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ABSTRACT

Anexplosionischaracterized as asudden rel ease of large energy over avery short duration.
As the blast wave travels parale to a surface, it creates a side-on pressure and when it hits a
surface perpendicularly or at an angle, it creates areflected pressure. Side-on pressure and reflected
pressure are much higher than service loads for the structure. Thus, when a blast happens near a

building that is not designed to withstand blast loads, it can cause catastrophic damage.

The objective of thisstudy isto present aformulation for the design optimization of framed
stedl structures subjected to blast loads. Also, a formulation is presented for the design
optimization of structuresthat can withstand some possible damage dueto blast loads. To thisend,
an optimization procedure that includes definitions of design variables, cost function, constraints,
and structural analyses is discussed. The design variables for beams and columns are the discrete
values of the W-shapes selected from American Institute of Steel Construction (AI1SC) tables. The
optimization problem is to minimize the total structura weight subjected to AISC strength
requirements and blast design displacement constraints. Linear static, linear dynamic, and
nonlinear dynamic analyses are incorporated in the optimization process and optimum designs are
compared. Due to design variables and some constraints discontinuity, gradient-based

optimization algorithms cannot be used to solve the optimization problem.

Therefore, metaheuristic algorithms are used that require only simulation results to solve
problemswith discrete variables and non-differentiable functions. Since the number of simulations
and robustness to obtain good designs are important for the class of problems discussed in this
research, a new hybrid optimization algorithm based on Harmony Search (HS) and Colliding
Bodies Optimization (CBO) is developed and examined. The agorithm is named Hybrid Harmony

Search - Colliding Bodies Optimization (HHC). Also, anovel design domain reduction technique
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isincorporated in HHC. Some benchmark discrete variable structural design problems are used to
evauate HHC. In comparison with some popular metaheuristic optimization agorithms, HHC is

shown to be robust, effective, and needs fewer structural analyses to obtain the best designs.

Depending on the size of the structure to be designed, optimization of structuresthat require
linear or nonlinear dynamic analyses using metaheuristic algorithms can be computationally
expensive because these types of agorithms need large number of simulations to reach good
designs. Equivalent Static Loads (ESL) approach, which has been used for optimization of
structural systems subjected to dynamic loads using gradient-based algorithms, is examined for
optimization of structures that have discrete design variables using metaheuristic algorithms. The
proposed approach is named global optimization with equivalent static loads (GOESL). Solution
of four numerical examples shows that GOESL can drastically reduce the number of dynamic
analyses needed to reach the best design compared to an algorithm without the ESL approach.
However, the ESL step alone cannot converge to the best design for the current formulation, even
with many ESL cycles. Therefore, after afew ESL cycles, the procedure may switch to the original

algorithm without the ESL cycles to improve designs further.

HHC and GOESL are used to solve three-dimensional framed steel structures subjected to
blast loads with linear and nonlinear dynamic analyses as separate solution cases. The source of
the blast loadsis a car carrying 250 Ibs of Trinitrotoluene (TNT) with 50 ft standoff distance from
the front face of a4-bay x 4-bay x 3-story building. Optimum designs of the structure to withstand
blast loads show that penalty on the optimum structural weight is substantial when linear dynamic
anaysis is used. With nonlinear dynamic analysis, the penalty on the structural weight is

substantially reduced. When the stiffness of the walls is included in the analysis model, there is



very little penalty on the optimum structural weight with linear or nonlinear dynamic analysis

models.

The best designs obtained with the linear and nonlinear dynamic analysis models are
checked for some possible damages due to a blast. Two types of damage conditions are defined:
(i) complete removal of some key members from the analysis model, and (i) reduction of stiffness
of some members. It is shown that the best designs using linear or nonlinear dynamic analyses can
withstand all damage conditions. Thus, resilience of the designs to withstand blast loads is

observed.
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PUBLIC ABSTRACT

Blast-resistant analysis and design of structures has received greater attention during the
last few decades as the terrorist attacks showed the great damage that could happen due to an
explosion near the structure. In this study, optimum design of steel building to withstand blast
loads is studied and discussed. The problem is formulated to minimize total structural cost while
requiring sufficient strength to withstand blast loads. Since the computational effort to solve this
problem can be substantial, considerable research is conducted to develop and evaluate more
efficient procedures for numerical solution of the problem. It is shown that depending on the
fidelity of structural analysis models used and the performance requirements for the structure, the
penalty on the structural cost to withstand the blast loads can vary from substantial to minimal.

Directions for future research to further improve the computational procedures are presented.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Interest in the behavior of structures subjected to blast loading has increased over the last
few decades as the terrorist attacks increase around the globe. Attacks on the World Tarde Center
in New York City in 1993 and Murrah Federal Building in Oklahoma City in 1995 showed the
great damage that could happen due to a blast. In both attacks, structura failure caused more
casuatiesand injuriesthan the blast waveitself (Cormie, 2009). Normally, conventional structures
(many are moment resistance frames) are not designed to tolerate blast loads which are very high
compared with serviceloads. For instance, a10 |bsof TNT at adistance about 50 ft causes roughly
peak pressure of 2.5 psi (360 psf) in very short time (less than a second) compared to natural
periods of structures. In comparison, the design snow load in the Midwest ranges from 5 psf to 50
psf (Longinow and Alfawakhiri, 2003). Therefore, even a small charge explosion can cause
catastrophic local or global failure of the structure. Thus, it is important to design structures (at

least some critical ones) that can with stand blast loads.

1.2 Blast Phenomena and Blast L oads

When ablast occursintheair, it generates hot gas with high pressure and high temperature.
A blast wave happens because the air around the explosion expands and its molecules pile-up. The
blast wave carries large amount of energy and it travels fast. When the blast wave passes parallel
to an object it causes what is called incident pressure. If the blast wave is opposed by an object
(such as the facade of a building) it reflects. The reflected pressure is higher than the incident

pressure.



The blast pressure is a time history loading. Scaling law is the most popular method to
obtain blast pressure-time profile. It is a smplified empirical method that requires only charge
weight and stand-off distance. The method is explained thoughtfully in DoD (2008) and it isbriefly
discussed and used in this study. Computational Fluid Dynamics (CFD) and semi-empirical
methods are more accurate than the scaling law to estimate blast pressure, but they are more

complex and require substantially more computational time.

In the design of structure subjected to blast loads, like seismic design, some members are
allowed to experience nonlinear response for more economical designs. Therefore, the blast design
criteria are deformation based. In other words, members end rotations and deflections are the

design criteriato design structures subjected to blast oads.

1.3 Optimization of Framed Structures Subjected to Blast L oading

It is desirable to design structures to minimize structural weight while all performance
requirements are satisfied. In this study, the optimum design of three-dimensional (3D) framed
steel structures subjected to blast loading is considered. Since the blast loads are much larger than
the service loads, design of structure to withstand blast loads is expected to be much heavier than
the design for service loads. Therefore, it is important to optimize the design for blast loads. In
addition, for the design to be useful, constraints of the applicable design code must be included in
the formulation. The formulation must also include direct selection of sections available in the
commercia catalog. In such a formulation, the design variables are integers representing the
section number in the catalog. Also, constraints of the design code are generally discontinuous

because the limit values for them are based on checking various failure modes for the members.

It is seen, based on the foregoing discussion, that the gradient-based optimization methods
will not be suitable for the practical design optimization formulation. Therefore gradient-free

2



methods must be used. Stochastic or metaheuristic methods are good gradient-free methods that
need only the simulation results. These methods will be explored for the structural optimization
problem subjected to blast loads. This problem of optimum design of structures subjected to blast

loads has not been studied in the literature before.

1.4 Optimum Design of Framed Structuresfor Damage Tolerance

It is desirable to anticipate certain amount of damage to the structure under blast loads and
include that in the design process. A formulation is needed for optimum design of 3D framed
structures that can withstand some future damage due to a blast near the structure. The main idea
isthat structure should still carry the service loads when some damage happens due to blast loads.

However, how to define damage to the 3D framed structure needs to be investigated.

1.5 Optimization Algorithms

Three types of structural analyses need to be carried out in the optimization process: linear
static analysis of the framed structure subjected to service loads only, linear dynamic analysis of
the framed structure subjected to service and blast loads, and nonlinear dynamic analysis
(geometrical and material nonlinearities) of the framed structure subjected to service and blast
loads. Depending on the size of the structure and the finite element model used, the computational
timefor each analysis can be substantial. The metaheuristic algorithms use only analysis resultsin
their calculations, but they require a large number of iterations to reach an optimum point. In
addition, dynamic analysis of the structure can require large computational effort. Therefore, the
wall-clock time required to solve problem of optimum design of structures subjected to blast loads

can be enormous.

Thus, it is desirable to explore ways to reduce the number of iterations of the metaheuristic

algorithm so that the wall-clock time needed to solve the problem can be reduced. To achievethis
3



objective, combination of two metaheuristic algorithmswill be explored in order to develop amore

efficient hybrid agorithm.

1.6 Optimization of Structures Subjected to Dynamic L oads Using Equivalent Static L oads

Equivaent static loads (ESL) approach has been used successfully for optimizing many
structural systems subjected to dynamic loadsfor continuous variabl e optimization problems using
the gradient-based methods. In the ESL method, the dynamic load is transformed into multiple
equivalent static load sets. Then the equivalent static loads are considered as multiple loading
conditions in the linear static response optimization process (Kang et a., 2001). This process is

repeated afew times until the optimum point is reached.

For the nonlinear dynamics problem, there can be either convergence difficulties in the
numerical integration algorithm or nonlinear structura analysis can take long time because of the
material nonlinearity, geometrical nonlinearity, and size of the structure. Considering that the
metaheuristic algorithms require many simulations (depending on the number of design variables
and the number of elements in the discrete set), it is quite inefficient to carry out the nonlinear
dynamic analysis in the optimization process with metaheuristic algorithms. Therefore, the ESL
approach will be investigated for optimization of structures with discrete design variables using
metaheuristic algorithms. The ESL approach has not been investigated with metaheuristic

algorithms before.

1.7 Motivation and Purpose

Several research objectives are set up for this study:

1- To develop and study a formulation for optimum design of 3D framed steel structures subjected

to blast loads in addition to the service loads. To this end, design variables, cost function, and



constraints will be defined and discussed. Linear static, linear dynamic, and nonlinear dynamic
anayses will be incorporated in the formulation and the optimization process. The formulation

for this class of problems are discussed for the first timein this study.

2- To develop a formulation for optimum design of framed structures that includes some possible
future damage to the structures due to blast loads. How to define damage to the structure will

be studied and incorporated into the optimum design formul ation.

3- To develop a hybrid metaheuristic algorithm by combining good features of two algorithms.
Evaluate this new algorithm by solving a set of test structural optimization problems.

4- To investigate the use of the equivalent static loads (ELS) approach with discrete design
variables using metaheuristic algorithms. Evaluate the approach by solving a set of test
problems. The ESL approach with metaheuristic agorithms is discussed for the first time in

this study.

1.8 Scope of Thesis

Chapter two is areview of the literature on calculation of blast loads, structural modeling
and analysis, and design requirements for structures to resist explosions. The review provides the
reader with a concise reference to the analysis and design of structures for blast resistance. In
Chapter three, metaheuristic algorithms that are used in this study are discussed. The focus is
mainly on the development of a hybrid algorithm. The algorithm is evaluated by solving a set of
five truss test structures. In Chapter four, the ESL approach for structures subjected to dynamic
loads is investigated with metaheuristic optimization algorithms and discrete design variables.
Performance of the new approach is studied using four numerical examples (2 linear and 2
nonlinear dynamic response optimization problems). Chapter five presents a formulation for

design optimization (design variables, cost function, and constraints) of 3D framed steel structure
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subjected to blast loads. Five numerical design examples are solved, and the results are studied
and compared. In Chapter six, aformulation for optimum design of 3D framed steel structures to
withstand some possible future damagesis presented and discussed. Chapter seven summarize the

results obtained in this study and it includes some future work recommendations.



CHAPTER 2

DESIGN OF STRUCTURES SUBJECTED TO BLAST LOADS: ANALY SISAND DESIGN
REVIEW

Abstract

When designing structures to withstand explosions, the main goals are to minimize the
number and extent of occupant injuries and to reduce the chance of catastrophic damage to
structures. Although there is uncertainty in the source, extent, and location of explosions, the
assessment of blast loading and structural performanceisimportant when designing blast-resi stant
structures. Thischapter isareview of theliterature on prediction of blast loads, structural modeling
and analysis, and design criteria for structures to resist explosions. The chapter provides in one
concise document the general guidelines, references, and tools that structural engineers and
researchers need to analyze and design structures subjected to blast loading. References on the

topics discussed in thiswork are provided for more detail.

2.1 Introduction

A small-charge explosion could cause catastrophic local or global failure of the structure.
Analysisand design of blast-resistant structures requires good knowledge of the blast phenomena,
dynamic response of structures, and design requirements. However, threats cannot be predicted
accurately, and it is not possible to design afully protected structure. Thus, an acceptable damage
to the structure is expected according to a predefined level of protection (God and Matsagar,

2014).

The purpose of this chapter isto review the literature and provide the reader with a concise
reference for analysis and design of structuresfor blast resistance. It provides basic considerations
for blast load calculation, structural modeling and analysis, and design criteria. This study is
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limited to surface bursts where the explosive charge is detonated close to ground level and the

structure is regularly shaped.

This chapter is organized into eight sections. Following this introduction, Section 2.2
provides an overview of the literature. Section 2.3 discusses the blast phenomena and ways to
assess blast load and its duration, and Section 2.4 provides areview of material strength under a
high strain rate. Section 2.5 discusses stress increase and reduction factors, and Section 2.6
discusses modeling and analysis of structural components and systems subjected to blast loads. In
Section 2.7, design criteria for structural components and system are discussed, and Section 2.8
provides a definition of progressive collapse that designers should be aware of. References on all

topics are provided for more detail.

2.2 Literature Review

The subject areas of blast load prediction and blast-resistant design are quite broad. In this
review, many references have been used to collect information on these subject areas and provide
the reader with a concise document. This section provides a brief overview of the key references
used in this study along with some information discussed in each reference. The U.S. Department
of Defense (DoD) publication (U.S. Department of Defense, 2008) provides a manua for
evaluating blast loads and design criteriafor members and structural systems. It is considered one
of the most important references for blast-resistant design. The American Society of Civil
Engineers (ASCE) prepared a report (ASCE, 2010) to provide guidance for blast resistance of
petrochemical facilities. The ASCE also wrote a standard (ASCE, 2011) that provides planning,
design, construction, and assessment requirements for existing and new structures subjected to
blast loading. Gilsanz et a. (2013) wrote a guide published by the American Institute of Steel

Construction that focuses on blast resistance and progressive collapse mitigation of stedl structures.



It provides a few detailed design examples. Pape et al. (2010a, 2010b, and 2010c) published a
three-part paper on the blast phenomena and its effect on structures. The work provides apractical
overview of types of explosions, prediction of explosion effects, and methods for analysis under
blast conditions. Goel and Matsagar (2014) discussed different strategies for blast mitigation and
the mechanics of sacrificial blast wallsusing different materials. Books by Smith and Hetherington
(1994), Bangash and Bangash (2006), Cormie et al. (2009), and Dusenberry (2010) provide
detailed information on the analysis and design of buildings subjected to blast conditions. This
chapter summarizes the most important analysis and design information provided in these
references and others with aMATLAB code to predict blast loads based on the method described

by the DoD (2008).

2.3 Prediction of Blast L oading

This section provides the necessary background and references to calculate external blast
loading. Although there is uncertainty in predicting the size, type, and location of the explosive,

calculation of blast loads is essential in the design of blast-resistant structures.

2.3.1 Blast Phenomena

The explosion generates hot gas that can be at a pressure of 1450-4351 ksi and a
temperature of 3000-4000 °C (Smith and Hetherington, 1994). If a blast happens in the air, the
high-temperature gas that is produced by an explosive charge expands spherically to take up the
available space. In other words, the violent expansion forces the surrounding air out of its occupied
space. Simultaneously, the air around the explosion expands and its molecules pile up. What is
known as a blast wave occurs next, and it carries a large amount of energy. As the wave front
moves away from the source of the explosion, its pressure decreases at an exponential rate until it
falls to the normal atmospheric pressure; this is called the positive phase. After that, it decreases
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to less than the atmosphere pressure (negative phase) and finally back to the ambient value (see
Figure 2.1). Thus, the blast pressure is a time history loading. In Figure 2.1, P, is the peak
overpressure or the incident pressure, P, is the ambient pressure, P,, is the minimum negative
pressure, P. is the reflected pressure, B~ is the minimum negative reflected pressure, t, is the
arrival time, t, isthe positive phase duration, t, is the negative phase duration, i, is the positive
reflected impulse, and iy isthe negative incident impulse. When the blast wave travels parallel to
asurface and is unimpeded by any object, free-field (side-on or incident) pressureis applied to the
surface (see Figure 2.1 (a)). When a surface is struck by a blast wave perpendicularly or at an
angle, reflected pressure is applied to the surface.
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Figure 2.1. Ideadlized pressure-time profile for blast wave: (a) freéfield pressmljre (b) reflected
pressure (modified from DoD, 2008).

Friedlander’ s exponential equation is usually used to describe the pressure-time history of

ablast wave (Cormie et al., 2009):

PO = Py (1= ) et 1)

(o]

where b is a decay coefficient of the waveform (calculated through a nonlinear fitting of an

experimental pressure time curve over its positive phase).

There are three techniques to calculate blast loads (Cormie et a., 2009):
1- First principle methods: These are the most accurate methods that involve solving the partia

differential equations based on computational fluid dynamics (CFD). The CFD models
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determine a numerical solution to fluid (air) flow equations. These equations are based on the
principles of conservation of mass, momentum, and energy. The reader is referred to the work
of Cormie et al. (2009) and Zienkiewicz et a. (2006) for more details on this topic. There are
many computer codes available for modeling the detonation of explosives, such asLS-DYNA
(2007), ABAQUS (2014), and Air3d (Rose, 2001). The blast loads calculated with CFD are
used to compute the structural response. However, when the structure is expected to move
significantly due to the blast event, the blast wave and the structural response could be coupled
to obtain more accurate results (Pape et al., 2010b).

Semi-empirical or phenomenological methods. These are simplified methods that represent the
essential physical phenomena of the explosion.

Empirical methods: These are based on an analysis of the experimental data (Godl and
Matsagar, 2014). Scaling Law is the most common empirical method used in the analysis and
design of blast-resistant structures. Blast parameters such as incident and reflected pressures
are functions of the scaled distance (Z). Report UFC 3-340-02 devel oped by the DoD (2008)
provides guidelines to predict blast loads using the empirical method. ConWep (Hyde, 1992)
and ATBlast are examples of computer programs that are widely used to determine blast wave

parameters. They are an implementation of the method described by the DoD (2008).

The selection of an analysis method depends on the project requirements and type of

components to be designed (Gilsanz et al., 2013).

Blast |oad decreases rapidly with distance. Therefore, based on the distance from the source

of the blast and the angle of incident, blast loads and their durations can change considerably over

the surface of the structure. The common approach is to divide the surface into a grid and then

calculate blast loads and their durations at the center of each section of the grid.
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2.3.2 Scaling Law

The distance of the structure from the detonation point is an important parameter in
calculating the blast loads. The Hopkinson-Cranz scaling approach (cube-root scaling) is the most
widely used approach for blast wave analysis for spherical explosions. The scaling distance is
defined as follows:

R

Z:W

(22)

where Z isthe scaled distance, R isthe distance from the detonation source to the point of interest

expressed in feet (ft.), and W is the charge mass expressed in pounds (1bs) of TNT.

There are many types of explosives. TNT was chosen to be the blast parameter, so an
equivalent TNT weight needs to be computed in order to use Eq. (2.2). Equation (2.3) below is
used to find the equivalent weight of TNT, and Table 2.1 shows the conversion factors for some

explosives (DoD, 2008).

ngp

where I, is the equivalent TNT weight, I, is the weight of the explosive, ngp is the heat of

detonation of the explosive, and HEy isthe heat of detonation of the TNT.

Table 2.1. Heat of detonation for some explosives (DoD, 2008).

Explosive name Heat of detonation, ft-1b/lb

TNT 1.97 E+06
Composition B 2.15 E+06
Composition C4 2.22 E+06

RDX 2.27 E+06

HMX 2.27 E+06
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Identifying explosive size is an important part of the threat assessment process. Table 2.2
shows the estimated ranges of explosives. Bangash and Bangash (2006) categorize explosives as
small, medium, large, and very large (Table 2.3).

Table 2.2. Estimated quantities of explosive (FEMA 426, 2003).

type Charge weight
Luggage 10-100 Ib TNT
Automobile 100-450 Ib TNT
Van 450-4000 Ib TNT
Truck 4000-100000 Ib TNT

Table 2.3. Size of explosive (M. Bangash and T. Bangash, 2006).

type Charge weight
Small Upto111b TNT
Medium Upto44Ib TNT
Large Upto 220 I1b TNT
Very large Upto 5512 Ib TNT

2.3.3 Explosion and Blast-Loading Types

There are three types of explosions, as shown in Figure 2.2 (Karlos et a., 2013):

1- Free-air bursts: Inthiscase, the chargeisdetonated in the air away from any reflecting surface.
The blast waves can be characterized by a spherical wave that moves outward from the source
and impinges directly onto the structure.

2- Air bursts: The explosive chargeis detonated in the air. The blast waves propagate spherically
outward from and impinge on the structure after having interacted first with the ground. What
is called Mach reflection might occur because of the interaction of the blast wave and the
reflected wave.

3- Surface bursts: The explosive charge is detonated near the ground surface. The blast waves
immediately interact locally with the ground and then propagate hemi-spherically outwards,

impinging on the structure.
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Figure 2.2. Types of explosions: (a) Free-air bursts. (b) Air bursts. (c) Surface bursts (modified
from Karlos et a., 2013).

2.3.4 Blast Wave Reflection

Theblast waves will reflect when they impact an object made of a medium denser than that
carrying the wave. In this case, the pressure acting on the structure is not the same as the incident
peak pressure (P,,). In fact, the reflected pressure could be several times greater than the incident

pressure, as shown in Figure 2.1 (Cormie et al., 2009).

In the discussion above, the angle of the incident () is taken as zero. When a = 909, the
blast wave travels parallel to the surface. That is, there is no reflection, and the structure is loaded
with side-on pressure that is equal to the incident overpressure. If a isbetween 0° and 90°, either

regular or Mach reflection happens. The effect of the angle of the incident on the reflection

coefficient (C,., = :—T) isshown in Figure 2.3 (Karlos et d., 2013).

The influence of the angle of incident can be ignored for the large pressure, and the
structure can be studied under a normal reflected pressure, which is a conservative approach. In

genera, one can use Figure 2.3 to determine the reflection coefficient.

The Mach reflection is a complex process. When the reflected wave catches up with the
incident wave, the so-called Mach stem occurs. Thisis the reason for the jump in the angle of the

incident-reflected pressure curves shown in Figure 2.3.
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Figure 2.3. Influence of angle of incident on the reflection pressure (modified from DoD, 2008).
Conventionally, facades are assumed to be perfectly rigid so that they perfectly reflect the

blast wave front. In reality, however, facades displace when the blast wave impinges on them. This

displacement reduces the effectiveness of the reflected pressure.

2.3.5 Surface Burst and Loading

When the explosive charge is placed close to the ground, a modification must be made to
the charge weight. The incident wave is reflected immediately from the ground and interacts with
the blast wave. Thisis called hemispherical burst. Practically, due to the creation of a crater, some
energy absorption takes place from the ground. Figure 2.4 and 2.5 show the blast wave parameters
of a hemispherical wave of TNT charge for the positive and negative phases, respectively. The

wave parameters are presented on the y-axis while the x-axis represents the scaled distance (7).

In, Figure 2.4 W isthe weight of the charge, P isthe incident peak overpressure, Py isthe
reflected pressure, ir is the positive reflected impulse, isis the positive incident impulse, tais the

arrival time, tois the positive duration, U is the wave speed, and Lw is the wave length. They are
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presented on the y-axis, while the x-axis represents the scaled distance Z. In Figure 2.5, the

superscript “-” refers to the negative phase.

After calculating the scaled distance for a specified distance and charge weight, Figure 2.4
and 2.5 can be used to determine the positive and negative parameters to plot the equivalent
pressure time history for the front, roof, and side and rear walls (Figure 2.6). Numerical examples
showing al the stepsto find the equivaent load time history are available in the work of the DoD
(2008), Gilsanz et. a. (2013), and Karlos et a. (2013). A MATLAB code that follows the methods
presented by DoD (2008) is provided'. The code can be used to plot the triangular shape of the
pressure time history (similar to those shown in Figure 2.6). Note that the scaled distance must be
within the range of Figure 2.4 and 2.5. For close-in explosions, this ssmplified approach is not
allowed. CFD or test data should be used to find the blast loading, and explicit nonlinear dynamic
analysis should be performed to consider breach, diagonal tension, direct shear, and spall failure

mode.

* https:.//www.mathworks.com/matlabcentral /fil eexchange/ 70105-matlab_code blast load dod_2008
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Figure 2.6 shows the simplification of the pressure-time history profile of the blast wave
(Figure 2.1). In Figure 2.6, w isthe width of the front wall and the back wall, H isthe height of all
walls, L isthelength of the sidewall, P. isthe reflected pressure, P;, istheincident peak, Cj, isthe
drag coefficient (Cp is 1 for the front wall), g, is the incident dynamic pressure, i, is the total
reflected pressure impulse, ¢, isthe duration of the reflected pressure, ¢, istheclearingtime, ¢,
isthe actual positive phase duration, and t,, isthe positive phase duration. In the roof and side wall
loading figure, L,, isthewavelength, Czf isthe equivaent load factor, Pg, ¢ istheincident pressure,
Cpy isthe drag coefficient at point f, q,, is the dynamic pressure, t; is the time when the blast wave
reaches the point f, ¢, isthe time when the peak equivalent uniform pressure is reached, t, is the
actual positive phaseduration, and t,,,» isthe positive phase duration. In the rear wall loading figure,
the notations are similar to the roof and side wall loading figure, except that point b is used instead of

point f. The superscript “—" refersto the negative phase.
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2.3.6 Negative Phases

Compared with the positive phase, the negative wave has a longer duration and a lower
pressure magnitude, as shown in Figure 2.1. It reduces the effect of the peak response, and it is
usually ignored in design because the main structural damage results from the positive phase |oads
(Karlos et d., 2013). However, its effect should be examined for members that have a shorter

fundamental period in comparison with negative load duration (Gilsanz et d., 2013).

2.3.7 Internal Pressure

In the previous sections, blast pressure has been discussed with the assumption that there
are no openingsin the walls. Structures, however, have windows and doors that may leak pressure
into the building, causing a reduction in the effective new load on the externa walls. Internal
pressure is important in evaluating the effects on personnel and the internal damage. The internal
pressure effect is usually ignored when the openings are small (Gilsanz et al., 2013). The DoD

(2008) provides a procedure to evaluate internal pressure.

2.4 Material Design Strength

Steel and reinforced concrete are the most commonly used materials in the construction of
blast-resistant structures, but masonry and timber are permitted. For a close and high-impulse blast
event, concrete structures are generally used to provide protection against fragments and to limit

deformation (DoD, 2008; ASCE, 2011).

The ductility of members (or genera structures) is an essentia factor in blast design: the
greater the ductility, the greater the members' resistanceto failure. Low-carbon steel and properly
reinforced concrete are suitableto blast resistant design because they can deform beyond the elastic

[imit without rupturing (ASCE, 2010).
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The mechanical properties of material under high strain rate loadings such as blast loads
are different from low rate and static loads. Generally, materials become stiffer under high rate
loadings, which leads to an improvement in their mechanical properties. Also, in blast design, itis

allowable to use the expected actual strength of the material instead of the minimum specified

values.

2.4.1 Material Propertiesfor Steel

The effects of high strain rate on some of the mechanical properties of steel are summarized

asfollows:
1- Themodulus of easticity (E,) remains the same.

2- Theyield strength (f;) and ultimate tensile strength (f;,) increaseto the dynamic yield strength
(fay) and the dynamic ultimate strength (f,,,), respectively. Figure 2.7 shows the effect of

increasing strain rate on stedl.
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Figure 2.7. The effect of high strain rate on mechanical properties of stee (modified from DaD,
2008).
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Dynamic increase factors (DIF) are used to modify the static strength due to high rate
dynamic loads. Table 2.4 presentsthe values of DIF for different types of steel and different strain
rates.

Table 2.4. Dynamic increasing factor (DIF) for yield stress and ultimate stress for structural
steel (DoD, 2008).

Yield DIF
Sted type Bendign Tension or compression Ultimate stress
Low Pressure High Pressure Low Pressure High Pressure DIF
(¢=0.1in/in/sec) (¢=0.3) (¢=0.02) (¢=0.05)
A36 1.29 1.36 1.19 124 1.10
A588 1.19 1.24 112 1.26 1.05
A514 1.09 1.12 1.05 1.07 1.00

The average yield stress of stedl of grades 50 ksi or lessis about 10% higher than the stress
value specified by ASTM. Thus, for blast-resistant design, the yield stress is 1.1 times the
minimum yield stress. Thisfactor is called the strength increase factor (SIF) or the average strength

factor (ASF). The SIF should not be used with high-strength steels (Gilsanz et al., 2013).

2.4.2 Material Propertiesfor Reinforce Concrete

Similar to steel, reinforced concrete shows improvements in its mechanical properties
when it issubjected to blast loadings. Theeffect of high strain rates on reinforced steel and concrete
areshown in Figure 2.7 and 2.8, respectively. Table 2.5 providesthe DIF values of reinforced steel
and concrete. The SIF of reinforced steel isdiscussed in Section 2.4.1, and the SIF for compressive

strength of concreteis 1.1 (ASCE, 2011).
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Figure 2.8. The effect of high strain rate on mechanical properties of concrete (modified from
DoD, 2008).
Table 2.5. Dynamic increase factor (DIF) for reinforced concrete design (DoD, 2008).
Reinforced bars
Type of stress Yield stress Ultimate stress Concrete
Bending 1.17 1.05 1.19
Diagonal tension 1.00 - 1.00
Compression 1.10 1.12

2.4.3 Plastic Hinge

In design for blast loading, some members are alowed to have plastic behavior to achieve
an economical design. Therefore, it isimportant to understand the local performance of members
and the global performance of the structure when one or more plastic hinges start to form. Also,
the locations and modeling of the plastic hinges are important. To alow a plastic hinge to form in
acomponent, lateral supports must be provided to prevent premature buckling. It is good practice
to design columns to remain elastic to prevent extended structural failure (Gilsanz et al., 2013).

Thisisthe " strong column, weak beam” approach. That is, beamsare forced to fail before columns.

A plastic hinge is formed at the point of maximum stress. It starts when the outer fiber
reachesthe materia yield limit. Then, theinterior of the section startsto yield gradually astheload

increases and the stress-strain relationship becomes nonlinear. At other locations, the resistance
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continues to increase as the load increases. That is, some points respond plastically while others

respond elastically, and elastic-plastic conditions occur (ASCE, 2010).

