penalty coefficient (in this 
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study, 𝜓𝜓 = 10), 𝜉𝜉 > 1 is penalty function exponent (in this study, 𝜉𝜉 = 2), and 𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘(𝑡𝑡𝑖𝑖)) ≥

0 is the violation value of the 𝑘𝑘𝑡𝑡ℎ inequality constraint of the 𝛼𝛼𝑡𝑡ℎ loading condition. 

5.5.1 Design Variables 

In this study, the AISC (2017) W-shapes available in manufacturer’s catalog are desired 

for beams and columns. Since all sections are chosen from AISC tables and assignment of a section 

specifies several cross-sectional properties for the member, the design variables are classified as 

linked discrete variables (Arora, 2017).  

Huang and Arora (1997) defined three types of discrete design variables for this kind of a 

problem; each one requiring a specific optimization strategy. In this study, design variable type 3 

is appropriate. That is, one design variable is assigned for each member (the AISC section number). 

Once the section number is known, all the cross-sectional properties are known from the tables. 

This way the design variables Eqs. (5.1) and (5.2) become:  

 Find   𝑿𝑿 = [𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟] (5.14) 

   𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑆𝑆𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒 (5.15) 

where 𝑆𝑆𝑖𝑖 is an AISC W-shape number, 𝑖𝑖 ∈ [1,2, … ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟], 𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and  𝑆𝑆𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒 are the lightest and 

the heaviest sections, respectively. In numerical calculations, the W-shapes from the AISC table 

are re-arranged in an ascending order based on their weights. 

5.5.2 Cost Function 

The cost function is the criterion that is used to compare feasible designs to find the 

optimum solution (Arora, 2017). In this study, the problem is to minimize the total weight of the 

structure (in kips). Thus, Eqs. (5.5) and (5.10) become:  
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𝑊𝑊𝑠𝑠(𝑿𝑿) = � 𝑤𝑤𝑛𝑛𝑎𝑎

𝑇𝑇𝑁𝑁

𝑛𝑛𝑎𝑎=1

� 𝐿𝐿𝑚𝑚𝑘𝑘

𝑀𝑀𝐾𝐾

𝑚𝑚𝑘𝑘=1

 (1) 

where 𝑊𝑊𝑠𝑠 is the total weight of the structure, 𝑿𝑿 is the design vector, 𝑁𝑁𝜓𝜓 is the total number of 

member groups for the structure, 𝑤𝑤𝑛𝑛𝑎𝑎 is the weight per unit length (kips/ft) of the members in the 

ngth group (available in AISC tables), 𝑀𝑀𝐾𝐾is the number of members in the ngth group, and 𝐿𝐿𝑚𝑚𝑘𝑘 

is the length of the mkth member (ft). 

5.5.3 Constraints 

Restrictions imposed on the structural members are: the strength requirements given in 

AISC manual, inter-story displacement constraints, and geometrical requirements. These 

constraints are implicit functions of the design variables and are explained in the following 

paragraphs.  

5.5.3.1 Strength Constraints 

According to the AISC (2017), symmetric members subjected to axial force and bending 

must satisfy the interaction ratio and shear force strength requirements: 

 𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

+ 8
9
� 𝑀𝑀𝑢𝑢𝑚𝑚
𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑚𝑚

+ 𝑀𝑀𝑢𝑢𝑢𝑢

𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑢𝑢
� − 1 ≤ 0  if  

𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

≥ 0.2 

𝑃𝑃𝑢𝑢
2𝜙𝜙𝑃𝑃𝑛𝑛

+ � 𝑀𝑀𝑢𝑢𝑚𝑚
𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑚𝑚

+ 𝑀𝑀𝑢𝑢𝑢𝑢

𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑢𝑢
� − 1 ≤ 0  if  

𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

< 0.2 

(5.16) 

 𝑉𝑉𝑢𝑢 ≤ 𝜙𝜙𝑛𝑛 𝑉𝑉𝑛𝑛 

𝑉𝑉𝑢𝑢
𝜙𝜙𝑛𝑛 𝑉𝑉𝑛𝑛

− 1 ≤ 0 

(5.17) 

Here 𝜙𝜙 is the resistance factor (𝜙𝜙𝑐𝑐  = 0.85 and 𝜙𝜙𝑏𝑏 = 0.90 for compression and tension, respectively). 

𝜙𝜙𝑏𝑏 = 0.9 is the flexural resistance factor. 𝑃𝑃𝑢𝑢 and 𝑃𝑃𝑛𝑛 are the required and the nominal axial strengths 
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(compression or tension) (kips), respectively. 𝑀𝑀𝑢𝑢𝑒𝑒 and 𝑀𝑀𝑢𝑢𝑦𝑦 are the required flexural strengths 

about the major and the minor axes (kip-ft), respectively. 𝑀𝑀𝑛𝑛𝑒𝑒 and 𝑀𝑀𝑛𝑛𝑦𝑦 are the nominal flexural 

strengths about the major and the minor axes (kip-ft), respectively. 𝑀𝑀𝑢𝑢 and  𝑀𝑀𝑛𝑛 are required and 

the nominal flexural strengths about major or minor axes. 𝑉𝑉𝑢𝑢 and  𝑉𝑉𝑛𝑛 are required and the nominal 

shear strengths (kips), respectively. 𝜙𝜙𝑛𝑛 =0.9 is the resistance factor for shear.  

Evaluation of  𝑃𝑃𝑛𝑛, 𝑀𝑀𝑛𝑛𝑒𝑒 and 𝑀𝑀𝑛𝑛𝑦𝑦 in Eqs. (5.16) is an involved process that requires checking 

of several failure modes (i.e., several “if then else” statements). For example, to find 𝑃𝑃𝑛𝑛, first one 

needs to find whether the member force is tensile or compressive. For tension members, 𝑃𝑃𝑛𝑛 is 

calculated based on whether the gross section yields or the net section ruptures. For compression 

members, 𝑃𝑃𝑛𝑛 is calculated based on consideration of several failure modes, such as yielding of the 

material, local buckling of flanges or the web (elastic or inelastic), and global buckling (elastic or 

inelastic). The nominal strength for flexure of major or minor axis bending (𝑀𝑀𝑛𝑛𝑒𝑒 or 𝑀𝑀𝑛𝑛𝑦𝑦 in Eq. 

(5.16)) depends on categorization of the member as compact, noncompact, or slender. Compact 

sections can develop full plastic strength before local buckling happens. Plastic moment (yielding) 

and lateral-torsional buckling are considered in calculating 𝑀𝑀𝑛𝑛. Noncompact sections can develop 

partial yielding in compression but they buckle inelastically before full plastic strength. Lateral-

torsional buckling and compression flange local buckling are considered in calculating 𝑀𝑀𝑛𝑛. 

Slender sections buckle elastically before yield under compression. Compression flange yielding, 

lateral-torsional buckling, and compression flange local buckling are considered in calculating 𝑀𝑀𝑛𝑛. 

The nominal strength for flexure of minor axis bending is calculated considering plastic moment 

and flange local buckling. 𝑉𝑉𝑛𝑛 in Eq. (5.17) is calculated according to the limit states of shear yield 

and shear buckling. That is, nominal strengths (𝑃𝑃𝑛𝑛,  𝑀𝑀𝑛𝑛𝑒𝑒, 𝑀𝑀𝑛𝑛𝑦𝑦  and 𝑉𝑉𝑛𝑛) require a lot of calculations 

that can be found in AISC (2017).   
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Constraints in Eqs. (5.16), and (5.17) need to be imposed at each point along the axis of 

every member in the structure. Thus, each equation represents infinite constraints. In the numerical 

process, the constraints are evaluated at several points along the axis of the member and they are 

imposed at the point where they have maximum value. These constraint values are then used to 

evaluate the penalty function defined earlier in the chapter. Thus, the total number of interaction 

ratio constraints (Eq. (5.16)) equals the total number of members. Same is true for shear force 

constraints (Eq. (5.17)). Also notice that constraints in Eq. (5.16) have a discontinuity at 
𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

=0.2. 

In addition, the nominal strength calculations have several discontinuities as explained in the 

previous paragraph. That is, gradient-based optimization algorithms are not suitable for this class 

of optimization problems. 

5.5.3.2 Displacement Constraints 

The maximum member end rotation shall be 2 degree and the maximum side-sway 

deflection (or inter-story drift (𝐷𝐷𝑆𝑆𝐷𝐷)) is limited to 1/25 of the story height (high response design 

(ASCE, 2010)). 

 |𝛿𝛿𝑟𝑟 − 𝛿𝛿𝑟𝑟−1|
𝛿𝛿𝑟𝑟𝑢𝑢

− 1 ≤ 0 (5.18) 

 𝛿𝛿𝑟𝑟𝑢𝑢 = ℎ𝑟𝑟/25 (5.19) 

where 𝛿𝛿𝑟𝑟 and 𝛿𝛿𝑟𝑟−1 are lateral displacements of two adjacent stories (in), 𝛿𝛿𝑟𝑟𝑢𝑢 is the allowable lateral 

displacement, and  ℎ𝑟𝑟 is the 𝑟𝑟𝑡𝑡ℎ story height (in). At each node, SAP2000 evaluates displacements 

and rotations in 3-dimentions. Displacements in x and y directions are extracted to evaluate Eq. 

(5.19) to impose these constraints.  
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5.6 Discrete Variable Optimization of Structures Subjected to Dynamic Loads Using 
Equivalent Static Loads 

Design of structures subjected to blast loads requires nonlinear dynamic analysis (as 

described in Section 5.4). Depending on the size of the structure to be designed, the nonlinear 

dynamic analysis (numerical integration of system of nonlinear differential equations) might need 

very long time. Metaheuristic algorithms require many structural analyses to reach the final design. 

Using metaheuristic algorithms could be impractical for this type of a problem. Therefore, 

optimization by transforming dynamic to static loads is more efficient.  

One of the well-known dynamic to static loads transformation methods is based on the 

displacement field obtained using dynamic analysis of the structure (Kang et al., 2001). That is, 

the dynamic load is transformed into multiple equivalent static load sets. Then the equivalent static 

loads (ESLs) are considered as multiple loading conditions in the linear static response 

optimization process. This is called an ESL cycle of the optimization process. These cycles are 

repeated until the final design is obtained. This method works fine for gradient-based algorithms 

(Kang et al., 2001) and it is shown that ESL with metaheuristic algorithm (called GOESL) can 

reduce the number of linear or nonlinear dynamic analyses drastically (Chapter 5). Thus, GOESL 

is used in this study to optimize nonlinear dynamic problems.  

5.7 Optimization Algorithms 

Stochastic, metaheuristic or nature-inspired algorithms are based only on simulations and 

do not require gradient information, such as the well-known genetic algorithms (GA) and ant 

colony methods (AC). They use random search in the entire design space instead of just in the 

neighborhood of the current design as in the gradient search techniques. Also, the discrete variables 
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can be treated routinely. Therefore, they are suitable for both continuous and discrete design 

variables and differentiable and non-differentiable problem functions. 

In this study, Hybrid Harmony Search - Colliding Bodies Optimization (HHC) is utilized 

to find an optimum design of every case of study. HHC uses two phases: first phase of HHC uses 

the Improved Harmony Search (IHS) algorithm with a new design domain reduction technique. 

This improves the performance of IHS. The second phase uses Enhanced Colliding Bodies 

Optimization (ECBO). ECBO receives final designs from the first phase to enhance them further 

(see Chapter 4). 

5.7.1 Improved Harmony Search  

Geem, Kim, and Longanathan (2001) developed the harmony search (HS) algorithm based 

on music improvisation process of jazz musicians. The algorithm starts by initially generating a 

set of random designs from the design domain. Then in every iteration, a new design is generated 

and analyzed. If this design is better than the worst design in the current population, then it replaces 

that design; otherwise, another design is generated. This optimization process is continued until a 

limit on the number of iterations is reached. HS has 4 parameters that need to be turned on before 

starting the algorithm: harmony memory size (𝐻𝐻𝑀𝑀𝑆𝑆), harmony memory consideration ratio 

(𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅), pitch adjusting rate (𝑃𝑃𝐴𝐴𝑅𝑅), and maximum improvisations (or maximum number of 

iterations). 

Improved harmony search (IHS) is the same as HS, however, standard HS algorithm uses 

fixed value of 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅 and 𝑃𝑃𝐴𝐴𝑅𝑅 while in IHS 𝐻𝐻𝑀𝑀𝐶𝐶𝑅𝑅 and 𝑃𝑃𝐴𝐴𝑅𝑅 are adjusted with every iteration. 

The main drawback of the standard HS algorithm is that it needs a large number of iterations to 

find an acceptable solution (Mahdavi et al., 2007). 
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5.7.2 Enhanced Colliding Bodies Optimization (ECBO) 

This metaheuristic algorithm is developed by Kaveh and Mahdavi (2014). It is inspired by 

the laws of one-dimensional collision. The algorithm works with a population of designs at each 

iteration. It starts with random designs that are stored in a matrix called the colliding bodies’ matrix 

(CB). Each design in the population is considered as an object or body having pseudo-mass that is 

calculated using the merit function value for each design. Then the entire population is ranked and 

divided into stationary objects and moving objects. One dimensional collision between the bodies 

is simulated using the conservation law of linear momentum and the coefficient of restitution. 

Based on that, new velocities of the stationary and moving objects are evaluated. Each design in 

the population is updated using the new velocities and random numbers. This process is repeated 

until a limit on the iterations is reached. 

The enhanced version of the colliding bodies optimization (ECBO) uses a colliding 

memory matrix (CM) to store some good designs. These designs replace the worst designs in the 

CB matrix at every iteration. This way the good designs are always preserved. Also, a parameter 

𝑃𝑃𝑟𝑟𝑜𝑜 ∈ [0,1] is introduced that is used along with random numbers to regenerate a component of 

selected designs in the CB matrix. This mechanism leads to a better final design (Kaveh & 

Ghazaan, 2014).  

Many metaheuristic algorithms need selection of several parameters in their calculations 

which is a major drawback of these algorithms. ECBO, however, is simple, requires just one 

internal parameter, and performs well in term of the quality of the solution and convergence time 

(Kaveh & Mahdavi, 2015).  
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5.7.3 Hybrid Improved Harmony Search-Enhanced Colliding Bodies Algorithm (HHC) 

Compared to other metaheuristic algorithms, IHS is easy to implement and it works with 

any kind of problem. ECBO requires just one algorithmic parameter and it performs well in term 

of the quality of final designs. However, IHS and ECBO have some shortcomings that were 

observed while solving some problems. IHS requires specification of several algorithmic 

parameters that can affect the performance of the algorithm. ECBO makes steady progress towards 

the final design whereas IHS makes quite rapid progress towards a similar neighborhood. 