Modeling the nonlinear behavior of sections depends on the material to be used and the
internal forcein the section. For example, an ideal elastic-plastic behavior is accepted in the design
of a single-degree-of-freedom (SDOF) system. Figure 2.9 shows the idealized resistance-
deflection curve, where R,,, is the ultimate dynamic resistance, Xy is the deflection at the limit of
elastic range, K, isthe élastic stiffness, and X,,, is the maximum allowed deflection corresponding

to the ductility ratio (u) or rotation (8) given in Section 2.6.

Idealised resistance deflection

=+ ]
3

Resistance

4

~ Deflection

Xz X,

Figure 2.9. |dealized resistance-deflection curve (Cormie et al., 2009).
In more complex scenarios such as a steel member subjected to tension and compression,
a plastic hinge can be modeled using FEMA 356 (ASCE and FEMA, 2000), as shown in Figure
2.10 and Table 2.6, where a, b, and c are hinge parameters that are functions of the elongation, P,
is the tensile strength, F_, is the critical buckling load, 4, refers to axial deformation at tensile

yield load, and 4 refersto axia deformation at bucking yield load.
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Figure 2.10. Tension-compression hinge properties (FEMA, 2000 and Gilsanz et al., 2013).

Table 2.6. Tension-Compression hinge parameters (FEMA, 2000 and Gilsanz et a., 2013).

loading a b c
Tension 11071 1407 0.8Pn
Compression 0.50C 4.10C 0.3Fcr

When there are axial force and bending momentsin one or two directions, the plastic hinge
may be represented using a P-M-M yield surface (El-Tawil and Deierlein, 2001). Here, P is the

axial force, and M-M are the minor and major bending moments.

The yield surface defines the strength of the material under biaxial stress. Any elastic-
plastic material has a yield surface. When the stress point is on the yield surface, the material has
yielded, and its behavior is el astic-plastic. But when the stress point isinside the yield surface, the
material iselastic. Stress points outside the yield surface are not allowed. Software such SAP2000
(CSl, 2017) implements what is called Parametric P-M2-M3 based on the P-M-M yield surface

method (CSI, 2016).
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2.5 Strength Reduction Factors and Load Combination

Because of the nature of the blast load and to achieve economical design, plastic
deformations are allowed in the design of structures subjected to blast loads. Also, itispermissible
to use the nominal strength without a strength reduction factor (i.e., ¢ =1) for al modes of failure
(ASCE, 2011). Blast loads are not combined with loads that are not expected to be present when
the blast happens. That is, wind, earthquake, part or al the live loads are not combined with blast

loads; the basic load combination for all construction materialsis as follows (ASCE, 2010):
1.0 DL + 1.0 LL + 1.0 BL (2.4)

where DL isthedead load, LZ isliveload, and BL is blast |oad. In the absence of other governing

criteria, Gilsanz et al. (2013) allow the following load combination:

1.0 DL + 0.25 LL + 1.0 BL (2.5

2.6 Blast Load and Structure Interaction (Structural Response)

For an isolated building, as the blast wave propagates, its front engulfs the structure.
Therefore, all faces of the structure are subjected to positive and negative pressure at different
times and for different durations. The structure resists the kinetic energy of moving components
by converting it to strain energy in the resisting elements (Dusenberry, 2010). Due to high strain
rates, nonlinear inelastic material behavior, time-dependent deformation, and uncertainties of blast
load and location, the structural dynamic response is complex (Ngo et al., 2007). Depending on
the predicted structural failure mechanism, designers can select the best anaytica method to
compute the structural response. Pressure-impulse (P-1) charts, single el ement response analysis,

and detailed finite element analyses are the most common approaches to computing structural
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response (ASCE, 2011). Designers must select an appropriate analytical approach based on

expected failure mechanisms.

2.6.1 Pressure-lmpulse Charts

Pressure-impulse or iso-damage curves are based on analytical or experimental datawhere
the peak pressure and impulse represent the explosive loading on the P-1 curve to check the
performance condition of atarget member. This simple method can be used to design secondary
elements but not primary elements, and it is limited to flexura modes in response to blast loads
(ASCE, 2011). Figure 2.11 shows atypical P-I diagram for an elastic SDOF component, where F
istheimpulseforce, K isthe member stiffness, M isthe total mass of the member, | istheimpulse
(I=peak blast loadxduration of idealized triangular blast load/2), u is the displacement, and

Umax 1S the maximum dynamic response.
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Figure 2.11. Pressure-impulse diagram for elastic SDOF component (Smith & Hetherington,
1994).

Once the maximium response is specified (damage criterion), Figure 2.11 can be used to
find the impulse and the load that cause failure or to check whether the section to be designed is

damaged. That is, when the combinations of impulse and pressure fall to the right and above, the
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curve will result in failure; when the combinations fall to the left and below, the curve will not

2F
and

. . 1
induce failure. Note that axes
UmaxK UmaxVMK

represent pressure and impulse, respectively,

and they have no physical units. Smith and Hetherington (1994) discussed this approach with

numerical examples.

2.6.2 The Single-Element Analysis Method

This method involves analyzing and designing individua members subjected to blast
loading. This is either an SDOF or multi-degree-of-freedom (MDOF) system with elastic or

inelastic dynamic analysis.

The SDOF approach is the most common, and its accuracy depends on selecting a model
that adequately represents the failure mechanism. In this approach, the member's mass is
concentrated at one point and is allowed to move along a single axis by assuming one response

mode. The linear equation of motion for SDOF is:

Mii(t) + Cu + Ku(t) = f(t) (2.6)

where M is the total mass of the member, C is viscous damping, K is the member stiffness, u is
displacement, u is velocity, and ii is acceleration at time t. Equation (2.6) can be solved by
numerical integration using structural analysis software programs such as ABAQUS, ANSYS
(2013), LS-DYNA, and SAP2000. This model can be simplified further by considering an elastic
undamped SDOF system subjected to a triangular pulse load (just the equivalent positive phase).

Thus, Eg. (2.6) becomes (Cormie et a., 2009):

Mii(t) + Ku(t) = F(1 — ti) (2.7)
d
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where F is peak force and t, is positive phase duration. To solve Egs. (2.6) and (2.7), the time
increment should not be greater than 1/20 of the natural period of the member or 1/20 of the pulse
duration t; to provide numerical stability (Gilsanz et a., 2013). The reader is referred to UFC 3-

340-02 (DoD, 2008) and the works of ASCE (2010) and Gilsanz et al. (2013) for more details.

In Eg. (2.6), the damping effects are commonly ignored because the blast load duration is
short and energy dissipates through inel astic deformation (ASCE, 2010). However, it is alowable

to include the damping effect when the response is nearly elastic (ASCE, 2011).

The MDOF approach, described in the next section, is more accurate than the SDOF
approach because al potential modes of failure can be represented, especially when nonlinear

finite element analysisis carried out with geometric nonlinearity.

2.6.3 Multi Degree of Freedom Finite Element System

The single-element modeling discussed above does not represent the actual boundary
conditions, nor does it consider the interaction between elements and the phasing of their response
or the dissipation of the energy of the whole structure (ASCE, 2010). On the other hand, MDOF
modeling of structural systems does not ignore these important parameters. Moreover, the
distribution of the mass and stiffness can be modeled throughout the structure instead of for only
one member. In this approach, the linear or nonlinear time-history analysis methods can be used
to determine the entire structural response. The complexity of the model depends on the type of
the element used in finite element analysis, where the spring element is the smplest and the solid

element is the most complex.

Discrete System: In this type of structural modeling, a beam element can be used.

Depending on the symmetry of the structure and the loading, and the model can be two- or three-
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dimensional. The relative flexibility and strength of the connected elements are considered.
Moreover, thisstructural system analysis considers the phasing of the responses between structural
elements (ASCE, 2011). Structural analysis outputs that include nodal and el ements displacements
and plastic hinge(s) rotations (when material nonlinearity is considered) can be used directly to

check the design criteria

Implicit or Explicit Linear or Nonlinear Finite Element Analysis. This approach is
necessary for complex structures and to obtain more accurate results. Linear or nonlinear
plate/shell elements and solid elements can be used. Implicit, explicit, or mixed-hybrid modeling
can be carried out (Bangash and Bangash, 2006). The implicit method involves a numerical solver
to invert the stiffness matrix to directly find the displacement vector. Thus, the implicit schemeis
not afunction of time. This method is unconditionally stable, but it is computationally expensive
when the structure is large. Implicit methods are used in software such as ABAQUS and ANSY S.
An explicit schemeis afunction of time since it involves solving for velocity and acceleration as
well as the inverse of the mass matrix (diagonal matrix), but the inverse of the stiffness matrix is
not needed. Thisapproachisconditionally stable. That is, small time steps should be used to obtain
accurate results. The explicit method is a good choice for large models and blast load problems
because the propagation of the blast load through the structure requires small time steps (LS

DYNA, 2007). The explicit method is used in software such as LS-DY NA and ABAQUS.

For both approaches, the interaction between the primary structural system and the
nonstructural components can be considered to avoid any possible local failure. ASCE (2011)
recommends not directly connecting vertical load-carrying elements to exterior envelope

components unless they are designed to have greater strength than the exterior envelope
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components they are to be connected to. Also, one-way walls without backing elements can be

designed to transfer loads directly into floor diaphragms.

2.6.4 Equivalent Static Load Method

In this method, the blast load is transferred to its equivalent static load, and then the
structural static analysisis carried out. This method does not represent the actual response because
dynamic parameters such as stain rate, mass, plastic deformation, and time-varying load are
ignored. However, when the blast source is far from the structure, the blast loading can be

represented as an “equivaent wind” (ASCE, 2010).

2.7 Criteriafor Responses (Response Limits)

In static design philosophy (the working stress, ultimate load, and limit state methods), the
level of stress in components and deflection are typically the criteria to define failure. In blast
design (similar to seismic design), it is expected that some of the components will experience a
substantial nonlinear response because designing them to remain elastic is usually uneconomical.
However, when astructureisrequired to be reused following ablast, it must be designed to remain
elastic (ASCE, 2010). That is, in designing blast-resistant structures, the maximum dynamic
deflection and rotation are the criteriato prevent component failure. The performance of the entire
structure is defined by life safety, functionality, and reusability (Dusenberry, 2010). Moreover,
designers must check that the failure of key members will not cause any progressive collapse by
providing sufficient redundancy (alternate load paths). The level of protection (LOP) (see Table
2.7) for the structure or component, the type of component, and the material to be used define the
design criteria (ASCE, 2010). For example, the response limit of individual elementsis less than

the allowable response of individual frame elements because frames have higher redundancy.
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Also, for structural components (such as beams and columns), the response limits are less than
nonstructural components (such as purlins).

Table 2.7. Damage and response level (ASCE, 2010).

Damage Description Response Description
level level
Low Localized component damage. The Low Component has none to dight visible
structure can be utilized but it needs permanent damage
repairing. Total cost of repairsis
moderate
Medium  Widespread component damage. Building  Medium Component has some permanent
should not be occupied until repaired. deflection. It is generally repairable, if
Total cost of repairsis significan necessary, although replacement may be
more economical and aesthetic.
High Component has some permanent High Component has not failed, but it has
deflection. It is generally repairable, if significant permanent deflections causing
necessary, although replacement may be it to be unrepairable.

more economical and aesthetic.

There are severa sources for response limits, including UFC 3-340-02 (DoD, 2008),
Design of Blast-Resistant Buildingsin Petrochemical Facilities (ASCE, 2010), FEMA 356 (ASCE
and FEMA, 2000), and the New Y ork City Building Code (NY CBC, 2008). Although al of these
sources define the criteria based on deformation, the limiting values are different, so the designer
may need to review these limits. This review, however, islimited a portion of what is provided in
Design of Blast-Resistant Buildings in Petrochemical Facilities (ASCE, 2010). Before defining
the response limit values, three important terminol ogies are defined:

1- Ductility ratio (u): This is the ratio between the total displacement, X,,,, and the elastic

displacement, X, asfollows:
u= Xpn/ Xg (2.8)

where displacement is the elongation of components subjected to axia load or the deflection
of components subjected to bending, as shown in Figure 2.12 (ASCE, 2011). Ductility is a

measure of how much acomponent can carry beyond the el astic range before it drops the load.
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2- Rotation (8): Thisisthetangent angle at the support caused by the maximum deflection. Figure
2.12 and 2.13 show therotation of asingle element and aframe, respectively. Note that plastic
hinge can happen not just at the mid-span of amember but also at other locations. Thiscriterion
indicates the degree of stability in a component.

3- Sde-sway deflection or lateral drift (6): Thisisthe movement of avertica member relative to
its bottom (Figure 2.13). Side-sway limits allow framed structures to minimize the P-delta
effects on columns and the chance of progressive collapse (ASCE, 2010). Side-sway deflection

limit can be defined follows:

6 < response limit (2.9)

where the response limit is story height H divided by some factor.
\’9
W .

Figure 2.12. Member (beam, slab, or panel) support rotations (DoD, 2008).

i !

Figure 2.13. Frame support rotations and side-sway deflection (DoD, 2008).

Similar to the modeling and analysis methods discussed in Sections 2.6.2 and 2.6.3, there
are two different types of criteria: for elements that are modeled and analyzed as SODF, and for

MDOF systems such as framed structures (DoD, 2008).
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2.7.1 Design Criteria for Individual Elements
Most of the design criteria are provided for individual components. Table 2.8 shows the
response criteriafor some steel components for different levels of response.

Table 2.8. Response limits for different components* (ASCE, 2010).

Component response
Component Low Medium High

u 6 u 6 u 0
15 1 2 15 3 2

Steel Primary Frame Members
(with significant compression)™
Steel Pri mary Frame M embgrs 15 1. 3 2 &
(without significant compression)
R/C Beams, Slabs, & Wall Panels (no shear reinforcement) - 1 - 2 -
* Response limits are for components responding primarily in flexure
** Gignificant compression is when the axial compressive load is more than 20% of the dynamic axial capacity of
the member.

In Table 2.8, component response refers to the level of damage. Low response means there
is no or only dlight visible damage. Medium response refers to some permanent damage to the
component that can be repaired. A component with high response has not failed, but it has

experienced permanent damage that cannot be repaired (see Table 2.7).

2.7.2 Design Criteria for Structural System

The ductility ratio criteria concept for individual members is intractable in the design of
frame structures because of the wide range and time-varying nature of the end conditions of
components (DoD, 2008). That is, in addition to the support rotation criteria, the side-sway limits
should be checked for framed structures. Table 2.9 presents side-sway deflection limits for
different levels of response for steel-frame structures.

Table 2.9. Side-sway limits for steel frame structures (ASCE, 2010).

Response Low Response Medium Response High Response
é H/50 H/35 H/25
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2.8 Progressive Collapse

ASCE (2011) defines progressive collapse as “chain-reaction failure of a building's
structural system or elements as a result of, and to an extent disproportionate to, initial localized

damage, such as that caused by an explosion.”

As a result of a blast loading, structural components may fail, and their loads may be
distributed to neighboring members. If the surrounding members cannot tolerate this extra load,
faillure can propagate vertically or horizontally. The entire structural system should be evaluated
when ablast is expected to cause local failure or plastic hinges of structural components. In blast-

resistant design, local damage is expected, but the whole structural system should be stable.

To prevent progressive collapse, the primary members or key elements must be
strengthened, and/or the globa structural redundancy should be increased, so that only local

failures are permitted.

The DoD (2016) requires that buildings of three or more stories must comply with
progressive collapse standards. The reader is referred to work by the DoD (2016) and Marchand

and Alfawakhiri (2005) for further details.

2.9 Concluding Remarks

In this review chapter, an overview of topics related to the design of blast-resistant
structures is provided. Three methods to predict blast loading are discussed, and the modeling of
structural response and material behavior under blast loading is reviewed. Design philosophiesand
criteriaare explained, and basic conceptsrelated to the blast-resistant design field are summarized.

References on each topic are provided for further details.



CHAPTER 3

METAHEURISTIC OPTIMIZATION ALGORITHMS

Abstract

In recent years, many nature-inspired metaheuristic optimization algorithms have been
proposed in an effort to devel op efficient and robust algorithms. The drawback in most of them is
the large number of simulations required to obtain good designs. To reduce the number of
structural analyses to reach the best design, a new two-phase algorithm is proposed and eval uated.
This hybrid algorithm is based on the well-known Harmony Search (HS) algorithm and recently
developed Colliding Bodied Optimization (CBO). HS analyzes and improves one design in every
iteration whereas CBO generates and analyzes a new population of designs in every iteration.
Based on the observed behavior of these two algorithms, a Hybrid Harmony Search - Colliding
Bodies Optimization (HHC) is proposed. First phase of HHC uses the Improved Harmony Search
(IHS) agorithm. A new design domain adjustment technique is also incorporated in IHS that
dramatically reduces the number of possible combinations of discrete variables. This improves
performance of the IHS algorithm. The second phase uses the Enhanced Colliding Bodies
Optimization (ECBO). ECBO receives fina designs from the first phase to enhance them further.
This makes the second phase needing fewer iterations in comparison with the ECBO alone. The
performance of the proposed agorithms is evaluated using some benchmark discrete structural
optimization problems although the method is applicable to continuous variable problems as well.
The results show HHC with design domain reduction to be quite effective, robust, and needing
smaller number of structural analyses to solve optimization problems in comparison with IHS,
ECBO, and some other metaheuristic optimization algorithms. HHC with design domain reduction
is shown to be quite robust in the sense that different runs for a problem obtain same final design.
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Thisisan important feature that leads to better confidence in the final solution from single run of

the agorithm for a problem.

3.1 Introduction

Cal culus-based optimization algorithms were devel oped more than 50 years ago and avast
amount of literature is available on the subject. Linear programming (LP), nonlinear programing
(NLP), and dynamic programming (DP) methods need gradient information to improve the
solution estimate (to find a search direction). These methods search for the optimum point in a
neighborhood of the current estimate. In comparison with metaheuristic al gorithms, these methods

converge much faster and can find higher accuracy local solutions.

Gradient-based methods are most appropriate for continuous variables and continuous
functions. Many engineering problems have non-smooth functionsin their formulation. Asaresult,
gradient-based optimization methods cannot be used to solve such problem. On the other hand,
stochastic, metaheuristic or nature-inspired al gorithms use only simulation resultsto reach thefinal
solution, such as the well-known Genetic Algorithms (GA), Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO), and many others (Arora, 2017). The search is not near the
current point and the discrete variables and non-differentiable functions can be treated routinely.
They use an organized random search in the entire design space instead of gradient-based search
in aneighborhood of the current point. Therefore, they are likely to converge to a global optimum
point rather than alocal optimum. Different runs for the same problem can take different paths to
the final solution or even a different solution. The methods are suitable for both continuous and

discrete variables and with one or more objective functions.

Just like the gradient-based algorithms, stochastic algorithms have drawbacks. They
reguire large computation time to obtain a reasonable solution. The computation time depends on
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the number of the design variables and the range for each design variable; alarger design domain
needs more iterations and thus more structural analyses. Increasing the number of iterations could
be a good way to find a better design but there is no guarantee that a global optimum design will
be found. Therefore, the best way is to run the algorithm more than once and choose the best
solution from different runs. This, however, means that more computational effort is needed to
solve a problem. A good metaheuristic algorithm has the ability to skip local optima, needs less
number of simulations to find the best design, is applicable to different types of problems, and can

obtain higher accuracy solutions (Kaveh, 2017).

In an effort to reduce the number of structural analyses to reach the final design, a Hybrid
Harmony Search - Colliding Bodies Optimization (HHC) algorithm is proposed and evaluated in
this study. This proposal is based on the following observations about the behavior of two
algorithms while solving some structural design problems: (1) Improved version of the harmony
search algorithm (IHS) (Mahdavi, et al., 2007) makes rapid improvements towards the final design
in the initial iterations and then its progress slows down once it is in a neighborhood of the best
design, and (2) the enhanced version of the colliding bodies optimization (ECBO) makes steady
improvement towards the final design requiring more structural analyses to reach a neighborhood
of the final design compared to IHS. Therefore, the basic idea to be explored for the proposed
hybrid algorithm is to determine if a combination of the two algorithms can reduce the number of
structural analyses to reach the final design. That is, since IHS algorithm can reach neighborhood
of the final design more rapidly, it will be used in phase one and its iterations will be terminated
once the progress towards the final design slows down; in phase two, the improved designs from
IHS will be passed on to the ECBO asitsinitial population (instead of random designs generated

from the entire design domain) to improvethe best design further. Thismay lead to fewer structural
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analyses to reach the final design. In addition, a new design domain adjustment technique based
on statistically analyzing some designsis added to IHS to increase the possibility of rapidly finding

better designs.

A new stopping criterion isalso introduced in addition to alimit on the number of iterations
for terminating phase one iterations. That is, when the algorithm is not able to find a better design

for certain number of iterations, it is terminated.

A major motivation for this work is to investigate procedures that can reduce the number
of structural analyses to reach the final designs for the class of structural optimization problems
that cannot be solved using the gradient-based algorithms. This becomes critically important while
solving more complex structural optimization applications, such as nonlinear static response
problems, nonlinear dynamic response problems and multidisciplinary problems. Each simulation
of such problems can take enormous computational effort making meta-heuristic methods very

time consuming.

Some benchmark discrete variable truss optimization problems are solved using the
proposed algorithm. These well-known examples are solved previously in the literature using
different metaheuristic algorithms. The results are discussed and compared with the available

resultsin the literature to study performance of the proposed algorithm.

3.2 Formulation of Discrete Structural Optimization Problems

In many practical design cases, design variables are discrete because members must be
selected from the available sizes in a catalog. The formulation of the discrete design variables
optimization problem is dlightly different from continuous design variable optimization. In

genera, the problem can be stated as:
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Find X = [x1,%3, o, Xnpar]; X €Dj; j =1,2,...,nvar (3.1)
to minimize f(X) (3.2

subjectto g,(X) <0; k=12,..,p (3.3)

where X is the vector of design variables with nvar unknowns, D; is a set of discrete values for

the jth design variable, f(X) is acost function (in this study, f(X) is the total weight of the

structure), and g, (X) isaconstraint function.

One way of treating constraints in metaheuristic algorithms is to combine constraints with
the cost function to define amerit function (also called the penalty function) that is then minimized

(Kaveh and Mahdavi, 2015):

FX) =M+ y6X)° (34)
P
G(X) = Z max(0, g (X)) (3.5)
k=1

where G (X) is a constraint violation function, ¥ > 1 is exploration penalty coefficient (y = 1
unless another value is mentioned), ¢ > 1 is penalty function exponent (in this study, ¢ = 2), and
max(0, g, (X)) = 0 is the violation value of the kth inequality constraint. The present problem
has just inequality constraints. However, if equality constraints are present in the problem

formulation, they are treated by including their violationsin Eg. (3.5).

3.3 Metaheuristic Optimization Algorithms

Over the years, many metaheuristic optimization agorithms have been explored. More
recent techniques are based on observations about some natural phenomena, such as survival of
the fittest and genetic inheritance in Genetic Algorithms (GA), which is inspired by the basic

mechanism of natural evolution developed by Goldberg and Holland (1988); Simulated Annealing
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(SA) proposed by Kirkpatrick et al. (1983); Particle Swarm Optimization (PSO) proposed by
Kennedy and Eberhart (2001); Ant Colony Optimization (ACO) introduced by Dorigo et a.
(1996); Harmony Search (HS) algorithm invented by Geem et a. (2001); Big Bang-Big Crunch
algorithm (BB-BC) introduced by Erol and Eksin (2006); Colliding Bodies Optimization (CBO)
proposed by Kaveh and Mahdavi (2014); and Ray Optimization (RO), developed by Kaveh and

Khayat (2012).

In this study, HS agorithm and its improved version, and CBO and its enhanced version

are summarized since the proposed hybrid a gorithm HHC uses these procedures.

3.3.1 Harmony Search Algorithm
Geem, Kim, and Longanathan (2001) presented the HS algorithm based on music
improvisation process of jazz musicians. The following five steps describe the HS agorithm:

Step 1: Parameter setting

Theagorithm startsby initially generating a set of random designs from the design domain.
Then in every iteration, a new design is generated and analyzed. If this design is better than the
worst design in the current population, then it replaces that design; otherwise, another design is

generated. The processis continued until alimit on the number of iterationsis reached.

HS has four parameters that need to be initialized before starting the algorithm. There are
no genera guidelines for their selection; they are selected depending on the problem (Degertekin,
2008). Thus, the best way isto try different values to find the best combination for an application.
The parameters are:

1- Harmony memory size (HMS). It istheinitial number of candidate solutions selected randomly

from the design domain. For example, if HMS is 10, the algorithm starts by selecting 10 designs
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and for every design evaluatesthe merit function F if the problem is constrained or the objective
function f if the problem isunconstrained. Thisinformation issaved in amatrix called harmony
memory (HM).

2- Harmony memory consideration ratio (HMCR): Its value ranges between 0 and 1. It is the
probability of selecting design variables from the current HM to generate a new design.
Variables selected from current HM may go through further adjustment depending on the pitch
adjustment rate.

3- Pitchadjustingrate (PAR): Itsvaueranges between 0 and 1 and it isthe probability of mutation
of the design variable selected from HM to a neighboring value.

4- Maximum improvisations (Maxlerp,): It isalimit on the number of iterations for HS.

Step 2: Initialization
The HS starts with HM.S random designs to popul ate the harmony memory matrix HM as:

x% x12 cee x{lvar

HM= : . : (3.6)
1 2 nvar
Xgms  Xams 't XHMS

where nvar is the number of design variables. Thus each row of this matrix represents a design
point and each column is associated with a design variable.

Step 3: Harmony improvisation:
A new design point is improvised where each design variable is selected from either the

current population of designs in the matrix HM or from its possible range of vaues. These

selections are based on harmony memory consideration, pitch adjustment, and random numbers.

Using harmony memory consideration parameter HMCR, the new value for the jth design

variable is chosen as xl.j from either the jth column of HM or from the allowable values for this
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design variable (Degertekin, 2008). For each design variable j (j = 1 to nvar), the row index i

is selected randomly as follows:

x! € {x{,x%, ...,xéMS}; if rn{{MCR < HMCR (3.7)

x! €D;  ifrnlyce > HMCR (3.8)

L

where rn{iMCR is a random number uniformly distributed over the interval [0,1] and D; is the
allowable set of valuesfor the jth design variable.

Every design variable selected from harmony memory is examined further to determine

whether it should be pitch-adjusted or not. The parameter PAR isused for this purpose as follows:

; {yes if rnZJAR < PAR (3.9)

Pitch adjusting decision for x;
No if rn),. > PAR

where rn{, 4r 1S a random number uniformly distributed over the interval [0,1]. If the pitch

adjustment decisionis“yes” xij isreplaced asfollow:

X ow = X1 +1if PAR],,, <05
(3.10)
X} new = % = 1if PAR],, = 0.5

where PARZand is random number uniformly distributed over the interval [0,1], and +1 and -1

means moving to the next higher or lower allowable value for this variable (Geem, 2009).
Step 4: Update the harmony memory:

The new design from step 3 is evauated. If it is better than the worst design in HM, the

new design replaces the worst design in HM; otherwise, a new design isimprovised.

Step 5: Termination criteria
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If the limit on number of iterations is reached, terminate the algorithm; otherwise, go to

step 3.

3.3.2 Improved Harmony Search Algorithm (IHS)

The concept of IHS isthe same as HS (the five stepsin Section 3.3.1). However, standard
HS agorithm uses fixed vaue of HMCR and PAR. The main drawback of the standard HS
algorithm is that it needs a large number of iterations to find an acceptable solution (Mahdavi et

a., 2007).

In IHS, HMCR and PAR are adjusted with every iteration using Egs. (3.11) and (3.12) to
improve the performance of the HS algorithm by eiminating its drawbacks (Sun and Chang,
2015).

(HMCRmax - HMCRmin)
HMCR(it = HMCR — X It 311
(l er) max MaxlerP1 €Tp1 ( )

PAR — PAR,,;
PAR(iter) = ( mw; 72 min) X arctan(Iterp;) + PAR,in (3.12)

where [terp; is the current iteration, HMCR,,,, and HMCR,,;, are maximum and minimum
harmony memory consideration ratios, respectively, PAR,,,4, and PAR,,;, are maximum and
minimum pitch adjacent ratios, respectively. Note that HMCR is alinearly decreasing function of
iteration number. This increases the probability of selecting a design variable from its allowable
range of values rather than from the harmony memory. Also, PAR is an increasing function of the
iteration number that increases the probability of pitch adjustment for a design variable when it is
selected from the HM matrix. These processes introduce more diversity into the population of

designinthe HM matrix.
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Just like HS, there are no guidelines that one can follow to select IHS parameters.
Therefore, the best way is to start with a set of values then try different values to find the best
combination. In this study, HMCR,,,, and PAR,,,, of 0.85 and HMCR,,;,, and PAR,,;, of 0.35

show good performance.

3.3.3 Calliding Bodies Optimization (CBO)
3.3.3.1 Background Material

Kaveh and Mahdavi (2014) developed this metaheuristic algorithm that is inspired by the
laws of one-dimensional collision. The algorithm works with a population of design at each
iteration. Here each design in the population is considered as an object or body with mass and

velocity

Using laws of momentum and energy, collision can be simulated between objects such as
two ballsin abilliard game or two carsin an accident. If there are no external forces acting on the
system, the momentum of all objects before the collision equals the momentum of all objects after
the collision. Conservation of linear momentum of two bodies in one-dimensional collision is

expressed as.
myv, + myv, = myv; + myv, (3.13)

where m4, v, and v; are mass, initial velocity and fina velocity of the first object, respectively,

and m,, v,, andv, are mass, initial velocity and final velocity of the second object, respectively.

For one dimensional collision, let body 1 approach and collide with body 2; therefore v, >
v,. After the collision, the bodies separate; therefore v, > v;. The system loses some of its energy
during the collision. The Coefficient of Restitution (COR) ¢ > 0 indicates how much kinetic

energy remains in the system after collision that is defined as:
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Velocity of separation after collision v — vy

= = 3.14
¢ Velocity of approach before collision v, — v, (314)

Using Egs. (3.13) and (3.14) the velocities after collision are calculated as follows (Kaveh
and Mahdavi, 2014):

(my —emy)v, + (1 +¢) myv,

vj = S (3.15)

, (my—empv, + (1 +&)myvy

vy = mmppra— (3.16)

There are two cases of collision:
i- A perfect elastic collision. Thereis no loss of kinetic energy in callision (¢ = 1).
ii- Aninelastic collision. Thereis part of the kinetic energy that is changed to some other form

of energy (¢ < 1). For the most real bodies, the value of ¢ is between 0 and 1.

3.3.3.2 Calliding Bodies Optimization

In Colliding Bodies Optimization (CBO), the Colliding Bodies (CBs) (the current
population of designs) are divided into two equal groups:. stationary and moving objects (Kaveh
and Mahdavi, 2014). The moving objects move toward and collide the stationary objects causing:
1- Stationary objects to move to another position.

2- Moving objects to change their position.

After the collision, the position of both colliding and stationary bodies (population of
designs) are updated using new velocities from Egs. (3.15) and (3.16). The CBO can be executed
in following three steps:

Step 1: Initidization. Initializing an array of CBs (initial population of designs) with random

positions as follow:
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xl‘] = Xj min + 7"7’1{ X (xj,max - xj,min);
(3.17)
i=12,..,2nandj =1,2,..,nvar

where xij isthe jth variable of the ith designin the CB matrix, x; ;i and x; .4, arethelower and

the upper bounds of jth design variable, rn{ is arandom number between 0 and 1, 2n isthe total
number of CBs or the population size, and nvar is number of design variables. To obtain discrete

values for design variables, xl.j is rounded to the nearest permissible discrete value.
Step 2: Search. This step isdivided into 4 sub-steps:

1- CBs ranking: use the merit function F(X) to compute CBS masses (Eq. (3.18)), and sort the
CBs' in adescending order based on their cal culated masses.