Therefore, IHS needs fewer simulations compared to ECBO to reach a neighborhood of the final 

design. However, after reaching the neighborhood of the final design, progress of IHS becomes 

slow to reach the final design whereas ECBO continues to make steady progress towards the 

solution.  

HHC algorithm uses IHS in Phase 1 to reach the neighborhood of the solution quickly and 

then switches to the ECBO to reach the final design. This way ECBO starts with some improved 

designs in Phase 2. This combination could lead to the final solution in fewer simulations which 

is very useful while solving more complex problems. 

5.8 Numerical Examples 

In this study, HHC is applied for optimum design of 3D framed steel structures. Phase1 

parameters, 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 are 25%, 10%, and 10%, respectively. When there is no or small 

improvement in the current function value, Phase 2 is terminated using a stopping criterion similar 

to the one used in Phase 1. The pseudo-code of this criterion is as follows: 

If1 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 ≥ 𝑟𝑟4 × 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 

If2 (𝑀𝑀𝑒𝑒𝑟𝑟𝑖𝑖𝑡𝑡(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2) −𝑀𝑀𝑒𝑒𝑟𝑟𝑖𝑖𝑡𝑡(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 − 𝑟𝑟5 × 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2))/𝑀𝑀𝑒𝑒𝑟𝑟𝑖𝑖𝑡𝑡(𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2) ≤ 𝜀𝜀𝑃𝑃2 
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Terminate Phase 2 

End2  

End1 

where 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 is the current iteration in Phase 2, 𝑀𝑀𝑛𝑛𝑚𝑚𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑃𝑃2 is the limit on number of iterations of 

Phase 2, 𝑟𝑟4=10%, 𝑟𝑟5=5% and 𝜀𝜀𝑃𝑃2=10-3. These parameters are selected so that premature 

termination of the algorithm does not occur.  

As mentioned earlier design variables are W-shapes selected from the AISC tables. The 

design variables are linked discrete variables. That is, when the section number is selected, all the 

cross-sectional properties are known from the AISC tables.  

Figure 5.3 shows 3D view and the dimensions of the structure (slabs and external walls are 

not shown). It is a 3-story, 4 bays in x and y directions with 4 in concrete slab consisting of 197 

members modeled using SAP2000 and MATLAB. All ground supports are fixed. Steel properties 

are: Young’s modulus, 𝐸𝐸=29000 ksi, yield stress, 𝐷𝐷𝑦𝑦=50 ksi, ultimate strength, 𝐷𝐷𝑢𝑢=65 ksi, and 

Poison’s ratio, 𝑛𝑛=0.3. Concrete properties are: Young’s modulus, 𝐸𝐸=3605 ksi, density, 𝜌𝜌=150 

lb/ft3, 𝑜𝑜𝑐𝑐′=4000 psi, and Poison’s ratio, 𝑛𝑛=0.2.  

The frame members are divided into 9 groups as shown in Figure 5.3 and Table 5.1. Each 

group is treated as a design variable. Gravity loads are assigned as uniformly distributed loads on 

the first and second floor slabs consisting of a design dead load of 60 psf and a design live load of 

50 psf and on the roof slab consisting of a design dead load of 60 psf and a design live load of 25 

psf. Table 5.2 gives design load combinations.  
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Since the algorithm is stochastic in nature, three independent optimization runs were 

performed for each case study. Design variables bounds are selected based on testing each problem 

with different design variables values.  

 
Figure 5.3. Schematic of 3D framed steel structure.  

Table 5.1. Members grouping. 
Group Number Members Number of members 

1 1st floor external columns 16 
2 2nd floor external columns 16 
3 3rd floor external columns 16 
4 1st floor internal columns 9 
5 2nd floor internal columns 9 
6 3 floor internal columns 9 
7 1st floor beams 40 
8 2nd floor beams 40 
9 3rd floor beams 40 

 

Table 5.2. Load combinations (AISC, 2015; Gilsanz et al., 2013). 
Load commination Scale factor 

Comb 1 1.2 DL + 1.6 LL 
Comb 2 1.4 DL 
Comb 3 1.0 DL + 0.25 LL + 1.0 BL 

DL is dead load, LL is live load, and BL is blast load. 
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5.8.1 Spatial Framed Steel Structure Subjected to Service Loads Only 

In this design example, only the service loads (no blast loads) and strength constraints are 

considered (only load combinations Comb 1 and Comb 2 in Table 5.2 are used). It is used as 

reference to compare designs with examples and to study the penalty of designing framed steel 

structure to resist blast loads.  

Columns and beams are selected from the first 100 lightest standard W-shape sections 

provided in AISC tables (AISC, 2017) after rearranging sections in an ascending order based on 

their weight. This example is solved using linear static analysis (direct stiffness method).  

 The final designs for the three runs are reported in Table 5.3 along with total structural 

weight and maximum values of interaction and shear ratios. The second run gives the best design 

with a total structural weight of 60.549 kips.  

Even though the number of the possible combination is tremendously large (9100, HHC 

domain adjustment technique reduces the possible combination by reducing design variables 

bounds in Phase 1 (see Section 3.5.1). In this design example, HHC was able to obtain designs that 

have similar structural weight. That is, the first design is about 11% heavier than the best design 

and the third design is about 10% heavier than the best design.  
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Table 5.3. Final designs for 3D framed steel structure under service load only. 
Design variable  
(group number) 

Run 
1 2 3 

1 W8X31 W8X28 W21X44 
2 W12X26 W8X24 W14X34 
3 W6X25 W10X22 W6X25 
4 W18X50 W14X48 W12X40 
5 W8X40 W16X36 W16X36 
6 W10X22 W10X26 W16X31 
7 W5X16 W4X13 W4X13 
8 W5X16 W4X13 W4X13 
9 W6X15 W4X13 W4X13 

Max. interaction ratio (Eq. (5.16)) 0.984 0.979 0.993 
Max. shear ratio (Eq. (5.17)) 0.270 0.191 0.202 

Weight (kips) 67.665 60.549 66.449 
No. of linear static analyses 11946 11740 11752 

 

To investigate the effectiveness of HHC for this type of problems, the algorithm was run 

for 45,035 structural analyses (9,000 iterations for the first phase and 900 iterations for the second 

phase with population size of 40). This is more than 3 times the number iterations needed by each 

of the 3 runs above. For this run, the best structural weight obtained is 64.496 kips. This design is 

6.5% heavier than the best design in Table 5.3. Studying the designs in HM matrix (first phase) 

and CB matrix (second phase) shows that: 

1- HM matrix has diverse designs but it stops improving design after about 3000 iteration. 

2- The second phase stops improving designs after about 200 iterations and CB matrix starts to 

have less diverse designs. 

5.8.2 Spatial Framed Steel Structure Subjected to blast Load 

This design example has the same dimensions, design variables and material properties as 

the previous study case. However, in addition to gravity loads and load combinations described in 

the previous section, the blast loading is considered. The source of the blast loads is an automobile 

carrying a large charge of 250 lb of TNT. The structure has a stand-off distance of 50 ft from the 

charge’s center as shown in Figure 5.4. The structure is isolated with no opening (conservative 
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assumption). In real cases, however, there are windows and door openings that (if not designed to 

resist blast loading) vent some of the blast wave inside the building depending on the size of those 

opening. The façade of the structure is divided into 12 panels and the blast reflected pressure is 

evaluated at the center of each panel and distributed uniformly on that panel as shown in Figure 

5.4 (Karlos and Solomos, 2013). Side, roof, and rear blast loads are calculated at the center of each 

face and distributed uniformly on the surface. Table 5.4 shows the pressure-time history on the 

front, sides, roof, and rear faces. Using 𝑆𝑆𝐷𝐷𝐷𝐷 and 𝐷𝐷𝐷𝐷𝐷𝐷 parameters (Section 5.3.1), the updated 

material strength values are as follows: 

 𝐷𝐷𝑑𝑑𝑟𝑟 = (𝑆𝑆𝐷𝐷𝐷𝐷)(𝐷𝐷𝐷𝐷𝐷𝐷)𝐷𝐷𝑦𝑦 = (1.1)(1.19)(50) = 65.45  ksi (5.20) 

 𝐷𝐷𝑑𝑑𝑢𝑢 = (𝐷𝐷𝐷𝐷𝐷𝐷)(𝐷𝐷𝑢𝑢) = (1.05)(65) = 68.25 ksi   (5.21) 

 

Figure 5.4. 3D framed steel structure and charge location. 
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Table 5.4. Pressure-time history on faces. 
Face Pressure-time history 

Front   

   

Sides 

 

Roof 

 

Rear 
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5.8.2.1 Optimum Design with Linear Dynamic Analysis 

In this study case, beams and columns are designed according to AISC (2017) strength 

requirements (Section 5.5.3.1). That is, all members are designed to remain elastic. The following 

examples are solved using Hilber-Hughes-Taylor method (linear direct integration) and the total 

analysis time is 1 second with time step of 0.0025. The analysis time was selected after different 

designs indicated that the maximum response occurs between 0 to 1 second.   

In calculating blast loads on the structure surfaces, the assumption was that all surfaces are 

rigid enough to reflect the pressure with no energy dissipation. Then blast loads are transported to 

beams and columns as distributed loads. The common design approach is to neglect the outer 

periphery walls in the analysis model. In this study, three approaches are investigated. 

 No External Walls  

In this example, the stiffness of the external walls is not considered. This conservative 

procedure is used in most of blast design references such as AISC (2013). Columns and beams are 

selected from the first 173 heaviest standard W-shape sections provided in AISC tables (AISC, 

2017) after rearranging sections in a descending order based on their weight. 

The final designs for the three runs are reported in Table 5.5 along with total structural 

weight and maximum values of the interaction and shear ratios. It shows that the second run 

reaches the best design with a total structural weight of 853.469 kips. This is about 14 times heavier 

than the best design found for same structure subjected to gravity loads only. 
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Table 5.5. Final designs for 3D framed steel structure under 
service and blast loads (linear dynamic analysis). 

Design variable  
(group number) 

Run 
1 2 3 

1 W36X262 W44X262 W24X229 
2 W40X277 W12X210  W14X211 
3 W14X283 W21X201  W33X118 
4 W30X148 W14X211  W14X159 
5 W14X233 W18X158  W18X175 
6 W14X311 W12X152  W36X150 
7 W36X262 W12X336  W40X362 
8 W14X211 W33X241  W12X305 
9 W36X262 W24X229  W27X194 

Max. interaction ratio (Eq. (5.16)) 0.994 0.996 0.968 
Max. shear ratio (Eq. (5.17)) 0.400 0.456 0.518 

Weight (kips) 892.988 853.469 868.134 
No. of linear dynamic analyses 15125 15102 14259 

 No External Walls with Mass 

In this example, the stiffness of the external walls is not considered. However, the mass of 

the outer periphery walls (thickness of 4 in) is added as a dead load on beams. Columns and beams 

are selected from the first 173 heaviest standard W-shape sections provided in AISC tables (AISC, 

2017) after rearranging sections in a descending order based on their weight. 

The final designs for the three runs are reported in Table 5.6 along with total structural 

weight and maximum values of the interaction and shear ratios. It shows that the first run reaches 

the best design with a total structural weight of 827.182 kips. This is about 13.7 times heavier than 

the best design found for same structure subjected to gravity loads only. 
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Table 5.6. Final designs for 3D framed steel structure under service and 
blast loads with the mass of external walls (linear dynamic analysis). 

Design variable  
(group number) 

Run 
1 2 3 

1 W36X232 W27X235 W36X247 
2 W12X279 W18X158 W24X192 
3 W33X169 W14X132 W24X229 
4 W40X211 W27X146 W30X173 
5 W18X234 W14X145 W40X211 
6 W40X183 W40X211 W30X173 
7 W36X330 W40X297 W33X291 
8 W36X247 W40X324 W36X302 
9 W27X178 W33X201 W24X192 

Max. interaction ratio (Eq. (5.16)) 1.000 1.001 0.997 
Max. shear ratio (Eq. (5.17)) 0.421 0.459 0.461 

Weight (kips) 827.182 831.993 839.964 
No. of linear dynamic analyses 16055 17955 16985 

 With External Walls 

The stiffness of the external walls that are connected to the framed steel structure is added 

to the structural model. The outer periphery wall is a concrete wall with a thickness of 4 in. The 

outer periphery wall is pinned to the ground and attached to external beams only which are attached 

to the roof system to transfer loads directly into floor diaphragms to reduce the risk of progressive 

collapse as recommended in ASCE (2011). Columns and beams are selected from the first 100 

lightest standard W-shape sections provided in AISC tables (AISC, 2017) after rearranging 

sections in an ascending order based on their weight. 

Table 5.7 gives the final designs of three optimization runs. The best design has a total 

structural weight of 77.818 kips. This design is about 28.5% heavier than the best design found for 

same structure subjected to gravity loads only.  

The external walls add quite amount of stiffness to the structure. They act as shear walls 

that resist the lateral blast loads. This is unconservative design approach. Although, the structure 

quite lighter than the previous case study, adding wall stiffness in the model makes the structure 

less robust to progressive collapse when a wall fails during the blast event.  



 
 

144 
 

Table 5.7. Final designs for 3D framed steel structure with external 
walls under service and blast loads (linear dynamic analysis). 

Design variable  
(group number) 

Run 
1 2 3 

1 W8X40 W16X40 W12X35 
2 W18X40 W18X40 W18X40 
3 W18X40 W18X40 W16X31 
4 W10X26 W12X26 W8X24 
5 W8X24 W14X26 W8X24 
6 W6X15 W6X25 W10X22 
7 W6X20 W5X19 W5X19 
8 W6X20 W6X20 W8X24 
9 W6X15 W6X15 W5X19 

Max. interaction ratio (Eq. (5.16)) 0.9345 0.977 0.997 
Max. shear ratio (Eq. (5.17)) 0.161 0.161 0.235 

Weight (kips) 77.818 78.476 81.001 
No. of linear dynamic analyses 11804 12518 11922 

5.8.2.2 Optimum Design with Nonlinear Dynamic Analysis 

In this study case, columns are designed according to AISC (2017) strength requirements 

(Section 5.5.3.1) but beams can develop plastic hinges and blast design requirements are applied 

(Section 5.5.3.2). Steel Columns-Flexure elastic-perfectly plastic hinges provided by SAP2000 

v.20 are modeled near the start and the end of each beam (CSI, 2017). The following examples are 

solved using Hilber-Hughes-Taylor method (Nonlinear direct integration with P-delta). 