1/F(X)

m =——:; =12,..,2n 3.18
=S 1R (3.18)

where m; is the mass of the ith body (design), F;(X) and F,(X) are the merit function values of
theith and kth bodies (designs), respectively. Thisway the designs are sorted from the best to the
worst. Note that larger massin Eq. (3.18) corresponds to a smaller value for the merit function.
2- Groups creation. CBs are equally divided into two groups:
(i) Stationary CBs: these are the upper half of CBs; these better designs that are assigned zero
velocities before collision:

v,=0; s=1,2,..,n (3.19)

where v, isthe velocity of the sth CB in the stationary group.
(if) Moving group: these are the lower part of CBs and they move toward the stationary CBs

with velocity before collision as:
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Vp=Xn—X;; m=n+1,.,2nands=m—-n (3.20)

where v,, and X,,, are the velocity and position of the mth CB in the moving group, respectively,
and X isthe sth CB position in the stationary group.
3- Evaluation after the collision. After the collision, velocities of stationary and moving CBs are

calculated based on inelastic one dimensional collision of two bodies using Egs. (3.15) and (3.16):

!

_(1+e)mmvm'
L=

; s=1,2,...,nandm=s+n (3.21)

m,, + mg
and the velocity of the moving CBsis obtained as:

(mm - gms) vm_

Uy, = ot me m=n+1.,2nands=m-—n (3.22)
Iterp,

=1—-——&—=¢ 3.23

¢ MaxlIterp, ( )

where v; is the velocity of the sth CB of stationary group after collision; v,,, and v;, are the
velocity of the mth CB of the moving group before and after collision, respectively; m; is the
mass of the sth CB of the stationary group; m,, isthe mass of the mth CB of the moving group;
€ isthe COR parameter; Iterp, is the current iteration of ECBO; and MaxlIterp, is the limit on

number of iterations for ECBO. Note that ¢ is a decreasing function of the iteration number.

4- CBs updating. The new position of CBs are calculated as follows:
XY =X, + [rnglvg; s=12,..,n (3.24)

Xnmew — Xm + [rnm]v;n; m=n+1,..,2n (325)

where X7¢" and X7 are the new positions of the stationary and moving bodies, respectively, X,
and X,,, are the old positions of the stationary and moving bodies, respectively, rn, and rn,,, are
diagonal matrices with diagonal elements as random numbers between -1 and 1. To obtain discrete

values of designs, X2¢"and X7:*V are rounded to the nearest permissible discrete values.
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Step 3: Terminating criterion control

If the limit on number of iterations (MaxIterp,) is reached the algorithm is terminated.

Otherwise, go to Step 2.

3.3.3.3 Enhanced Colliding Bodies Optimization (ECBO)

This metaheuristic algorithm is an enhancement of the standard CBO. It uses memory to
save some good designs and amechanism to escape from local optimato get better solutions faster.
This is done by adding two more sub-steps to step 2 of the standard CBO as follows (Kaveh and

Mahdavi, 2015):

1- Saving: this sub-step is added between sub-stepsi and ii in step 2 of the standard CBO. In this
sub-step, some historically good designs (having smaller merit function values) and their
related information are saved in a matrix called Colliding Memory (CM). The good designs
saved in CM replace the worst designs in the current population at the beginning of every

iteration. After that the CM is also updated. Number of designs saved is CMS.

2- Escaping fromlocal optima: this sub-step isadded after the last sub-step of step 2 of the standard
CBO. Inthis sub-step, a parameter called Pro within [0, 1] isintroduced. For each colliding body,
rnp; (i = 1,2, ...,2n), whichisarandom number uniformly distributed within [0, 1], iscompared
with Pro. If Pro > rnp;, one component of the ith CB is selected randomly and its value is

regenerated as.

xij = Xjmin +10P X (xj,max - xj,min); i=12..2n (3.26)

where xij isthe jth variable of the ith design, rnp isarandom number between 0 and 1, and x; n

and x; 4, are the lower and upper bounds of the jth variable, respectively. The reason to change
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just one component of ith CB isto protect the structures of CBs. This mechanism was shown to

give diversity leading to better designs (Kaveh and Mahdavi, 2015).

3.4 HHC: Hybrid Improved Harmony Sear ch-Enhanced Colliding Bodies Algorithm
3.4.1 Motivation for Hybrid Algorithm

Compared to other metaheuristic algorithms, ECBO issimple, requiresjust onealgorithmic
parameter, and performs well in term of the quality of the solution. IHS is easy to implement and
it worksfinewith any kind of problem. However, both have some shortcomingsthat were observed
while solving some problems. IHS needs specification of several algorithmic parameters that can
affect performance of the algorithm. ECBO makes steady progress towards the neighborhood of
the final design whereas IHS makes quite rapid progress towards a similar neighborhood.
Therefore, IHS requires fewer structural analyses compared to ECBO to reach a neighborhood of
the final design. However, after reaching the neighborhood of the final design, progress of IHS is
quite slow to reach the final design whereas ECBO continues to make good progress towards the

solution.

Basic idea of the proposed HHC algorithm is to use IHS in Phase 1 to reach the
neighborhood of the solution quickly and then switch to the ECBO to reach the final design. This
way ECBO starts with some improved designsin Phase 2. This combination could lead to the final
solution in fewer structural analyses which will be very useful while solving more complex
problems, such as dynamic response optimization problems with discrete variables and non-

differentiable functions.

3.4.2 Phase 1: Improved Harmony Search (IHS)

IHS is used in Phase 1 to obtain a good set of designs quickly for Phase 2. Two additional

steps are added to IHS:
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i- Sopping Criteria: In addition to amaximum number of iteration criterion discussed instep 5in
section 3.1, anew merit function improvement criterion isadded. That is, when thereis no or small
improvement in the current merit function value after many iterations, this phase is terminated.

The pseudo-code of this criterion is as follows:
Ify Iterp, =13 X MaxlIterp,
Ifo (Merit(Iterp,) — Merit(Iterp, — 1, X MaxIterp,))/Merit(Iterp;) < €p;
Terminate Phase 1
End>

Endz

MaxlIterp; = 10 X nvar X number of elements in the discrete set (3.27)
where Iterp, iSthe current iteration, MaxIterp, isthe limit number of iterations for Phase 1.

Note that the parametersr;, r, and ¢p, are selected so that premature termination of the algorithm
does not occur. They do not affect performance of the algorithm in any other way. The limit on
number of iterations, MaxIterp, in EQ. (3.27), is dependent on the number of design variables and
the number of elementsin the discrete set. When the number of design variables and/or the number
of elements in the discrete set increase, the search space enlarges. Therefore, metaheuristic
algorithms need more iterations. Thus, Eq. (3.27) is used instead of a fixed number for each

problem.

ii- Domain adjustment: During the first few iterations (compared with total number of iterations),
IHS improves initial designs rapidly. Although, at this stage, the best design may be far from the
final design, it was observed that some of the design variablesin HM have the same or about the

same values from iteration to iteration. These design variables are most likely at their best values
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in this phase. That is, the allowable range for these design variables can be reduced based on their
mean value and standard deviation. In other words, the design domain can be reduced based on

the current state of HM. Section 3.4.4 provides more details for this step.

3.4.3 Phase 2: Enhanced Colliding Bodies Optimization (ECBO)

ECBO starts with 2n random designs and it keeps colliding them in search for a better
solution, as explained earlier. Thus, if theinitial population is not reasonably good, the algorithm
most likely needs moreiterationsto find thefinal design. In each iteration, ECBO needsto evaluate

the problem functions 2n times, where 2n is the population size.

In HHC, some better designs generated by Phase 1 are passed on to the CB matrix. Then
ECBO callides those designs to enhance them further. That is, starting with better designs, the
total number of iterations for the ECBO algorithm can be reduced to obtain the final design. This
is quite beneficial since ECBO needs to evaluate the problem functions 2n times in one iteration.
For example, if the population size is 50 in ECBO and the number of iterations to enhance the
initial population are 100, then ECBO a one needs 5000 structural analysesto improve the starting
population. However, thisimprovement may be done with fewer structural analyses by replacing
theinitial population with some better designs of Phase 1 results. Using the same population sizes
of 50, 75, and 100 for both phases (passing all Phase 1 designs to Phase 2) did not improve
performance of the algorithm in term of quality of the solutions and the number of structural
analyses needed to obtain the final designs. Overall, passing just some better designs of Phase 1 to
Phase 2 makes the algorithm obtain the final design more often with smaller number of structural

analyses.

In this phase, the stopping criterion is a maximum number of iterations as follows:
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Maxlterp, = nvar X number of elements in the discrete set (3.28)

Similar to Eq. (3.27), Eq. (3.28) is based on number of design variables and number of elements

in the discrete set.

3.4.4 Domain Adjustment Technique

This additional step is added to Phase 1 to increase the possibility for IHS to find better
designs faster to enhance the genera performance of HHC in term of the number of structural
analyses required to reliably find the best design. Domain reduction can be done by looking at the
standard deviation of each design variable values for some better designsinthe HM matrix. When
adesign variable has a small standard deviation, its upper and lower limitsin the allowable set of

discrete values D; for the jth design variable is changed as follows:

Ximin = Xjavg — Xj,sd (3.29)
Xjimax = Xjavg t Xjsa (3.30)
1 d i
Xjavg = nd ?:1(351']) (331)
_ 1 d (aJ
Hjsa = \/nd—1 i=1(¥] = Xjavg)? (3.32)

where x; min and x; mq, are the lower and upper bounds of the jth design variable, respectively,
Xj avg 1S the average of jth design variable, x; ¢, isthe standard deviation of jth design variable,
and nd is number of designs that are considered in calculating the average and the standard
deviation. Designs that are considered in this step to find the new upper and lower limits are
important. Therefore, this step starts only after a certain number of iterations so that IHS has

already improved initial designs enough. IHS with domain adjustment shows a better convergence
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behavior over IHS without domain reduction. Domain reduction makes IHS obtain better designs

in fewer iterations.

Sometimes, the upper and lower limits of a design variables become equal (the standard
deviation is zero). That is, to avoid trapping in local optima, at least five elements are kept in the
discrete set by modifying the upper and lower limits as follows:

Xjmin = Xjavg — 2 (3.33)

Xjmax = Xjavg + 2 (334)

where -2 and +2 imply two elements below and two elements above the average value. Also, when
the best designinthe current HM hasadesign variableis at the modified lower or the upper bound,
the current lower or upper bound is adjusted using Eqg. (3.33) or Eq. (3.34), respectively. The
proposed domain adjustment technique is dynamic. That is, the lower and upper bounds are

adjusted based on the best design and the nd better designsin HM at each iteration.

The domain reduction step starts when there are feasible and nearly feasible designs in the
HM matrix (designsthat have constraint violation of 5% or less). The minimum number of feasible
or nearly feasible designs should not be one so that the upper and lower bounds become the same
(in this study, 5% of the population is used as the minimum number of feasible or nearly feasible
designs). After sorting of designs in HM from the best to the worst, the domain reduction

procedure for each design variable is implemented using the following pseudo-code:
Ify Iterp; = 13 X MaxlIterp,
If> number of feasible or nearly feasible designs > 5% of HMS
change the lower and upper limits using Egs. (3.29) and (3.30), respectively.

If3number of elementsin the discrete set of the jth design variable< 5
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changethelower and upper limitsusing Egs. (3.33) and (3.34), respectively.
Ends
1f4 X pest < Xjmin OF Xj pest = Xjmax
changethelower or upper limitsusing Eq. (3.33) or Eq. (3.34), respectively.
Ends
End;
End:

Here r; isthe percentage of MaxlIterp, to start thiscriterion. r5; should be selected so that IHS has
already improved designs. Based on observing IHS convergence behavior, it is recommended to
user; =>10% of MaxlIterp,. Thisway, the standard deviation can give more accurate results about

the design variable state. x; ,.; isthe value of the jth design variable of the best designin HM.

Reduction of the design variable bounds shrinks the feasible set for the problem. This
increases the possibility of obtaining better designs at the end of Phase 1 with reduced number of
structural analyses. Including this technique in Phase 2 showed no improvement in the
performance of the algorithm since ECBO can efficiently treat larger domainsfor design variables.
Therefore domain reduction scheme is not suggested for the ECBO. First numerical example in
Section 3.5.1 is used to show how this step reduces the design domain and enhances the

performance of the HHC significantly.

3.4.5 Evaluation of the Algorithms

Multiple runs for the same problem will be executed to study performance of the

algorithms. Several metrics will be used in evaluations:
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1- Average of the final merit function values obtained with different runs. Average value that is
closer to the best solution will indicate ability of the algorithm to obtain the best design more

often.

2- Sandard deviation of thefinal values of the merit functions obtained with different runs. Smaller
value of the standard deviation will imply robustness of the algorithm to obtain the best design

with different runs for the problem.

3- Average of the number of structural analyses needed to reach the final solution. Smaller value

will indicate more efficient algorithm.

4- Sandard deviation of the number of structural analyses. Smaller value will indicate robustness
of the algorithm to obtain the final design in approximately same number of structural analyses

with different runs for the same problem.

3.5 Numerical Examples

Before the proposed HHC algorithm can be used to solve more complex and larger
problems, it needs to be tested to solve some standard test problems and study its performance. In
the following sections, some of popular discrete truss optimization examples are solved for
minimum structural weight to compare the performance of HHC with other metaheuristic
optimization algorithms. Structures are analyzed using finite element (direct stiffness) method and
algorithms are coded using MATLAB. For al problems, Phase 1 parameters are set as follows:
HMS is 75, HMCR,,,, and PAR,,,, ae 0.85 and HMCR,,;, and PAR,,;,, are 0.35. Phase 2
parameters are set as follows: population size (2n) is 40, Pro is 0.5, and the number of designsto
besavedin CM (CMS) is4 (2n/10). Phase 1 improvement criterion ratios, r; and r,, are 0.25 and

0.10, respectively. Domain reduction ratios, r; is 0.10 and ep; is 10°3. These parameters are
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selected based on studying the convergence behavior of IHS. IHS obtains good and diverse designs
(in comparison with initial random designs) after about 25% of the maximum number of iterations;
then it converges very slowly. HHC' s performance was eval uated using popul ation sizes of 50, 75
and 100 for Phase 1 and population sizes of 20, 30, 40, and 50 for Phase 2 with Pro of 0.25, 0.4
and 0.5. The results showed that the combinations of these parameters worked well that showed
stability and gave good quality solutions. It is noted that these parameters are not problem

dependent and are kept fixed for all design examples.

Since the optimization agorithms are stochastic in nature, 50 independent optimization

runs were performed for each example to test the performance of HHC

The number of maximum iterations varies based on the number of design variables and the
number of elementsin the discrete set (Egs. (3.27) and (3.28)). For IHS and ECBO, the maximum
numbers of iterations were set to 50000 and 1000, respectively to alow these algorithms to fully

search for the best design. NSA (Number of Structural Analyses) is calculated as follows:

NSAuuc = HMS + Nlterp, + (Nlterp, — 1) X poplution size (3.35)
NSAgcgo = Niter X poplution size (3.36)
NSAIHS = HMS + Nliter (337)

where HMS is harmony memory size, Niter isthe number of iterations and the subscript refersto
the phase. In Eq. (3.35), (Niterp, — 1) implies that the designs passed to Phase 2 do not need to

be evaluated again.

To study the domain adjustment effects on the behavior of HHC, all numerical examples

were tested without domain adjustment step as well. In the next sections, HHC refers to the
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algorithm without domain adjustment step while HHCD refers to the algorithm with domain

adjustment step.

3.5.1 Planar 10-bar Truss

Figure 3.1 shows the configuration of the 10-bar truss. This popular benchmark example
has been solved by many researchers, e.g., Rgjeev and Krishnamoorthy (1992), Li et al. (2009),
Xiang et a. (2009), Camp (2009), and others. For all members, the modulus of elasticity is 10,000
ksi and material density is0.1 Ib/in3. The allowable displacement for al nodesin both vertical and
horizontal directions equals £2.0 in. All members are subjected to stress limitations of 25 ksi for
both tension and compression. The structure is subjected to two vertical downward loads, P=100
kips, at joint 2 and 4. Cross-sectional areas of all members are the design variables that are selected

form the discrete set of 42 e ements as follows:

D=[1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55,

3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97,
(3.39)

11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90,

26.50, 30.00, 33.50] (in?).

Asnoted earlier, this study caseis used to also show how HHCD works. In thisillustrative
example, MaxlIterp;=10x10x42=4200 and MaxIterp,=10x42=420. The rest of the interna
parameters are set as mentioned earlier. Phase 1 (IHS) starts with 75 random designs that are
evaluated using Eqg. (3.4). Table 3.1 gives the best design among these 75 initial designs. The total
structural weights (and merit function values) for HHC and HHCD are 4888.346 |b (38724.564)
and 4929.869 |b (26734.436) with values of the violation parameter G as 1.815 and 1.329,
respectively. After iteration 420 (0.1x MaxlIterp,), the domain reduction process starts. Table 3.1

shows that at the end of Phase 1 some design variables bounds were reduced based on the method
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discussed in Section 3.4.4. Due to this step, the possible design combinations are reduced from
1.708e16 (429) to 5.976€9 in Phase 1. For example, the bounds of the first design variable were
changed many times after iteration 420 until its upper and lower limits became sections 28 and 42

inthe set D, respectively.

At the end of the Phase 1, the structural weights for HHC and HHCD are 5959.483 Ib and
5788.563 |b, respectively. Since there is no violation of constraints, the merit function value is
same as the structural weight. Phase 1 terminates at iteration 1051 for HHC and HHCD while the
maximum number of iterations allowed for this phase is 4200. Thisimpliesthat the proposed new

stopping criterion terminates this phase due to no improvement in the current best design.

Y
T 360 in. 360 in.
"5) '|'(3) 11)
T 2 $
7 8 9 10
5 6 | 360 in.
3 4
©) 1(4) l(z‘L Sty
P P

Figure 3.1. Schematic of 10-bar planar truss.
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The goal of the Phase 1 is to provide Phase 2 with better designs that may be closer to the
best solution so that ECBO requires fewer iterations. Study of designsin HM shows that HHCD
was able to improve not only the best design but also all the designs in HM. This explains the
reason that HHCD needs fewer number of structural analyses. At the end of Phase 1, the best 40
designsin HM are passed to the CB matrix. Therefore, the Phase 2 starts with improved designs

instead of random designs. In this example, Phase 1 iterations of 1051 are equivalent to just 26

Table 3.1. Domain adjustment technique illustration for planar 10-bar truss structure.
Design variables

Best design at end of Best design at end of bounds at end of
D@ gn Best initial design Phase 1 Phase 2 Phase 1°
variables
(i) LowerH HCDUpper
HHC HHCD HHC HHCD HHC HHCD bound bound
1 Al 15.50 (33 16.90 (35) 33.50 (42) 30.00 (41) 33.50(42) 33.50(42) 28 42
2 A2 1.62 (1 13.9(31) 2.38(5) 2.38(5) 1.62 (1 1.62(1) 1 7
3 A3 33.50 (42) 13.5(30) 26.50 (40) 30.00 (41) 2290 (39) 22.90(39) 27 42
4 A4 3.87(17) 14.20 (32) 13.50 (30) 14.20 (32) 1420 (32) 14.20(32) 24 34
5 A5 3.55(14) 7.97 (28) 3.13(11) 3.09 (10) 1.62 (1) 1.62(1) 2 12
6 A6 4.18 (19) 5.12 (25) 3.63 (15) 2.38(5) 1.62 (1 1.62(1) 1 7
7 A7 3.84 (16) 3.84 (16) 14.20 (32) 13.50 (30) 7.97 (28) 7.97 (28) 28 32
8 A8 22.00 (38) 22.90 (39) 22.90(39)  22.90(39) 2290 (39) 22.90(39) 21 41
9 A9 4.18 (19) 3.47 (13) 19.90 (37) 16.90 (35) 22.00(38) 22.00(38) 30 37
10 A10 22.00 (38) 16.00 (34) 1.62 (1) 2.38(5) 1.62 (1) 1.62(1) 2 6
Weight (Ib) 4888.346 4929.869 5959.483 5788.563 5490.738 5490.738 -
G (Eq.5) 1.815 1.329 0.0 0.0 0.0 0.0

F (Eq.4) 38724564  26734.436 5959.483 5788.563 5490.738  5490.738
aSection number in the set D. L ower and upper bounds for HHC remain fixed at 1 and 42 for all members

iterations of ECBO with a population size of 40. At iteration 1126 (1051 for Phase 1 and 75 for
Phase 2), the algorithm obtains the best structural weight of 5490.738 Ib with no constraint
violation. Phase 2 needs 76 iterationsto find the best design that, generally, islessthan what ECBO

would need (see Table 3.2). HHCD shows similar behavior in all other numerical examples.

Figure 3.2 demonstrates the convergence history of the best run of IHS, ECBO, HHC, and
HHCD. It showsthat IHS and Phase 1 of HHC and HHCD reach better designs faster than ECBO.
HHCD convergences to the best design faster than ECBO and HHC because Phase 2 starts with
better designs. When IHS stops improving design at iteration 4101. Note that every iteration in
ECBO and Phase 2 of HHC and HHCD requires 40 structural analyses.
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Figure 3.2. Comparison of convergence rates for planar 10-bar truss.

Table 3.2 summarizes results available in the literature with four different algorithms, and
results from the present study. It also shows the mean values and standard deviations of the best
structural weight from 50 independent runs for IHS, ECBO, HHC, and HHCD. The results show
that GA, HPSO, and IHS did not obtain the best design. HHCD was able to find the best design
after 4126 structural analyses. This is the same weight as obtained by SA, BB-BC, ECBO, and

HHC; however, HHCD needs fewer structural analyses to obtain the best solution.

Figure 3.3 shows the best merit function value for each of the 50 runs for IHS, ECBO,
HHC, and HHCD. It is seen that IHS was not able to obtain the final design in any run; HHC was
ableto reach the final design 42 times; and ECBO reached the final design 26 times. It is seen that

HHC performs better than ECBO aswell as IHS.

Figure 3.3 shows that HHCD was able to find the best solution 49 times. The average and

the standard deviation of 50 runs (Table 3.2) and Figure 3.3 demonstrate that HHCD is very
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effective and robust algorithm. Its average for the structural weight is closest to the best solution
and its standard deviation is the smallest. Thisisimportant because it shows that HHCD does not
require multiple runs to find the best solution. The average and standard deviation of number of
structural analyses shows that HHCD is efficient (Table 3.2). IHS has the lowest NSA average but
the quality of the solution is not good. The complete code for this numerical example is given in

the appendix.

Table 3.2. Comparison of optimal designs for 10-bar truss problem.

GA

(R:Jn(ef" HPSOf SA BB-BC This work
Design variable (in?) Krishna (Lieta., (Xianget (Camp,
moorthy 2009)  a.,2009)  2009) IHS ECBO® HHC HHCD
1992)
1 Al 33.50 30.00 33.50 33.50 30.00 33.50 33.50 33.50
2 A2 1.62 1.62 1.62 1.62 2.62 1.62 1.62 1.62
3 A3 22.00 22.90 22.90 22.90 22.90 22.90 22.90 22.90
4 A4 15.50 13.50 14.20 14.20 14.20 14.20 14.20 14.20
5 A5 1.62 1.62 1.62 1.62 1.80 1.62 1.62 1.62
6 A6 1.62 1.62 1.62 1.62 1.80 1.62 1.62 1.62
7 A7 14.20 7.97 7.97 7.97 11.50 7.97 7.97 7.97
8 A8 19.90 26.50 22.90 22.90 22.00 22.90 22.90 22.90
9 A9 19.90 22.00 22.00 22.00 22.00 22.00 22.00 22.00
10 A10 2.62 1.80 1.62 1.62 2.38 1.62 1.62 1.62
Best weight (Ib) 5613580 5531.984 5490.738 5490.738 5586.289 5490.738 5490.738 5490.738
NSA2 800 50000 10500 8694 4176 7960 4566 4126
G (Eq. 5) 3.77x10* 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Weight  Average N/A N/A N/A 5494.17° 5680406 5519.357 5499.116 5490.873
(Ib) SDP N/A N/A N/A 12.42 40582 53183  30.732 0.943
Nea | Average N/A N/A N/A N/A 6999 19378 0821 8979
SD N/A N/A N/A N/A 2728 6215 5038 3890

aNSA is number of structural analyses. °SD is the standard deviation of 50 independent runs. °The average of 100 runs.
4The maximum number of iterations is 50000. €The maximum number of iterations is 1000.
fHPSO is Harmony Particle Swarm Optimzation.
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Figure 3.3. Comparison of best designs from 50 runs for the 10-bar truss structure.

3.5.2 Planar 15-bar Truss

Figure 3.4 shows the configuration of the 15-bar truss. Previously, this example was solved
inLi et al. (2006) and Li et al. (2009). For all members, the modulus of easticity is 200 GPa and
material density is 7800 kg/m3. The allowable displacement for al nodes in both vertical and
horizontal directionsis £10 mm. All members are subjected to stress limit of 120 MPa for both
tension and compression. As shown in Figure 3.4, the structure is subjected to three vertical point
loads with three independent |oad cases: case 1: P1 =35 kN, P> =35 kN, and Pz =35, case 2: P1 =35
kN, P> =0 kN, and Ps =35, and case 3: P1 =35 kN, P> =35 kN, and P; =0. Design variables are

sl ected form the discrete set of 16 e ements:

D=[113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1, 308.6, 334.3, 338.2,

(3.39)
497.8, 507.6, 736.7, 791.2, 1063.7] (mm?).
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Figure 3.4. Schematic of 15-bar planar truss.

In this study case, ¥ is 10 (EQ. (3.4)) because a gorithms found some infeasible solutions
with very small violation when v is 1. Table 3.3 shows comparison of the cross-sectional areas,
the best structural weights, NSA when the agorithms reach the best design. It also contains the

mean values and standard deviations for structural weight from 50 independent runs for IHS,

ECBO, HHC, and HHCD.
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Penalized weight (kg)

Table 3.3. Comparison of optimal designs for 15-bar truss problem.

PSO  HPSO This work
Design variables (Li et (Li et
(mm2) a., a., IHS ECBO HHC  HHCD
2006)  2009)
1 Al 185.9 113.2 113.2 113.2 113.2 113.2
2 A2 113.2 113.2 113.2 113.2 113.2 113.2
3 A3 143.2 113.2 113.2 113.2 113.2 113.2
4 A4 113.2 113.2 113.2 113.2 113.2 113.2
5 A5 736.7 736.7 736.7 736.7 736.7 736.7
6 A6 143.2 113.2 113.2 113.2 113.2 113.2
7 A7 113.2 113.2 113.2 113.2 113.2 113.2
8 A8 736.7 736.7 736.7 736.7 736.7 736.7
9 A9 113.2 113.2 113.2 113.2 113.2 113.2
10 A10 113.2 113.2 113.2 113.2 113.2 113.2
11 All 113.2 113.2 113.2 113.2 113.2 113.2
12 Al12 113.2 113.2 113.2 113.2 113.2 113.2
13 Al3 113.2 113.2 113.2 113.2 113.2 113.2
14 Al4 334.3 334.3 334.3 334.3 334.3 334.3
15 A15 334.3 334.3 334.3 334.3 334.3 334.3
Best weight (kg)  108.841 105735 105735 105.735 105.735 105.735
NSA N/A 25000 11861 4240 2836 2402
G (Eq. 5) N/A N/A 0.0 0 0 0
Weight Average  N/A N/A 105993 108537 105735 105.735
(kg) sD N/A N/A 0341 5441 0.0 0.0
NSA Average N/A N/A 15734 4169 3986 3624
SD N/A N/A 4781 790 757 764
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Figure 3.6. Comparison of best designs from 50 runs for the 15-bar truss structure.



Although, HPSO, ECBO and HHC aso obtained the best design, HHCD needs fewer
structural analyses. Figure 3.6 shows the penalized weight for each of the 50 runsfor HIS, ECBO,
HHC, and HHCD. In this numerical example, HHCD and HHC were able to find the best solution

in every run as shown in Figure 3.6 and Table 3.3.

3.5.3 Planar 52-bar Truss

Figure 3.7 shows the configuration of the 52-bar truss. This example was solved in Lee et
a. (2005), Li et a. (2009), and Kaveh and Taatahari (2009). For all members, the modulus of
elasticity is 207 GPa and material density is 7860 kg/m3. All members are subjected to stress
limitations of 180 MPa in both tension and compression. As shown in Figure 4.5, the structure is
subjected to vertical and horizontal point loads at joints 17, 18, 19, and 20, where Py is 100 kN and
Py is 200 kN. The structure includes 52 members organized into 12 groups (Table 3.4). Design

variables are sel ected form the discrete set of 64 elements:

D=[71.613, 90.968, 126.451, 161.290, 198.064, 252.258, 285.161, 363.225,
388.386, 494.193, 506.451, 641.289, 645.160, 792.256, 816.773, 939.998,
1008.385, 1045.159, 1161.288, 1283.868, 1374.191, 1535.481, 1690.319,
1696.771, 1858.061, 1890.319, 1993.544, 2019.351, 2180.641, 2238.705,
2290.318, 2341.931, 2477.414, 2496.769, 2503.221, 2696.769, 2722.575,

2896.768, 2961.284, 3096.768, 3206.445, 3303.219, 3703.218, 4658.055, (349
5141.925, 5503.215, 5999.988, 6999.986, 7419.340, 8709.660, 8967.724,
9161.272, 9999.980, 10322.560, 10903.204, 12129.008, 12838.684,
14193.520, 14774.164, 15806.420, 17096.740, 18064.480, 19354.800,

21612.860] (mm?)
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Figure 3.7. Schematic of 52-bar space truss.

Table 3.4. Comparison of optimal designs for 52-bar truss problem.

Design variable HS (Lee HPSO (DKHal\:/)eSﬁ ;:n% Thiswork
eta., (Lieta., .

(mm2) 2005 2009) Talz?)tgg;ﬂrh IHS ECBO  HHC  HHCD
1 Al1-A4 4658055 4658055 4658.005 4658055 4658.055 4658.055 4658.055
2 A5-A10 1161288 1161.288 1161.288 1161.288 116.1288 116.1288 116.1288
3 A11-A13 506451 363.225 494193 494193 494193 494193 494.193
4 A14-A17 3303219 3303219 3303219 3303219 3303219 3303.219 3303.219
5 A18-A23 940 940 1008.385  939.998 939.998 939.998  939.998
6 A24-A30 494193 494193 285161 494193 494193 494193 494.193
7 A31-A34 2290.318 2238705 2290.318 2238705 2238.705 2238.705 2238.705
8 A35-A36 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385
9 A37-A39 2290.318 388.386  388.386  363.225 494.193 494193 494.193
10 A40-A43 1535481 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868
11 A44-A49 1045159 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288
12 A50-A52  506.451 792.256 506451 = 641.289 494193 494193 494.193
Best weight (kg) 1906.76 1905.495  1904.83  1903.366 1902.605 1902.605 1902.605
NSA 19104 150,000 5300 20724 33360 36988 32366
G (Eq. 5) 0.027 0.00 0.003 0.00 0.00 0.00 0.00
Weight ~Average N/A N/A N/A 1997.191 1980.129 1935.136 1915.922
(kg) ShP N/A N/A N/A 77.96 123773 55734  16.950
Noy | Average N/A N/A N/A 21719 37584 36825 36526
SD N/A N/A N/A 7198 5457 6277 4854
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Inthisstudy case, ¥ is 10 (in EQ. (3.4)) because a gorithms found someinfeasible solutions

with very small violation when v is 1. Table 3.4 shows that HHCD has the lowest average and

standard di
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Figure 3.8. Comparison of best designs from 50 runs for the 52-bar truss structure.
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3.5.4 Spatial 25-bar Truss

Figure 3.10 shows the configuration of the spatial 25-bar truss. This example was solved
in Raeev and Krishnamoorthy (1992), Leeet a. (2005), Li et al. (2009), Xiang et a. (2009), Camp
(2009), and Kaveh and Mahdavi (2015). For all members, the modulus of elasticity is 10,000 ksi
and material density is 0.1 Ib/in3. The allowable displacement for al nodes in both vertical and
horizontal directionsis £0.35 in. All members are subjected to stress limitations of 40 ks for both
tension and compression. This spatial truss was subjected to the two loading conditions shown in
Table3.5. Thestructureincludes 25 members organized into 8 groupsasgivenin Table 3.6. Design

variables are selected form the discrete set of 30 elements as follows:

D=[0.1, 0.2,0.3,04, 0.5, 0.6, 0.7,0.8, 09, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,
(3.41)

1.8,1.9,2.0,21,2.2,2.3,24,25,26,28, 3.0,3.2,3.4] (in?)

Table 3.5. Load conditions of the spatial 25-bat truss.

Load Loads (kips)

Case condition Nodes Py Py P,
1 10 -100 -100
1 1 2 00 -100 -100

3 0.5 0.0 0.0

6 0.6 0.0 0.0

1 1 0.0 20.0 -5.0

2 00 -200 -5.0

5 1 1.0 10.0 -5.0
5 2 0.0 10.0 -5.0

3 0.5 0.0 0.0

6 0.5 0.0 0.0
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Figure 3.10. Schematic of 25-bar space truss.

In this study case, ¥ was 10 (in Eq. (3.4)) because algorithms found some infeasible
solutions with very small violation when y was 1. HHCD was able to obtain the best design after
2043 structural analyses (759 iterations) as shown in Figure 3.11 and Table 3.6. Figure 3.11 shows
the convergence history of the best run of IHS, ECBO, HHC, and HHCD. It shows that HHCD
and HHC convergence faster than ECBO to the best design where IHS did not obtain the best
design. Table 3.6 showsthat although HS, HPSO, SA, BB-BC and ECBO obtained the best design,
both HHC and HHCD need fewer structural analyses. Also, Table 3.6 explainsthat HHCD hasthe
lowest average and standard division of NSA and the best average and standard division of fina
designs from 50 runswhile HHC is close second. Although, BB-BC shows slightly better stability
than HHCD, it needs more structural analyses compared to HHCD to obtain the best design. GA

did not reach the final design.
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Figure 3.12. Comparison of best designs from 50 runs for the 25-bar truss structure.

Figure 3.12 shows the penalized weight for each of the 50 runsfor IHS, ECBO, HHC, and
HHCD. It showsthat IHS did not reach thefinal design in any run. HHCD reached thefinal design

more than HHC and ECBO.
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Table 3.6. Performance comparison for the 25-bar spatial truss.

GA
Rees  Hs D sa eeBC 80 Thiswork
Design variable and (Lee, et a (Xianget  (Camp, and
(in2) Krishn- d., 2009) d,2009)  2009) \\opiai
amoory,  2005) 20 IHSS  ECBO' HHC  HHCD
1992) 15)
1 Al 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 A2-A5 1.8 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.3
3 AB-A9 2.3 34 34 34 34 34 34 34 34 34
4  Al0-A1l 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
5  Al12-A13 0.1 21 21 21 21 21 1.9 21 21 21
6  Al4-A17 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
7 Al18A21 1.8 05 05 0.5 05 0.5 0.4 0.5 0.5 0.5
8  A22-A25 3.0 34 34 3.4 34 3.4 3.4 3.4 3.4 34
Bestweight (Ib)  546.013 484.854 484.854 484.854 484.854 484.854 485054 484.854 484.854 484.854
NSA 800 13523 25000 7900 9090 61200°0 13368 20280 2083 2043
G (Eq.5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Weight Average  N/A N/A N/A  486.354° 48510° 485899 490547 485575 485480 485.252
(Ib) SD N/A N/A N/A N/A 0.44 N/A 4986 1244 0850  0.505
Nsa  Aveage  N/A N/A N/A N/A N/A N/A 23791 17694 8288 7045
sD N/A N/A N/A N/A N/A N/A 12039 10876 4194 3233

3population size is 30. "The average of 12 runs. °The average of 100 runs. The average of 20 runs.
€The maximum number of iterations is 50000. The maximum number of iterationsis 1000.

3.5.5 Spatial 72-bar Truss
Figure 3.13 shows the configuration of the spatial 72-bar truss. This example was solved
in Li et a. (2009), Kaveh and Khayat (2012), and Kaveh and Mahdavi (2015). For al members,
the modulus of elasticity is 10000 ksi and material density is 0.1 |b/in3. The alowable
displacement for all nodesin both vertical and horizontal directions equals £0.25 in. All members
are subjected to stress limitations of 25 ksi for both tension and compression. This spatial truss
was subjected to the two loading conditions as shown in Table 3.7. The structure includes 72
members organized into 16 groups (Table 3.8). Design variables are selected from the discrete set
of 64 elements as follows:
D=[0.111, 0.141, 0.196, 0.250, 0.307, 0.391, 0.442, 0.563, 0.602, 0.766, 0.785,
0.994, 1.000, 1.228, 1.266, 1.457, 1.563, 1.620, 1.800, 1.990, 2.130, 2.380, 2.620,

2.630, 2.880, 2.930, 3.090, 3.13, 3.380, 3.470, 3.550, 3.630, 3.840, 3.870, 3.880,
4.180, 4.220, 4.490, 4.590, 4.800, 4.970, 5.120, 5.740, 7.220, 7.970, 8.530, 9.300,

(3.42)
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Figure 3.13. Schematic of 72-bar space truss.

10.850, 11.500, 13.500, 13.900, 14.200, 15.500, 16.000, 16.900, 18.800, 19.900,
22.000, 22.900, 24.500, 26.500, 28.000, 30.000, 33.500] (in?).
Table 3.7. Load conditions of the spatial 72-bat truss.

Loads (kips)
Case Nodes =) P, =y
1 17 5.0 5.0 -5.0
17 0.0 0.0 -5.0
5 18 0.0 0.0 -5.0
19 0.0 0.0 -5.0
20 0.0 0.0 -5.0

Table 3.8 provides acomparison between some best designs reported in the literature along
with those obtained in this study. HHCD obtained best design after 20836 structural analyses (3017
iteration). The best structural weight of 389.334 |b was obtained by IRO, ECBO, and HHC after
17925, 95400 (35100 in this study), 26476 structural analyses, respectively. It is seen that both
HHC and HHCD performed better than IHS and ECBO. Note that in ECBO (thiswork), HHC and
HHCD, design variables 2 and 6 values are 0.442 and 0.563, respectively, whereas in IRO and
ECBO (Kaveh and Mahdavi, 2015), they are 0.563 and 0.442. In this study case, HHCD needs
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more analyses than IRO; however, HHCD has smaller average value of 50 independent runs (see

Table 3.9).

Figure 3.14 shows the convergence history of IHS, ECBO, HHC, and HHCD. It shows at
HHCD convergences faster than IHS, ECBO, and HHC. Figure 3.15 and Table 3.8 demonstrate
that HHCD is more stable than IRO, CBO, ECBO, IHS, and HHC in term of the quality of final

designs. For asimilar quality of design other algorithms needed more simulations (NSA averages

in Table 3.8).
3500 - 2500 7'; —1IHS
i - - =ECBO
"‘ —HHC
2 B 1 - = =HHCD
3000 20001 ¢ End of Phase |
- € Final design
2500
2
2000
S
=
3
21500
g
7 ! [ e S
o

1000

.....
"

500 1000 1500 2000 2500 3000

- = <

0 | | | | |

| | |
4
0 0.5 | L5 2 25 3 35 4 x10

Number of structural analyses
Figure 3.14. Comparison of convergence rates for 72-bar spatial truss.
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Table 3.8. Performance comparison for the 72-bar spatial truss.

o CBO ECBO _
. . ) HPS (Kavener  (Kaveh (Kaveh This work
Design variable (in2) (Li, o and and
2009 o013 M;gfg;’ g M%‘fg)v . IHS® ECBO'  HHC  HHCD
1 AL-A4 4970 199 2.130 1.990 2.62 1990 1990 199
2 A5-A12 1228 0563 0.563 0.563 0.442 0442 0442 0442
3 A13-A16 0111 0111 0.111 0.111 0.141 0111 0111 0111
4 Al7-A18 0111 0111 0.111 0.111 0.141 0111 0111 0111
5 A19-A22 2880 1228 1.228 1.228 1.457 1208 1228 1208
6 A23-A30 1457 0442 0.442 0.442 0.563 0563 0563 0563
7 A31-A34 0141 0111 0.141 0.111 0.141 0111 0111 0111
8 A35-A36 0111 0111 0.111 0.111 0.19 0111 0111 0111
9 A37-A40 1563 0563 0.442 0.563 0.442 0563 0563 0563
10 A41-A48 1228 0563 0.563 0.563 0.602 0563 0563 0563
11 A49-A52 0411 0111 0.111 0.111 0.141 0111 0111 0111
12 AB3-A54 0196 0111 0.111 0.111 0.141 0111 0111 0111
13 AB5-A58 0391  0.19 0.196 0.19 0.25 019 019  0.19%
14 AB9-A66 1457 0563 0.563 0.563 0.563 0563 0563 0563
15 A67-A70 0766  0.391 0.391 0.391 0.442 0391 0391 0391
16 A71-A72 1563 0563 0563 0563 0.391 0563 0563 0563
Best weight (Ib) 933094 389334 391230 389334 418380 380.334 389334 389.334
NSA 50000 17925 160200  95400° 16918 30240 26476 20836
G (Eq. 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Weghi(p) ~ Aveage NA  40B17 45660 30156 448554 3OL173 301242 300632
D N/A N/A N/A N/A 9.412 2073 2105 1679
A Average  N/A N/A N/A N/A 14135 37531 32208 27442
) N/A N/A N/A N/A 6037 8858 7994 6884

apopulation size is 30. "The average of 20 runs. °The maximum number of iterations is 50000.
4The maximum number of iterations is 1000.
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3.6 Discussion and Conclusions

A new two-phase metaheuristic optimization algorithm was presented in this study. Phase
1 used Improved Harmony Search (IHS) with a new domain reduction technique that used
statistical analysis of some of the better designs in the current population. Phase 2 used the
Enhanced Colliding Bodies Optimization (ECBO) where the initial population consisted of some
of the better designs from Phase 1. With this better initia population, ECBO obtained the best
design more efficiently. Also, in Phase 1, an improved stopping criterion was proposed that
terminated the phase when there was no or small improvement in the best design after many

iterations.

Table 3.9. Comparative data for design examples.
Optimization algorithm

Design Example

IHS ECBO HHC HHCD
Best weight (Ib) 5586.289 5490.738 5490.738 5490.738
Planar Weight Average 5680.406 5519.357 5499.116 5490.873
10-bar (Ib) SD 40.582 53.183 30.732 0.943
truss NSA Average 6999 19378 9821 8979
SD 2728 6215 5038 3890
Best weight (Ib) 105.735 105.735 105.735 105.735
Planar Weight Average 105.993 108.537 105.735 105.735
15-bat (k) SD 0.341 5.441 0 0
truss NSA Average 15734 4169 3986 3624
SD 4781 790 757 764
Best weight (Ib) 1903.366 1902.605 1902.605 1902.605
Planar Weight Average 1997.191 1980.129 1935.136 1915.922
52-bar (k) SD 77.96 123.773 55.734 16.95
truss NSA Average 21719 37584 36825 36526
SD 7198 5457 6277 4854
Best weight (Ib) 485.054 484.854 484.854 484.854
25-bar Weight Average 490.547 485.575 485.480 485.252
spatial (Ib) SD 4.986 1.244 0.850 0.505
truss NSA Average 23791 17694 8288 7045
SD 12039 10876 4194 3233
Best weight (Ib) 418.380 389.334 389.334 389.334
72-bar Weight Average 448.554 391.173 391.242 390.632
spatial (Ib) SD 9.412 2.073 2.105 1.679
truss NSA Average 14135 37531 32208 27442
SD 6037 8858 7994 6884
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Figure 3.16. Comparison of number of structural analyses to reach the best.

Detailed results for three standard truss test structures were presented and discussed. Table
3.9 summarize comparative data obtained with IHS, ECBO, HHC and HHCD for the three design
examples. It shows, in term of the quality of the solution, HHCD obtained the best designs with
the lowest averages and standard deviations from 50 independent runs. HHC is close second
behind HHCD. Figure 3.16 isabar chart representation of the number of structural analyses needed
to reach final designs of the three numerical examples with the four methods. The best structural
weight values are also shown with bar charts. It shows that IHS does not reach the best design for
any of the examples. ECBO needs the largest number of analyses to obtain the final designs.
However, HHC and HHCD need a smaller number of simulations to reach the final designs. Table
3.9 and Figure 3.16 show that HHCD is quite stable and more efficient among all metaheuristic

algorithms that are discussed in this study. For the 3-D truss problems (the last two examples),
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HHCD shows an outstanding performance in terms of the number of structural analyses needed to
obtain the best design. This is an attractive feature of the proposed metaheuristic algorithm with

domain adjustment.

Based on the comparison with other metaheuristic optimization algorithms for the

numerical examples, the following conclusions are drawn:

1- The 50 independent runs for each example showed that the proposed HHC agorithm was quite
reliable in obtaining the best designs for each run. Also, HHCD had the lowest averages and
standard deviations for the final cost function values. This implies that fewer runs are needed to

obtain the best design compared to many other stochastic algorithms.
2- The proposed domain adjustment approach worked very well with IHS.

3- The proposed hybrid agorithm with domain adjustment was able to find the best design with
fewer structural analyses, by substantial amount in some cases. This efficiency is critically
important for solving more complex applications, such as nonlinear structural analysis
problems, dynamic response optimization problems and multidisciplinary optimization

problems.

3.7 Reproducing Results

To reproduce results provided in this work, al the necessary information about design
examples are described in Section 3.5. Appendix A includes MATLAB code for the 10-bar truss

design example.
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CHAPTER 4

DISCRETE VARIABLE OPTIMIZATION OF STRUCTURES SUBJECTED TO DYNAMIC
LOADS USING EQUIVALENT STATIC LOADSAND METAHEURISTIC ALGORITHMS

Abstract

Equivalent static loads (ESL) approach has been used successfully for optimizing many
structural systems subjected to dynamic loads. The approach has been used for continuous variable
optimization problems using the gradient-based methods. It has been shown that the approach
drastically reduces the number of dynamic analyses of the structureto reach alocal optimum point.
In this chapter, the ESL approach isinvestigated for optimization of structureswith discrete design
variables using metaheuristic algorithms. Thefocusison aclass of problemsthat cannot be solved
using the gradient-based optimization methods. It is shown that for this class of problems, the ESL
approach reaches near the best design with a drastically reduced number of dynamic analyses of
the structure. However, it cannot converge to the best design because the ESLs calculated for a
member of the population are not suitable for the remaining members of the population in
metaheuristic algorithms. Moreover, the assumption of small change to design variables near the
solution point does not hold in metaheuristic algorithms. Therefore, after a few ESL cycles, the
procedure may switch to a full dynamic analysis of each member of the population, if desired, to
further improve designs and reach the best design. Overall, better results are obtained by
incorporating the ESL approach and the number of dynamic analyses is substantially reduced to

solve this class of discrete variable optimization problems.

4.1 Introduction

It isimportant to consider transient dynamic loads in the design process of many structures

in engineering applications since many loads in the real-world act dynamically. At the same time,
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it isimportant to consider minimizing the total cost while achieving al the safety and performance

requirements by optimizing the design of structures (Arora, 1999).

Optimization of structures subjected to dynamic loads using gradient-based agorithms
includes calculating the gradients of all the problem functions provided the functions are
differentiable. Several methods can be used to calculate the gradients such as: direct method, the
adjoint method, the modal approximation method (Kang et al., 2006). Then a gradient-based
optimization algorithm can be used to determine the design improvement by solving a subproblem.
This process involves the integration of the equations of motion and sensitivity equations.
Numerical integration of these equations is computationally expensive. Moreover, for some
problem with material and/or geometrical nonlinearities, the numerical integration methods can
have convergence difficulties. Therefore, it can be difficult to optimize structures subjected to
dynamic loads in a mathematical optimization process (Kang et a., 2001). To overcome these

difficulties, efforts have been made to transform the dynamic load into static |oads.

One of the well-known dynamic to static loads transformation methods is based on the
displacement field obtained using dynamic analysis of the structure (Kang et al., 2001). That is,
the dynamic load istransformed into multiple equivalent static |oad sets. Then the equivalent static
loads (ESL) are considered as multiple loading conditionsin the linear static response optimization
process. Thisis called an ESL cycle of the optimization process. These cycles are repeated until

the final design is obtained. More details of this process are provided in Section 4.3.

Calculus-based local optimization agorithms are applicable for continuous variables and
differentiable functions. To solve a differentiable problem with discrete variables, many gradient-
based optimization strategies are available (Arora, 2017). One strategy is to initidly treat the

discrete variables as continuous (if possible) and then round-off their values at the optimum point
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to get their discrete values. With such an approach, the final solution may beinfeasible or far from
the true optimum. Moreover, for some engineering problems with discrete variables, it is not
possible to compute gradient information because the problem functions are not differentiable.
Frame design optimization examples presented and discussed later in Sections 4.7.3 and 4.7.4 are

aclass of problems where gradient-based optimization methods are not applicable.

Stochastic, metaheuristic or nature-inspired a gorithms based on simulations do not require
gradient information, such as the well-known Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), Harmony Search (HS), and many others.
In these algorithms, the search isnot limited to aneighborhood of the current point, and the discrete
variables and nondifferentiable functions can be treated routinely. They use random search in the
whole design space instead of gradient-based search in aneighborhood of the current point (thisis
why they are sometimes called global optimization methods (Weise, 2009). Therefore, they are
applicable for both continuous and discrete variables and with one or more, ssmple or complex
objective functions. Also they tend to converge to a global minimum (although there is no
guarantee of this) for the problem instead of alocal minimum as with the gradient-based methods.
Sinceonly the structural responseisrequired in the optimization process, these methods can handle
any kind of problems (linear, nonlinear, static, dynamic, differentiable, nondifferentiable). Similar
to gradient-based optimization method, the computation cost of linear or nonlinear dynamic
analysisismorethan that for linear static analysis. Therefore, using metaheuristic algorithms could
be impractical for dynamic response optimization problems since they generaly require many

structural analyses to reach the final design.
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4.2 Objective of ThisWork

In this study, the ESL approach for structures subjected to dynamic loads is investigated
with metaheuristic optimization algorithms and discrete design variables. This has not been
investigated before in the literature. Also, the problem functions are assumed to be
nondifferentiable which is the case with some practical problems as discussed in Sections 4.7.3
and 4.7.4. Theideaisto study if the number of transient structural analyses required to reach the
best design can be reduced compared to those with a standard metaheuristic algorithm. The method
is named global optimization with equivalent static loads (GOESL). That is, the dynamic load for
linear or nonlinear transient problems will be transformed into multiple equivalent static load sets
using the ESL approach. Then the linear static problem will be optimized using a metaheuristic
optimization algorithm. These ESL cycles will be repeated until the best design is reached.
Enhanced Colliding Bodies Optimization (ECBQO) algorithm will be used as the metaheuristic

agorithm, although any other such algorithm may also be used.

ESL method with gradient-based optimization obtains one solution at the end of an ESL
cycle. That solution is used to generate new ESLs for the next cycle. Metaheuristic algorithms,
however, deal with a population of designs. Therefore, a the end of an ESL cycle, there is a
population of designs that has been improved based on linear static analysis process. For the next
cycle, only one design should be used to generate new ESLs. The question is which one? There
are severa possibilitiesfor this. Three approaches are examined to select the design that is used to
generate the ESLsfor the next cycle (Section 4.7). Example problems are solved to evaluate these
approaches and, in general, the ESL approach with metaheuristic a gorithms. It isimportant to note
that since the focus of thiswork is on discrete variable problems with nondifferentiable functions,

example problems will not be solved or compared with the gradient-based methods.
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4.3 Transformation of Dynamic L oadsinto Equivalent Static Loads (ESL 9)

Dynamic analysis is needed when the magnitude of the loads changes with time. In this
section, we describe the basic concepts and steps of the ESL method for continuous design
variables using the gradient-based optimization algorithms (Kang, Choi & Park, 2001). The
dynamic response of a structure subjected to dynamic load is described by the following

differential equation obtained after afinite element model for the structure has been devel oped:
MX)i(t) + CXOu(®) + KX, u(®)u®) = p); t =ty ty, ..., ty (4.1)

where M is the mass matrix, K isthe stiffness matrix (K is afunction of the design variables and
displacement vector for nonlinear dynamic analysis and just the design variables for linear
dynamic analysis), € is the damping matrix, u is the dynamic displacements vector, u is the
velocities vector, it is the accelerations vector, X is the vector of design variables, p(t) is the
applied load vector, t is time (generally discretized for numerical integration), and n is the total

number of the time steps.
The static analysis with the finite element method is described by the following equation:
K(X)z = p; (4.2)

where z is the static displacement vector and p; is the externa static load vector. ESLs are static
loads that generate the same displacement field as from dynamic loads at a given design X. Using

Eq. (4.2), an ESL vector at an arbitrary time (t,) is calculated as follows:
Po = KXu(ty); a=12,..,n (4.3)

Figure4.1 describesthe concept of ESL approach. That is, after linear or nonlinear dynamic
analysis of the structure, an equivalent load vector (p,) is generated at each time step using Eq.

(4.3). It is seen that for a given design X, the linear static response from the ath load set (p,,) IS
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the same as the dynamic response at the ath time step. Therefore, the displacement profile of the
dynamic response is exactly the same as the displacement profile calculated from the linear static
anaysis (Kim & Park, 2010). However, the profile of the ESLs is quite different from those of
the dynamic loads because the ESLs are applied at each degree of freedom of the model even if
the dynamic load is applied along only one degree of freedom. After the design is changed during
the optimization iterations, the static and dynamic displacement profiles would be different

because the ESL s are based on the starting design.

Optimum design of structures subjected to dynamic loads using the ESLs proceeds as

follows (thiswill be called the ESL method):

Sep 1. Select an initial design for the structure. Perform dynamic analysis of the structure to
generate the displacement profile u(t) using Eq. (4.1).

Sep 2. Caculate the ESLs using Eq. (4.3).

Sep 3. Perform static response optimization of the structure using ESLs calculated in Step 2. These
loads are kept fixed during this optimization process. This is called an ESL cycle of the ESL

method.
Sep 4. Check the stopping criteria; if satisfied stop; otherwise continue.

Sep 5. Since the final design from Step 3 is different from the starting design, the static
displacements will be different from dynamic displacements for the final design. Therefore,

perform the dynamic analysis of the structure and go to Step 2.

After afew cycles of the above process, the design changes are quite small such that the
ESL s do not change much and a solution to the origina dynamic response optimization problem

is achieved.

83



Drymamic analysis

il

TII'II.'

ESL analyss
L
i T

L ."_ Py i My

Lo case

Response

Response
S

Figure 4.1. Dynamic response vs ESL response for agiven design (Kim & Park, 2010).

4.4 Formulation for Discrete Structural Optimization Problems

In many practical design cases, design variables are discrete because members must be
selected from the available sizes in a catalog. The formulation of the discrete design variables
optimization problem is different from the continuous design variables optimization. In general,

the nonlinear dynamic response optimization problem with discrete design variables can be stated
as:
Find X = [X1,X9, e, Xnpar]; X €D;; 1=1,2,...,nvar (4.9
to minimize f(X) (4.5
subjectto  M(X)it(t) + C(X)u(t) + K(X,u(t))u(t) = p(t)

(4.6)
X, u(t),u(t),u(t),t) <0; foralltand k =1,2,...,1



where X is the vector of design variables with nvar unknowns, D; is a set of discrete values for
the ith design variable, f(X) is a cost function (in this study, f(X) is the total weight of the

structure), and g, isaconstraint function that needs to be imposed at all time points.

One way of treating constraints in metaheuristic algorithms is to combine constraints with
the cost function to define a merit function (also called the penalty function) F(X) that is then
minimized:

F(X) = fXO[1 + 6 (X)) (4.7)

G(X) = Yty Xk=1max(0, gi (t)) (4.8)

where G (X) is a constraint violation function, ¥ > 1 is exploration penalty coefficient (in this
study, ¥ = 1), ¢ > 1 ispenalty function exponent (in this study, ¢ = 2), and max (0, g, (t;)) = 0
isthe violation value of the kth inequality constraint at the time point t;. The present problem has
just inequality constraints. However, if equality constraints are present in the problem formulation,
they are treated by including their violationsin Eq. (4.8). The linear dynamic response problemis
the same as the nonlinear dynamic response problem except that K is not a function of the
displacement vector u.

The linear static response optimization problem subjected to ESL s can be stated as.

Find X = [x1, X3, e, Xppar]l; Xi € D;; i =1,2,....,nvar (4.9)
to minimize f(X) (4.10)

subjectto K(X)u, = p,
(4.11)
JkaX) <0; k=12,...,[; a=12,..,n
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For this problem, the merit function F (X) for the metaheuristic algorithmsis defined as:

F(X) = fX[1+yG¢ (4.12)
n P
G(X) = Z _ max(0, geo) (4.13)

4.5 Enhanced Colliding Bodies Optimization (ECBO)

Kaveh and Mahdavi (2014) developed this metaheuristic algorithm that is inspired by the
laws of one-dimensional collision. The agorithm works with a population of designs at each
iteration. The initial population is generated randomly, and the designs are stored in amatrix CB,
called the colliding bodies' matrix. Each design in the population is considered as an object or
body having pseudo-mass that is calculated using the merit function value for each design. The
entire population is ranked and divided into moving objects and stationary objects. Using the
conservation law of linear momentum and the coefficient of restitution, one dimensional collision
between the bodiesis simulated. Based on that, new vel ocities of the stationary and moving objects
are calculated. Using these velocities and random numbers, each design in the population is
updated. This process is repeated until a limit on the iterations is reached or there is very little

changein the best design for severa iterations.

In the enhanced version of the colliding bodies optimization (ECBO), a colliding memory
matrix called CM is used to store some good designs. These designs replace the worst designsin
the CB matrix at every iteration. This way the good designs are always preserved. In addition, a
parameter Pro € [0,1] is introduced that is used along with random numbers to regenerate a
component of selected designsin the CB matrix. This mechanism is shown to give diversity to the

design population leading to a better final design (Kaveh & Ghazaan, 2014).
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Many metaheuristic algorithms need selection of several algorithmic parameters in their
calculations. Thisisamajor drawback of these algorithms because their performance depends on
the values for the parameters. ECBO, however, requires just one algorithmic parameter
specification, and performs well in term of the quality of solutions and convergence time. In
addition, ECBO has been used to solve truss, frame, and other engineering optimization problems.
It has shown very good convergence behavior compared to other metaheuristic algorithms such as
genetic agorithm, particle swarm and harmony search (Kaveh & Mahdavi, 2015). Therefore, this

metaheuristic algorithm is elected for usein this study.

4.6 Discrete Variable Optimization Using ESL for Transient Problems

As mentioned earlier, metaheuristic optimization algorithms search not only in the
neighborhood of the current design point but also in the entire design space. That is, small changes
in design variables are not guaranteed which is an important assumption in the ESL method (at
least near the local optimum point) with gradient-based optimization (Kang et a., 2001). Also, in
ESL method with gradient-based optimization, there is one solution at the end of an ESL cycle.
That solution is used to generate new ESLs for the next cycle. In metaheuristic algorithms,
however, there is a population of designs at the end of an ESL cycle. Since most metaheuristic
optimization algorithms deal with a population of designs, it is not obvious which design should
be used to calculate the ESLs for the static response optimization cycle. One choice could be to
use the best design from the population based on the merit function value. However, the ESLs
calculated for the best design may not be suitable for the remaining designs of the population.

Therefore, three approaches are investigated:

1- The best design from static analysis— ESL1.
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Design that has the lowest merit function value based on linear static analyses (the best
design at the end of an ESL cycle) is used to generate ESLs for the next cycle. In each cycle, only

one dynamic analysisis needed in this approach.

2- The best design from dynamic analysis— ESL 2.

It was observed that the best design from the ESL cycle (which is based on linear static
analyses) may not bethe best design when atransient analysisis performed for the final population.
Therefore, dynamic anayses are performed for designsin CM (4 designs in this study) and the
first 25% of CB (thefirst 10 designsin this study). Just the first 25% of CB is used instead of the
entire population because it is expected that the best design will bein this range. Then design that
has the lowest merit function is used to generate ESL sfor the next cycle. In each cycle, the number

of dynamic analysesis 14 in this approach.

3- The heaviest feasible design from dynamic analysis— ESL 3.

This approach is similar to ESL2 except that heaviest feasible design is used to generate
ESLs for the next cycle. This design usually generates smaller ESLs values because the heavier
structure is usualy dtiffer giving smaller displacements. If there is no feasible design (which
usually happensin thefirst few cycles), ESL2 is used to generate ESL s for the next cycle. In each

cycle, the number of dynamic analysesis 14 in this approach.

In the proposed algorithm, ESL method is used to transform the problem to linear static
response optimization problem subjected to load cases that give the same displacement field asfor
the transient problem for the selected design (Section 4.3). Then the linear static problem is

optimized using ECBO. This results in fewer transient structural analyses for the metaheuristic
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optimization algorithm to find the best design. Figure 5.2 shows the flowchart of GOESL that is

explained as follows:

Sep 1. Generation of an initial population.

A population of designs is randomly generated from the design domain and saved in the

CB matrix.

Sep 2. Evauation of designsin CB.

In this step, designs in CB are analyzed using a transient solver. Using the simulation
results and Egs. (4.7) and (4.8), the merit function F(X) is calculated for each design. Then the
designs are arranged in an ascending order based on their merit function values. The colliding
memory matrix CM is generated. The best design of the population is used to generate the ESLS,
CB and CM are passed to ECBO with ESL method block in Figure 4.2. Also, two matrices CBes.
and CMEgs. are set to CB and CM, respectively. At the end of ECBO with ESL method, CBes.

and CMes. will be passed to ECBO without the ESL block.

Sep 3. Optimum design with the calculated ESLs.

Using linear static analyses of the structure, optimum design is found with the formulation

givenin Egs. (4.9) to (4.13). This completes acycle of the ESL method.