Considering the blast load duration and peaks of the response, the time range from the analysis is 

set from 0 to 1 second with time step of 0.0025 (Similar to linear dynamic analysis study case).  

Testing the nonlinear dynamic models (Sections 5.8.2.2.1 and 5.8.2.2.2) with different 

designs shows that in most cases there is either numerical convergence difficulty or the nonlinear 

structural analysis takes long time because of the material nonlinearity, geometrical nonlinearity, 

and the size of the structure. This makes metaheuristic algorithms inconvenient to use since they 

require many structural analyses to obtain the best design. Therefore, ESL1 method (Section 5.6) 

is used. The algorithm starts with 75 random designs from the design domain. These designs are 

evaluated using nonlinear dynamic analyses, ranked in an ascending order based on their merit 

function values, and passed to the ESL step. In the ESL step, HHC is used to find the best design 



 
 

145 
 

using linear static analyses (note that in Chapter 4 ECBO is used). After few ESL cycles, the best 

2 designs in CM matrix and the best 20 designs in CB matrix are improved further using ECBO 

with just 10 iterations using nonlinear dynamic analyses (total of 200 analyses). That is, ECBO 

has a population size of 20.  

 No External Walls 

This study case is like the one in Section 5.8.2.1.1. That is, the stiffness of the external 

walls is not considered. However, beams can develop plastic hinges as discussed in the previous 

section. Beams are selected from the first 100 lightest standard W-shape sections and columns are 

selected from the heaviest 173 standard W-shape sections provided in AISC tables (AISC, 2017) 

after rearranging sections in an ascending order based on their weight. 

The final designs are shown in Table 5.8 along with total structural weight and maximum 

values of interaction ratio, shear ratio, member end rotation, and inter-story drift. The first run 

reaches the best design with a total structural weight of 386.148 kips. This design is about 6 times 

heavier than the best design found for same structure subjected to gravity loads only. 

Table 5.8. Final designs for 3D framed steel structure under service and blast 
loads (nonlinear dynamic analysis). 

Design variable  
(group number) 

Run 
1 2 3 

1 W24X370 W33X263 W36X262 
2 W27X235 W30X211 W40X211 
3 W36X232 W40X324 W24X306 
4 W30X116 W33X291 W44X290 
5 W40X362 W36X395 W40X392 
6 W27X258 W30X391 W33X387 
7 W8X31 W10X30 W16X31 
8 W12X45 W16X57 W21X57 
9 W8X35 W8X21 W12X22 

Max. interaction ratio (Eq. (5.16)) 1.000 0.995 0.995 
Max. shear ratio (Eq. (5.17)) 0.910 0.938 0.796 

Max. rotation (degree) 0.718 0.594 1.865 
Max. ISD (Eq. (5.18)) 0.199 0.164 0.303 

Weight (kips) 359.016 389.624 386.148 
Total number of linear static analyses 43660 45340 46530 

No. of nonlinear dynamic analyses 205 205 205 
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 No External Walls with Mass 

This study case is similar to Section 5.8.2.1.25.8.2.2.1. However, the mass of the external 

walls is considered but their stiffness is not considered. Columns and beams are selected from the 

first 173 lightest standard W-shape sections provided in AISC tables (AISC, 2017) after 

rearranging sections in the descending order based on their weight. 

The final designs are shown in Table 5.9 along with total structural weight and maximum 

values of interaction ratio, shear ratio, member end rotation, and inter-story drift. The first run 

reaches the best design with a total structural weight of 399.215 kips. This design is about 6.6 

times heavier than the best design found for same structure subjected to gravity loads only. 

Table 5.9. Final designs for 3D framed steel structure under service and blast 
loads with the mass of the exteranl walls (nonlinear dynamic analysis). 

Design variable  
(group number) 

Run 
1 2 3 

1 W27X368     W36X232     'W40X264' 
2 W27X281     W30X357     'W40X362' 
3 W36X231     W40X503     'W27X217' 
4 W33X152     W36X194     'W40X372' 
5 W40X397     W40X149     'W40X362' 
6 W27X307     W33X152     'W36X361' 
7 W8X40     W10X54     'W14X74' 
8 W12X53     W18X35     'W12X45' 
9 W8X40     W8X40     'W12X53' 

Max. interaction ratio (Eq. (5.16)) 0.823 0.988 0.987 
Max. shear ratio (Eq. (5.17)) 0.905 0960 0.940 

Max. rotation (degree) 0.326 0.323 0.285 
Max. ISD (Eq. (5.18)) 0.311 0.306 0.460 

Weight (kips) 400.484 399.215 452.731 
Total number of linear static analyses 37575 43025 41150 

No. of nonlinear dynamic analyses 205 205 205 

 With External Walls 

This study case is similar to Section 5.8.2.1.3. That is, the stiffness of the external walls is 

considered. Columns and beams are selected from the first 100 lightest standard W-shape sections 

provided in AISC tables (AISC, 2017) after rearranging sections in an ascending order based on 

their weight. 
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The best designs are shown in Table 5.10 along with total structural weight and maximum 

values of interaction ratio, shear ratio, member end rotation, and inter-story drift. The third run 

obtains the best design with a total structural weight of 77.626 kips. This design is about 28% 

heavier than the best design found for same structure subjected to gravity loads only. 

Table 5.10. Final designs for 3D framed steel structure with external walls 
under service and blast loads (nonlinear dynamic analysis). 

Design variable  
(group number) 

Run 
1 2 3 

1 W14X34 W10X39 W14X38 
2 W8X35 W16X36 W8X35 
3 W8X35 W8X35 W12X35 
4 W8X21 W8X24 W10X22 
5 W8X21 W10X22 W12X22 
6 W6X20 W14X22 W8X21 
7 W14X22 W8X18 W10X17 
8 W8X21 W16X26 W6X25 
9 W8X18 W6X15 W12X16 

Max. interaction ratio (Eq. (5.16)) 0.984 0.966 0.988 
Max. shear ratio (Eq. (5.17)) 0.801 0.725 0.350 

Max. rotation (degree) 0.415 0.267 0.625 
Max. ISD (Eq. (5.18)) 0.177 0.184 0.176 

Weight (kips) 78.797 79.222 77.626 
Total number of linear static analyses 30749 29425 30444 

No. of nonlinear dynamic analyses 205 205 205 

5.9 Concluding Remarks 

Optimum design of 3D framed steel structures subjected to service and blast loads are 

studied using metaheuristic optimization algorithms. The problem is formulated to minimize total 

weight of the structure subjected to AISC strength requirements and DoD displacement 

constraints. The design variables for beams and columns are W-shapes selected from the AISC 

tables. Depending on the problem, three types of analyses are carried out in the optimization 

process: linear static analysis, linear dynamic analysis, and nonlinear dynamic analysis. Hybrid 

Harmony Search - Colliding Bodies Optimization (HHC) with domain adjustment for each design 

variable is used to find an optimum design of every case of study. Global optimization with 
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equivalent static load (GOESL) is used to find the optimum design for the nonlinear dynamic study 

case. 

Table 5.11 shows final designs of the structure with and without blast loading. It is seen 

that when beams and columns are designed to remain elastic, the optimum structure is about 14 

times heavier to withstand the blast loads compared to the optimum design without the 

consideration of blast loading. However, when columns are designed to remain elastic and beams 

can develop plastic hinges (with displacement requirements), the optimum structure is about 6 

times heavier to withstand the blast loads compared to the optimum design without the 

consideration of blast loading. When the stiffness of the external walls is considered, the final 

designs for linear and nonlinear dynamic analyses are only slightly heavier than the design without 

the blast load considerations.  

Table 5.11. Comparison of final designs. 

Design variable 
(group number) 

Service 
load only 

using 
linear 
static 

analysis 

Service and blast loads using linear 
dynamic analysis 

Service and blast loads using nonlinear 
dynamic analysis 

No 
external 

walls 

No 
external 

walls with 
mass 

With 
external 

walls 

No 
external 

walls 

No 
external 

walls with 
mass 

With 
external 

walls 

1 W8X28 W44X262 W36X232 W8X40 W24X370 W36X232 W14X38 
2 W8X24 W12X210 W12X279 W18X40 W27X235 W30X357 W8X35 
3 W10X22 W21X201 W33X169 W18X40 W36X232 W40X503 W12X35 
4 W14X48 W14X211 W40X211 W10X26 W30X116 W36X194 W10X22 
5 W16X36 W18X158 W18X234 W8X24 W40X362 W40X149 W12X22 
6 W10X26 W12X152 W40X183 W6X15 W27X258 W33X152 W8X21 
7 W4X13 W12X336 W36X330 W6X20 W8X31 W10X54 W10X17 
8 W4X13 W33X241 W36X247 W6X20 W12X45 W18X35 W6X25 
9 W4X13 W24X229 W27X178 W6X15 W8X35 W8X40 W12X16 

Max. interaction ratio  0.979 0.996 1.000 0.9345 1.000 0.988 0.988 
Max. shear ratio  0.191 0.456 0.421 0.161 0.910 0960 0.350 

Max. rotation (degree) - - - - 0.718 0.323 0.625 
Max. ISD  - - - - 0.199 0.306 0.176 

Weight (kips) 60.549 853.469 827.182 77.818 359.016 399.215 77.626 
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CHAPTER 6  

OPTIMUM DESIGN OF FRAMED STRUCTURES FOR RESILIENCE SUBJECTED TO 
BLAST LOADS 

Abstract 

In this study, a formulation is presented for the optimum design of 3D framed structures 

that can withstand some future damage due to a blast near the structure. That is, after the blast 

event occurs the structure should still carry the service loads (or at least some part of them) so that 

the no further damage can happen beyond the designed damage conditions. A least weight structure 

is desired that also meets the American Institution of Steel Construction (AISC) strength 

requirements and displacement constraints. In addition, the formulation includes some possible 

future damage to the structures due to a blast. The possible damage conditions are defined as 

complete removal of certain members and reduction of stiffness of some members. The design 

variables for beams and columns are the discrete values of the W-shapes selected from the AISC 

tables. Since the cost function and the constraints are not differentiable with respect to the discrete 

design variables, the gradient-based optimization algorithms cannot be used to solve the problem. 

Therefore, metaheuristic optimization algorithms are used to find optimum or near optimum 

designs. As an example, problem, a 4-bay x 4-bay x 3-story framed steel building under 

serviceability loading. Several different scenarios of damage to the structure are considered and 

the optimum designs from Chapter 5 are checked.  

6.1 Introduction 

It is desirable to design structures to minimize a measure of cost while all performance 

requirements are satisfied. When a structure is designed by application of an optimal design 

technique, it is expected that many performance constraints for the structure are at their limit values 
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(or close to them). Therefore, a small change in the performance environment may cause a 

catastrophic failure of the structure. A damage-tolerant structure must avoid failure by providing 

an alternate load path(s). In other words, fail-safe structures must have enough redundancy to 

withstand possible damages and perform normally even when a member fails.  

In this study, some possible damage conditions of building structure due to blast loads are 

studied. When blast happens, it generates hot gas that makes the air around the explosion expand 

and its molecules pile-up. After that, a blast wave occurs that carries a large amount of energy; 

also, it can carry some objects that can cause damage.  

The main hypothesis of this work is that a 3D building structure can be designed for 

minimum weight according to AISC (2017) requirements that is also able to sustain some damage. 

Structures that are designed to minimize a cost function subject to constraints that must hold for 

intact and damaged structure are called optimal damage-tolerant structures. A damage condition 

is defined as complete or partial removal of members (Arora et al., 1979).  

The prime objective of this study is to present a practical formulation for optimum design 

of 3D framed steel structures subjected to some damage due to blast loading. In the proposed 

design method, the structure remains stable after the damage happens. In the formulation, the cost 

function is the total weight of the structure. The design variables are frame members (columns and 

beams) which are discrete variables (specifically, W-shapes selected from the AISC tables). 

Constraints are AISC strength requirements. The structure is designed to withstand service loads 

(dead and live loads) and some projected damage conditions. 
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6.2 Review of Literature 

Sun et al. (1976) discussed the fail-safe optimal design concept of truss structures subjected 

to stress, displacement, buckling, natural frequency, and design variables constraints under one or 

more predetermined damage conditions. Three bar plane truss, four bar space truss, and seventy-

two-member space truss were optimized for minimum weight. Two types of damage conditions 

were considered. The first was complete removal of member(s) and the second type was a partial 

reduction in cross-section area of member(s). Mistree (1983) presented a mathematical model for 

continuous design variables, constraints, and system goals to design structures that were damage 

tolerant. Damage tolerance was represented as reserve strength and residual strength that the intact 

structures must have in order to avoid failure and to minimize the consequences of failure. Arora 

et al. (1980) formulated fail-safe designs of open truss and closed helicopter tail-boom structures. 

Damage conditions were defined as total or partial damage to chosen members. Some joints of the 

truss could be removed because of the damage. The optimum solutions for five cases, no damage 

and combinations of 6 damage conditions under total and reduced normal operating conditions, 

were obtained and the effect on structural weight was studied. It was shown that the structure could 

be designed to withstand possible future damage. Ming and Fleury (2016) established a 

mathematical model and formulation for fail-safe topology design optimization. 2D and 3D 

continuum structural examples subjected to different damage scenarios were discussed. The 

optimization problem was to minimize the compliance with a constraint on the material volume.  

6.3 Design for Blast Loads  

Designing structures to withstand blast loads that also remain elastic is usually 

uneconomical. That is, in design for blast loads, it is expected that some of the components will 

experience substantial nonlinear response, and the maximum dynamic deflection and rotation are 
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the criterion to prevent component failure. However, when a structure is required to be reused 

following a blast, it must be designed to remain elastic (ASCE, 2010). In addition, designers must 

provide sufficient redundancy (alternate load paths) to ensure that the failure of key members will 

not cause a progressive collapse of the structure. The reader is referred to DoD (2008), ASCE 

(2010), ASCE (2011), and Gilsanz et al. (2013) for more details about the design of structures for 

blast loads.  