The termination criteriafor one ESL cycle are as follows:

If1 Itergg, = 0.25 X MaxlItergg,

Ifo (Merit(Itergs,) — Merit(Iter — 0.1 X Maxltergg;))/Merit(Itergs,) < €

Terminate the current cycle
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End.
End:

MaxlItergs, = 0.5 X MaxItery, gnsient (4.14)

nvar

MaxlIteryransient = Z N; (4.15)
i

where Itergg; iSthe current iteration, MaxlIteryg; isthe limit on number of iterations for the ESL
cycle, € isasmall number (in this study e=103), N; is the number of elements in the discrete set
D;, and nvar is number of design variables. That is, when thereis no or small improvement in the

current merit function value after several iterations, the current ESL cycle is terminated.
Sep 4. Transient analysis of final design(s).

Perform transient analysis of a design or multiple designs depending on ESL1, ESL2, or

ESL 3 approach used.
Sep 5. Updating CBes. and CMEs.
In this step, CBes. and CM es. matricesare updated depending on the approach as follows:

1- ESL1: if thetransient anadlysisfor the best design from static analysis at the end of an ESL cycle

shows this design to be better than the best design in CMEes., update CBes. and CMEes. asfollows:

CBes.=CB (colliding bodies matrix of the current ESL cycle)

(4.16)
CMEgs.=CM (colliding memory matrix of the current ESL cycle)

2- ESL2: in this approach, the design that has the lowest merit function is used to generate ESLs
for the next cycle (asdescribed above). If thisdesign is better that the best designin CMest, update

CBes. and CMesL asfollows:
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CBes.=CB (colliding bodies matrix of the current ESL cycle)

CMesL=best 4 designs from { previous CMes_. (4 designs), CM (4 designs) of  (4.17)

the current ESL cycle, or 25% of CB of the current ESL cycle (10 designs)}

3- ESL3: in this approach, the heaviest feasible design is used to generate ESL s for the next cycle
(as described above). If the design that has the lowest merit function is better that the best design

in CMEesL, update CBes. and CMes, asfollows:
CBes.=CB (colliding bodies matrix of the current ESL cycle)

CMeEgsL=Dbest 4 designs from { previous CMes. (4 designs), CM (4 designs)  (4.18)

of the current ESL cycle, or 25% of CB of the current ESL cycle (10 designs)}

This way, the population that generate the best design (CBes.) and the best designs that

saved from cycleto cycle (CMes.) are passed to ECBO at the end of ESL method.

To terminate the ESL method, the following criterion is used (note that the minimum
number of ESL cycles is set to 5): no better design is found for two ESL cycles. The stopping
criteriaare checked at this stage; if satisfied, the ESL method isterminated and we go to the ECBO

block (Step 7) with full transient anal yses; otherwise, we continue to Step 6.

Sep 6. Initialization for anew ESL cycle.

In this step, new ESLs are re-calculated based on ESL1, ESL2, or ESL3 approach, new
population of designs is generated from the design domains in the CB matrix. This shows better
convergence behavior than passing the last CB to the next cycle because new designs are explored
by generating new CB when the best designs (so far) are preserved by setting CM=CMEgs.. The

updated CMEes. is passed to the next cycleas CM.
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Sep 7. ECBO without ESL cycles.

If the stopping criteria for the ESL step are satisfied, CBes. matrix and the CMEes. are
passed to ECBO block with full transient analyses. These two matrices have improved designs
using ECBO with ESL method. Then, the formulation given in Egs. (4.4) to (4.8) is used to find
the final best design. It was found that with just the ESL cycles, the algorithm could not reach the
best design. Therefore, Sep 7 was necessary to further improve the design. It is observed however,
that the best design at the end of ESL cyclesisusually closeto the final best design. Therefore, for

practical applications, it may be appropriate to stop the algorithm after the ESL cycles.

The foregoing procedure significantly reduces the number of transient analyses needed to
reach the best design compared to the procedure without the use of ESLs (as shown in Section 7).
In other words, the time needed to reach the best design is reduced because computation times for
linear static analyses (solving system of linear equations) are much shorter than those for the
transient analyses (numerically solving system of differential equations). For large problems, one
transient anal ysis might require hours which makes the metaheuristic optimization algorithmsvery

time consuming.

In nonlinear dynamic problems, ESLs generate the same displacements as those from
nonlinear dynamic analysis; however, they do not generate the same stress responses because of
the nonlinear relationship between stress and strain and strain and displacement (Kim & Park,
2010). Therefore, when there are stress constraints, the difference in stresses can be adjusted to

o, asfollows:
a

JNai

Ba,i (4.19)

olai
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where 8 the stress correction factor, o, _, and oy, are the linear and nonlinear stress responses,

respectively, i is the element number, and j is the iteration number. This procedure is used in

nonlinear truss design example (Section 4.7.2).
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Figure 4.2. GOESL process.
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4.7 Numerical Examples

In the following sections, four discrete structural optimization examples are solved for
minimum structural weight to test the performance of the proposed algorithm. ECBO and the first
two design examples (truss structures) are coded using MATLAB and the models and simulation
are verified using the commercial finite element analysis program ANSY S (Bhatti, 2006). The
frame design examples are coded in MATLAB and interfaced with the structural analysis program

SAP2000 using the Open Application Programing Interface (OAPI).

Thefirst numerical exampleis solved using the two simultaneous single-step Runge-K utta
method (ODE23 MATLAB function). For the rest of the examples, Newmark’s method (p=1/4
and y=1/2) is used for linear and nonlinear dynamic anaysis while direct stiffness method is used

for linear static analysis.

ECBO parameters are set as follows: population size is 40, Pro is 0.4, and the number of
designs to be saved in CM (CMS) is 4 (10% of the population) (Kaveh & Mahdavi, 2015). For
al design examples, the time duration for dynamic analysisis set so that the maximum response

is covered.

Since the optimization agorithms are stochastic in nature, 10 independent optimization
runs were performed for each case to test the performance of ECBO with ESL. In each individual
run, theinitial population was the same for ECBO without the ESL cycles and GOESL to make a

fair comparison.

The quality of proposed method is determined based on the final cost function value, the
cost function value after the ESL step, and the total number of transient structural analyses needed

to reach the best design.
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4.7.1 Eighteen-bar Truss

Figure 4.3 shows the configuration of the 18-bar truss subjected to a half sine wave load at
nodes 1, 2, 4, 6, 8. This example was solved in Choi and Park (2002) for continuous design
variables and gradient-based optimization. The modulus of elasticity and the density are 69 GPa
and 2765 kg/m?3, respectively. All members are subjected to stress limitations of 138 MPain both
tension and compression. The allowable displacement for all nodes in both vertical and horizontal
directions is £203 mm. The optimization problem is to minimize the total mass of the structure.

Four size variables and eight shape variables are selected as the design variables.

To test performance of the proposed a gorithm, this example is re-formulated as a discrete
variable optimization problem. The sizing variables are selected from the discrete set of 100
elements where the range of the cross-sectional area is from 1 to 150 cm? with 1.505 cm?
increment. The shape variables are the x and y coordinates of nodes 3, 5, 7, 9. The shape variables
are selected from the discrete set of 100 elements where the rangeis from -317.5 (half the span of
635 cm) to 317.5 cm with 6.141 cm increment. All members of the truss are divided into 4 groups
giving 4 sizing design variables (Choi and Park, 2002): al top chord members, all bottom chord
members, all vertical members and al diagonal members. Considering the peaks of the
displacements and the stresses, the time duration for dynamic analysisis set from 0 to 8 second.
Thetimeinterval is divided into 100 increments giving 100 loading conditions for static response
optimization with the ESL approach. Each loading condition vector has 18 el ements since there

are 18 degrees of freedom for the truss.
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Figure 4.3. Schematic of the 18-bar truss and the applied dynamic load.
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Table 4.1 summarizes results for 10 different runs for ECBO without the ESL cycles and
for the three ESL methods. The data in the table for the 10 runs for each ESL method includes:
Final mass (kg), mass at the end of ESL cycles (kg), number of ECBO iterations without the ESL
cycles, number of dynamic analyses, and number of static analyses. It isinteresting to note that of
the total 30 runs, 6 runs converged to the best mass value, 17 runs converged to the mass that was

within 0.1% of the best value and the remaining 7 runs converged to within 0.2% of the best value.

This shows

Figure 4.4. Convergence history of 18-bar truss of thefirst run.

robustness of the proposed algorithm for this example because al the designs would

be acceptable from practical applications point of view.
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It is noted from the datain Table 4.1 that at the end of ESL cycles, the best design has not
been reached for al runs. Therefore, the algorithm must switch to ECBO with dynamic analysis
of the entire population to obtain the final design. It is noted that many more ESL cycles beyond

the ones shown in Table 4.1, did not result in improved designs.

To compare the ECBO with and without ESL cycles, averages and standard deviations of
some key parameters for 10 runs for each method are examined. These data are summarized in
Table 4.2. The averages of the final masses and the total number of dynamic analyses show that
the proposed method (GOESL with ESL1, ESL2 or ESL3) obtains not only better final designs
but also needs asignificantly smaller number of dynamic analyses compared to ECBO without the
ESL cycles. That is, the average of dynamic analyses of ECBO without ESL cycles is 42524
analyses whereas ESL1, ESL2, and ESL3 have averages of 20964, 22616, and 23000 analyses,

respectively.

To study the performance of three proposed ESL approaches, averages and standard
deviations for the 10 runs of each ESL method given in Table 4.2 are examined. It is seen that
ESL 2 has the smallest averages and standard deviations for the final mass as well as the mass at
the end of ESL cycles. This shows that ESL2 approach is more reliable in obtaining the fina
solution. Although ESL2 approach has a dightly higher average for the number of dynamic
analyses, it ispreferred because of itsreliability in obtaining thefinal design. Performance of ESL 1

isaclose second to ESL 2 for this example.

The best initial and final designs of the first run of ECBO without the ESL cycles and
GOESL using ESL2 approach are shown in Table 4.3. For the same initial population, GOESL

found a lighter design of 2521.75 kg. After 6 ESL cycles (6x14+40=124 dynamic analyses), the
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total structure mass became 2571.70 kg (thisisjust 1.98 % heavier than the best design). As shown
in Figure 4.4, GOESL converges faster than ECBO without ESLs. That is, when ECBO obtains
the total mass of 2531.17 kg at iteration 1153, and ECBO with ESL needs just 236 iterations to
reach the same mass. That is, with a population of 40 designs, ECBO without ESL cycles needs
917 iterations (917x40-6x14=36596 dynamic analyses) more than GOESL to reach a mass of
2531.17 kg. GOESL final design configuration is depicted in Figure 4.5. Thetotal time needed for
ECBO without ESL cycles and for GOESL to obtain the total mass of 2531.17 are 37.21 minutes

and 9.13 minutes, respectively (ESL step took only 1.51 minutes) on a desk top computer.
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Table4.1. Datafor 10 different runs of thel8-bar truss.

Run
1 2 3 4 5 6 7 8 9 10
ECBO without M ass (kg) 25312 25357 25254 2526.3 2521.8 25240 25256 2522.7 25230 25275
ESL cycles No. of iterationsa 1153 1198 1163 1182 840 1097 1133 1186 482 1197
No. of dynamic analyses 46120 47920 46520 47280 33600 43880 45320 47440 19280 47880
Final mass (kg) 25235 25212 25211 25211 25235 25239 25205 25205 25229 2520.8
Mass at end of ESL cycles(kg) 2594.2 2607.5 2591.0 2594.8 2588.4 26005 25853 2590.1 2589.4 2585.7
%‘ No. of iterationsa 452 591 568 424 568 583 573 545 433 475
k| No. of cycles 7 7 12 7 13 5 9 6 6 11
No. of dynamic analyses 18178 23738 22888 17058 22902 23390 23046 21884 17404 19154
No. of static analyses 61360 51240 84960 71840 87000 32960 71880 45960 44400 78280
Final mass (kg) 2521.8 2523.0 25205 25215 25229 25215 25214 25222 25239 2520.6
Mass at end of ESL cycles(kg) 2570.6 2589.3 2589.1 2580.7 25855 2580.0 25904 2579.3 2577.7 25787
ﬁ ; No. of iterationsa 826 539 379 600 563 598 480 597 600 442
8 w No. of cycles 6 6 11 11 8 7 7 9 7 14
No. of dynamic analyses 33124 21644 15314 24154 22632 24018 19298 24006 24098 17876
No. of static analyses 45020 43240 82480 67840 50320 56960 46320 56240 50440 104320
Final mass (kg) 25223 25225 25255 25241 2520.8 25238 25255 25233 25248 25226
Mass at end of ESL cycles(kg) 2594.9 2618.8 26074 26134 2597.8 26038 26194 26102 2598.8 26153
; No. of iterationsa 559 535 588 561 594 598 541 565 589 600
w No. of cycles 7 5 6 5 7 5 5 5 5 7
No. of dynamic analyses 22458 21470 23604 22510 23858 23990 21710 22670 23630 24098
No. of static analyses 45720 30920 52160 45160 43240 35880 38640 38720 38880 52080

aECBO iterations without ESL cycles.
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Table 4.2. Comparison of averages and standard deviations for 10 runs of thel8-bar truss.

Metric Averages Standard deviation
ECBO Alone ESL1 ESL2 ESL3 ECBOAlone ESL1 ESL2 ESL3
Final mass (kg) 2526.32 2521.92 2521.85 25235 4.28 137 110 150
Mass at end of ESL cycles (kg) - 2592.68 2583.41 2607.97 - 690 513 890
No. of dynamic analyses 42524 20964 22616 23000 9208 2691 4791 962
No. of static analyses - 62988 60408 42140 - 18644 19488 6848

Table 4.3. Initial and final designs of 18-bar truss for thefirst run.

Design varisbles Best initial ECBO GOESL (ESL2)
design Final design Cyclel Cycle2 Cycle 3 Cycle4 Cycle5 Cycle 6 Fina design
1 Areagp (mm?) 9431.31 10635.35 14548.48 10484.85 10484.85 10785.86 11237.37 11237.37 10334.34
2 Areauottom (MM?) 13946.46 10635.35 10033.33 10785.86 10785.86 11688.89 11538.38 11538.38 11387.88
3 Areayetica (Mm?) 14698.99 4013.13 2207.07 3561.62 3561.62 3561.62 3260.61 3260.61 3561.62
4 Areagiagona (Mm?) 7324.24 4314.14 4163.64 5518.18 5518.18 4314.14 4314.14 4314.14 4163.64
5 X3 (mm) 2533.59 737.63 -3175.00 1250.76 1250.76 -3110.86 -2854.29 -2854.29 416.92
6 Y3 (mm) -2277.02 3175.00 2726.01 2148.74 2148.74 2148.74 2277.02 2277.02 3175.00
7 Xs (mm) -96.21 -865.91 -3175.00 -3046.72 -3046.72 -3110.86 -3175.00 -3175.00 -994.19
8 Ys (mm) -1186.62 481.06 1250.76 865.91 865.91 930.05 1058.33 1058.33 673.48
9 X7 (mm) 2341.16 -2341.16 -1956.31 -2405.30 -2405.30 -2597.73 -2533.59 -2533.59 -2212.88
10 Y7 (mm) -1571.46 -224.49 224.49 -32.07 -32.07 -32.07 224.49 224.49 -160.35
11 Xg (Mm) -2084.60 -3175.00 -1699.75 -2341.16 -2341.16 -2148.74 -2277.02 -2277.02 -2854.29
12 Yo (mm) -1250.76 -96.21 -288.64 -288.64 -288.64 -224.49 -160.35 -160.35 -160.35
Max. Displacement (mm) 14.76 (13 203.00(1) 205.12(1) 20250(1) 20250(1) 20246(1) 202.76(1) 202.76(1) 203.00(1)
Max. Stress (MPa) 86.98 (17°)  111.18(18) 130.13(15) 110.11(18) 110.11(18) 116.93(17) 109.86(17) 109.86(17) 114.01(17)
Mass (kg) 4470.86 2531.17 2621.58 2621.58 2621.58 2577.38 2570.62 2570.62 2521.75
Merit 4470.86 2531.17 2621.58 2621.58 2621.58 2577.38 2570.62 2570.62 2521.75
Iteration - 1153° 233 233 2324 150¢ 150¢ 150¢ 826°
Dynamic, static analyses - 46120, 0 14, 9320 14, 9320 14, 9280 14, 6000 14, 6000 14, 6000 33040, 0

Top members: 1, 4, 5, 12, and 16. Bottom members: 2, 6, 10, 14, and 18. Vertical members: 3, 7, 11, and 15. Diagonal members: 5, 9, 13, and 17.

2 Node number where the maximum displacement occurs. ® Member number where the maximum stress occurs. ¢ Transient analysis.
4| inear static analysis.
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Figure 4.5. Optimum configuration for the 18-bar truss.
4.7.2 Ten-bar Trusswith Material Nonlinearity

Figure 4.6 shows the configuration of the 10-bar truss subjected to a half sinewave load at
nodes 2 and 4. This example was solved in Kim and Park (2010) for continuous design variables
using a gradient-based optimization algorithm. The material nonlinearity is considered in this
problem. The Y oung’' s modulus is 200 GPa, the tangent modulus is 50 GPa, the yield stressis 200

M Pa, the Poisson ratio is 0.3, and the mass density is 7860 kg/m?.

To evaluate the proposed agorithm, this problem is also re-formulated as a discrete
variable problem. The optimization problem is to minimize the total mass of the structure. The
design variables are the cross-sectiona areas of the members (Table 4.6). The size variables are
selected from the discrete set of 100 elements where the range of the cross-sectiona areasisfrom
78.5 to 2826 cm? with 27.752 mm? increment. All members are subjected to stress limitations of
250 MPa in both tension and compression. Considering the peaks of the displacements and the
stresses, the time duration for the analysisis set from 0 to 0.03 second with time step of 0.0002
second. This gives 150 loading conditions for static response optimization with the ESL approach.

Each loading condition vector has 8 elements since there are 8 degrees of freedom for the truss.
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Figure 4.6. Schematic of the 10-bar truss and the applied dynamic load.

Table 4.4 shows results for 10 different runs of ECBO without the ESL cycles and the
results of GOESL with the three approaches, ESL1, ESL2 and ESL3. The datain the table for all
the 30 runsincludes: final mass (kg), mass at end of ESL cycles (kg), number of ECBO iterations
without the ESL cycles, number of dynamic analyses, and number of static analyses. It is
interesting to note that of the 30 runs, 4 runs converged to the best mass value, 10 runs converged
to the mass that was within 2.5% of the best value and 8 runs converged to within 5.0% of the best
value.

An examination of the averages and standard deviationsin Table 4.5 for this example leads
to the same conclusion as for Example 1. GOESL obtains better designs with less number of
dynamic analyses compared to ECBO without the ESL cycles, and ESL 2 approach performs more

reliably in obtaining the final design than ESL1 and ESL 3.
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Table 4.4. Datafor 10 different runs of thelO-bar truss.

Run
1 2 3 4 5 6 7 8 9 10
ECBO Mass (kg) 26.9 30.0 26.2 25.6 254 31.2 259 260 255 254
without No. of iterationsa 765 395 624 936 406 772 833 380 422 664
ESL cycles No. of dynamic analyses 30600 15800 24960 37440 16240 30880 33320 15200 16880 26560
Final mass (kg) 29.6 258 25.2 254 254 25.6 277 258 259 25.6
Mass at end of ESL cycles (kg) 61.7 58.3 47.0 63.6 435 87.4 770 459 1404 549
%‘ No. of iterationsa 465 252 313 187 219 202 180 351 363 194
k| No. of cycles 6 7 14 8 7 7 5 7 7 5
No. of dynamic analyses 18606 10087 12534 7488 8767 8087 7205 14047 14527 7765
No. of static analyses 37640 44800 81360 42960 50160 45240 30720 48480 59120 33720
Final mass (kg) 26.1 25.2 26.1 25.7 26.1 26.1 252 253 25.7 259
Mass at end of ESL cycles (kg) 41.6 29.6 39.0 36.1 45.2 61.1 68.9 350 51.6 39.6
ﬁ % No. of iterationsa 374 294 227 251 267 258 417 162 339 345
8 il No. of cycles 7 21 9 10 6 6 5 11 5 14
No. of dynamic analyses 15058 12054 9206 10180 10764 10404 16750 6634 13630 13996
No. of static analyses 46200 119080 59720 63200 47640 33120 29000 66000 39720 80120
Final mass (kg) 27.7 25.2 27.0 259 27.6 30.2 287 2711 253 26.2
Mass at end of ESL cycles (kg) 54.3 79.4 63.7 74.6 83.8 86.1 7717 632 65.2 75.3
g No. of iterationsa 255 242 341 204 283 354 138 113 324 409
k| No. of cycles 5 5 5 7 6 5 5 5 5 5
No. of dynamic analyses 10270 9750 13710 8258 11404 14230 5590 4590 13030 16430
No. of static analyses 29280 25480 27160 35280 30560 25520 27240 26120 35200 33560

aECBO iterations without ESL cycles.
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Table 4.5. Comparison of averages and standard deviations for 10 runs of thelO-bar truss.

Averages Standard deviation
Metric ECBO ESL1 ESL2 ESL3 ECBO ESL1 ESL2 ESL3
Alone Alone

Final mass (kg) 26.8 26.2 25.73 27.08 2.1 1.36 0.39 1.56

Mass at end of ESL cycles (kg) - 67.96 44.75 72.32 - 28.97 12.33 10.26

No. of dynamic analyses 24788 10911 11869 10726 8268 3849 3025 3812

No. of static analyses - 47420 58380 29540 - 14496 26569 3909

Table 4.6. Initial and final design of 10-bar truss of thefirst run.
Design variables Best initia — =20 GOESL (ESL2) .
(mm?) design Final design Cyclel Cycle2 Cycle 3 Cycle4 Cycle5 Cycle6 Cycle7 design
1 A1 439.28 439.28 855.57 855.57 661.30 661.30 661.30 661.30 661.30 605.80
2 Az 494.79 300.52 411.53 272.77 134.01 134.01 161.76 189.51 189.51 134.01
3 Az 1632.64 661.30 550.29 550.29 550.29 550.29 550.29 550.29 550.29 522.54
4 As 1771.40 78.50 439.28 411.53 217.26 217.26 217.26 189.51 189.51 161.76
5 As 1632.64 106.25 411.53 217.26 134.01 134.01 134.01 134.01 134.01 161.76
6 As 1382.87 217.26 1438.37 356.03 161.76 161.76 161.76 217.26 217.26 106.25
7 A7 383.78 550.29 1188.60 800.07 689.06 689.06 689.06 661.30 661.30 328.27
8 As 134.01 189.51 1327.36 1327.36 1299.61 1299.61 1299.61 1299.61 1299.61 439.28
9 Ag 605.80 78.50 189.51 633.55 245.02 245.02 245.02 217.26 217.26 217.26
10 Ao 1299.61 328.27 494.79 439.28 217.26 217.26 189.51 189.51 189.51 161.76
Max. Stress (MPa) 242.60 (73  249.88 (9) 243.92(3)  24857(3) 252.37(2) 252.37(2) 25050(3) 246.16(3) 246.16(3) 249.15(7)
Mass (kg) 84.74 26.92 67.85 56.51 41.83 41.83 41.76 41.58 41.58 26.05
Merit 84.74 26.92 67.85 56.51 43.10 43.10 41.93 41.58 41.58 26.05
Iteration - 765 285 163 125 207 125 125 125 374
Dynamic, static analyses - 30600, 0 14, 11400 14, 6520 14, 5000 14, 8280 14, 5000 14, 5000 14, 5000 14960, 0

aMember number where the maximum stress occurs.
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Figure 4.7. Convergence history of 10-bar of the first run.

The best initial and final designs of thefirst run of ECBO without ESL cycles and GOESL
using ESL2 are shown in Table 4.6. For the same initial population ECBO with ESL2 found a
lighter design of 26.05 kg. After 8 ESL cycles, thetotal structure mass became 41.58 kg (the best
design is 59.62% lighter). As shown in Figure 4.7, GOESL converges faster than ECBO without
ESL cycles. ECBO reachesthe best design of 26.92 kg at iteration 765 and GOESL needsjust 119
iterations to obtain a similar mass. That is, with a population of 40 designs, ECBO needs 25728
more dynamic analyses (646 iterations) than GOESL. The total time needed for ECBO without
ESL cyclesand for ECBO with ESL 2 to reach the best design are 18.36 minutes and 10.16 minutes,

respectively (ESL step took only 1.18 minutes).

The average of fina masses and the average of total number of dynamic analyses of the
proceeding two examples show that the proposed method (GOESL) gives better results. The best

design from dynamic analysis approach (the second approach, ESL2) shows better convergence
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behavior and final designs of the three approaches. Therefore, this approach isused in the next two

examples.

4.7.3 Two-story Two-bay Frame

This design exampleis a2-story, 2 bays planar steel frame having 4 beams and 6 columns
and has not been solved in the literature before. It is modeled using SAP2000 and MATLAB with
19 nodes and 20 elements. Note that in order to get more accurate analysis results intermediate
nodes are introduced for each member of the frame. The frame has 48 degrees of freedom that is
subjected to a half sine wave load at nodes 2 and 3 and uniformly distributed static load of 5 kip/ft
on members 13 to 20 as shown in Figure 4.8. All ground supports are fixed. Material properties

are: Young's modulus, E=29000 ks, yield stress, Fy=50 ksi, and Poison’sratio, v=0.3.
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Figure 4.8. Schematic of the 2-story 2-bay frame and the applied dynamic | oad.

Columns and beams are selected from the first lightest 100 standard W-shapes provided in
AISC tables (ASIC, 2017). The sections are rearranged in an ascending order based on their
weight. The problem is formulated as an integer variable optimization problem where the section
number is treated as a design variable. To further explain the design variables, consider a small

part of the AISC (2017) wide-flange sectionstable shown in Error! Reference sour cenot found..
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Once an integer value is assigned to a design variable, a section is specified. For example, if a
design variable is assigned value of 4, then the section from the Table 4.7 is W44X230. For this
section, the weight per foot is 230 |bs, the cross-sectiona area is 67.8 inch?, total depth is 42.9
inches, and so on. In other words, all the cross-sectional properties are available to formulate and
check the performance constraints. It is seen that there is no continuous functional relationship
between the section number and the cross-sectional properties. Therefore, it is not possible to
formulate and differentiate the problem functions with respect to the design variables.

Table 4.7. ASIC W-Shapes Database (partial).

Section oo W Aird) d Web Flange AXis X-X hy Pa Ps
number P (Ib/ft) (in) tw t2 | by b I Z S I @in) | @n) | (in)
(in) (in) | (in (in) (in®) (in®) | (in®) | (in)
1 Wa4x335 | 335 | 985 | 440 | 1030 | 12 | 159 | 177 | 31100 | 1620 | 1410 | 178 .. 422 | 132 | 148
2 X290 200 | 854 | 436 | 0865 | 7716 | 158 | 158 | 27000 | 1410 | 1240 | 178 .. 420 | 131 | 147
3 X262 262 | 772 | 433 | 0785 | 716 | 158 | 142 | 24100 | 1270 | 1110 | 177 .. 419 | 131 | 147
4 X230 230 | 678 | 429 | 0710 | 358 | 158 | 122 | 20800 | 1100 | 971 | 175 .. 417 | 130 | 146
213 | waxiz | 13 | 283 | 416 | 0280 | w8 | 406 | 0345 | 123 | 628 | 546 | 172 .. o7 | 405 | 500

The strength requirement for the membersis based on the AISC interaction ratio constraint

expressed as follows:

Pe L 8( M) 1< if Pu
E+9(¢anz) 1<0 if 2->02

(4.20)

P M o P
Pu o (Muz \ 4 < Pu
PP (¢an2) 1<0 if 2% <02

here ¢ istheresistance factor (¢, = 0.85 and ¢, = 0.90 for compression and tension, respectively).
¢»=0.90 istheflexura resistancefactor. P, and P, arethe required and the nominal axial strengths
(compression or tension) (kips), respectively. M,,, isthe required flexura strength (kip-ft). M,,, is
the nominal flexural strength (kip-ft). Constraints in EqQ. (4.20) needs to be imposed at each point

along the axis of every member in the structure. Thus, the equation represents infinite constraints.

107



In the numerical process, the constraints are evaluated at several points aong the axis of the
member and they imposed at the point where they have maximum value. These constraint values

are then used to evaluate the penalty function.

In Eq. (4.20), evauation of B, and M,,, is an involved process (AISC, 2017) that requires
checking of several failure modes (i.e., several “if then else”’ requirements). For example, to find
B,, first one needs to find whether the member force is tensile or compressive. For tension
members, P, is calculated based on whether the gross section yields or the net section ruptures.
For compression members, P, is calculated based on consideration of several failure modes, such
as yielding of the material, local buckling of flanges or the web (elastic or inelastic), and global
buckling (elastic or inelastic). Similarly, calculation of M,,, invoves checking several flexural
failure modes. All the foregoing calculations involve various cross-sectiona properties of the

sections that are availablein Table 4.7.

Thus, it is concluded that it is not possible to obtain a functional expression for the
constraints in Eq. (4.20) in terms of the design variables, the integer number of the sections. Even
if that were somehow possible, there would be several discontinuities in the functions due to all

the “if then else” requirements mentioned in the foregoing paragraph. Also notice that constraints

in Eq. (4.20) have a discontinuity at (:—;f = 0.2. Therefore, Due to al these reasons, the gradient-

n

based methods are not applicable for this class of applications.

Considering the peaks of the displacements and the stresses, the timerange for the analysis
isset from 0 to 4 second with time step of 0.04 second. This gives 100 loading conditionsfor static
response optimization with the ESL approach. Each |oading condition vector has 48 elements since

there are 48 degrees of freedom for the frame.
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This example was a so solved without the intermediate nodes for the members. That model
was more efficient to solve. However, the final designs were not as good as with the increased
degrees of freedom. The reason is that with more degrees of freedom a more accurate dynamic

response is obtained resulting in better ESLs as well.

Table 4.9Table 4.8 gives the best initial and final designs of the first run. For the same
initial population GOESL found alighter design of 9108 Ib. After 6 ESL cycles, the total structure
weight becomes 9996 Ib (the best design is 9.75% lighter). As shown in Figure 4.9, GOESL
converges faster than ECBO without ESL cycles. ECBO reaches the best design of 9492 |b at
iteration 207 whereas GOESL needs 43 iterationsto obtain asimilar design of 9492 |b. From Table
4.9, the average of 10 individua runs for final weight is better with GOESL than with ECBO
without the ESL approach. The average of total number of dynamic analyses shows that GOESL

needs about half the number dynamic analyses than ECBO without ESL cycles to reach the final

design.
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Figure 4.9. Convergence history of 2-story 2-bay frame.
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Table 4.8 Initial and final design of 2-story 2-bar frame of the first run.

Design Begt initial ECBO GOESL (ESL2)
variable  Member no. . . . . .
no. design Final design Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6  Fina design
1 1-2 W27X281 W24X229 W40X167 W24X229 W30X90 W27X281 W36X160 W36X160 W40X167
2 34 W30X261 W36X529 W36X302 W27X129 W33X354 W36X182 W33X354 W33X354 W36X302
3 5-6 W36X135 W24X229 W24X306 W24X229 W27X129 W30X108 W24X306 W24X306 W24X306
4 7-8 W40X 324 W33X241 W36X282 W27X539 W27X307 W30X90 W36X182 W36X182 W36X282
5 9-10 W36X160 W36X282 W36X247 W36X135 W30X99 W33X130 W36X256 W36X256 W36X247
6 11-12 W27X539 W33X354 W36X160 W33X318 W30X173 W36X256 W36X182 W36X182 W36X160
7 13-14 W27X258 W27X281 W24X306 W24X306 W24X250 W27X217 W24X306 W24X306 W24X306
8 15-16 W30X 148 W27X336 W27X258 W27X258 W27X336 W27X281 W27X258 W27X258 W27X258
9 17-18 W24X335 W33X318 W33X130 W27X217 W27X258 W30X108 W30X90 W30X90 W33X130
10 19-20 W24X250 W30X235 W30X211  W27X161 W30X108 W30X124 W30X90 W30X90 W30X211
Max. interaction ratio 3.953 (6% 0.999 (4) 1.050(8) 0.920(5) 3.531(6) 1.155(14) 0.985(10) 0.985(10) 0.998(5)
Weight (Ib) 10476 9492 10596 11832 11184 9948 9996 9996 9108
Merit 907201.4 9492 12928.15 11832 4249854  17378.3 9996 9996 9108
Iteration - 207 142 214 121 154 154 63 171
Dynamic, static analyses - 8280, 0 14, 5680 14, 8560 14, 4840 14, 6160 14, 6160 14, 2520 6840, 0
aMember number where the maximum interaction ratio occurs.
Table 4.9. 10 individual runs data of the 2-story 2-bay frame.
Run
1 2 3 4 6 7 8 10 Average SD
ECBO Weight (1b) 9492 9708 9720 9972 9240 9168 9744 9924 9468 9708 9614.4 254.0
without No. of iteration 207 271 297 303 214 215 277 278 328 347 274 46
ESL cycles No. of dynamicanalyses 8280 10840 11880 12120 8560 8600 11080 11120 13120 13880 10948 1843
Fina weight (Ib) 9108 9216 9372 9264 9288 9132 9144 9552 9132 8988 9219.6 159.0
» ESL final weight (Ib) 9996 10152 10488 11360 10100 10440 10020 10224 9996 10572 10334.8 417.8
ﬂ ESL2 No. of iterations 171 160 117 158 175 121 124 90 160 178 145 30
8 No. of cycles 6 5 7 5 8 9 5 7 6.2 15
No. of dynamic anadlyses 6924 6470 4778 6390 7070 4952 5086 3670 6470 7218 5903 1194
No. of static analyses 33920 19440 36480 29720 28880 42040 35800 18640 17600 33920 29644 8470
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4.7.4 Two-story Two-bay Frame Subjected to Blast Loads with Material and Geometric
Nonlinearity

The configuration of this numerical example is the same as the previous example except
that it is subjected to blast load. This example has aso not been solved in the literature. For
simplicity, the blast load is modeled as triangle and the negative pressure phase is neglected. In
addition, auniformly distributed static load of 5 kip/ft on members 13 to 20 is added as shown in
Figure 4.10. All ground supports are fixed. Young's modulus, £=29000 ksi, yield stress, F,=50
ksi, ultimate stresses, F,,=65 ksi and Poison’s ratio, v=0.3. Due to the dynamic effects resulting
from the high strain rates, the dynamic increase factors (DIF) for yield and ultimate stresses of
1.19 and 1.05, respectively, are used (Gilsanz et al., 2013). Since the average yield stress for
structural steels having a specified minimum yield stress of 50 ksi or lessis generally higher than
the specified minimum, it is recommended that the minimum design yield stress, as specified by
the AISC (2011) specification, be increased by 10 percent. This increasing factor is called the
strength increasefactor (SIF). Also, for all modesof failure, it shall be permissibleto use astrength
reduction factor (¢) of 1.0 instead of smaller than 1 value (ASCE, 2011). The reader isreferred to
ASCE (2010), ASCE (2011), Dusenberry (2010), Gilsanz et al. (2013), and DoD (2008) for more

details. Therefore, the new strength values are as follows:

F4, = (SIF)(DIF)E, = (1.1)(1.19)(50) = 65.45 ksi (4.21)

Fy, = (DIF)E, = (1.05)(65) = 68.25 ksi (4.22)
Columns and beams are selected from the first lightest 150 standard W-shapes provided
in AISC tables (ASIC, 2017) after rearranging sectionsin an ascending order based on their weight.
Columns are designed to remain elastic and subjected to the A1SC interaction ratio constraint (Eq.

(4.20)) while beams are alowed to develop plastic hinges. Steel Beams-Flexure e astic-perfectly
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plastic hinges provided by SAP2000 v.20 are modeled near the start of members 13, 15, 17, and
19 and near the end of members 14, 16, 18, and 20 as shown in Figure 4.10. The locations of these
plastic hinges are chosen based on observing where maximum bending moments occur. The
maximum member end rotation shall be 1 degree and the maximum side-sway deflection (or inter-

story drift (ISD)) islimited to /50 of the story height (low response design (ASCE, 2010)).

ISD <= (29in) (4.23)

where H is the height of the story. It was noticed that when there are many plastic hinges the
numerical solver stops converging before reaching the maximum analysis time which indicates
the structure becomes unstable. In this case, G (in Eq. (4.7)) is set to 10 to eiminate structurally

unstable designs in the optimization process.
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Figure 4.10. Schematic of the 2-story 2-bay frame and the applied blast load.

Considering the blast load duration and the peaks of the response, the time range from the

analysisis set from 0 to 1.25 second with time step of 0.0025. This gives 500 loading conditions

for static response optimization with the ESL approach. Each loading condition vector has 48

elements since there are 48 degrees of freedom for the frame.
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This example was solved with 9 joints and 10 members (no intermediate nodes). Similar
to the previous example, it was observed that increasing the degrees of freedom makes GOESL

converges to better designs for the same reasons as noted earlier.
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Figure 4.11. Convergence history of 2-story 2-bay frame subjected to blast |oad.

Table 4.10 gives the best initial and final designs for the first run of the problem. For the
same initial population, GOESL found lighter design of 13296 |b. After 5 ESL cycles, the tota
structure mass becomes 15264 1b (the best design is 14.8% lighter). As shown in Figure 4.11,
GOESL converges faster than ECBO without ESL cucles. That is, when ECBO without ESL
cycles obtains the total weight of 14160 |b at iteration 232, GOESL needs 102 iterations to reach
a similar structural weight. That is, with population of 40 designs, ECBO without ESL cycles
needs 130 moreiterations (5130 dynamic analyses) than ECBO with ESLs. Table 4.11 summarizes
resultsfor 10 different runsfor ECBO without the ESL cycles and for GOESL. The average of the
final weights and the total number of dynamic analyses show that GOESL obtains not only better

average but also needs significantly smaller number of dynamic analyses (Iess than half) compared
to ECBO without the ESL cycles.
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Table 4.10. Initial and final design of 2-story 2-bar frame subjected to blast load of the first run.

. Best ECBO GOESL (ESL2)

Dedgn - Member g Fina | ooz | Ordes | O o Find
variable no. no. design design Cyclel ycle ycle ycle4 ycle5 design

1 1-2 W21X101 W21X147  WIO0X77  W24X76 W36X150 W36X150 W36X150 W18X130

2 3-4 W21X57 W33X130 W21X83  W18X76 W36X150 W36X150 W36X150 W36X135

3 5-6 W21X44  W14X82  W21X111 W14X109 W36X150 W36X150 W36X150 W16X89

4 7-8 W14X120 W18X50 W18X86  W24X84 W12X120 W12X120 W12X120 W27X102

5 9-10 WI10X39  W14X61  W24X104 W24X103 WI10X68 W10X68  WI10X68  W12X50

6 11-12 W10X100 W33X118 W30X90 WI10X88 W10X68 WI10X68 WI10X68  W24X62

7 13-14 W33X130 W27X129 WI12X45  W21X44 W40X149 W40X149 W40X149 W40X149

8 15-16 W12X53  W14X48 W6X25 W10X26  W12X45  W12X45  W12X45  W18X50

9 17-18 W14X74 wW8x40 W21X50 W10X54  WI10X45 W10X45 WI10X45  W12X35

10 19-20 W18X65  W12X79 W21X50  W21X50 W21X44  W21X44  W21X44  W16X36

Max. interaction ratio 2798 (6% 0.979(7) 1.000(3) 1.000(3) 1.000(3) 0.934(5)

Max. rotation (degree) 1.449 (2°)  1.000 (2) Unstable®  Unstable® 0.964(6) 0.964(6) 0.964(6) 0.8697 (2)
Max. 1SD (in) 2.578 2.343 2.155 2.155 2.155 1.964
Weight (Ib) 13260 14160 10692 10608 15264 15264 15264 13296
Merit 1441347 14160 1293732 1283568 15264 15264 15264 13296
Iteration - 232 136 92 133 84 152 125
Dynamic, static analyses - 9280, 0 14, 5440 14, 3680 14, 5320 14, 3360 14, 6080 5000, 0

aMember number where the maximum interaction ratio occurs. ® Node number where the maximum rotation occurs.
¢ The numerical solver stops converging (G=10).

Table4.11. 10 individual runs data of the 2-story 2-bar frame subjected to blast load.

Run
1 2 3 4 5 6 7 8 9 10 Average SD
ECBO without Wei ght { b_) 14160 10680 11868 13080 15785 12840 11496 11724 12960 12468 12706 1382
ESL cycles No. of |te_rat|0n 232 388 400 188 296 187 366 370 353 393 317 81
No. of dynamic analyses 9280 15520 16000 7520 11840 7480 14640 14800 14120 15720 12692 3235
Final weight (Ib) 13296 11976 12180 12348 12192 11604 12160 13956 13980 11940 12563 858
ESL final weight (Ib) 15264 15044 21177 19774 15636 18183 18028 20182 16566 15108 17496 2303
ﬂ ESL2 No. of iterations 125 126 174 200 209 165 171 162 96 87 152 41
8 No. of cycles 5 5 7 5 5 5 5 5 5 5 5.2 0.6
No. of dynamic analyses 5070 5110 7058 8070 8430 6670 6910 6550 3910 3550 61328 1658
No. of static analyses 23880 29240 24920 19200 20320 19120 23400 15960 20640 15760 21244 4176
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4.8 Concluding Remarks

Metaheuristic algorithms are often used to optimize problems when it is not possible to
compute gradients of the cost and/or constraints functions and/or design variables are not
continuous. However, depending on the number of design variables and number of elementsin the
allowabl e discrete set, these stochastic algorithms require too many structural analyses. Also, more
than one individual run is needed to ensure that the best design has been obtained (since these
algorithms are stochastic in nature). That is, optimizing transient problems using metaheuristic
algorithms is computationally expensive because every simulation requires solving a system of
differential equations. One way to reduce the wall-clock time to solve problems using
metaheuristic algorithms is to use parallel processing. This aspect has not been addressed in the

current research.

In search for a more efficient method for dynamic response structural optimization, the
Equivaent Static Load (ESL) approach with gradient-free al gorithms was examined in this study.
In the proposed method, the transient problem was transformed to ESL sets that generated the
same displacement field as with the transient analysis for a given design. Then, the sets of
generated ESLs were used as a multiple loading conditions in the static response structural
optimization process. Since it was not clear which design should be used at the end of each ESL
cycleto generate ESLsin metaheuristic algorithms, three approaches were studied: the best design
from static analysis (ESL1), the best design from dynamic anaysis (ESL2), and the heaviest

feasible design from dynamic analysis (ESL3).

Based on the analysis of results of four numerical examples (2 linear and 2 nonlinear), the

following conclusions are drawn:
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1- ESL approach with metaheuristic algorithmsis not able to obtain the best design because the

ESLs calculated for the chosen member of the population are not suitable for the remaining
members of the population. Also, a small change in design variables is not guaranteed in
metaheuristic algorithms from one ESL cycle to the next. This violates the assumption of
small changesin design from one ESL cycles to the next with the gradient-based methods (at
least near the local minimum point).
At the end of ESL cycles, improved designs are obtained athough not the best design.
At the end of ESL cycles, the better designs and the improved popul ation may be passed on to
the metaheuristic method without the ESL cycles to improve these designs further, if desired.
In most cases, it is shown that the proposed method can reach the best design with substantially
less number of dynamic anal ysesthan with the metaheuristic a gorithm without the ESL cycles.
Among the three ESL approaches investigated, ESL 2 ranked first, ESL 1 was close second and

ESL 3 was third based on reliability of obtaining the best design.

4.9 Reproducing Results

To reproduce results provided in this work, al the necessary information about design

examples are described in Section 4.7, the steps to implement GOESL is shown in Section 6, and

the implementation of ECBO is provided in Kaveh & Ghazaa (2014). Appendix B includes

MATLAB code for the 18-bar truss design example.
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CHAPTER 5

OPTIMIZATION OF FRAMED STRUCTURES SUBJECTED TO BLAST LOADING

Abstract

In this chapter, optimum design of three-dimensional (3D) framed steel structure subjected
to blast loading is considered. The basic idea of thisresearch isto develop a practical formulation
for the design optimization problem and to study the effect of including blast loads in the design
process. The optimization problem is formulated to minimize the total weight of the structure
subjected to American Institution of Steel Construction (A1SC) strength requirements and blast
design displacement constraints. The design variables for beams and columns are the discrete
values of the W-shapes selected from the AISC tables. A car carrying 250 Ibs of Trinitrotoluene
(TNT) with 50 ft standoff distance from the front face is modeled as the source of the blast loading.
Pressure-time histories are cal culated on the front, sides, roof, and rear faces of the structure. Then
linear and nonlinear dynamic analyses are carried out in the optimization process. Since the
problem functions are not differentiable with respect to the design variables, the gradient-based
optimization algorithms cannot be used to solve the problem. Therefore, metaheuristic algorithms
are used to solve the optimization problem. These agorithms are coded in MATLAB and
interfaced with the structural analysis program SAP2000 using its Open A pplication Programming
Interface (OAPI). Example problems are solved to study the formulation of the optimization
problem and its solutions. The problems are 4-bay x 4-bay x 3-story frames under serviceability
and blast loading. It is shown that penalty on the optimum structural weight is substantial for

designing structures to withstand blast |oads

117



5.1 Introduction

As explained in Chapter 2, a small charge explosion could cause catastrophic local or
global failure of the structure. The attacks on the World Tarde Center in New Y ork City in 1993
and Murrah Federa Building in Oklahoma City in 1995 showed the great damage that could
happen due to a blast. In both attacks, structural failure caused more casualties and injuries than

the blast wave itself (Cormie, 2009).

The main objective of this work is to present a practical formulation for optimum design
of 3D framed steel structures subjected to blast loading. To this end, design variables, cost
function, and constraints are studied and explained. The design variables are frames members
(beams and columns) which are considered to be discrete (specifically, W-shapes selected from
the AISC tables (AISC, 2017)) and are organized in groups based on structura symmetry. The
objectivefunction isthetotal weight of the structure which depends on the discrete design variable
values. Constraints are the AISC code strength requirements and DoD (2008) displacement
requirements. They are also dependent on the discrete design variables, however, their functional
form is not possible. Thus, the gradient-based optimization agorithms are unsuitable for this
application because the problem functions cannot be differentiated with respect to the design
variables. Therefore, metaheuristics (stochastic) optimization algorithms are used. In these
algorithms, gradients are not needed to find an optimum solution. Instead, they search the entire
design spacefor the best sol ution based on some stochastic strategy. There are many metaheuristics
algorithms; however, in this study, Hybrid Harmony Search - Colliding Bodies Optimization

(HHC) is utilized to find the minimum weight structure.

MATLAB is used to implement the agorithms and to model design examples by

interfacing with the structural analysis program SAP2000 using its Open Application
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Programming Interface (OAPI). That is, algorithms start with random design vectors that are sent
to SAP2000 for structural analysis, then SAP2000 sends back information needed (nodal
displacement, interaction ratio, etc.) to evaluate problem functions. Following this, MATLAB uses
this data to arrange and update design vectors using optimization algorithms and then send them

back to SAP2000 for re-evaluation.

5.2 Review of Literature

Blast-resistant analysis of structures has been pursued in the literature for many years. Most
of the research has focused on dynamic analysis, progressive collapse situations, and members
(such as columns, beams or slabs) subjected to blast loading. However, no study is available that

considers the optimum design of 3D structures subjected to blast oading.

Steaet a. (1977) presented a report that provided criteria and procedure for the design of
framed steel structures subjected to blast loading based on dynamic analysis. Inelastic behavior of
the frame members and second order effects were considered in the analysis. Numerical examples
were discussed and solved using a FORTRAN computer program caled Dynamic Nonlinear
Frame Analysis(DYNFA). Leeet al. (2011) studied the dynamic collapse behavior of two moment
steel frames using nonlinear finite element analysis. The first model represented a blast and post-
blast scenario and the second frame was modeled with a missing column. The study showed that
the strain rate should be considered to predict more exact progressive collapse response. Jeyarajan
et a. (2015) investigated the response of a 10-story framed steel building subjected high blast
pressure using ABAQUS. The source of the blast load was a charge of 500 kg TNT placed at a
distance of 20 m from the building. Various lateral bracing systems were studied to show their
contributions to progressive collapse analysis. The study showed that higher redundancy in frames

could redistribute the damaged members' |oads to other floor levels and the vertical displacement
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could be reduced. On the other hand, unbraced frame needs rigid beam-column connections to
avoid very large displacement due to members' loss. Khaledy et al. (2018) study the optimum
design of 2D steedd moment frames under blast loading using three techniques. Nonlinear
Programming by Quadratic Lagrangian (NLPQL), Particle Swarm Optimization (PSO), and Multi
Island Genetic Algorithm (MIGA). The weight of the structure is considered as the objective
function and design variables are cross-sectional areaof members. Design variables are continuous
and other geometrical properties of members are formulated based on polynomial functions of the
cross-sectional areas. Only displacement constraints are considered. It is seen that thisformulation
of the problem is not practical since the members cannot be directly selected from the AISC tables

and the design code constraints cannot be imposed.

5.3 Blast Design

Similar to seismic design, it is expected that some of components will experience
substantial nonlinear response because designing structures subjected to blast loading to remain
elastic is usualy uneconomical (ASCE, 2010). Therefore, in designing blast-resistance structures,

the maximum dynamic deflection and rotation are the criterion to prevent components failure.

5.3.1 Material Design Strength

Materia under high strain rate loadings, such as blast |oads, behaves differently from low
rate and static loads. Generaly, materials become stiffer under high rate loadings which means
improvement in their mechanical properties. In addition, in design for blast loads, it is allowed to
use the expected actual strength of the material instead of the minimum specified values in blast

design.

Thehigh strain rate effect on some mechanical propertiesof stedl issummarized asfollows:

1- The modulus of elasticity (E) remains the same.
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2- The yield strength (f,) and ultimate tensile strength (f,,) increase to the dynamic yield

strength (f3,,) and the dynamic ultimate strength (f5,,), respectively.

Dynamic increase factors, DIF, are used to modify the static strength due to high rate

dynamic loads (DoD, 2008).

The average yield stress of steel grades 50 ksi or less is about 10% higher than the stress
value specified by ASTM. Thus, for blast-resistant design, the yield stress is 1.1 times the
minimum yield stress. This factor is called the strength increase factor (SIF) or average strength

factor (ASF). SF should not be used with high strength steels (Gilsanz et al., 2013).

5.3.2 Strength Reduction Factors and Load Combinations

As mentioned above, plastic deformations are allowed in the design of structures subjected
to blast loads because of the nature of the blast load and to achieve an economical design. Also, it
can use the nominal strength without the strength reduction factor (i.e. ¢ =1) for al modes of
failure (ASCE, 2011). Blast loads are not combined with the loads that are not expected to be
present when the blast happens. That is, wind, earthquake, part or al the live loads are not
combined with blast loads. The basic load combination for all construction materialsis asfollows

(ASCE, 2010):
1.0 DL + 1.0 LL + 1.0 BL (5.1)

where DL isthe dead load, LL isliveload, and BL is blast load. In the absence of other governing

criteria, Gilsanz et al. (2013) allow the following load combination:

1.0 DL + 0.25 LL + 1.0 BL (5.2)
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5.3.3 Performance Requirements

There are many sources for response limits such as UFC 3-340-02 (DoD, 2008), Design of
Blast Resistant Buildings in Petrochemical Facilities (ASCE, 2010), FEMA 356 (ASCE and
FEMA, 2000), and New Y ork City Building Code (NYCBC, 2008). In this study, design criteria
for a structural system are used with a medium response design (ASCE, 2010). That is, the
maximum member end rotation shall be 2 degrees and the maximum side-sway deflection (or inter-
story drift (1SD)) is limited to 1/25 of the story height. To prevent extended structural collapse,
beams are alowed to devel op plastic hinges when columns are designed to remain elastic (Gilsanz

et al., 2013).

5.4 Blast L oading

When a blast occurs in the air, it forces the surrounding air out of its volume it occupies
and the air molecules pile-up. A blast wave happens after that and it carries a huge amount of
energy (Cormieet a., 2009). The blast wave travelsfast and its pressure decays exponentially until
it falls to the atmospheric pressure (positive phase). After that, the front wave pressure decreases
further to be less than the atmospheric pressure (negative phase) and finally back to ambient value
(Figure5.1). In Figure 5.1, P,, isthe peak overpressure or the incident pressure, P, isthe ambient
pressure, and P,, is the minimum negative pressure, B. is the reflected pressure, P~ is the
minimum negative reflected pressure, t, isthe arrival time, t, is the positive phase duration, and

t, isthe negative phase duration.
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Figure5.1. Blast wave pressure (Ngo, et a., 2007).

The most commonly used approach for blast wave scaling is Hopkinson-Cranz scaling (or

cube-root scaling). It is expressed as follows (Cormie, et a., 2009):

R

Z=W

(5.3)

where Z isthe scaled distance, R is the distance from the detonation source center to the point of
interest, and W is the charge mass expressed in pounds of TNT. There are many types of
explosives. TNT was chosen to be the blast |oad source. If another explosiveis used, an equivalent
TNT weight needs to be computed to use Eqg. (5.3); these are provided in conversion tables for

different explosives (Cormig, et a., 2009).

Hemispherical burst is considered in this work. It happens when an explosive charge is
close to the ground, so the incident wave reflects immediately from the ground and interacts with
the blast wave. To find blast wave properties of a hemispherical burst for a given scaled distance

(2), one can use Figure 5.2.
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Figure 5.2. The positive phase parameters of hemispherical wave of TNT charges (modified
from DaD, 2008).

In Figure 5.2, Py is the incident peak overpressure, Pr is the reflected pressure, iy is the
positive reflected impulse, isis the positive incident impulse, taisthe arrival time, toisthe positive
duration, U is the wave speed, and Lw is the wavelength. They are presented on the y-axis while
the x-axis represents the scaled distance Z. Blast loading cal culations used in this study follow the
methods presented in DoD (2008). For simplicity, a triangular ssimplification of pressure-time

history profileis used and the negative phase is ignored as shown in Section 5.8.2.

5.5 Formulation for Discrete Structural Optimization Problems

The problem isto find American Institute of Steel Construction (A1SC) standard W-shape

for each member of aframed steel structure and optimizeits performance. In general, the nonlinear
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undamped dynamic response optimization problem with discrete design variables can be expressed

as.
Find X = [x1,X3, v, Xppar]; X €D;; i =1,2,...,nvar (5.4)

to minimize f(X) (5.5)

subjectto M(X)it(t) + K(X,u(t))u(t) = p(t);t =ty ty, ..., t,

(5.6)
X, u(t),u(t),u(t),t) <0; foralltand k =1,2,...,1

where X is the vector of design variables with nvar unknowns, D; is a set of discrete values for
the ith design variable, f(X) is a cost function (in this study, f(X) is the total weight of the
structure), M is the mass matrix, K is the stiffness matrix (K is afunction of the design variables
and displacement vector for nonlinear dynamic analysis and just the design variables for linear
dynamic analysis), u is the dynamic displacements vector, u is the velocity vector, it is the
acceleration vector, p(t) isthe applied load vector, t is time (generally discretized for numerical
integration), n isthetotal number of the time steps, and g;, isthe kth constraint function that needs
to beimposed at all time points. The linear dynamic response problem is the same as the nonlinear

dynamic response problem except that K is not afunction of the displacement vector wu.

The constrained optimization problem defined in Egs. (5.4) to (5.6) needsto betransformed
into an unconstrained problem so that the metaheuristic algorithms can be used to solve the
problem. This can be done by defining amodified cost function F (X) to account for the constraint

violations, asfollows:

FX) =X +y6X)]* (5.7)

125



n

l
GX) =) ) max(0,gi(t) 59

i=1

where G (X) is a constraint violation function, 1 > 1 is exploration penalty coefficient (in this
study, ¥ = 10), & > 1 is penalty function exponent (in this study, ¢ = 2), and max(0, g, (t;)) =
0 isthe violation value of the kth inequality constraint at the time point t;. The present problem

has just inequality constraints.

A linear static response optimization formulation is used in Section 5.8.1and in equivalent
static loads and metaheuristic optimization (see Section 5.6). The linear static response

optimization problem subjected to n loading conditions can be stated as:
Find X = [X1,X2, ) Xnpar]l; Xx; € Di; i =1,2,....,nvar (5.9)

to minimize f(X) (5.10)

subjectto K(X)u, = p,

(5.12)

ke X) <0; k=12,....[; a=12,..,n
FOX) = FOO[L + G (5.12)
G(X) = Z :zlmax(o, Tea) (5.13)

where X is the vector of design variables with nvar unknowns, D; is a set of discrete values for
the ith design variable, f(X) is a cost function (in this study, f(X) is the total weight of the
structure), K is the stiffness matrix, p, is the ath loading condition, k is the total number of
constraints, n is the total number of the loading conditions (time steps), F(X) is a modified cost

function, G (X) isaconstraint violation function, 1 > 1 is exploration penalty coefficient (in this
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study, ¥ = 10), & > 1 is penalty function exponent (in this study, ¢ = 2), and max(0, g, (t;)) =

0 istheviolation value of the kth inequality constraint of the ath loading condition.

5.5.1 Design Variables

In this study, the AISC (2017) W-shapes available in manufacturer’s catalog are desired
for beams and columns. Sinceall sections are chosen from AISC tables and assignment of asection
specifies several cross-sectional properties for the member, the design variables are classified as

linked discrete variables (Arora, 2017).

Huang and Arora (1997) defined three types of discrete design variables for thiskind of a
problem; each one requiring a specific optimization strategy. In this study, design variable type 3
isappropriate. That is, one design variableisassigned for each member (the Al SC section number).
Once the section number is known, all the cross-sectional properties are known from the tables.

Thisway the design variables Egs. (5.1) and (5.2) become:
Fl nd X = [Sl, 52, ey Snvar] (5.14)
Simin < Si < Simax (5-15)

where S; is an AISC W-shape number, i € [1,2, ..., nvar], Sipmin @d Sinq, e the lightest and
the heaviest sections, respectively. In numerical calculations, the W-shapes from the AISC table

are re-arranged in an ascending order based on their weights.

5.5.2 Cost Function

The cost function is the criterion that is used to compare feasible designs to find the
optimum solution (Arora, 2017). In this study, the problem is to minimize the total weight of the

structure (in kips). Thus, Egs. (5.5) and (5.10) become:
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NG MK
W0 = > g > L ®

ng=1 mk=1

where W is the total weight of the structure, X is the design vector, NG is the total number of
member groups for the structure, w,,, isthe weight per unit length (kips/ft) of the membersin the
ngth group (available in AISC tables), MKis the number of members in the ngth group, and L,

isthe length of the mkth member (ft).

5.5.3 Constraints
Restrictions imposed on the structural members are: the strength requirements given in
AISC manual, inter-story displacement constraints, and geometrical requirements. These

constraints are implicit functions of the design variables and are explained in the following

paragraphs.

5.5.3.1 Strength Constraints
According to the AISC (2017), symmetric members subjected to axial force and bending

must satisfy the interaction ratio and shear force strength requirements:

P_u+§(_Mux 4 My >_1 <0 if 2 >0.2
¢P,

¢Py 9 \PpMnyx ¢any n
(5.16)
Py Myx Muy ) _ < if Pu
2o (cbem * ¢any> L=<oif orn S 0.2
u< ¢y Vi
" (5.17)
-1<0
b W

Here ¢ istheresistance factor (¢, = 0.85 and ¢, = 0.90 for compression and tension, respectively).

¢p = 0.9 istheflexura resistancefactor. B, and B, aretherequired and the nominal axial strengths
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(compression or tension) (kips), respectively. M, and M,,,, are the required flexural strengths
about the major and the minor axes (kip-ft), respectively. M, and M,,,, are the nominal flexural
strengths about the mgjor and the minor axes (kip-ft), respectively. M,, and M,, are required and
the nominal flexural strengths about major or minor axes. 1, and V}, are required and the nominal

shear strengths (kips), respectively. ¢,, =0.9 isthe resistance factor for shear.

Evaluationof P,, M,, and M,,, in Egs. (5.16) isaninvolved process that requires checking
of several failure modes (i.e., several “if then else” statements). For example, to find B,, first one
needs to find whether the member force is tensile or compressive. For tension members, B, is
calculated based on whether the gross section yields or the net section ruptures. For compression
members, P, is calculated based on consideration of several failure modes, such as yielding of the
material, local buckling of flanges or the web (elastic or inelastic), and global buckling (elastic or
inelastic). The nominal strength for flexure of major or minor axis bending (M,,, or My, in Eq.
(5.16)) depends on categorization of the member as compact, noncompact, or slender. Compact
sections can devel op full plastic strength before local buckling happens. Plastic moment (yielding)
and lateral-torsional buckling are considered in cal culating M,,. Noncompact sections can develop
partial yielding in compression but they buckle inelastically before full plastic strength. Lateral-
torsiona buckling and compression flange local buckling are considered in calculating M,,.
Slender sections buckle elastically before yield under compression. Compression flange yielding,
|ateral-torsional buckling, and compression flange local buckling are considered in calculating M, .
The nominal strength for flexure of minor axis bending is calculated considering plastic moment
and flange local buckling. 1, in Eq. (5.17) is calculated according to the limit states of shear yield
and shear buckling. That is, nominal strengths (P,, M,,, My, andV,) requirealot of calculations
that can be found in AISC (2017).
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Constraints in Egs. (5.16), and (5.17) need to be imposed at each point along the axis of
every member in the structure. Thus, each equation representsinfinite constraints. In the numerical
process, the constraints are evaluated at severa points along the axis of the member and they are
imposed at the point where they have maximum value. These constraint values are then used to
evaluate the penalty function defined earlier in the chapter. Thus, the total number of interaction

ratio constraints (Eg. (5.16)) equals the total number of members. Same is true for shear force

constraints (Eg. (5.17)). Also notice that constraintsin Eq. (5.16) have a discontinuity at (:—;‘=O.2.

In addition, the nominal strength calculations have severa discontinuities as explained in the
previous paragraph. That is, gradient-based optimization algorithms are not suitable for this class

of optimization problems.

5.5.3.2 Displacement Constraints
The maximum member end rotation shall be 2 degree and the maximum side-sway
deflection (or inter-story drift (ISD)) is limited to 1/25 of the story height (high response design

(ASCE, 2010)).

5, — 8,

19 = 0ral 1<0 (5.18)
5ru
8 = hy/25 (5.19)

where §,- and §,_, arelateral displacements of two adjacent stories(in), §,-, istheallowable lateral
displacement, and h,. istherth story height (in). At each node, SAP2000 eval uates displacements
and rotations in 3-dimentions. Displacements in x and y directions are extracted to evaluate Eq.