6.4 Formulation for Discrete Structural Optimization Problems 

In structural design practice, members must be selected from the available sections in a 

catalog. Thus, design variables are discrete/integers (section number in the list). The formulation 

of the discrete design variables optimization problem with the nonlinear undamped dynamic 

response can be stated as: 

 𝐷𝐷𝑖𝑖𝑟𝑟𝐹𝐹   𝑿𝑿 = [𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟];    𝑚𝑚𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖;   𝑖𝑖 = 1, 2, … ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 (6.1) 

 to minimize    𝑜𝑜(𝑿𝑿) (6.2) 

where 𝑿𝑿 is the vector of design variables with 𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟 unknowns, 𝐷𝐷𝑖𝑖 is a set of discrete values for 

the 𝑖𝑖𝑡𝑡ℎ design variable, 𝑜𝑜(𝑿𝑿) is a cost function (in this study, 𝑜𝑜(𝑿𝑿) is the total weight of the 

structure), 𝑴𝑴 is the mass matrix, 𝑲𝑲 is the stiffness matrix (𝑲𝑲 is a function of the design variables 

and displacement vector for nonlinear dynamic analysis and just the design variables for linear 

dynamic analysis), 𝒖𝒖 is the dynamic displacements vector, �̇�𝒖 is the velocities vector, �̈�𝒖 is the 

accelerations vector, 𝑟𝑟 is the total number of the time steps, 𝑔𝑔𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ constraint function that 

needs to be imposed at all time points, and 𝑙𝑙 is the total number of constraints. 

 subject to     𝑴𝑴(𝑿𝑿)�̈�𝒖(𝑡𝑡) + 𝑲𝑲(𝑿𝑿,𝒖𝒖(𝑡𝑡))𝒖𝒖(𝑡𝑡) = 𝒑𝒑(𝑡𝑡);  𝑡𝑡 =  𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛 

𝑔𝑔𝑘𝑘(𝑿𝑿,𝒖𝒖(𝑡𝑡), �̇�𝒖(𝑡𝑡), �̈�𝒖(𝑡𝑡), 𝑡𝑡) ≤ 0;   for all 𝑡𝑡 and  𝑘𝑘 = 1,2, … , 𝑙𝑙 

 

(6.3) 
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One way of treating constraints in metaheuristic algorithms is to combine constraints with 

the cost function to define a merit function (also called the penalty function) that is then minimized: 

 𝐷𝐷(𝑿𝑿) = 𝑜𝑜(𝑿𝑿)[1 + 𝜓𝜓𝜓𝜓(𝑿𝑿)]𝜉𝜉   (6.4) 

 
𝜓𝜓(𝑿𝑿) = �� 𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘(𝑡𝑡𝑖𝑖))

𝑙𝑙

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 (6.5) 

where 𝜓𝜓(𝑿𝑿) is a constraint violation function, 𝜓𝜓 ≥ 1 is exploration penalty coefficient (in this 

study, 𝜓𝜓 = 10), 𝜉𝜉 > 1 is penalty function exponent (in this study, 𝜉𝜉 = 2), and 𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘(𝑡𝑡𝑖𝑖)) ≥

0 is the violation value of the 𝑘𝑘𝑡𝑡ℎ inequality constraint at the time point 𝑡𝑡𝑖𝑖. The present problem 

has just inequality constraints. The linear dynamic response problem is the same as the nonlinear 

dynamic response problem except that 𝑲𝑲 is not a function of the displacement vector 𝒖𝒖. The 

formulation above (Eqs. (6.1) to (6.5)) is needed to solve the linear or nonlinear dynamic response 

optimization problems.  

The linear static response optimization problem subjected to loading conditions can be 

stated as: 

 𝐷𝐷(𝑿𝑿) = 𝑜𝑜(𝑿𝑿)[1 + 𝜓𝜓𝜓𝜓(𝑿𝑿)]𝜉𝜉   (6.9) 

 
𝜓𝜓(𝑿𝑿) = �𝑙𝑙𝑛𝑛𝑚𝑚 (0,𝑔𝑔𝑘𝑘(𝑿𝑿))

𝑒𝑒

𝑘𝑘=1

 (6.10) 

 

 𝐷𝐷𝑖𝑖𝑟𝑟𝐹𝐹   𝑿𝑿 = [𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟];     𝑚𝑚𝑗𝑗 ∈ 𝐷𝐷𝑗𝑗;   𝑗𝑗 = 1,2, … . ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟  (6.6) 

 to minimize    𝑜𝑜(𝑿𝑿)  (6.7) 

 subject to   𝑔𝑔𝑘𝑘(𝑿𝑿) ≤ 0;    𝑘𝑘 = 1,2, … ,𝑟𝑟   (6.8) 
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The linear static response formulation (Eqs. (6.6) to (6.10)) is needed to solve the 

optimization problems of structures subjected to service load only and some defined damages 

conditions.  

6.4.1 Design Variables 

In this work, the AISC (2017) W-shapes available in manufacturer’s catalog are the design 

variables for beams and columns. All sections are chosen from AISC tables and assignment of a 

section specifies several cross-sectional properties for the member. Such design variables are 

classified as linked discrete variables (Arora, 2017). This way the design variables Eqs. (6.1) and 

(6.6) become:  

 Find   𝑿𝑿 = [𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟] (6.11) 

   𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑆𝑆𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒;   𝑖𝑖 = 1,2, … ,𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟, (6.12) 

where 𝑆𝑆𝑖𝑖 is an AISC W-shape number, and 𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑆𝑆𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒 are the lightest and the heaviest 

sections, respectively. In numerical calculations, W-shapes from the AISC table are re-arranged in 

an ascending order based on their weights. 

6.4.2 Cost Function 

In this study, the problem is to minimize the total weight of the structure (in kips). Thus, 

Eqs. (6.4) and (6.9) become:  

 
𝑊𝑊𝑠𝑠(𝑿𝑿) = � 𝑤𝑤𝑛𝑛𝑎𝑎

𝑇𝑇𝑁𝑁

𝑛𝑛𝑎𝑎=1

� 𝐿𝐿𝑚𝑚𝑘𝑘

𝑀𝑀𝐾𝐾

𝑚𝑚𝑘𝑘=1

 (6.13) 

where 𝑊𝑊𝑠𝑠 is the total weight of the structure, 𝑿𝑿 is the design vector, 𝑁𝑁𝜓𝜓 is the total number of 

member groups for the structure, 𝑤𝑤𝑛𝑛𝑎𝑎 is the weight per unit length (kips/ft) of the members in the 
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ngth group (available in AISC’s tables), 𝑀𝑀𝐾𝐾is the number of members in the ngth group, and 𝐿𝐿𝑚𝑚𝑘𝑘 

is the length of the mkth member (ft). 

6.4.3 Constraints 

6.4.3.1 Strength Constraints 

According to the AISC (2017), symmetric members subjected to axial force and bending 

must satisfy the interaction ratio and shear force strength requirements: 

 𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

+ 8
9
� 𝑀𝑀𝑢𝑢𝑚𝑚
𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑚𝑚

+ 𝑀𝑀𝑢𝑢𝑢𝑢

𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑢𝑢
� − 1 ≤ 0  if  

𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

≥ 0.2 

𝑃𝑃𝑢𝑢
2𝜙𝜙𝑃𝑃𝑛𝑛

+ � 𝑀𝑀𝑢𝑢𝑚𝑚
𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑚𝑚

+ 𝑀𝑀𝑢𝑢𝑢𝑢

𝜙𝜙𝑏𝑏𝑀𝑀𝑛𝑛𝑢𝑢
� − 1 ≤ 0  if  

𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

< 0.2 

(6.14) 

 𝑉𝑉𝑢𝑢 ≤ 𝜙𝜙𝑛𝑛 𝑉𝑉𝑛𝑛 

𝑉𝑉𝑢𝑢
𝜙𝜙𝑛𝑛  𝑉𝑉𝑛𝑛

− 1 ≤ 0 

(6.15) 

Here 𝜙𝜙 is the resistance factor (𝜙𝜙𝑐𝑐  = 0.85 and 𝜙𝜙𝑏𝑏 = 0.90 for compression and tension, respectively). 

𝜙𝜙𝑏𝑏=0.9 is the flexural resistance factor. 𝑃𝑃𝑢𝑢 and 𝑃𝑃𝑛𝑛 are the required and the nominal axial strengths 

(compression or tension) (kips), respectively. 𝑀𝑀𝑢𝑢𝑒𝑒 and 𝑀𝑀𝑢𝑢𝑦𝑦 are the required flexural strengths 

about the major and the minor axes (kip-ft), respectively. 𝑀𝑀𝑛𝑛𝑒𝑒 and 𝑀𝑀𝑛𝑛𝑦𝑦 are the nominal flexural 

strengths about the major and the minor axes (kip-ft), respectively. 𝑉𝑉𝑢𝑢 and  𝑉𝑉𝑛𝑛 are required and the 

nominal shear strengths (kips), respectively. 𝜙𝜙𝑛𝑛=0.9 is the resistance factor for shear. 

Evaluating 𝑃𝑃𝑛𝑛, 𝑀𝑀𝑛𝑛𝑒𝑒 and 𝑀𝑀𝑛𝑛𝑦𝑦 in Eqs. (6.14) is an involved process that requires checking 

of several failure modes (i.e., several “if then else” statements). For example, to find 𝑃𝑃𝑛𝑛, first one 

needs to find whether the member force is tensile or compressive. For tension members, 𝑃𝑃𝑛𝑛 is 

calculated based on whether the gross section yields or the net section ruptures. 
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Constraints in Eqs. (6.14) and (6.15) need to be imposed at each point along the axis of 

every member in the structure. Thus, each equation represents infinite constraints. In the numerical 

process, the constraints are evaluated at several points along the axis of the member and they 

imposed at the point where they have maximum value. Therefore, the total number of interaction 

ratio constraints (Eq. (6.14)) equals the total number of members. Same is true for shear force 

constraints (Eq. (6.15)). 

In addition to that the nominal strength calculations have several discontinuities as 

explained in the previous paragraph, that constraints in Eq. (6.14) has a discontinuity at 
𝑃𝑃𝑢𝑢
𝜙𝜙𝑃𝑃𝑛𝑛

=0.2. 

Thus, the gradient of these constraints is not possible and consequently, gradient-based 

optimization algorithms are not suitable for this class of optimization problems.   

6.4.3.2 Displacement Constraints 

In blast design, the maximum member end rotation shall be 2 degree and the maximum 

side-sway deflection (or inter-story drift (𝐷𝐷𝑆𝑆𝐷𝐷)) is limited to 1/25 of the story height (high response 

design (ASCE, 2010)). 

 |𝛿𝛿𝑟𝑟 − 𝛿𝛿𝑟𝑟−1|
𝛿𝛿𝑟𝑟𝑢𝑢

− 1 ≤ 0 (6.16) 

 𝛿𝛿𝑟𝑟𝑢𝑢 = ℎ𝑟𝑟/25 (6.17) 

where 𝛿𝛿𝑟𝑟 and 𝛿𝛿𝑟𝑟−1 are lateral displacements of two adjacent stories (in), 𝛿𝛿𝑟𝑟𝑢𝑢 is the allowable lateral 

displacement, and  ℎ𝑟𝑟 is the 𝑟𝑟𝑡𝑡ℎ story height (in). At each node, SAP2000 evaluates displacements 

and rotations in 3-dimentions. Displacements in x and y directions are extracted to evaluate Eq. 

(6.17) to impose these constraints.  
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6.5 Optimization Process for Damage Tolerance 

In the optimization of structures subjected to service and blast loads, the nonlinear dynamic 

formulation is used (Eqs. (6.1) to (6.5)) with strength and displacement constraints (Sections 

6.4.3.1 and 6.4.3.2). That is, columns must remain elastic and beams are allowed to develop plastic 

hinges. The same formulation can be used in optimization of structures subjected to service and 

blast loads when columns and beams are to remain elastic except that 𝑲𝑲 (Eq. (6.3)) is a function 

of only the design variables and strength constraints are imposed. 

In the optimization of structures subjected to service load only, the linear static formulation 

is used (Eqs. (6.6) to (6.10)) with strength constraints only. That is, columns and beams must 

remain elastic. The same is true in the optimization of structures subjected to service loads and 

some defined damages. However, the structure to be designed for some damages has a different 

stiffness any may be subjected to different service loads. For example, if the damage is defined as 

total removal of a column with 50% of live loads, the formulation is like intact structure subject to 

service load (say dead and live loads). In other words, for the structure with a missed column, live 

load is reduced to half of its original value.  

Formulation for optimization of structures subjected to blast loading and to withstand some 

damage is a combination of the foregoing formulations. That is, two structures must be analyzed 

and all constraints must be evaluated for the same design vector. First, the intact structure subjected 

to blast loads with linear or nonlinear dynamic formulation and the intact structure subjected to 

service load with linear static formulation are analyzed. Second, the damaged structure subjected 

to service loads (or a part of them) with linear static formulation is analyzed. Namely, in every 

optimization iteration, the design vector is sent to two independent simulations. Then all the 

constraints are evaluated for use in Eqs. (6.5) and (6.10). 
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In nonlinear dynamic analysis, some members might in their plastic region and the stiffness 

of these members is different of elastic stiffness. That is, a strength modification should be done 

on these members depending on their plastic deformation level. Since in this study the main focus 

is on formulating for the optimum design of framed structures and providing optimization 

procedure, the assumption is the structure is elastic.  

6.6 Damage-Tolerant Design of Framed Steel Structure 

The optimal design formulation for resilience presented in this study is evaluated using a 

moderate size 3D framed steel structure. The structure is a 4-bay x 4-bay x 3-story under 

serviceability loading. Figure 6.1 shows 3D view and the dimensions of the intact structure. It is a 

3-story, 4 bays in x and y directions with 4 in concrete slab consisting of 197 members modeled 

using SAP2000 and MATLAB. All ground supports are fixed. Steel properties are: Young’s 

modulus, 𝐸𝐸=29000 ksi, yield stress, 𝐷𝐷𝑦𝑦=50 ksi, ultimate strength, 𝐷𝐷𝑢𝑢=65 ksi, and Poison’s ratio, 

𝑛𝑛=0.3. Concrete properties are: Young’s modulus, 𝐸𝐸=3605 ksi, 𝑜𝑜𝑐𝑐′=4000 psi, and Poison’s ratio, 

𝑛𝑛=0.2.  