(5.19) to impose these constraints.
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5.6 Discrete Variable Optimization of Structures Subjected to Dynamic L oads Using
Equivalent Static L oads

Design of structures subjected to blast loads requires nonlinear dynamic anaysis (as
described in Section 5.4). Depending on the size of the structure to be designed, the nonlinear
dynamic analysis (numerical integration of system of nonlinear differential equations) might need
very long time. Metaheuristic algorithms require many structural analysesto reach thefinal design.
Using metaheuristic algorithms could be impractical for this type of a problem. Therefore,

optimization by transforming dynamic to static loads is more efficient.

One of the well-known dynamic to static loads transformation methods is based on the
displacement field obtained using dynamic analysis of the structure (Kang et al., 2001). That is,
the dynamic load istransformed into multiple equivalent static |oad sets. Then the equivalent static
loads (ESLs) are considered as multiple loading conditions in the linear static response
optimization process. This is called an ESL cycle of the optimization process. These cycles are
repeated until the final design is obtained. This method works fine for gradient-based algorithms
(Kang et al., 2001) and it is shown that ESL with metaheuristic algorithm (called GOESL) can
reduce the number of linear or nonlinear dynamic analyses drastically (Chapter 5). Thus, GOESL

isused in this study to optimize nonlinear dynamic problems.

5.7 Optimization Algorithms

Stochastic, metaheuristic or nature-inspired algorithms are based only on simulations and
do not require gradient information, such as the well-known genetic agorithms (GA) and ant
colony methods (AC). They use random search in the entire design space instead of just in the

neighborhood of the current design asin the gradient search techniques. Also, the discrete variables
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can be treated routinely. Therefore, they are suitable for both continuous and discrete design

variables and differentiable and non-differentiable problem functions.

In this study, Hybrid Harmony Search - Colliding Bodies Optimization (HHC) is utilized
to find an optimum design of every case of study. HHC uses two phases: first phase of HHC uses
the Improved Harmony Search (IHS) algorithm with a new design domain reduction technique.
This improves the performance of IHS. The second phase uses Enhanced Colliding Bodies
Optimization (ECBO). ECBO receives fina designs from the first phase to enhance them further

(see Chapter 4).

5.7.1 Improved Harmony Search

Geem, Kim, and Longanathan (2001) devel oped the harmony search (HS) algorithm based
on music improvisation process of jazz musicians. The algorithm starts by initially generating a
set of random designs from the design domain. Then in every iteration, a new design is generated
and analyzed. If thisdesign is better than the worst design in the current population, then it replaces
that design; otherwise, another design is generated. This optimization process is continued until a
limit on the number of iterationsis reached. HS has 4 parameters that need to be turned on before
starting the algorithm: harmony memory size (HMS), harmony memory consideration ratio
(HMCR), pitch adjusting rate (PAR), and maximum improvisations (or maximum number of

iterations).

Improved harmony search (IHS) is the same as HS, however, standard HS algorithm uses
fixed value of HMCR and PAR whilein IHS HMCR and PAR are adjusted with every iteration.
The main drawback of the standard HS algorithm is that it needs a large number of iterations to

find an acceptable solution (Mahdavi et al., 2007).
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5.7.2 Enhanced Colliding Bodies Optimization (ECBO)

This metaheuristic algorithm is developed by Kaveh and Mahdavi (2014). It isinspired by
the laws of one-dimensional collision. The algorithm works with a population of designs at each
iteration. It starts with random designsthat are stored in amatrix called the colliding bodies’ matrix
(CB). Each design in the population is considered as an object or body having pseudo-massthat is
calculated using the merit function value for each design. Then the entire population is ranked and
divided into stationary objects and moving objects. One dimensional collision between the bodies
is simulated using the conservation law of linear momentum and the coefficient of restitution.
Based on that, new velocities of the stationary and moving objects are evaluated. Each design in
the population is updated using the new velocities and random numbers. This process is repeated

until alimit on theiterationsis reached.

The enhanced version of the colliding bodies optimization (ECBO) uses a colliding
memory matrix (CM) to store some good designs. These designs replace the worst designsin the
CB matrix at every iteration. This way the good designs are always preserved. Also, a parameter
Pro € [0,1] isintroduced that is used along with random numbers to regenerate a component of
selected designs in the CB matrix. This mechanism leads to a better fina design (Kaveh &

Ghazaan, 2014).

Many metaheuristic algorithms need selection of several parameters in their calculations
which is a mgor drawback of these agorithms. ECBO, however, is simple, requires just one
internal parameter, and performs well in term of the quality of the solution and convergence time

(Kaveh & Mahdavi, 2015).
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5.7.3 Hybrid I mproved Harmony Search-Enhanced Colliding Bodies Algorithm (HHC)

Compared to other metaheuristic algorithms, IHS is easy to implement and it works with
any kind of problem. ECBO requires just one algorithmic parameter and it performs well in term
of the quality of final designs. However, IHS and ECBO have some shortcomings that were
observed while solving some problems. IHS requires specification of severa algorithmic
parametersthat can affect the performance of the a gorithm. ECBO makes steady progress towards
the final design whereas IHS makes quite rapid progress towards a similar neighborhood.
Therefore, IHS needs fewer simulations compared to ECBO to reach a neighborhood of the fina
design. However, after reaching the neighborhood of the final design, progress of IHS becomes
slow to reach the final design whereas ECBO continues to make steady progress towards the

solution.

HHC agorithm uses IHS in Phase 1 to reach the neighborhood of the solution quickly and
then switches to the ECBO to reach the final design. This way ECBO starts with some improved
designs in Phase 2. This combination could lead to the final solution in fewer simulations which

isvery useful while solving more complex problems.

5.8 Numerical Examples

In this study, HHC is applied for optimum design of 3D framed stedl structures. Phasel
parameters, r;, r,, and r; are 25%, 10%, and 10%, respectively. When there is no or small
improvement in the current function value, Phase 2 is terminated using a stopping criterion similar

to the one used in Phase 1. The pseudo-code of this criterion is as follows:
Ify Iterp, = 1, X MaxlIterp,

If2 (Merit(Iterp,) — Merit(Iterp, — 15 X MaxlIterp,))/Merit(Iterp,) < €p,
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Terminate Phase 2
End.
End;

where Iterp, isthe current iteration in Phase 2, MaxIterp, isthe limit on number of iterations of
Phase 2, 1,=10%, rs=5% and &p,=103. These parameters are selected so that premature

termination of the algorithm does not occur.

As mentioned earlier design variables are W-shapes selected from the AISC tables. The
design variables are linked discrete variables. That is, when the section number is selected, all the

cross-sectional properties are known from the AISC tables.

Figure 5.3 shows 3D view and the dimensions of the structure (slabs and external wallsare
not shown). It is a 3-story, 4 bays in x and y directions with 4 in concrete slab consisting of 197
members modeled using SAP2000 and MATLAB. All ground supports are fixed. Steel properties
are: Young's modulus, E=29000 ksi, yield stress, F,=50 ksi, ultimate strength, F,=65 ksi, and
Poison’s ratio, v=0.3. Concrete properties are: Young's modulus, E=3605 ksi, density, p=150

Ib/ft3, £/=4000 psi, and Poison’s ratio, v=0.2.

The frame members are divided into 9 groups as shown in Figure 5.3 and Table 5.1. Each
group is treated as a design variable. Gravity loads are assigned as uniformly distributed loads on
thefirst and second floor slabs consisting of adesign dead load of 60 psf and adesign live load of
50 psf and on the roof slab consisting of a design dead load of 60 psf and a design live load of 25

psf. Table 5.2 gives design load combinations.
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Since the algorithm is stochastic in nature, three independent optimization runs were
performed for each case study. Design variables bounds are sel ected based on testing each problem

with different design variables values.

o ;
[ & [

Figure 5.3. Schematic of 3D framed steel structure.

Table 5.1. Members grouping.

Group Number Members Number of members
1 1st floor external columns 16
2 2nd floor external columns 16
3 3rd floor external columns 16
4 1st floor internal columns 9
5 2nd floor internal columns 9
6 3 floor internal columns 9
7 1st floor beams 40
8 2nd floor beams 40
9 3rd floor beams 40

Table 5.2. Load combinations (AISC, 2015; Gilsanz et al., 2013).

Load commination Scale factor
Comb 1 12DL+16LL
Comb 2 1.4DL
Comb 3 10DL +0.25LL +1.0BL

DL isdead load, LL isliveload, and BL is blast load.
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5.8.1 Spatial Framed Steel Structure Subjected to Service Loads Only

In this design example, only the service loads (no blast loads) and strength constraints are
considered (only load combinations Comb 1 and Comb 2 in Table 5.2 are used). It is used as
reference to compare designs with examples and to study the penalty of designing framed steel

structure to resist blast loads.

Columns and beams are selected from the first 100 lightest standard W-shape sections
provided in AISC tables (AISC, 2017) after rearranging sections in an ascending order based on

their weight. This exampleis solved using linear static analysis (direct stiffness method).

The fina designs for the three runs are reported in Table 5.3 along with total structural
weight and maximum values of interaction and shear ratios. The second run gives the best design

with atota structural weight of 60.549 kips.

Even though the number of the possible combination is tremendously large (9'%°, HHC
domain adjustment technique reduces the possible combination by reducing design variables
boundsin Phase 1 (see Section 3.5.1). In this design example, HHC was able to obtain designs that
have similar structural weight. That is, the first design is about 11% heavier than the best design

and the third design is about 10% heavier than the best design.
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Table5.3. Final designs for 3D framed steel structure under service load only.

Design variable Run
(group number) 1 2 3
1 W8X31 W8X28 W21X44
2 W12X26 W8Xx24 W14X34
3 W6X25 W10X22 W6X25
4 W18X50 W14X48 W12X40
5 W8X40 W16X36 W16X36
6 W10X22 W10X26 W16X31
7 W5X16 W4X13 W4X13
8 W5X16 W4X13 W4X13
9 W6X15 W4X13 W4X13
Max. interaction ratio (Eg. (5.16)) 0.984 0.979 0.993
Max. shear ratio (Eq. (5.17)) 0.270 0.191 0.202
Weight (kips) 67.665 60.549 66.449
No. of linear static analyses 11946 11740 11752

To investigate the effectiveness of HHC for this type of problems, the algorithm was run
for 45,035 structural analyses (9,000 iterations for thefirst phase and 900 iterations for the second
phase with population size of 40). Thisis more than 3 times the number iterations needed by each
of the 3 runs above. For this run, the best structural weight obtained is 64.496 kips. Thisdesignis
6.5% heavier than the best design in Table 5.3. Studying the designs in HM matrix (first phase)

and CB matrix (second phase) shows that:
1- HM matrix has diverse designs but it stops improving design after about 3000 iteration.

2- The second phase stops improving designs after about 200 iterations and CB matrix starts to

have less diverse designs.

5.8.2 Spatial Framed Steel Structure Subjected to blast Load

This design example has the same dimensions, design variables and material properties as
the previous study case. However, in addition to gravity loads and load combinations described in
the previous section, the blast loading is considered. The source of the blast loads is an automobile
carrying alarge charge of 250 |b of TNT. The structure has a stand-off distance of 50 ft from the

charge’'s center as shown in Figure 5.4. The structure is isolated with no opening (conservative
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assumption). In real cases, however, there are windows and door openings that (if not designed to
resist blast loading) vent some of the blast wave inside the building depending on the size of those
opening. The fagcade of the structure is divided into 12 panels and the blast reflected pressure is
evauated at the center of each panel and distributed uniformly on that panel as shown in Figure
5.4 (Karlos and Solomos, 2013). Side, roof, and rear blast |oads are cal culated at the center of each
face and distributed uniformly on the surface. Table 5.4 shows the pressure-time history on the
front, sides, roof, and rear faces. Using SIF and DIF parameters (Section 5.3.1), the updated
materia strength values are as follows:
Far = (SIF)(DIF)E, = (1.1)(1.19)(50) = 65.45 ksi (5.20)

F,, = (DIF)(E,) = (1.05)(65) = 68.25 ksi (5.21)

o
"':..Tg ::

& o ., i
2y
Figure 5.4. 3D framed steel structure and charge |ocation.
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Table 5.4. Pressure-time history on faces.

Face Pressure-time history
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5.8.2.1 Optimum Design with Linear Dynamic Analysis

In this study case, beams and columns are designed according to AISC (2017) strength
requirements (Section 5.5.3.1). That is, al members are designed to remain elastic. The following
examples are solved using Hilber-Hughes-Taylor method (linear direct integration) and the total
anaysistime is 1 second with time step of 0.0025. The analysis time was selected after different

designs indicated that the maximum response occurs between 0 to 1 second.

In calculating blast loads on the structure surfaces, the assumption was that all surfaces are
rigid enough to reflect the pressure with no energy dissipation. Then blast |oads are transported to
beams and columns as distributed loads. The common design approach is to neglect the outer

periphery wallsin the analysis model. In this study, three approaches are investigated.

5.8.2.1.1 No External Walls

In this example, the stiffness of the external walls is not considered. This conservative
procedure is used in most of blast design references such as AISC (2013). Columns and beams are
selected from the first 173 heaviest standard W-shape sections provided in AISC tables (AISC,

2017) after rearranging sections in a descending order based on their weight.

The final designs for the three runs are reported in Table 5.5 along with total structural
weight and maximum values of the interaction and shear ratios. It shows that the second run
reachesthe best design with atotal structural weight of 853.469 kips. Thisisabout 14 times heavier

than the best design found for same structure subjected to gravity loads only.
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Table5.5. Final designs for 3D framed steel structure under
service and blast loads (linear dynamic analysis).

Design variable

Run

(group number) 1

2

3

W36X262
W40X277
W14X283
W30X148
W14X233
W14X311
W36X262
W14X211
W36X262

Max. interaction ratio (Eq. (5.16)) 0.994

Max. shear ratio (Eq. (5.17)) 0.400

Weight (kips) 892.988
No. of linear dynamic analyses 15125

O©CO~NOOTA WN P

W44X262
W12X210
W21X201
W14X211
W18X158
W12X152
W12X336
W33X241
W24X229
0.996
0.456
853.469
15102

W24X229
W14X211
W33X118
W14X159
W18X175
W36X150
W40X362
W12X305
W27X194
0.968
0.518
868.134
14259

5.8.2.1.2 No External Wallswith Mass

In this example, the stiffness of the external wallsis not considered. However, the mass of
the outer periphery walls (thickness of 4 in) isadded as a dead |oad on beams. Columns and beams

are selected from thefirst 173 heaviest standard W-shape sections provided in AISC tables (AISC,

2017) after rearranging sections in a descending order based on their weight.

The final designs for the three runs are reported in Table 5.6 along with total structural
weight and maximum values of the interaction and shear ratios. It shows that the first run reaches

the best design with atotal structural weight of 827.182 kips. Thisisabout 13.7 times heavier than

the best design found for same structure subjected to gravity loads only.
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Table 5.6. Final designs for 3D framed steel structure under service and
blast |oads with the mass of externa walls (linear dynamic anaysis).

Design variable Run
(group number) 1 2 3
1 W36X232 W27X235  W36X247
2 W12X279 W18X158  W24X192
3 W33X169 W14X132  W24X229
4 W40X211 W27X146  W30X173
5 W18X234 W14X145 W40X211
6 W40X183 W40X211  W30X173
7 W36X330 W40X297  W33X291
8 W36X247 W40X324  W36X302
9 W27X178 W33X201  W24X192
Max. interaction ratio (Eq. (5.16)) 1.000 1.001 0.997
Max. shear ratio (Eq. (5.17)) 0.421 0.459 0.461
Weight (kips) 827.182 831.993 839.964
No. of linear dynamic analyses 16055 17955 16985

5 8.2.1.3 With External Walls

The stiffness of the external walls that are connected to the framed steel structure is added
to the structural model. The outer periphery wall is a concrete wall with athickness of 4 in. The
outer periphery wall ispinned to the ground and attached to external beams only which are attached
to the roof system to transfer loads directly into floor diaphragms to reduce the risk of progressive
collapse as recommended in ASCE (2011). Columns and beams are selected from the first 100
lightest standard W-shape sections provided in AISC tables (AISC, 2017) after rearranging

sections in an ascending order based on their weight.

Table 5.7 gives the final designs of three optimization runs. The best design has a total
structural weight of 77.818 kips. Thisdesign is about 28.5% heavier than the best design found for

same structure subjected to gravity loads only.

The externa walls add quite amount of stiffness to the structure. They act as shear walls
that resist the lateral blast loads. Thisis unconservative design approach. Although, the structure
quite lighter than the previous case study, adding wall stiffness in the model makes the structure

less robust to progressive collapse when awall fails during the blast event.
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Table5.7. Final designs for 3D framed steel structure with external
walls under service and blast loads (linear dynamic analysis).

Design variable Run
(group number) 1 2 3
1 W8X40 W16X40 W12X35
2 W18X40 W18X40 W18X40
3 W18X40 W18X40 W16X31
4 W10X26 W12X26 W8X24
5 W8X24 W14X26 W8X24
6 W6X15 W6X25 W10X22
7 W6X20 W5X19 W5X19
8 W6X20 W6X20 W8X24
9 W6X15 W6X15 W5X19
Max. interaction ratio (Eq. (5.16)) 0.9345 0.977 0.997
Max. shear ratio (Eq. (5.17)) 0.161 0.161 0.235
Weight (kips) 77.818 78.476 81.001
No. of linear dynamic analyses 11804 12518 11922

5.8.2.2 Optimum Design with Nonlinear Dynamic Analysis

In this study case, columns are designed according to AISC (2017) strength requirements
(Section 5.5.3.1) but beams can develop plastic hinges and blast design requirements are applied
(Section 5.5.3.2). Sted Columns-Flexure elastic-perfectly plastic hinges provided by SAP2000
v.20 are model ed near the start and the end of each beam (CSl, 2017). The following examples are
solved using Hilber-Hughes-Taylor method (Nonlinear direct integration with P-delta).
Considering the blast load duration and peaks of the response, the time range from the analysisis

set from O to 1 second with time step of 0.0025 (Similar to linear dynamic analysis study case).

Testing the nonlinear dynamic models (Sections 5.8.2.2.1 and 5.8.2.2.2) with different
designs shows that in most cases there is either numerical convergence difficulty or the nonlinear
structural analysis takes long time because of the material nonlinearity, geometrical nonlinearity,
and the size of the structure. This makes metaheuristic algorithms inconvenient to use since they
require many structural analyses to obtain the best design. Therefore, ESL 1 method (Section 5.6)
is used. The algorithm starts with 75 random designs from the design domain. These designs are
evaluated using nonlinear dynamic analyses, ranked in an ascending order based on their merit

function values, and passed to the ESL step. In the ESL step, HHC is used to find the best design
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using linear static analyses (note that in Chapter 4 ECBO is used). After few ESL cycles, the best
2 designsin CM matrix and the best 20 designs in CB matrix are improved further using ECBO
with just 10 iterations using nonlinear dynamic analyses (total of 200 analyses). That is, ECBO

has a population size of 20.

5.8.2.2.1 No External Walls

This study case is like the one in Section 5.8.2.1.1. That is, the stiffness of the external
walls is not considered. However, beams can develop plastic hinges as discussed in the previous
section. Beams are selected from the first 100 lightest standard W-shape sections and columns are
selected from the heaviest 173 standard W-shape sections provided in AISC tables (AISC, 2017)

after rearranging sectionsin an ascending order based on their weight.

Thefinal designs are shown in Table 5.8 along with total structural weight and maximum
values of interaction ratio, shear ratio, member end rotation, and inter-story drift. The first run
reaches the best design with atotal structural weight of 386.148 kips. This design is about 6 times
heavier than the best design found for same structure subjected to gravity loads only.

Table 5.8. Final designs for 3D framed steel structure under service and blast
loads (nonlinear dynamic analysis).

Design variable Run
(group number) 1 2 3
1 W24X370 W33X263 W36X262
2 W27X235 W30X211 W40X211
3 W36X232 WA40X 324 W24X306
4 W30X116 W33X291 W44X290
5 W40X 362 W36X395 W40X 392
6 W27X258 W30X391 W33X387
7 w8ax31 W10X30 W16X31
8 W12X45 W16X57 W21X57
9 W8Xx35 w8x21 W12X22
Max. interaction ratio (Eg. (5.16)) 1.000 0.995 0.995
Max. shear ratio (Eq. (5.17)) 0.910 0.938 0.796
Max. rotation (degree) 0.718 0.594 1.865
Max. 1SD (Eqg. (5.18)) 0.199 0.164 0.303
Weight (kips) 359.016 389.624 386.148
Total number of linear static analyses 43660 45340 46530
No. of nonlinear dynamic analyses 205 205 205
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&5.8.2.2.2 No External Wallswith Mass

This study case is similar to Section 5.8.2.1.25.8.2.2.1. However, the mass of the external
wallsis considered but their stiffnessis not considered. Columns and beams are selected from the
first 173 lightest standard W-shape sections provided in AISC tables (AISC, 2017) after

rearranging sections in the descending order based on their weight.

Thefinal designs are shown in Table 5.9 along with total structural weight and maximum
values of interaction ratio, shear ratio, member end rotation, and inter-story drift. The first run
reaches the best design with a total structural weight of 399.215 kips. This design is about 6.6
times heavier than the best design found for same structure subjected to gravity loads only.

Table 5.9. Final designs for 3D framed steel structure under service and blast
loads with the mass of the exteranl walls (nonlinear dynamic analysis).

Design variable Run
(group number) 1 2 3
1 W27X368 W36X232 "W40X264'
2 W27X281 W30X357 "'W40X362'
3 W36X231 W40X503 'W27X217
4 W33X152 W36X194 'W40X372'
5 W40X 397 W40X149 "'W40X362'
6 W27X307 W33X152 "'W36X361'
7 W8Xx40 W10X54 "W14X74'
8 W12X53 W18X35 'W12X45'
9 W8x40 Ww8x40 'W12X53'
Max. interaction ratio (Eg. (5.16)) 0.823 0.988 0.987
Max. shear ratio (Eq. (5.17)) 0.905 0960 0.940
Max. rotation (degree) 0.326 0.323 0.285
Max. 1SD (Eg. (5.18)) 0.311 0.306 0.460
Weight (kips) 400.484 399.215 452.731
Total number of linear static analyses 37575 43025 41150
No. of nonlinear dynamic analyses 205 205 205

5 8.2.2.3With External Walls

This study case issimilar to Section 5.8.2.1.3. That is, the stiffness of the external wallsis
considered. Columns and beams are selected from the first 100 lightest standard W-shape sections
provided in AISC tables (AISC, 2017) after rearranging sections in an ascending order based on

their weight.
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The best designs are shown in Table 5.10 along with total structural weight and maximum

values of interaction ratio, shear ratio, member end rotation, and inter-story drift. The third run

obtains the best design with a total structural weight of 77.626 kips. This design is about 28%

heavier than the best design found for same structure subjected to gravity loads only.

Table 5.10. Final designs for 3D framed stedl structure with external walls
under service and blast loads (nonlinear dynamic analysis).

Design variable Run
(group number) 1 2 3
1 W14X34 W10X39 W14X38
2 W8X35 W16X36 W8X35
3 W8X35 W8X35 W12X35
4 w8x21 wW8Xx24 W10X22
5 w8x21 W10X22 W12X22
6 W6X20 W14X22 W8Xx21
7 W14X22 W8Xx18 W10X17
8 W8Xx21 W16X26 W6X25
9 W8Xx18 W6X15 W12X16
Max. interaction ratio (Eq. (5.16)) 0.984 0.966 0.988
Max. shear ratio (Eq. (5.17)) 0.801 0.725 0.350
Max. rotation (degree) 0.415 0.267 0.625
Max. ISD (Eg. (5.18)) 0.177 0.184 0.176
Weight (kips) 78.797 79.222 77.626
Total number of linear static analyses 30749 29425 30444
No. of nonlinear dynamic analyses 205 205 205

5.9 Concluding Remarks

Optimum design of 3D framed steel structures subjected to service and blast loads are

studied using metaheuristic optimization algorithms. The problem is formulated to minimize total

weight of the structure subjected to AISC strength requirements and DoD displacement

constraints. The design variables for beams and columns are W-shapes selected from the AISC

tables. Depending on the problem, three types of analyses are carried out in the optimization

process: linear static analysis, linear dynamic analysis, and nonlinear dynamic analysis. Hybrid

Harmony Search - Colliding Bodies Optimization (HHC) with domain adjustment for each design

variable is used to find an optimum design of every case of study. Globa optimization with
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equivaent static load (GOESL) is used to find the optimum design for the nonlinear dynamic study

case.

Table 5.11 shows fina designs of the structure with and without blast loading. It is seen
that when beams and columns are designed to remain elastic, the optimum structure is about 14
times heavier to withstand the blast loads compared to the optimum design without the
consideration of blast loading. However, when columns are designed to remain elastic and beams
can develop plastic hinges (with displacement requirements), the optimum structure is about 6
times heavier to withstand the blast loads compared to the optimum design without the
consideration of blast loading. When the stiffness of the external walls is considered, the fina
designsfor linear and nonlinear dynamic analyses are only slightly heavier than the design without
the blast load considerations.

Table 5.11. Comparison of final designs.

Service Service and blast loads using linear Service and blast loads using nonlinear
load only dynamic analysis dynamic analysis
Design variable using No ) No .
(group number) linear NS external with No external with
static etena | swith  Semd o etema i cwith  eend
. walls walls walls walls
anaysis mass mass
1 W8X28 W44X262 W36X232  W8X40  W24X370 W36X232 W14X38
2 W8X24 W12X210 W12X279 W18X40 W27X235 W30X357 W8X35
3 W10X22  W21X201 W33X169 W18X40 W36X232 W40X503 W12X35
4 W14X48  W14X211 W40X211 WI10X26 W30X116 W36X194 W10X22
5 W16X36  WI18X158 W18X234  W8X24  W40X362 W40X149 W12X22
6 W10X26  W12X152 W40X183  W6X15  W27X258 W33X152 w8x21
7 W4X13 W12X336 W36X330 W6X20 W8X31 W10X54 W10X17
8 W4X13 W33X241 W36X247  W6X20 W12X45  W18X35 W6X25
9 W4X13 W24X229 W27X178  W6X15 W8X35 W8X40 W12X16
Max. interaction ratio 0.979 0.996 1.000 0.9345 1.000 0.988 0.988
Max. shear ratio 0.191 0.456 0.421 0.161 0.910 0960 0.350
Max. rotation (degree) - - - - 0.718 0.323 0.625
Max. ISD - - - - 0.199 0.306 0.176
Weight (kips) 60.549 853.469 827.182 77.818 359.016 399.215 77.626
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CHAPTER 6

OPTIMUM DESIGN OF FRAMED STRUCTURES FOR RESILIENCE SUBJECTED TO
BLAST LOADS

Abstract

In this study, a formulation is presented for the optimum design of 3D framed structures
that can withstand some future damage due to a blast near the structure. That is, after the blast
event occurs the structure should still carry the service loads (or at |east some part of them) so that
the no further damage can happen beyond the designed damage conditions. A least weight structure
is desired that also meets the American Institution of Steel Construction (AISC) strength
requirements and displacement constraints. In addition, the formulation includes some possible
future damage to the structures due to a blast. The possible damage conditions are defined as
complete removal of certain members and reduction of stiffness of some members. The design
variables for beams and columns are the discrete values of the W-shapes selected from the AISC
tables. Since the cost function and the constraints are not differentiable with respect to the discrete
design variables, the gradient-based optimization a gorithms cannot be used to solve the problem.
Therefore, metaheuristic optimization algorithms are used to find optimum or near optimum
designs. As an example, problem, a 4-bay x 4-bay x 3-story framed steel building under
serviceability loading. Several different scenarios of damage to the structure are considered and

the optimum designs from Chapter 5 are checked.

6.1 Introduction

It is desirable to design structures to minimize a measure of cost while all performance
requirements are satisfied. When a structure is designed by application of an optimal design

technique, it isexpected that many performance constraintsfor the structure are at their limit values
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(or close to them). Therefore, a small change in the performance environment may cause a
catastrophic failure of the structure. A damage-tolerant structure must avoid failure by providing
an aternate load path(s). In other words, fail-safe structures must have enough redundancy to

withstand possible damages and perform normally even when a member fails.

In this study, some possible damage conditions of building structure due to blast loads are
studied. When blast happens, it generates hot gas that makes the air around the explosion expand
and its molecules pile-up. After that, a blast wave occurs that carries a large amount of energy;

also, it can carry some objects that can cause damage.

The main hypothesis of this work is that a 3D building structure can be designed for
minimum weight according to AI1SC (2017) requirements that is al so able to sustain some damage.
Structures that are designed to minimize a cost function subject to constraints that must hold for
intact and damaged structure are called optimal damage-tolerant structures. A damage condition

is defined as complete or partia removal of members (Aroraet a., 1979).

The prime objective of this study isto present a practical formulation for optimum design
of 3D framed steel structures subjected to some damage due to blast loading. In the proposed
design method, the structure remains stable after the damage happens. In the formulation, the cost
function isthetotal weight of the structure. The design variables are frame members (columns and
beams) which are discrete variables (specifically, W-shapes selected from the AISC tables).
Constraints are AISC strength requirements. The structure is designed to withstand service loads

(dead and live loads) and some projected damage conditions.
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6.2 Review of Literature

Sun et al. (1976) discussed thefail-safe optimal design concept of truss structures subjected
to stress, displacement, buckling, natural frequency, and design variables constraints under one or
more predetermined damage conditions. Three bar plane truss, four bar space truss, and seventy-
two-member space truss were optimized for minimum weight. Two types of damage conditions
were considered. The first was complete removal of member(s) and the second type was a partial
reduction in cross-section area of member(s). Mistree (1983) presented a mathematical model for
continuous design variables, constraints, and system goals to design structures that were damage
tolerant. Damage tolerance was represented as reserve strength and residual strength that the intact
structures must have in order to avoid failure and to minimize the consequences of falure. Arora
et al. (1980) formulated fail-safe designs of open truss and closed helicopter tail-boom structures.
Damage conditions were defined astotal or partial damage to chosen members. Some joints of the
truss could be removed because of the damage. The optimum solutions for five cases, no damage
and combinations of 6 damage conditions under total and reduced normal operating conditions,
were obtained and the effect on structural wei ght was studied. It was shown that the structure could
be designed to withstand possible future damage. Ming and Fleury (2016) established a
mathematical model and formulation for fail-safe topology design optimization. 2D and 3D
continuum structural examples subjected to different damage scenarios were discussed. The

optimization problem was to minimize the compliance with a constraint on the materia volume.

6.3 Design for Blast L oads

Designing structures to withstand blast loads that aso remain elastic is usually
uneconomical. That is, in design for blast loads, it is expected that some of the components will

experience substantial nonlinear response, and the maximum dynamic deflection and rotation are
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the criterion to prevent component failure. However, when a structure is required to be reused
following a blast, it must be designed to remain elastic (ASCE, 2010). In addition, designers must
provide sufficient redundancy (aternate load paths) to ensure that the failure of key members will
not cause a progressive collapse of the structure. The reader is referred to DoD (2008), ASCE
(2010), ASCE (2011), and Gilsanz et a. (2013) for more details about the design of structures for

blast loads.