The frame members are divided into 9 groups as shown in Table 6.1. Each group is treated 

as a design variable. Gravity loads are assigned as uniformly distributed loads on the first floor 

and the second floor slabs consisting of design dead load of 60 psf and a design live load of 50 psf 

and on the roof slab, consisting of 60 psf and 25 psf for dead and live loads respectively. Load 

combinations are given in Table 6.2.  
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Figure 6.1. Schematic of 3D framed steel structure.   

Table 6.1. Memebers grouping. 
Group Number Members Number of members 

1 1st floor external columns 16 
2 2nd floor external columns 16 
3 3rd floor external columns 16 
4 1st floor internal columns 9 
5 2nd floor internal columns 9 
6 3 floor internal columns 9 
7 1st floor beams 40 
8 2nd floor beams 40 
9 3rd floor beams 40 

 

Table 6.2. Load combinations (AISC, 2015; Gilsanz et al., 2013). 
Load commination Scale factor 

Comb 1 1.2 DL + 1.6 LL 
Comb 2 1.4 DL 
Comb 3 1.0 DL + 0.25 LL + 1.0 BL 

DL is dead load, LL is live load, and BL is blast load. 

This design example is solved in Chapter 5 using linear and nonlinear dynamic analyses. 

Therefore, the best designs obtained are checked for the damage conditions defined in the next 

paragraphs. If there is a violation in the strength constraints, the optimization process described in 

section 6.5 must be used to design the structure.  
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As mentioned earlier, there are two types of damages that will be discussed in this study: 

complete removal of some members and reduction in some members’ strength. Table 6.3 shows 

damage condition definitions. In Table 6.3, 100% reduction in strength refers to complete removal 

of damaged member(s) and 50% reduction in strength means the damaged member is still in action 

but it has lost half of its normal strength.  

The aim of this work is to introduce a general formulation for damage tolerance of framed 

structures. Therefore, just 6 damage conditions are discussed. One, however, any other damage 

condition may be modeled in a similar way.  

Table 6.3. Damage condition definitions. 
Damage 
condition 

Members 
Reduction in 
strength, % 

1 C-A3-1* 100 
2 C-A1-1 100 
3 C-A2-2, B-A23-1, and B-A12-1 100 
4 C-A3-1 50 
5 C-A1-1 50 
6 C-A2-2, B-A23-1, and B-A12-1 50 

* Figure 6.1 shows the location of each member.   

6.6.1 Complete Removal of Some Members 

In this type of damage, the assumption is that a member or more are totally damaged, and 

they are not able to carry gravity loads. Thus, damaged members are removed from the model of 

the structure depending on the damage condition defined in Table 6.3 (damage conditions 1, 2, 

and 3). The best designs of spatial steel frame subjected to blast load without external walls with 

linear and nonlinear dynamic analyses (Sections 5.8.2.1.1 and 5.8.2.2.1) are checked for the 

following six cases: 

Case I: Structure with damage condition 1. 

Case II: Structure with damage condition 2. 

Case III: Structure with damage condition 3. 
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Case IV: Case I except live load is 50% of the normal condition.  

Case V: Case II except the live load is 50% of the normal condition.  

Case VI: Case III except the live load is 50% of the normal condition.  

Tables 4 and 5 show the constraints evaluation for the six damages for linear and nonlinear 

dynamic analysis study cases. In both cases, there is no constraints violation. Thus, these designs 

(Table 5.5 and Table 5.8) are safe for the proposed damage conditions and there is no need to solve 

the optimization problems again and include the anticipated damage conditions. For other 

problems, however, the procedure described in Section 6.5 may need to be followed.  

Table 6.4 shows that damage case II has the highest maximum interaction ratio of 0.120. 

This ratio is far from 1 which indicates the best design using linear dynamic analysis can tolerate 

the defined damages. 

Table 6.5 shows that damage case I has the highest maximum interaction ratio of 0.973. 

This ratio is close to 1 which indicates that the best design using nonlinear dynamic analysis is 

more critical than the best design using linear dynamic analysis.  

In all study cases, shear ratios are not critical.  

Table 6.4. Constraints evaluation of the optimal design using linear dynamic 
analysis for complete removal study case (From Table 5.5). 

Constraint 
No 

damage 
Damage case 

I II III IV V VI 
Max. interaction ratio (Eq. (6.14)) 0.061 0.102 0.120 0.109 0.093 0.110 0.100 

Max. shear ratio (Eq. (6.15)) 0.035 0.049 0.039 0.045 0.041 0.034 0.038 

 

Table 6.5. Constraints evaluation of the optimal design using nonlinear dynamic 
analysis for complete removal study case (From Table 5.8). 

Constraint 
No 

damage 
Damage case 

I II III IV V VI 
Max. interaction ratio (Eq. (6.14)) 0.672 0.973 0.713 0.864 0.806 0.607 0.725 

Max. shear ratio (Eq. (6.15)) 0.287 0.307 0.288 0.302 0.252 0.234 0.244 
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6.6.2 Strength Reduction of Some Members 

For fixed material and structural geometry, reduction in strength of truss structure members 

can be directly defined as a reduction in cross-sectional areas because they are the only variables 

involved in calculating stiffness matrix and members’ strength. However, for W-shape sections 

and AISC strength requirement, the reduction in strength must be defined differently because 

cross-sectional areas are not the only variables in the stiffness matrix and sections’ strength 

calculations. Frame member stiffness matrix calculation requires cross-sectional area, moment of 

inertia in x direction, and moment of inertia in y direction. Also, Section 6.4.3.1 shows that 

estimating members’ strength require calculating some other quantities such as local buckling 

which involves finding the radius of gyration value and other factors. Thus, in this study reducing 

damaged members’ dimensions is the way to reduce sections’ strength. That is, when a section is 

signed to a group (Table 6.1), all dimensions of damage members are reduced by a percentage of 

the reduction in strength value (Table 6.3). Other possible ways of strength reductions are: 

1- Reducing the modulus of elasticity and strength reduction factors in Eqs. (6.14) and (6.15) 

values for damaged members only. 

2- Reducing areas, moment of inertia, and strength reduction factors in Eqs. (6.14) and (6.15) 

values for the damaged members only.  

The best designs of spatial steel frame subjected to blast load without external walls with 

linear and nonlinear dynamic analyses (Sections 5.8.2.1.1 and 5.8.2.2.1) are checked for the 

following two cases: 

Case I: Structure with damage conditions 4-6. 

Case II: Case I except the live load is 50% of the normal condition. 
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Table 6.6 and Table 6.7 show the constraints evaluation for the two damage conditions for 

linear and nonlinear dynamic analysis study cases. The results lead to the same conclusions as for 

previous study case: the best designs of linear and nonlinear dynamic analyses (Table 5.5 and 

Table 5.8) are safe for the proposed damages and there is no need to solve the design optimization 

problems again to include the damage conditions. Also, the best design using nonlinear dynamic 

analysis is more critical than the best design using linear dynamic analysis. 

Table 6.6. Constraints evaluation of the optimal design using linear dynamic 
analysis for strength reduction study case (From Table 5.5). 

Constraint No damage 
Damage case 
I II 

Max. integration ration (Eq. (6.14)) 0.061 0.331 0.286 
Max. shear ratio (Eq. (6.15)) 0.035 0.042 0.035 

 

Table 6.7. Constraints evaluation of the optimal design using nonlinear 
dynamic analysis for strength reduction study case (From Table 5.8). 

Constraint No damage 
Damage case 

I II 
Max. integration ration (Eq. (6.14)) 0.672 0.826 0.611 

Max. shear ratio (Eq. (6.15)) 0.287 0.296 0.240 

6.7 Concluding remarks 

In this research, formulation and procedure for optimization of framed structure to endure 

some possible damages caused by a blast are explained and discussed. Two types of damages are 

considered: complete removal of members with six damage cases and strength reduction of 

members with two damage cases. The problem is formulated to minimize the total structural 

weight subjected to strength and displacement constraints. The design variables for beams and 

columns are W-shapes sections selected from the AISC tables. 

 The problem is 4-bay x 4-bay x 3-story framed steel building that is solved in Chapter 5 

using linear and nonlinear dynamic analyses. Therefore, the best designs are examined for the 
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damage cases. Based on evaluating constraints, the results show that the best design using linear 

dynamic analysis is less critical than the best design using nonlinear dynamic analysis.  

Further research will be needed to study the following cases: 

1- Study the effect of strength reduction of all façade’s members based on the distance from the 

blast location. 

2- For the nonlinear dynamic analysis, a new formulation based on strength reduction of members 

that develop plastic hinges may be studied. 

  



 
 

165 
 

CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

7.1 Discussion and Conclusion  

Optimum design of 3D framed steel structures subjected to service and blast loads are 

studied using metaheuristic optimization algorithms. The main purpose of this research is to 

develop a formulation for the design optimization problem to withstand blast loads and a 

formulation for the design optimization problem to withstand some possible damages due to blast 

loads. The optimization formulations for this class of problems are presented for the first time in 

this study. The problems are formulated to minimize total weight of framed structures subjected 

to American Institution of Steel Construction (AISC) strength requirements and blast design 

displacement constraints. The design variables for beams and columns are the discrete values of 

the W-shapes selected from the AISC tables. All optimization algorithms and structures are coded 

in MATLAB and interfaced with the structural analysis program SAP2000 using its Open 

Application Programming Interface (OAPI). Three types of structural analyses are investigated: 

linear static analysis of the framed structure subjected to service loads only or equivalent static 

loads, linear dynamic analysis of the framed structure subjected to service and blast loads, and 

nonlinear dynamic analysis (geometrical and material nonlinearities) of the framed structure 

subjected to service and blast loads.  

The thesis has made five main contributions in an effort to develop a practical formulation 

for the design optimization of framed steel structures subjected to blast loads: 

  Review of topics related to the design of blast-resistant structures. Methods to predict blast 

loads, modeling of structures under blast loading, and design requirements are discussed from 
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a structural design optimization perspective. References on different subjects are provided 

for further details. Chapter 2 presents a concise state-of-the-art document on the subject.  

 Robust and efficient metaheuristic optimization algorithm. A two-phase metaheuristic 

algorithm based on the well-known Harmony Search (HS) algorithm and recently developed 

Colliding Bodied Optimization (CBO) is developed. The algorithm is called Hybrid Harmony 

Search-Colliding Bodies Optimization (HHC). Also, a new design domain reduction technique 

is integrated in IHS that reduces the number of possible combinations of discrete variables. 

The results comparing HHC with other popular metaheuristic algorithms using some 

benchmark discrete structural optimization problems shows that HHC is quite reliable in 

obtaining the best designs with fewer structural analyses.  

 Investigation of the Equivalent Static Load (ESL) approach for optimization of structures 

subjected to dynamic loads with discrete design variables using metaheuristic algorithms. 

Since optimizing transient response problems (specifically, problems requiring nonlinear 

dynamic analysis) using metaheuristic algorithms is computationally very expensive, the ESL 

method with gradient-free algorithms is examined. The method is named global optimization 

with equivalent static load (GOESL). The results of four numerical examples show that ESL 

step is not able to obtain the best design; however, it reaches near the best design with a 

drastically reduced number of transient analyses of the structure. Thus, after a few ESL cycles, 

the procedure may switch to dynamic analysis of each member of the population to improve 

designs further and reach the best design.  

 Formulation for the design optimization of three-dimensional framed steel structures subjected 

to blast loads. Linear and nonlinear dynamic analyses are carried out in the optimization 

process. It is shown that for linear dynamic analysis (beams and columns are designed to 
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remain elastic) the optimum structure is about 14 times heavier than the optimum design of the 

structure subjected to service loads only. When columns are only designed to remain elastic 

and beams are allowed to develop plastic hinges with displacement requirements, the optimum 

structure is about 6 times heavier than the optimum design of the structure subjected to service 

loads only. Inclusion of outer wall in the analysis model reduces the weight of the structure 

dramatically to withstand blast loads. This give a very practical design solution for blast 

resistant design of structures. However, it also implies that the outer walls must be designed 

and properly anchored to the beam and columns to fully contribute to the stiffness of the 

structure. 

 Formulation for the design optimization of three-dimensional framed steel structures subjected 

to some possible damages due to blast loads. The optimization procedure for two types of 

damages are discussed: complete removal of members with six damage cases and strength 

reduction of members with two damage cases. It is shown the best design using linear and 

nonlinear dynamic analyses (from Chapter 5) can endure the defined damage conditions 

without any further damage.  

7.2 Future Work 

While the formulation of optimum design of framed steel structures subjected to blast loads 

is studied that includes the definition of design variables, cost function, constraints, optimization 

algorithms, and structural analysis type, further research is suggested as follows: 

 Improving HHC algorithm performance. While average and standard deviation are used in 

the domain reduction step to modify design variables bounds in the quest to speed-up the 

search process, other methods such as modern machine learning methods might be used to 

speed-up the entire optimization process. Also, it is noticed that Phase 2 (ECBO) shows less 
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diverse designs after about 25% of the total number of allowed iterations. Methods to increase 

diversity might improve HHC performance in term of the number of structural analyses and 

quality of final designs.  

 Improving GOESL algorithm. Although GOESL reduces the number of dynamic analyses 

drastically to obtain the best design, ESL step is not able to reach the best design. Further 

research is needed to improve performance of the ESL approach with discrete design 

variables and gradient-free methods.  

 Formulation for the design optimization of three-dimensional framed steel structures 

subjected to blast loads with glass curtain. While in this study the conservative assumption 

is considered, that is, the external envelope of the structure is stiff enough to transfer all the 

blast loads to the frame system, other models such as buildings with external glass curtain 

can be studied. Also, the effect of openings in the walls needs to be considered.  

 Formulation for optimum design of 3D framed steel structures subjected to damages based 

on strength reduction of members that developed plastic hinges. In nonlinear dynamic 

analysis, some members may develop plastic hinges. Therefore, stiffness of these members 

is different from elastic stiffness. Thus, these members may be considered as damaged 

members and their strength modification factors should be developed depending on the 

plastic deformation level.  
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APPENDIX A 

MATLAB CODE FOR PLANAR 10-BAR TRUSS STRUCTURE 

%%%% 10-bar planar truss %%%% 

NVAR=10;                           % number of design variables 

% Print results % 

pr=1;                              % pr=0 do not print 

pr500=0;    pr50=0;                % counting to print results 

HMS=75;                            % Harmony memory size Phase 1 

popSize=40;                        % Population size Phase 2 

% Choose an algorithm 

Method=3;                          % Method=   1=IHS   2=ECBO   3=HHC 

DR=1;                              % DR=1 domain reduction DR=0 no domain reduction 

% HHCD parameters 

Eps=10e-3; r1=0.25; r2=0.1; r3=0.1; 

% constraints limits % 

MaxS=25*10^3;                      % stress limit  ksi 

Maxd=2;                            % allowable displacement  in 

% Cross-sectional areas % 

Sections= [1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09,... 

3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49,... 

4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20,... 

15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50] ; 

% IHS % 

% IHS parameters  % 

MaxItrIHS=10*NVAR*length(Sections);% IHS Maximum number of iterations 

if Method==1 

MaxItrIHS=50000; 

end 

HMCRmax=0.85;                      % minumum harmony consideration rate 

HMCRmin=0.35;                      % maximum harmony consideration rate 

PARmin=0.35;                       % minumum pitch adjusting rate 

PARmax=0.85;                       % maximum pitch adjusting rate 

% range of variables % 

for i=1:NVAR 

PVB(i,:)=[1,length(Sections)]; 

end 

% Initiate Matrices % 

HM=zeros(HMS,NVAR);                % harmony memory matrix 

NCHV=zeros(1,NVAR);                % updated design vector 

BestGen=zeros(1,NVAR);             % best design 

fitness=zeros(1,HMS);              % merit function values 

for i=1:HMS 

for j=1:NVAR                   % random initial designs 

HM(i,j)=round(rand(1)*(PVB(j,2)-PVB(j,1))+PVB(j,1)); 

end % end "for j=1:NVAR" 

A=Sections(HM(i,:)); 

[Weight, Stress, Disp] = TenBarTrussCase (A); 

Sum=0; 

GM=[abs(Stress)/MaxS;abs(Disp)/Maxd]; 

for g=1:length(GM) 
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G=GM(g)-1; 

if G>0 

Sum=Sum+G; 

end 

end 

merit=Weight*(1+Sum)^2;        % merit function value 

fitness(i)=merit;SUM(i)=Sum; 

end % end "for i=1:HMS" 

FHM1=[fitness',HM]; 

FHM1=sortrows(FHM1);               % ascending order based on merit value 

DV1=FHM1(1,2:end);                 % best design of initial designs 

if Method==1 || Method==3 

%  MainHarmony 

iterIHS = 0; 

for itr=1:MaxItrIHS 

PAR=(PARmax-PARmin)/(pi/2)*atan(itr)+PARmin; 

HMCR=HMCRmax-(HMCRmax-HMCRmin)*itr/MaxItrIHS; 

for i =1:NVAR 

ran = rand(1); 

if( ran < HMCR )           % memory consideration 

index=round(rand(1)*(HMS-1)+1); 

NCHV(i) = HM(index,i); 

pvbRan = rand(1); 

if( pvbRan < PAR)      % pitch adjusting 

pvbRan1 = rand(1); 

result = NCHV(i); 

if( pvbRan1 < 0.5) 

result =result+  1; 

if( result < PVB(i,1)) 

    NCHV(i) = PVB(i,1); 

end 

else 

result =result- 1; 

if( result > PVB(i,2)) 

    NCHV(i) = PVB(i,2); 

end 

end 

end 

else 

NCHV(i) = round(rand(1)*(PVB(i,2)-PVB(i,1))+PVB(i,1)); % random selection 

if NCHV(i)<1 

NCHV(i)=1; 

end 

if NCHV(i)>length(Sections) 

NCHV(i)=length(Sections); 

end 

end 

end 

for i=1:HMS 

ts=isequal(NCHV,HM(i,:)); 

if ts==1 

for j=1:NVAR                   % random design 

NCHV(j)=round(rand(1)*(PVB(j,2)-PVB(j,1))+PVB(j,1)); 

end 

end 
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end 

% evaluating the new design 

A=Sections(NCHV); 

[Weight, Stress, Disp] = TenBarTrussCase (A); 

Sum=0; 

GM=[abs(Stress)/MaxS;abs(Disp)/Maxd]; 

for g=1:length(GM) 

G=GM(g)-1; 

if G>0 

Sum=Sum+G; 

end 

end 

merit=Weight*(1+Sum)^2; 

newFitness=merit;newSum=Sum; 

% If this design is better than the worst design in the current % 

% population, then it replaces that design                      % 

if(iterIHS==0) 

BestFit=fitness(1); 

for i = 1:HMS 

if( fitness(i) <= BestFit ) 

BestFit = fitness(i); 

BestIndex =i; 

end 

end 

 

WorstFit=fitness(1); 

for i = 1:HMS 

if( fitness(i) >= WorstFit ) 

WorstFit = fitness(i); 

WorstIndex =i; 

end 

end 

end 

if (newFitness< WorstFit) 

if( newFitness < BestFit ) 

HM(WorstIndex,:)=NCHV; 

BestGen=NCHV; 

fitness(WorstIndex)=newFitness;SUM(WorstIndex)=newSum; 

BestIndex=WorstIndex; 

else 

HM(WorstIndex,:)=NCHV; 

fitness(WorstIndex)=newFitness;SUM(WorstIndex)=newSum; 

end 

WorstFit=fitness(1); 

WorstIndex =1; 

for i = 1:HMS 

if( fitness(i) > WorstFit ) 

WorstFit = fitness(i); 

WorstIndex =i; 

end 

end 

end 

iterIHS=iterIHS+1; 

[val,loc]=min(fitness); 

Merit(iterIHS)=val; 
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%%%% Domain Reduction Technique %%%% 

if DR==1 

if itr>round(r3*MaxItrIHS) 

FHM=[fitness',HM]; 

FHM=sortrows(FHM); 

isum=1; 

Fsum(1)=1; 

for i=1:HMS 

if SUM(i)<=0.05 

Fsum(isum)=i; 

isum=isum+1; 

end 

end 

if length(Fsum)>HMS*0.05 

for i=1:NVAR 

Std(i)=std(Sections(HM(Fsum,i))); 

Mean(i)=mean(Sections(HM(Fsum,i))); 

pvb(i,1)=Mean(i)-Std(i); 

[pvbval pvbloc]=min(abs(pvb(i,1)-Sections)); 

PVB(i,1)=pvbloc; 

if PVB(i,1)<1 

    PVB(i,1)=1; 

end 

pvb(i,2)=Mean(i)+Std(i); 

[pvbval pvbloc]=min(abs(pvb(i,1)-Sections)); 

PVB(i,2)=pvbloc; 

if PVB(i,2)>length(Sections) 

    PVB(i,2)=length(Sections); 

end 

if PVB(i,2)-PVB(i,1)<4 

    PVB(i,1)=round(mean(PVB(i,2)+PVB(i,1))-2); 

    PVB(i,2)=round(mean(PVB(i,2)+PVB(i,1))+2); 

    if PVB(i,1)<1 

        PVB(i,1)=1; 

    end 

    if PVB(i,2)>length(Sections) 

        PVB(i,2)=length(Sections); 

    end 

end 

end 

end 

for i=1:NVAR 

if PVB(i,1)>=FHM(1,1+i) 

PVB(i,1)=FHM(1,1+i)-2; 

end 

if PVB(i,2)<=FHM(1,1+i) 

PVB(i,2)=FHM(1,1+i)+2; 

end 

if PVB(i,1)<1 

PVB(i,1)=1; 

end 

if PVB(i,2)>length(Sections) 

PVB(i,2)=length(Sections); 

end 

end 



 
 

178  
 
 

 

end 

end 

%%%% End Domain Reduction Technique %%%% 

% Stoping critera 

if Method==3 

if iterIHS>r1*MaxItrIHS 

if (Merit(iterIHS-round(r2*iterIHS))-Merit(iterIHS))/Merit(iterIHS) <=Eps 

break 

end 

end 

end 

FHM=[fitness',HM]; 

ITER=iterIHS; 

if pr==1 

if ITER==1 || ITER==pr500*500 

pr500=pr500+1; 

fprintf('iter(IHS)=%4.0f   Merit=%6.2f \n',iterIHS,Merit(end)) % Print results at each step 

end 

end 

end % end "for itr=1:MaxItrIHS" 

%%%% End of Phase 1 %%%% 

FHM=sortrows([fitness',HM]);         % ascending order based on merit value 

DV2=FHM(1,2:end); 

end 

if Method==1 

[a b]=min(Merit); 

fprintf('iter(IHS) = %4.0f   Merit = %6.2f \n',b,a) 

hold on 

plot(Merit,'LineWidth',2) 

plot(b,a,'r*','LineWidth',2) 

hold off 

return 

end 

MaxItrECBO=NVAR*length(Sections);  % ECBO Maximum number of iteration 

if Method==2 

FHM=FHM1; 

iterIHS=0; 

MaxItrECBO=1000; 

end 

if Method==3 

fprintf('Phase1 = %4.0f  iteration Merit = %6.2f \n',iterIHS,Merit(end)) 

end 

% ECBO % 

for i=1:NVAR % re-set the range of variables 

PVB(i,:)=[1,length(Sections)]; 

end 

if Method==2 || Method==3 

% ECBO parameters % 

cMs=0.1*popSize;                   % Colliding memory size 

pro=0.5;                           % Pro parameters 

CB=FHM(1:popSize,2:end);           % Colliding Bodies matrix 

iterECBO=0;                        % counter iterations 

agentCost=zeros(popSize,2);        % array of agent costs 

agentCost(:,2)=[1:popSize]; 
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agentCost(:,1)=FHM(1:popSize,1); 

% Colliding memory; The first column contains CB costs and the remaining 

% columns include CB positions 

cm=zeros(cMs,NVAR+1);              % Colliding Memory matrix 

tm=zeros(2*cMs,NVAR+1);            % Temporary memory 

cm(1:cMs,:)=FHM(1:cMs,:); 

while iterECBO < MaxItrECBO 

iterECBO=iterECBO+1; 

% Evaluating the population 

if iterECBO > 1 

for e=1:popSize 

A=Sections(CB(e,:)); 

[Weight, Stress, Disp] = TenBarTrussCase (A); 

Sum=0; 

GM=[abs(Stress)/MaxS;abs(Disp)/Maxd]; 

for g=1:length(GM) 

G=GM(g)-1; 

if G>0 

Sum=Sum+G; 

end 

end 

merit=Weight*(1+Sum)^2; 

% cost=eval(CB(e,:)); % evaluating objective function for each agent 

agentCost(e,1)=merit; 

agentCost(e,2)=e; 

end %for 

end 

% Updating colliding memory 

agentCost=sortrows(agentCost); 

if iterECBO>1 

for e=1:cMs 

agentCost(popSize-cMs+e,1)=cm(e,1); 

for ee=1:NVAR 

CB(agentCost(popSize-cMs+e,2),ee)=cm(e,ee+1); 

end 

end 

end 

for e=1:cMs 

tm(e,1)=agentCost(e,1); 

tm(e+cMs,1)=cm(e,1); 

for ee=1:NVAR 

tm(e,ee+1)=CB(agentCost(e,2),ee); 

tm(e+cMs,ee+1)=cm(e,ee+1); 

end 

end 

tm=sortrows(tm); 

for e=1:cMs 

cm(e,:)=tm(e,:); 

end 

agentCost=sortrows(agentCost); 

% Evaluating the mass 

mass=zeros(popSize,1); 

for e=1:popSize 

mass(e,:)=1/(agentCost(e,1)); 

end 
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% Updating CB positions 

for e=1:popSize/2 

indexS=e; % index of stationary bodies 

indexM=popSize/2+e; % index of moving bodies 

COR=(1-(iterECBO/MaxItrECBO)); % coefficient of restitution 

% velocity of moving bodies before collision 

velMb=(((CB(agentCost(indexS,2),:)-CB(agentCost(indexM,2),:)))); 

% velocity of stationary bodies after collision 

velSa=((((1+COR)*mass(indexM,1))/(mass(indexS,1)+mass(indexM,1))*velMb)); 

% velocity of moving bodies after collision 

velMa=(((mass(indexM,1)-COR*mass(indexS,1))/(mass(indexS,1)+mass(indexM,1))*velMb)); 

CB(agentCost(indexM,2),:)=round(CB(agentCost(indexS,2),:)+2*(0.5-rand(1,NVAR)).*velMa); 

CB(agentCost(indexS,2),:)=round(CB(agentCost(indexS,2),:)+2*(0.5-rand(1,NVAR)).*velSa); 

if rand<pro 

tmp=ceil(rand*NVAR); 

CB(agentCost(indexS,2),tmp)=round(PVB(tmp,2)+rand*(PVB(tmp,2)-PVB(tmp,1))); 

end 

if rand<pro 

tmp=ceil(rand*NVAR); 

CB(agentCost(indexM,2),tmp)=round(PVB(tmp,2)+rand*(PVB(tmp,2)-PVB(tmp,1))); 

end 

for i=1:popSize 

for j=1:NVAR 

if CB(i,j)> PVB(j,2) 

CB(i,j)=PVB(j,2); 

end 

if  CB(i,j)< PVB(j,1) 

CB(i,j)=PVB(j,1); 

end 

end 

end 

end 

ITER=iterECBO+iterIHS; 

Merit(ITER)=cm(1,1); 

if pr==1 

if iterECBO==1 || iterECBO==pr50*50 

pr50=pr50+1; 

fprintf('iter(ECBO)=%4.0f   Merit=%6.2f \n',iterECBO+iterIHS,Merit(end)) % Print results at each step 

end 

end 

end  % end "while iterECBO < MaxItrECBO" 

%%%% end of Phase 2 %%%% 

[a, b]=min(Merit); 

hold on 

plot(Merit,'LineWidth',2) 

plot(b,a,'r*','LineWidth',2) 

hold off 

if Method==3 

fprintf('Phase2 = %4.0f iteration  Merit=%6.2f \n',b-iterIHS,a) 

else 

fprintf('iter(ECBO) = %4.0f iteration  Merit=%6.2f \n',b,a) 

end 

end 

function [Weight, Stress, Disp] = TenBarTrussCase (A) 

% Ten bar truss case 1 
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e=10*10^6;Ro=0.1; P = 100*10^3; 

nodes = 360*[2, 1; 2, 0; 1, 1; 1, 0; 0, 1; 0, 0]; 

conn = [5,3; 3,1; 6,4; 4,2; 3,4; 1,2; 5,4; 6,3; 3,2; 4,1]; 

for j=1:2:3; 

    for i=1:length(conn) 

        if j==1 

            lmm(i,j)  =2*conn(i,j)-1; 

            lmm(i,j+1)=2*conn(i,j); 

        else 

            lmm(i,j)  =2*conn(i,j-1)-1; 

            lmm(i,j+1)=2*conn(i,j-1); 

        end 

    end 

end 

K=zeros(2*length(nodes)); 

% Generate stiffness matrix for each element and assemble it. 

for i=1:length(conn) 

    lm=lmm(i,:); 

    con=conn(i,:); 

    k=PlaneTrussElement(e, A(i), nodes(con,:)); 

    K(lm, lm) = K(lm, lm) + k; 

end 

 

% Define the load vector 

R = zeros(2*length(nodes),1); R(4)=-P; R(8)=-P; 

% Nodal solution and reactions 

[Disp, reactions] = NodalSoln(K, R, [9,10,11,12], zeros(4,1)); 

results=[]; 

for i=1:length(conn) 

    results = [results; PlaneTrussResults(e, A(i), ... 

            nodes(conn(i,:),:), Disp(lmm(i,:)))]; 

end 

Weight=Ro*360*(A(1)+A(2)+A(3)+A(4)+A(5)+A(6)+sqrt(2)*(A(7)+A(8)+A(9)+A(10))); 

Stress=results(:,2); 

end 

function [d, rf] = NodalSoln(K, R, debc, ebcVals) 

% [nd, rf] = NodalSoln(K, R, debc, ebcVals) 

% Computes nodal solution and reactions 

% K = global coefficient matrix 

% R = global right hand side vector 

% debc = list of degrees of freedom with specified values 

% ebcVals = specified values 

dof = length(R); 

df = setdiff(1:dof, debc); 

Kf = K(df, df); 

Rf = R(df) - K(df, debc)*ebcVals; 

dfVals = Kf\Rf; 

d = zeros(dof,1); 

d(debc) = ebcVals; 

d(df) = dfVals; 

rf = K(debc,:)*d - R(debc); 

end 

 

function k = PlaneTrussElement(e, A, coord) 

% PlaneTrussElement(e, A, coord) 
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% Generates stiffness matrix for a plane truss element 

% e = modulus of elasticity 

% A = area of cross-section 

% coord = coordinates at the element ends 

x1=coord(1,1); y1=coord(1,2); 

x2=coord(2,1); y2=coord(2,2); 

L=sqrt((x2-x1)^2+(y2-y1)^2); 

ls=(x2-x1)/L; ms=(y2-y1)/L; 

k = e*A/L*[ls^2, ls*ms,-ls^2,-ls*ms; 

    ls*ms, ms^2,-ls*ms,-ms^2; 

    -ls^2,-ls*ms,ls^2,ls*ms; 

    -ls*ms,-ms^2,ls*ms,ms^2]; 

end 

 

function results = PlaneTrussResults(e, A, coord, disps) 

% results = PlaneTrussResults(e, A, coord, disps) 

% Compute plane truss element results 

% e = modulus of elasticity 

% A = Area of cross-section 

% coord = coordinates at the element ends 

% disps = displacements at element ends 

% The output quantities are eps = axial strain 

% sigma = axial stress and force = axial force. 

x1=coord(1,1); y1=coord(1,2); 

x2=coord(2,1); y2=coord(2,2); 

L=sqrt((x2-x1)^2+(y2-y1)^2); 

ls=(x2-x1)/L; ms=(y2-y1)/L; 

T=[ls,ms,0,0; 0,0,ls,ms]; 

d = T*disps; 

eps= (d(2)-d(1))/L; 

sigma = e.*eps; 

force = sigma.*A; 

results=[eps, sigma, force]; 

end 
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APPENDIX B 

MATLAB CODE FOR THE 18-BAR TRUSS DESIGN EXAMPLE 

%%%%% ECBO ESL for 18 bar truss dis %%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ESL=1; % Linear=1 % Best dynamic=2 % heaviest feasible  dynamic=3 

% / **** ECB *****/ 

% Initializing variables 

NVAR=12;             % Number of design variables 

popSize=40;          % Size of the population 

cMs=0.1*popSize;     % Colliding memory size 

maxIt=50;            % Max. number of interation (without ESL method) 

pro=0.4;             % Pro prameter 

% limits 

MaxS=138;            % Max. stress (MPa) 

Maxd=203;            % Max. displacement (mm) 

% range of variables 

Sections = linspace(1*100,150*100,100); 

x=6.35*10^3/2; y=6.35*10^3/2; X = linspace(-x,x,100);  Y = linspace(-y,y,100); 

PVB=[1 length(Sections); 1 length(Sections); 1 length(Sections);... 

1 length(Sections); 1 length(X); 1 length(Y);  1 length(X); 1 length(Y);... 

1 length(X); 1 length(Y);  1 length(X); 1 length(Y)]; 

% random initial designs 

for i=1:popSize 

for j=1:NVAR 

CB(i,j)=round(rand(1)*(PVB(j,2)-PVB(j,1))+PVB(j,1)); 

end 

end 

agentCost=zeros(popSize,2); % array of agent costs 

% Colliding memory; 

% The first column contains CB costs and the remaining columns include CB positions 

Inf=1e100;                  % infinity 

cm=zeros(cMs,NVAR+1); 

tm=zeros(2*cMs,NVAR+1);     % Temporary memory 

for e=1:cMs 

cm(e,1)=Inf; 

end 

% Start iteration 

iter=0;                     % counter 

while iter < maxIt 

iter=iter+1; 

% Evaluating the population 

parfor e=1:popSize 

DV=[Sections(CB(e,1:4)),X(CB(e,5:8)),Y(CB(e,9:12))]; 

[Mass, Stress, Max_d, nodes, Disp, Kf] = Eigh10BarTruss (DV); 

Sum=0; 

GM=[abs(Stress(:))/MaxS;abs(Disp(:))/Maxd]; 

for g=1:length(GM) 
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G=GM(g)-1; 

if G>0 

Sum=Sum+G; 

end 

end 

merit(e)=Mass*(1+Sum)^2; % evaluating merit function for each agent 

end %for 

agentCost(:,1)=merit(:); agentCost(:,2)=1:popSize; 

% Updating colliding memory 

agentCost=sortrows(agentCost); 

if iter>1 

for e=1:cMs 

agentCost(popSize-cMs+e,1)=cm(e,1); 

for ee=1:NVAR 

CB(agentCost(popSize-cMs+e,2),ee)=cm(e,ee+1); 

end 

end 

end 

for e=1:cMs 

tm(e,1)=agentCost(e,1); tm(e+cMs,1)=cm(e,1); 

for ee=1:NVAR 

tm(e,ee+1)=CB(agentCost(e,2),ee); tm(e+cMs,ee+1)=cm(e,ee+1); 

end 

end 

tm=sortrows(tm); 

for e=1:cMs 

cm(e,:)=tm(e,:); 

end 

agentCost=sortrows(agentCost); 

% Evaluating the mass 

mass=zeros(popSize,1); 

for e=1:popSize 

mass(e,:)=1/(agentCost(e,1)); 

end 

% Updating CB positions 

for e=1:popSize/2 

indexS=e;           % index of stationary bodies 

indexM=popSize/2+e; % index of moving bodies 

COR=(1-(iter/maxIt)); % coefficient of restitution 

% velocity of moving bodies before collision 

velMb=(((CB(agentCost(indexS,2),:)-CB(agentCost(indexM,2),:)))); 

% velocity of stationary bodies after collision 

velSa=((((1+COR)*mass(indexM,1))/(mass(indexS,1)+mass(indexM,1))*velMb)); 

% velocity of moving bodies after collision 

velMa=(((mass(indexM,1)-COR*mass(indexS,1))/(mass(indexS,1)+mass(indexM,1))*velMb)); 

CB(agentCost(indexM,2),1:4)=round(CB(agentCost(indexS,2),1:4)+2*(0.5-rand(1,4)).*velMa(1:4)); 

CB(agentCost(indexM,2),5:NVAR)=round(CB(agentCost(indexS,2),5:NVAR)+2*(0.5-rand(1,NVAR-

4)).*velMa(5:NVAR)); 

CB(agentCost(indexS,2),1:4)=round(CB(agentCost(indexS,2),1:4)+2*(0.5-rand(1,4)).*velSa(1:4)); 

CB(agentCost(indexS,2),5:NVAR)=round(CB(agentCost(indexS,2),5:NVAR)+2*(0.5-rand(1,NVAR-

4)).*velSa(5:NVAR)); 

if rand<pro 
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tmp=ceil(rand*NVAR); 

CB(agentCost(indexS,2),tmp)=round(PVB(tmp,1)+rand*(PVB(tmp,2)-PVB(tmp,1))); 

end 

if rand<pro 

tmp=ceil(rand*NVAR); 

CB(agentCost(indexM,2),tmp)=round(PVB(tmp,1)+rand*(PVB(tmp,2)-PVB(tmp,1))); 

end 

for i=1:popSize 

for j=1:NVAR 

if CB(i,j)> PVB(j,2) 

CB(i,j)=PVB(j,2); 

end 

if  CB(i,j)< PVB(j,1) 

CB(i,j)=PVB(j,1); 

end 

end 

end 

end 

Merit(iter)=cm(1,1); 

% Print results at each step 

if iter==1  || iter==10 || iter==50 || iter==100 || iter==200 || iter==400 || iter==800 

fprintf('iter=%d  merit= %6.3f \n',iter,Merit(iter)) 

end 

if iter==1 

maxiter=600; % Max. number of interation (ESL method) 

maxCy=25;    % Max. number of cycles 

bestCost=cm(1,1);bestDesign=cm(1,2:end); 

[CBesl,CMesl,bestD,bestM,MERIt,EslIter]=ESLsubdis(CB,cm,bestDesign,bestCost,maxiter,maxCy,ESL); 

CB=CBesl; 

cm=CMesl; 

end 

end  % while 

[bestcost, interation]=min(Merit); bestDesign=cm(1,2:end); 

plot(Merit) 

Dnsa=popSize*interation; Lnsa=popSize*sum(EslIter); 

fprintf('BestCost= %6.3f(kg), Number of Dyn Ana.= %d, Number of Sta Ana.= %d, Time= %1.1f 

(min)\n',... 

bestcost, Dnsa, Lnsa, toc/60) 

function [Mass, Stress, Max_d, nodes, d, Kf]=Eigh10BarTruss(DV) 

% Transient analysis of a plane truss 

global Mf Kf Rf 

% g = 386.4; 

e = 69*10^3; rho = 2765/1000^3; P=-59.3*10^3; 

At = DV(1); Ab = DV(2); Av = DV(3); Ad = DV(4); 

X = 6.35*10^3; Y = 6.35*10^3; 

x3=X*4+DV(5);y3=Y*0+DV(6) ;x5=X*3+DV(7);y5=Y*0+DV(8); x7=X*2+DV(9); 

y7=Y*0+DV(10); x9=X*1+DV(11);y9=Y*0+DV(12); 

nodes = [X*5, Y*1; X*4, Y*1; x3, y3; X*3, Y*1; x5, y5; X*2, Y*1; x7, y7;... 

X*1, Y*1; x9, y9; 0, Y*1; 0, 0]; 

conn = [1, 2; 1, 3; 2, 3; 2, 4; 3, 4; 3, 5; 4, 5; 4, 6; 5, 6; 5, 7; 6, 7; 6, 8; 7, 8;... 

7, 9; 8, 9; 8, 10; 9, 10; 9, 11]; 
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elems = size(conn,1); 

lmm=[]; 

A=zeros(elems,1); 

A(1)=At;A(4:4:16)=At; A(6:4:18)=Ab; A(2)=Ab; A(5:4:17)=Ad; A(3:4:15)=Av; 

for i=1:elems 

lmm = [lmm; [2*conn(i,1)-1, 2*conn(i,1),2*conn(i,2)-1, 2*conn(i,2)]]; 

end 

debc = [19,20,21,22]; ebcVals=zeros(length(debc),1); 

dof=2*size(nodes,1); 

M=zeros(dof); K=zeros(dof); 

R = zeros(dof,1); R(2)=P; R(4)=P; R(8)=P; R(12)=P; R(16)=P; 

% Generate equations for each element and assemble them. 

Mass=0; 

for i=1:elems 

con = conn(i,:); 

lm = lmm(i,:); 

[m, k, mass] = TransientPlaneTrussElement(e, A(i), rho, nodes(con,:)); 

M(lm, lm) = M(lm, lm) + m; 

K(lm, lm) = K(lm, lm) + k; 

Mass=Mass+mass; 

end 

% Adjust for essential boundary conditions 

dof = length(R); 

df = setdiff(1:dof, debc); 

Mf = M(df, df); 

Kf = K(df, df); 

Rf = R(df) - K(df, debc)*ebcVals; 

% Setup and solve the resulting first order differential equations 

u0 = zeros(length(Mf),1); 

v0 = zeros(length(Mf),1); 

[t,d] = ode23('TrussODE',[0,8],[u0; v0]); 

d=d(:,1:18);d(:,19:22)=0; 

v=d(:,1:18);v(:,19:22)=0; 

Max_S=0; 

for i=1:elems 

con = conn(i,:); 

for j=1:length(t) 

disps=d(j,lmm(i,:)); 

results = PlaneTrussResults(e, A(i), nodes(con,:), disps'); 

Stress(j,i)= results; 

if abs(Stress(j,i))>Max_S 

Max_S=abs(Stress(j,i)); 

a=j;b=i; 

end 

end 

end 

Max_d=max(max(abs(d))); 

[Max,d_i]=max(abs(d)); 

[Max_d,d_j]=max(Max); 

Function 

[CBesl,CMesl,bestD,bestM,MERIT,EslIter]=ESLsubdis(CB,CM,bestDesign,MERIT,maxIt,maxCy,Method) 
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% This function is the ESL step 

%%%% input 

% CB: Colliding bodies matrix 

% CM: Colliding memory matrix 

% bestDesign: the best design what will be used to generate ESLs 

% MERIT: merit value of the best design 

% maxiter: maximum number of iterations for each cycle 

% Method: ESL1, ESL2, or ESL3 

%%%% output 

% CBesl: the best colliding bodies matrix 

% CMesl: the best colliding memory matrix 

% bestD: matrix that stores the best design at the end of each cycle 

% bestM: vector that stores the best merit value at the end of each cycle 

% MERIT: best merit value 

% EslIter: vector that stores number of iterations of each cycle 

NVAR=12; popSize=40; cMs=0.1*popSize; pro=0.4; 

% limits 

MaxS=138; Maxd=203; 

% range of variables 

Sections = linspace(1*100,150*100,100); x=6.35*10^3/2;y=6.35*10^3/2; 

X = linspace(-x,x,100);  Y = linspace(-y,y,100); 

PVB=[1 length(Sections); 1 length(Sections); 1 length(Sections);... 

1 length(Sections); 1 length(X); 1 length(Y);  1 length(X); 1 length(Y);... 

1 length(X); 1 length(Y);  1 length(X); 1 length(Y)]; 

Design=[Sections(bestDesign(1:4)),X(bestDesign(5:8)),Y(bestDesign(9:12))]; 

[Mass, Stress, Max_d, nodes, d, K] = Eigh10BarTruss (Design); 

CMesl=CM; 

for cycles=1:maxCy 

clear Merit; clear FDM 

ESL=K*d(:,1:18)'; 

agentCost=zeros(popSize,2); 

if cycles>1 

for i=1:popSize 

for j=1:NVAR 

CB(i,j)=round(rand(1)*(PVB(j,2)-PVB(j,1))+PVB(j,1)); 

end 

end 

end 

cm=CMesl; iter=0; 

while iter < maxIt 

iter=iter+1; 

parfor e=1:popSize 

[Mass, stress, disp]=StaticEigh10BarTruss([Sections(CB(e,1:4)),X(CB(e,5:8)),Y(CB(e,9:12))],ESL); 

GM=[abs(stress)/MaxS;abs(disp)/Maxd]; 

Sum=0; 

for g=1:length(GM) 

G=GM(g)-1; 

if G>0 

Sum=Sum+G; 

end 

end 

merit(e)=Mass*(1+Sum)^2; 
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end 

agentCost(:,1)=merit(:); agentCost(:,2)=1:popSize; agentCost=sortrows(agentCost); 

if iter>1 

for e=1:cMs 

agentCost(popSize-cMs+e,1)=cm(e,1); 

for ee=1:NVAR 

CB(agentCost(popSize-cMs+e,2),ee)=cm(e,ee+1); 

end 

end 

end 

for e=1:cMs 

tm(e,1)=agentCost(e,1); tm(e+cMs,1)=cm(e,1); 

for ee=1:NVAR 

tm(e,ee+1)=CB(agentCost(e,2),ee); tm(e+cMs,ee+1)=cm(e,ee+1); 

end 

end 

tm=sortrows(tm); 

for e=1:cMs 

cm(e,:)=tm(e,:); 

end 

agentCost=sortrows(agentCost); mass=zeros(popSize,1); 

for e=1:popSize 

mass(e,:)=1/(agentCost(e,1)); 

end 

for e=1:popSize/2 

indexS=e; indexM=popSize/2+e; 

COR=(1-(iter/maxIt)); 

velMb=(((CB(agentCost(indexS,2),:)-CB(agentCost(indexM,2),:)))); 

velSa=((((1+COR)*mass(indexM,1))/(mass(indexS,1)+mass(indexM,1))*velMb)); 

velMa=(((mass(indexM,1)-COR*mass(indexS,1))/(mass(indexS,1)+mass(indexM,1))*velMb)); 

CB(agentCost(indexM,2),1:4)=round(CB(agentCost(indexS,2),1:4)+2*(0.5-rand(1,4)).*velMa(1:4)); 

CB(agentCost(indexM,2),5:NVAR)=round(CB(agentCost(indexS,2),5:NVAR)+2*(0.5-rand(1,NVAR-

4)).*velMa(5:NVAR)); 

CB(agentCost(indexS,2),1:4)=round(CB(agentCost(indexS,2),1:4)+2*(0.5-rand(1,4)).*velSa(1:4)); 

CB(agentCost(indexS,2),5:NVAR)=round(CB(agentCost(indexS,2),5:NVAR)+2*(0.5-rand(1,NVAR-

4)).*velSa(5:NVAR)); 

if rand<pro 

tmp=ceil(rand*NVAR); 

CB(agentCost(indexS,2),tmp)=round(PVB(tmp,1)+rand*(PVB(tmp,2)-PVB(tmp,1))); 

end 

if rand<pro 

tmp=ceil(rand*NVAR); 

CB(agentCost(indexM,2),tmp)=round(PVB(tmp,1)+rand*(PVB(tmp,2)-PVB(tmp,1))); 

end 

for i=1:popSize 

for j=1:NVAR 

if CB(i,j)> PVB(j,2) 

    CB(i,j)=PVB(j,2); 

end 

if  CB(i,j)< PVB(j,1) 

    CB(i,j)=PVB(j,1); 

end 
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end 

end 

end 

Merit(iter)=cm(1,1); 

% Stoping critera 

if iter>0.25*maxIt 

if (Merit(iter-round(0.1*maxIt))-Merit(iter))/Merit(iter) <=10^-3 

break 

end 

end 

end 

DV=[Sections(bestDesign(1:4)),X(bestDesign(5:8)),Y(bestDesign(9:12))]; 

bestDesign=cm(1,2:end); bestcost=cm(1,1); 

if Method==2 || Method==3 

AA=[cm(:,2:end);CB(1:10,:)]; 

fd=0; 

for i=1:10+cMs 

DV=[Sections(AA(i,1:4)),X(AA(i,5:8)),Y(AA(i,9:12))]; 

[Mass, Stressnew,Max_d, nodes, dnew, Knew]=Eigh10BarTruss(DV); 

GM=[abs(Stressnew(:))/MaxS;abs(dnew(:))/Maxd]; 

Sum=0; 

for g=1:length(GM) 

G=GM(g)-1; 

if G>0 

Sum=Sum+G; 

end 

end 

Meritt(i)=Mass*(1+Sum)^2; 

if Sum==0 

fd=fd+1; 

FD(fd,:)=DV; FDM(fd,1)=Meritt(i); 

end 

end 

AC(:,1)=Meritt;AC(:,2)=1:10+cMs; AC=sortrows(AC); MeriT=AC(1,1); 

if Method==2 

Design=[Sections(AA(AC(1,2),1:4)),X(AA(AC(1,2),5:8)),Y(AA(AC(1,2),9:12))]; 

else 

if fd>0 

FDM(:,2)=1:fd; FDM=sortrows(FDM); Design=FD(FDM(end,2),:); 

else 

Design=[Sections(AA(AC(1,2),1:4)),X(AA(AC(1,2),5:8)),Y(AA(AC(1,2),9:12))]; 

end 

end 

bestD(cycles,:)=Design; 

[Mass, Stressnew,Max_d, nodes, dnew, Knew]=Eigh10BarTruss(Design); 

elseif Method==1 

Design=[Sections(bestDesign(1:4)),X(bestDesign(5:8)),Y(bestDesign(9:12))]; 

bestD(cycles,:)=bestDesign; 

[Mass, Stressnew,Max_d, nodes, dnew, Knew]=Eigh10BarTruss(Design); 

GM=[abs(Stressnew(:))/MaxS;abs(dnew(:))/Maxd]; 

Sum=0; 

for g=1:length(GM) 
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G=GM(g)-1; 

if G>0 

Sum=Sum+G; 

end 

end 

MeriT=Mass*(1+Sum)^2; 

else 

AA=[cm(:,2:end);CB(1:10,:)]; 

fd=0; 

for i=1:10+cMs 

DV=[Sections(AA(i,1:4)),X(AA(i,5:8)),Y(AA(i,9:12))]; 

[Mass, stress, disp]=StaticEigh10BarTruss(DV,ESL); 

GM=[abs(stress)/MaxS;abs(disp)/Maxd]; 

Sum=0; 

for g=1:length(GM) 

G=GM(g)-1; 

if G>0 

Sum=Sum+G; 

end 

end 

Meritt(i)=Mass*(1+Sum)^2; 

if Sum==0 

fd=fd+1; FD(fd,:)=DV; FDM(fd,1)=Meritt(i); 

end 

end 

AC(:,1)=Meritt(:); AC(:,2)=1:10+cMs; AC=sortrows(AC); 

if fd>0 

FDM(:,2)=1:fd; FDM=sortrows(FDM); Design=FD(FDM(end,2),:); 

else 

Design=[Sections(bestDesign(1:4)),X(bestDesign(5:8)),Y(bestDesign(9:12))]; 

end 

bestD(cycles,:)=Design; 

[Mass, Stressnew,Max_d, nodes, dnew, 

Knew]=Eigh10BarTruss([Sections(bestDesign(1:4)),X(bestDesign(5:8)),Y(bestDesign(9:12))]); 

GM=[abs(Stressnew(:))/MaxS;abs(dnew(:))/Maxd]; 

Sum=0; 

for g=1:length(GM) 

G=GM(g)-1; 

if G>0 

Sum=Sum+G; 

end 

end 

MeriT=Mass*(1+Sum)^2; 

[Mass, Stressnew,Max_d, nodes, dnew, Knew]=Eigh10BarTruss(Design); 

end 

fprintf('Cycle= %d iter= %d Merit= %4.2f \n',cycles,iter,MeriT) 

clear d; clear K 

d=dnew; K=Knew; bestD(cycles,:)=Design; bestM(cycles)=MeriT;EslIter(cycles)=iter; 

if (MeriT < MERIT) 

MERIT=MeriT; 

if Method==1 

CMesl=cm; CBesl=CB; 
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else 

CBesl=CB; CMesl(:,1)=AC(1:cMs,1); CMesl(:,2:end)=AA(AC(1:cMs,2),:); 

end 

end 

if cycles>=5 

if MERIT>=bestM(end) 

if bestM(end)==bestM(end-2) 

break 

end 

else 

if MERIT<bestM(end) & MERIT<bestM(end-1) 

break 

end 

end 

end 

end 

end 

function sigma = PlaneTrussResults(e, A, coord, disps) 

% results = PlaneTrussResults(e, A, coord, disps) 

% Compute plane truss element results 

% e = modulus of elasticity 

% A = Area of cross-section 

% coord = coordinates at the element ends 

% disps = displacements at element ends 

% The output quantities are eps = axial strain 

% sigma = axial stress and force = axial force. 

x1=coord(1,1); y1=coord(1,2); x2=coord(2,1); y2=coord(2,2); 

L=sqrt((x2-x1)^2+(y2-y1)^2); ls=(x2-x1)/L; ms=(y2-y1)/L; 

T=[ls,ms,0,0; 0,0,ls,ms]; 

d = T*disps; 

eps= (d(2,:)-d(1,:))/L; sigma = e.*eps; 

function [Mass, stress, d]=StaticEigh10BarTrusstest(DV,ESL) 

e = 69*10^3; rho = 2765/1000^3; 

At = DV(1); Ab = DV(2); Av = DV(3); Ad = DV(4); 

X = 6.35*10^3; Y = 6.35*10^3; 

x3=X*4+DV(5);y3=Y*0+DV(6) ;x5=X*3+DV(7);y5=Y*0+DV(8); x7=X*2+DV(9); 

y7=Y*0+DV(10); x9=X*1+DV(11);y9=Y*0+DV(12); 

nodes = [X*5, Y*1; X*4, Y*1; x3, y3; X*3, Y*1; x5, y5; X*2, Y*1; x7, y7;... 

X*1, Y*1; x9, y9; 0, Y*1; 0, 0]; 

conn = [1, 2; 1, 3; 2, 3; 2, 4; 3, 4; 3, 5; 4, 5; 4, 6; 5, 6; 5, 7; 6, 7; 6, 8; 7, 8;... 

7, 9; 8, 9; 8, 10; 9, 10; 9, 11]; 

elems = size(conn,1); 

lmm=[]; 

A=zeros(elems,1); 

A(1)=At;A(4:4:16)=At; A(6:4:18)=Ab; A(2)=Ab; A(5:4:17)=Ad; A(3:4:15)=Av; 

for i=1:elems 

lmm = [lmm; [2*conn(i,1)-1, 2*conn(i,1),2*conn(i,2)-1, 2*conn(i,2)]]; 

end 

debc = [19,20,21,22]; ebcVals=zeros(length(debc),1); 

dof=2*size(nodes,1); 

M=zeros(dof); K=zeros(dof); 
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[iesl,jesl]=size(ESL); 

R = zeros(dof,jesl) ; R(1:iesl,:)=ESL; 

% Generate equations for each element and assemble them. 

Mass=0; 

for i=1:elems 

con = conn(i,:); 

lm = lmm(i,:); 

[m, k, mass] = TransientPlaneTrussElement(e, A(i), rho, nodes(con,:)); 

M(lm, lm) = M(lm, lm) + m; 

K(lm, lm) = K(lm, lm) + k; 

Mass=Mass+mass; 

end 

% Adjust for essential boundary conditions 

df = setdiff(1:dof, debc); 

Mf = M(df, df); Kf = K(df, df); Rf = R(df,:); 

d=linsolve(Kf,Rf);d(19:22,:)=0; 

for i=1:elems 

results(i,:) = PlaneTrussResults(e, A(i), nodes(conn(i,:),:), d(lmm(i,:),:)); 

end 

stress=results(:); d=d(:); 

function [m, k, mass] = TransientPlaneTrussElement(e, A, rho, coord) 

% Generates mass & stiffness matrices for a plane truss element 

% rho = mass density 

% e = modulus of elasticity 

% A = area of cross-section 

% coord = coordinates at the element ends 

x1=coord(1,1); y1=coord(1,2); 

x2=coord(2,1); y2=coord(2,2); 

L=sqrt((x2-x1)^2+(y2-y1)^2); 

ls=(x2-x1)/L; ms=(y2-y1)/L; 

k = e*A/L*[ls^2, ls*ms,-ls^2,-ls*ms; 

ls*ms, ms^2,-ls*ms,-ms^2; 

-ls^2,-ls*ms,ls^2,ls*ms; 

-ls*ms,-ms^2,ls*ms,ms^2]; 

mass=rho*A*L; 

m = ((mass)/6)*[2, 0, 1, 0; 0, 2, 0, 1; 

1, 0, 2, 0;0, 1, 0, 2]; 

function ddot = TrussODE(t, d) 

% function to set up equations for a transient truss problem 

global Mf Kf Rf 

if t>=2 

ft=0; 

else 

ft=sin(pi*t/2); 

end 

n=length(d); 

u = d(1:n/2); v = d(n/2+1:n); 

vdot = inv(Mf)*(Rf*ft - Kf*u); 

udot = v; 

ddot = [udot; vdot 
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