6.4 Formulation for Discrete Structural Optimization Problems

In structural design practice, members must be selected from the available sections in a
catalog. Thus, design variables are discrete/integers (section number in the list). The formulation
of the discrete design variables optimization problem with the nonlinear undamped dynamic

response can be stated as:
Find X = [x1,X2, o, Xnparl; X €D;; i =1,2,...,nvar (6.2)
to minimize f(X) (6.2)
subjectto M (X)ii(t) + K(X,u(t))u(t) = p(t); t = tq,ty, ..., ty
ge (X, u(®),u(t),it(t),t) <0; foralltand k = 1,2, ...,1 (6.3)
where X is the vector of design variables with nvar unknowns, D; is a set of discrete values for
the ith design variable, f(X) is a cost function (in this study, f(X) is the total weight of the
structure), M is the mass matrix, K is the stiffness matrix (K is afunction of the design variables
and displacement vector for nonlinear dynamic analysis and just the design variables for linear
dynamic analysis), u is the dynamic displacements vector, wt is the velocities vector, it is the

accelerations vector, n isthe total number of the time steps, g, isthe kth constraint function that

needs to be imposed at al time points, and [ is the total number of constraints.

152



One way of treating constraints in metaheuristic algorithms is to combine constraints with
the cost function to define amerit function (also called the penalty function) that isthen minimized:

F(X) = fXOI1 + 96 (X)]* (6.4)

LR
6= > max(0,ge(t) (65)
o1 k=t

where G (X) is a constraint violation function, ¥ > 1 is exploration penalty coefficient (in this
study, ¥ = 10), & > 1 is penalty function exponent (in this study, ¢ = 2), and max(0, g, (t;)) =
0 isthe violation value of the kth inequality constraint at the time point t;. The present problem
has just inequality constraints. The linear dynamic response problem is the same as the nonlinear
dynamic response problem except that K is not a function of the displacement vector u. The
formulation above (Egs. (6.1) to (6.5)) is needed to solve the linear or nonlinear dynamic response

optimization problems.

The linear static response optimization problem subjected to loading conditions can be

stated as:
Find X = [x1,X2, ., Xnpar; X% € Dj; j =1,2,....,nvar (6.6)
to minimize f(X) (6.7)
subjectto g,(X)<0; k=1.2,..,p (6.8)
FX) = fXOI1+ 96X (6.9)
p
G(X) = ) max(0, g (X)) (6.10)
k=1
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The linear static response formulation (Egs. (6.6) to (6.10)) is needed to solve the
optimization problems of structures subjected to service load only and some defined damages

conditions.

6.4.1 Design Variables

In thiswork, the A1SC (2017) W-shapes available in manufacturer’s catalog are the design
variables for beams and columns. All sections are chosen from AISC tables and assignment of a
section specifies several cross-sectiona properties for the member. Such design variables are
classified as linked discrete variables (Arora, 2017). This way the design variables Egs. (6.1) and

(6.6) become:
Find X = [S1,S,, ..., Snvar] (6.11)
Simin < Si < Simax: 1= 1,2,..,nvar, (6.12)

where S; is an AISC W-shape number, and S;,,;, and S;,q, are the lightest and the heaviest
sections, respectively. In numerical calculations, W-shapes from the AISC table are re-arranged in

an ascending order based on their weights.

6.4.2 Cost Function

In this study, the problem is to minimize the total weight of the structure (in kips). Thus,

Egs. (6.4) and (6.9) become:

NG MK
W0 = > g Y L (6.13)

ng=1 mk=1

where W is the total weight of the structure, X is the design vector, NG is the total number of

member groups for the structure, w,,, isthe weight per unit length (kips/ft) of the membersin the
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ngth group (available in AISC’ stables), MKis the number of members in the ngth group, and L,

isthe length of the mkth member (ft).

6.4.3 Constraints
6.4.3.1 Strength Constraints

According to the AISC (2017), symmetric members subjected to axial force and bending

must satisfy the interaction ratio and shear force strength requirements:

P_u+§<h+ﬂ)_1so if P> 02
¢P

¢Py 9 d)anx ¢any n
(6.14)
Py My My >_ <0 Pu
2¢Pn + (¢anx + ¢any 1 - O If ¢Py ~ 02
Wu=sdp
" (6.15)
-1<0
¢‘U VTl

Here ¢ istheresistance factor (¢, = 0.85and ¢, = 0.90 for compression and tension, respectively).
¢, =0.9 isthe flexura resistance factor. P, and B, are the required and the nominal axial strengths
(compression or tension) (kips), respectively. M, and M,,,, are the required flexural strengths
about the major and the minor axes (kip-ft), respectively. M, and M,,,, are the nominal flexural
strengths about the major and the minor axes (kip-ft), respectively. I, and V,, are required and the

nominal shear strengths (kips), respectively. ¢,,=0.9 is the resistance factor for shear.

Evaluating B,, M, and M,,,, in Egs. (6.14) is an involved process that requires checking
of several failure modes (i.e., several “if then else” statements). For example, to find B,, first one
needs to find whether the member force is tensile or compressive. For tension members, B, is

calculated based on whether the gross section yields or the net section ruptures.
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Constraints in Egs. (6.14) and (6.15) need to be imposed at each point along the axis of
every member in the structure. Thus, each equation representsinfinite constraints. In the numerical
process, the constraints are evaluated at several points along the axis of the member and they
imposed at the point where they have maximum value. Therefore, the total number of interaction
ratio constraints (Eq. (6.14)) equals the total number of members. Same is true for shear force

constraints (Eq. (6.15)).
In addition to that the nomina strength calculations have several discontinuities as
explained in the previous paragraph, that constraints in Eq. (6.14) has a discontinuity at (:—;‘=O.2.

Thus, the gradient of these constraints is not possible and consequently, gradient-based

optimization algorithms are not suitable for this class of optimization problems.

6.4.3.2 Displacement Constraints

In blast design, the maximum member end rotation shall be 2 degree and the maximum
side-sway deflection (or inter-story drift (1SD)) islimited to 1/25 of the story height (high response

design (ASCE, 2010)).

.
Mﬂso (6.16)
5ru

8ry = hy/25 (6.17)

where §,- and §,_, arelateral displacements of two adjacent stories(in), §,-, istheallowable lateral
displacement, and h,. istherth story height (in). At each node, SAP2000 eval uates displacements
and rotations in 3-dimentions. Displacements in x and y directions are extracted to evaluate Eq.

(6.17) to impose these constraints.
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6.5 Optimization Processfor Damage Tolerance

In the optimization of structures subjected to service and blast |oads, the nonlinear dynamic
formulation is used (Egs. (6.1) to (6.5)) with strength and displacement constraints (Sections
6.4.3.1and 6.4.3.2). That is, columns must remain el astic and beams are allowed to devel op plastic
hinges. The same formulation can be used in optimization of structures subjected to service and
blast loads when columns and beams are to remain elastic except that K (EQ. (6.3)) is afunction

of only the design variables and strength constraints are imposed.

In the optimization of structures subjected to serviceload only, thelinear static formulation
is used (Egs. (6.6) to (6.10)) with strength constraints only. That is, columns and beams must
remain elastic. The same is true in the optimization of structures subjected to service loads and
some defined damages. However, the structure to be designed for some damages has a different
stiffness any may be subjected to different service loads. For example, if the damage is defined as
total removal of a column with 50% of live loads, the formulation islike intact structure subject to
serviceload (say dead and live loads). In other words, for the structure with a missed column, live

load is reduced to half of its origina value.

Formulation for optimization of structures subjected to blast loading and to withstand some
damage is a combination of the foregoing formulations. That is, two structures must be analyzed
and al constraints must be eval uated for the same design vector. First, theintact structure subjected
to blast loads with linear or nonlinear dynamic formulation and the intact structure subjected to
service load with linear static formulation are analyzed. Second, the damaged structure subjected
to service loads (or a part of them) with linear static formulation is analyzed. Namely, in every
optimization iteration, the design vector is sent to two independent simulations. Then al the

constraints are evaluated for use in Egs. (6.5) and (6.10).
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In nonlinear dynamic analysis, some members might in their plastic region and the stiffness
of these members is different of eastic stiffness. That is, a strength modification should be done
on these members depending on their plastic deformation level. Since in this study the main focus
is on formulating for the optimum design of framed structures and providing optimization

procedure, the assumption is the structure is elastic.

6.6 Damage-Tolerant Design of Framed Steel Structure

The optimal design formulation for resilience presented in this study is evaluated using a
moderate size 3D framed steel structure. The structure is a 4-bay x 4-bay x 3-story under
serviceability loading. Figure 6.1 shows 3D view and the dimensions of the intact structure. Itisa
3-story, 4 bays in x and y directions with 4 in concrete slab consisting of 197 members modeled
using SAP2000 and MATLAB. All ground supports are fixed. Steel properties are: Young's
modulus, £=29000 ks, yield stress, F,=50 ks, ultimate strength, F,=65 ksi, and Poison’s ratio,
v=0.3. Concrete properties are: Young’'s modulus, E=3605 ksi, f,/=4000 psi, and Poison’s ratio,

v=0.2.

The frame members are divided into 9 groups as shown in Table 6.1. Each group is treated
as adesign variable. Gravity loads are assigned as uniformly distributed loads on the first floor
and the second floor slabs consisting of design dead load of 60 psf and adesign live load of 50 psf
and on the roof dlab, consisting of 60 psf and 25 psf for dead and live loads respectively. Load

combinations are given in Table 6.2.
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b 5

Figure 6.1. Schematic of 3D framed steel structure.

Table 6.1. Memebers grouping.

Group Number Members Number of members
1 1st floor external columns 16
2 2nd floor external columns 16
3 3rd floor external columns 16
4 1st floor internal columns 9
5 2nd floor internal columns 9
6 3 floor internal columns 9
7 1st floor beams 40
8 2nd floor beams 40
9 3rd floor beams 40

Table 6.2. Load combinations (AISC, 2015; Gilsanz et al., 2013).

Load commination Scale factor
Comb 1 1.2DL+16LL
Comb 2 1.4DL
Comb 3 10DL +0.25LL +1.0BL

DL isdead load, LL isliveload, and BL is blast load.
This design example is solved in Chapter 5 using linear and nonlinear dynamic analyses.

Therefore, the best designs obtained are checked for the damage conditions defined in the next
paragraphs. If thereisaviolation in the strength constraints, the optimization process described in

section 6.5 must be used to design the structure.
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As mentioned earlier, there are two types of damages that will be discussed in this study:
complete removal of some members and reduction in some members' strength. Table 6.3 shows
damage condition definitions. In Table 6.3, 100% reduction in strength refersto complete removal
of damaged member(s) and 50% reduction in strength means the damaged member is till in action

but it has lost half of its normal strength.

The aim of thiswork isto introduce a general formulation for damage tolerance of framed
structures. Therefore, just 6 damage conditions are discussed. One, however, any other damage
condition may be modeled in asimilar way.

Table 6.3. Damage condition definitions.

Damage Reduction in
condition Members strength, %
1 C-A3-1 100
2 C-Al-1 100
3 C-A2-2,B-A23-1, and B-A12-1 100
4 C-A3-1 50
5 C-Al-1 50
6 C-A2-2,B-A23-1, and B-A12-1 50

" Figure 6.1 shows the location of each member.
6.6.1 Complete Removal of Some Members
In this type of damage, the assumption is that a member or more are totally damaged, and
they are not able to carry gravity loads. Thus, damaged members are removed from the model of
the structure depending on the damage condition defined in Table 6.3 (damage conditions 1, 2,
and 3). The best designs of spatial steel frame subjected to blast |oad without external walls with
linear and nonlinear dynamic analyses (Sections 5.8.2.1.1 and 5.8.2.2.1) are checked for the

following six cases:
Case I: Structure with damage condition 1.
Case II: Structure with damage condition 2.

Case I1: Structure with damage condition 3.
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Case IV: Case | except live load is 50% of the normal condition.
Case V: Case Il except the live load is 50% of the normal condition.
Case VI: Case Il except the live load is 50% of the normal condition.

Tables4 and 5 show the constraints evaluation for the six damages for linear and nonlinear
dynamic analysis study cases. In both cases, there is no constraints violation. Thus, these designs
(Table5.5 and Table5.8) are safe for the proposed damage conditions and thereis no need to solve
the optimization problems again and include the anticipated damage conditions. For other

problems, however, the procedure described in Section 6.5 may need to be followed.

Table 6.4 shows that damage case |l has the highest maximum interaction ratio of 0.120.
Thisratio isfar from 1 which indicates the best design using linear dynamic analysis can tolerate

the defined damages.

Table 6.5 shows that damage case | has the highest maximum interaction ratio of 0.973.
This ratio is close to 1 which indicates that the best design using nonlinear dynamic analysis is

more critical than the best design using linear dynamic analysis.

In al study cases, shear ratios are not critical.

Table 6.4. Constraints evaluation of the optimal design using linear dynamic
analysis for complete removal study case (From Table 5.5).

. No Damage case
Constraint damage | I m__v__ v Vi
Max. interaction ratio (Eq. (6.14)) 0061 0102 0.120 0109 0093 0110 0.100
Max. shear ratio (Eq. (6.15)) 0035 0049 0039 0045 0041 0034 0.038

Table 6.5. Constraints evaluation of the optimal design using nonlinear dynamic
analysis for complete removal study case (From Table 5.8).

. No Damage case
Constraint damage | I m__v__ v Vi
Max. interaction ratio (Eq. (6.14)) 0672 0973 0713 0864 0.806 0607 0.725
Max. shear ratio (Eq. (6.15)) 0287 0307 0288 0302 0252 0234 0244
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6.6.2 Strength Reduction of Some Members

For fixed material and structural geometry, reduction in strength of truss structure members
can be directly defined as a reduction in cross-sectiona areas because they are the only variables
involved in calculating stiffness matrix and members' strength. However, for W-shape sections
and AISC strength requirement, the reduction in strength must be defined differently because
cross-sectional areas are not the only variables in the stiffness matrix and sections' strength
calculations. Frame member stiffness matrix calculation requires cross-sectional area, moment of
inertia in x direction, and moment of inertia in y direction. Also, Section 6.4.3.1 shows that
estimating members strength require calculating some other quantities such as local buckling
which involves finding the radius of gyration value and other factors. Thus, in this study reducing
damaged members’ dimensionsis the way to reduce sections' strength. That is, when a section is
signed to agroup (Table 6.1), al dimensions of damage members are reduced by a percentage of

the reduction in strength value (Table 6.3). Other possible ways of strength reductions are:

1- Reducing the modulus of elasticity and strength reduction factors in Egs. (6.14) and (6.15)

values for damaged members only.

2- Reducing areas, moment of inertia, and strength reduction factors in Egs. (6.14) and (6.15)

values for the damaged members only.

The best designs of spatial steel frame subjected to blast load without external walls with
linear and nonlinear dynamic analyses (Sections 5.8.2.1.1 and 5.8.2.2.1) are checked for the

following two cases:
Case I: Structure with damage conditions 4-6.

Case ll: Case | except the live load is 50% of the normal condition.
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Table 6.6 and Table 6.7 show the constraints evaluation for the two damage conditions for
linear and nonlinear dynamic analysis study cases. The results |ead to the same conclusions as for
previous study case: the best designs of linear and nonlinear dynamic analyses (Table 5.5 and
Table5.8) are safe for the proposed damages and thereis no need to solve the design optimization
problems again to include the damage conditions. Also, the best design using nonlinear dynamic
analysisis more critical than the best design using linear dynamic analysis.

Table 6.6. Constraints evaluation of the optimal design using linear dynamic
anaysis for strength reduction study case (From Table 5.5).

Constraint No damage IDamage c?lse
Max. integration ration (Eq. (6.14)) 0.061 0.331 0.286
Max. shear ratio (Eq. (6.15)) 0.035 0.042 0.035

Table 6.7. Constraints evaluation of the optimal design using nonlinear
dynamic analysis for strength reduction study case (From Table 5.8).

Constraint No damage %
Max. integration ration (Eq. (6.14)) 0.672 0.826 0.611
Max. shear ratio (Eq. (6.15)) 0.287 0.296 0.240

6.7 Concluding remarks

In this research, formulation and procedure for optimization of framed structure to endure
some possible damages caused by a blast are explained and discussed. Two types of damages are
considered: complete removal of members with six damage cases and strength reduction of
members with two damage cases. The problem is formulated to minimize the total structural
weight subjected to strength and displacement constraints. The design variables for beams and

columns are W-shapes sections selected from the AISC tables.

The problem is 4-bay x 4-bay x 3-story framed steel building that is solved in Chapter 5

using linear and nonlinear dynamic analyses. Therefore, the best designs are examined for the
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damage cases. Based on evaluating constraints, the results show that the best design using linear

dynamic analysisisless critical than the best design using nonlinear dynamic analysis.

Further research will be needed to study the following cases:
1- Study the effect of strength reduction of all facade’s members based on the distance from the
blast location.
2- For the nonlinear dynamic analysis, a new formulation based on strength reduction of members

that develop plastic hinges may be studied.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Discussion and Conclusion

Optimum design of 3D framed steel structures subjected to service and blast loads are
studied using metaheuristic optimization agorithms. The main purpose of this research is to
develop a formulation for the design optimization problem to withstand blast loads and a
formulation for the design optimization problem to withstand some possible damages due to blast
loads. The optimization formulations for this class of problems are presented for the first timein
this study. The problems are formulated to minimize total weight of framed structures subjected
to American Institution of Steel Construction (AISC) strength requirements and blast design
displacement constraints. The design variables for beams and columns are the discrete values of
the W-shapes selected from the AI1SC tables. All optimization algorithms and structures are coded
in MATLAB and interfaced with the structural analysis program SAP2000 using its Open
Application Programming Interface (OAPI). Three types of structural analyses are investigated:
linear static analysis of the framed structure subjected to service loads only or equivalent static
loads, linear dynamic analysis of the framed structure subjected to service and blast loads, and
nonlinear dynamic analysis (geometrical and materia nonlinearities) of the framed structure
subjected to service and blast loads.

The thesis has made five main contributionsin an effort to develop a practical formulation
for the design optimization of framed steel structures subjected to blast |oads:

1- Review of topics related to the design of blast-resistant structures. Methods to predict blast

loads, modeling of structures under blast loading, and design requirements are discussed from
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2-

a structural design optimization perspective. References on different subjects are provided

for further details. Chapter 2 presents a concise state-of-the-art document on the subject.
Robust and efficient metaheuristic optimization algorithm. A two-phase metaheuristic
algorithm based on the well-known Harmony Search (HS) algorithm and recently developed
Coalliding Bodied Optimization (CBO) is developed. The algorithm is called Hybrid Harmony
Search-Colliding Bodies Optimization (HHC). Also, anew design domain reduction technique
is integrated in IHS that reduces the number of possible combinations of discrete variables.
The results comparing HHC with other popular metaheuristic algorithms using some
benchmark discrete structural optimization problems shows that HHC is quite reliable in
obtaining the best designs with fewer structural analyses.
Investigation of the Equivalent Satic Load (ES.) approach for optimization of structures
subjected to dynamic loads with discrete design variables using metaheuristic algorithms.
Since optimizing transient response problems (specifically, problems requiring nonlinear
dynamic analysis) using metaheuristic algorithms is computationally very expensive, the ESL
method with gradient-free algorithms is examined. The method is named global optimization
with equivalent static load (GOESL). The results of four numerical examples show that ESL
step is not able to obtain the best design; however, it reaches near the best design with a
drastically reduced number of transient analyses of the structure. Thus, after afew ESL cycles,
the procedure may switch to dynamic analysis of each member of the population to improve
designs further and reach the best design.
Formulation for the design optimization of three-dimensional framed steel structures subjected
to blast loads. Linear and nonlinear dynamic analyses are carried out in the optimization

process. It is shown that for linear dynamic analysis (beams and columns are designed to
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remain elastic) the optimum structure is about 14 times heavier than the optimum design of the
structure subjected to service loads only. When columns are only designed to remain elastic
and beams are allowed to devel op plastic hinges with displacement requirements, the optimum
structureis about 6 times heavier than the optimum design of the structure subjected to service
loads only. Inclusion of outer wall in the analysis model reduces the weight of the structure
dramatically to withstand blast loads. This give a very practical design solution for blast
resistant design of structures. However, it also implies that the outer walls must be designed
and properly anchored to the beam and columns to fully contribute to the stiffness of the
structure.

5- Formulation for the design optimization of three-dimensional framed steel structures subjected
to some possible damages due to blast loads. The optimization procedure for two types of
damages are discussed: complete removal of members with six damage cases and strength
reduction of members with two damage cases. It is shown the best design using linear and
nonlinear dynamic anayses (from Chapter 5) can endure the defined damage conditions

without any further damage.

7.2 FutureWork

Whilethe formulation of optimum design of framed steel structures subjected to blast |oads
is studied that includes the definition of design variables, cost function, constraints, optimization
algorithms, and structural analysis type, further research is suggested as follows:

1- Improving HHC algorithm performance. While average and standard deviation are used in
the domain reduction step to modify design variables bounds in the quest to speed-up the
search process, other methods such as modern machine learning methods might be used to

speed-up the entire optimization process. Also, it is noticed that Phase 2 (ECBO) shows less
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diverse designs after about 25% of the total number of allowed iterations. M ethodsto increase
diversity might improve HHC performance in term of the number of structural analyses and
quality of final designs.

Improving GOESL algorithm. Although GOESL reduces the number of dynamic analyses
drastically to obtain the best design, ESL step is not able to reach the best design. Further
research is needed to improve performance of the ESL approach with discrete design
variables and gradient-free methods.

Formulation for the design optimization of three-dimensional framed steel structures
subjected to blast loads with glass curtain. While in this study the conservative assumption
is considered, that is, the external envelope of the structure is stiff enough to transfer all the
blast loads to the frame system, other models such as buildings with external glass curtain
can be studied. Also, the effect of openings in the walls needs to be considered.

Formulation for optimum design of 3D framed steel structures subjected to damages based
on strength reduction of members that developed plastic hinges. In nonlinear dynamic
anaysis, some members may develop plastic hinges. Therefore, stiffness of these members
is different from elastic stiffness. Thus, these members may be considered as damaged
members and their strength modification factors should be developed depending on the

plastic deformation level.
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APPENDIX A

MATLAB CODE FOR PLANAR 10-BAR TRUSS STRUCTURE

%%%% 10-bar planar truss %%%%

NVAR=10; % number of design variables

% Print results %

pr=1; % pr=0 do not print

pr500=0; pr50=0; % counting to print results

HMS=75; % Harmony memory size Phase 1

popSize=40; % Population size Phase 2

% Choose an algorithm

Method=3; % Method=  1=IHS 2=ECBO  3=HHC

DR=1; % DR=1 domain reduction DR=0 no domain reduction

% HHCD parameters

Eps=10e-3; rl1=0.25; r2=0.1; r3=0.1;

% constraints limits %

MaxS=25%10A3; % stress Timit ksi

Maxd=2; % allowable displacement in

% Cross-sectional areas %

Sections= [1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09,...
3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49,...
4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20,...
15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50] ;
% IHS %

% IHS parameters %

MaxItrIHS=10*NVAR*1ength(Sections);% IHS Maximum number of iterations
if Method==1
MaxItrIiHs=50000;

end

HMCRmax=0.85;

HMCRmin=0.35;

PARmin=0.35;

PARmax=0.85;

% range of variables %

for i=1:NVAR
PVB(i,:)=[1,Tength(Sections)];
end

% Initiate Matrices %
HM=zeros (HMS,NVAR) ;
NCHv=zeros(1,NVAR) ;
BestGen=zeros(1,NVAR);
fitness=zeros(1l,HMS);

for i=1:HMS

for j=1:NVAR % random initial designs
HM(i,j)=round(rand(1)*(PVvB(j,2)-PVB(j,1))+PVB(j,1));
end % end "for j=1:NVAR"

A=Sections(HM(i,:));

[weight, Stress, Disp] = TenBarTrussCase (A);

Sum=0;

GM=[abs(Stress)/MaxS;abs(Disp)/Maxd];

for g=1:length(Gm)

R

minumum harmony consideration rate

R

maximum harmony consideration rate
minumum pitch adjusting rate
maximum pitch adjusting rate

R R

R

harmony memory matrix
updated design vector
best design

merit function values

R R R
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G=GM(9)-1;
if G0
Sum=Sum+Gj;
end
end
merit=weight*(1+Sum)A2; % merit function value
fitness(i)=merit;SumM(i)=Sum;
end % end "for i=1:HM™MS"
FHM1=[fitness',HM];
FHM1=sortrows (FHM1) ; % ascending order based on merit value
DV1=FHM1(1,2:end); % best design of initial designs
if Method==1 || Method==3
% MainHarmony
iterIHS = 0;
for itr=1l:MaxItrIHS
PAR=(PARmax-PARmMin) /(pi/2)*atan(itr)+PARmin;
HMCR=HMCRmax- (HMCRmax-HMCRmin) *itr/MaxItrIHS;
for i =1:NVAR
ran = rand(l);
if( ran < HMCR ) % memory consideration
index=round(rand(1)*(HMS-1)+1);
NCHV(i) = HM(index,i);
pvbRan = rand(1);
if( pvbRan < PAR) % pitch adjusting
pvbRanl = rand(1);
result = NCHV(i);
if( pvbrRanl < 0.5)
result =result+ 1;
if( result < PvB(i,1))
NCHV(i) = PVB(i,1);
end
else
result =result- 1;
if( result > PVB(i,2))
NCHV(i) = PVB(i,2);
end
end
end
else
NCHV(i) = round(rand(1)*(PvB(i,2)-PVB(i,1))+PVB(i,1)); % random selection
if NCHV(i)<1
NCHV(i)=1;
end
if NCHV(i)>Tength(Sections)
NCHV(i)=Tength(Sections);
end
end
end
for i=1:HMS
ts=isequal (NCHV,HM(i,:));
if ts==1
for j=1:NVAR % random design
NCHV(j)=round(rand(1)*(PvB(j,2)-PVvB(j,1))+PVB(j,1));
end
end
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end

% evaluating the new design

A=Sections(NCHV);

[weight, Stress, Disp] = TenBarTrussCase (A);
Sum=0;

GM=[abs(Stress) /MaxsS;abs(Disp)/Maxd];

for g=1:Tength(GMm)

G=GM(g)-1;

if G0

Sum=Sum+Gj;

end

end

merit=weight*(1+Sum)A2;
newFitness=merit;newSum=Sum;

% If this design is better than the worst design in the current %
% population, then it replaces that design %
if(iterIHS==0)

BestFit=fitness(1l);

for i = 1:HMS

if( fitness(i) <= BestFit )

BestFit = fitness(i);

BestIndex =i;

end

end

worstFit=fitness(1);

for i = 1:HMS

if( fitness(i) >= WorstFit )
worstFit = fitness(i);
worstIndex =i;

end

end

end

if (newFitness< WorstFit)
if( newFitness < BestFit )
HM(WorstIndex, :)=NCHV;
BestGen=NCHV;
fitness(WorstIndex)=newFitness;SUM(WorstIndex)=newSum;
BestIndex=worstIndex;

else

HM(WorstIndex, :)=NCHV;
fitness(WorstIndex)=newFitness;SuUM(WorstIndex)=newSum;
end

worstFit=fitness(1l);
worstIndex =1;

for i = 1:HM™MS

if( fitness(i) > WorstFit )
worstFit = fitness(i);
worstIndex =i;

end

end

end

iterIHS=1iterIHS+1;
[val,Toc]=min(fitness);
Merit(iterIHS)=val;
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%%%% Domain Reduction Technique %%X%%
if DR==1
if itr>round(r3*MaxItrIHS)
FHM=[fitness',HM];
FHM=sortrows (FHM) ;
isum=1;
Fsum(1)=1;
for i=1:HMS
if sumM(i)<=0.05
Fsum(isum)=1i;
isum=isum+1;
end
end
if length(Fsum)>HMS*0.05
for i=1:NVAR
std(i)=std(sections(HM(Fsum,i)));
Mean (i)=mean(Sections (HM(Fsum,i)));
pvb(i,1)=Mean(i)-std(i);
[pvbval pvbloc]=min(abs(pvb(i,1)-Sections));
PVB(i,1)=pvbloc;
if PvB(i,1)<1
PVB(i,1)=1;
end
pvb(i,2)=Mean(i)+Std(i);
[pvbval pvbloc]=min(abs(pvb(i,1)-Sections));
PVB(i,2)=pvbloc;
if PVB(i,2)>Tlength(Sections)
PVB(i,2)=length(Sections);
end
if PvB(i,2)-PVB(i,1)<4
PVB(i,1)=round(mean(PVB(i,2)+PVB(i,1))-2);
PVB(i,2)=round(mean(PVvB(i,2)+PVB(i,1))+2);
if PvB(i,1)<1
PVB(i,1)=1;
end
if PVB(i,2)>length(Sections)
PVB(i,2)=1ength(Sections);
end
end
end
end
for i=1:NVAR
if PvB(i,1)>=FHM(1,1+1)
PVB(i,1)=FHM(1,1+i)-2;
end
if PVB(i,2)<=FHM(1,1+1)
PVB(i,2)=FHM(1,1+i)+2;
end
if pvB(i,1)<1
PVB(i,1)=1;
end
if PVB(i,2)>length(Sections)
PVB(i,2)=length(Sections);
end
end
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end

end

%%%% End Domain Reduction Technique %%%%

% Stoping critera

if Method==3

if iterIHS>rl*MaxItrIHS

if (Merit(iterIHS-round(r2*iterIHS))-Merit(iterIHS)) /Merit(iterIHS) <=Eps
break

end

end

end

FHM=[fitness',HM];

ITER=1terIHS;

if pr==1

if ITER==1 || ITER==pr500%500

pr500=pr500+1;

fprintf('iter(IHS)=%4.0f Merit=%6.2f \n',iterIHS,Merit(end)) % Print results at each step
end

end

end % end "for itr=1l:MaxItrIHS"

%%%% End of Phase 1 %%%%

FHM=sortrows ([fitness',HM]); % ascending order based on merit value
DV2=FHM(1,2:end);

end

if Method==1

[a b]l=min(Merit);

fprintf('iter(IHS) = %4.0f Merit = %6.2f \n',b,a)

hold on

plot(Merit, 'Linewidth',2)

plot(b,a,'r*', "Linewidth',2)

hold off

return

end

MaxItrECBO=NVAR*1ength(Sections); % ECBO Maximum number of iteration
if Method==2

FHM=FHM1;
iterIHs=0;
MaxItrecB0o=1000;
end

if Method==3

fprintf('Phasel = %4.0f diteration Merit = %6.2f \n',iterIHS,Merit(end))
end

% ECBO %

for i=1:NVAR % re-set the range of variables
PVB(i,:)=[1,Tength(Sections)];
end

if Method==2 || Method==3

% ECBO parameters %
cMs=0.1*popSize;

R

colliding memory size

pro=0.5; % Pro parameters
CB=FHM(1:popSize,2:end); % Colliding Bodies matrix
iterecBo=0; % counter iterations

R

agentCost=zeros (popSize,2);
agentcCost(:,2)=[1:popSize];

array of agent costs
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agentCost(:,1)=FHM(1:popSize,1);

% Colliding memory; The first column contains CB costs and the remaining
% columns include CB positions

cm=zeros (cMs ,NVAR+1) ; % Colliding Memory matrix
tm=zeros (2*cMs ,NVAR+1) ; % Temporary memory
cm(l:cMs, :)=FHM(1l:cMs, :);

while iterECBO < MaxItrECBO
itereECBO=1itereCBO+1;

% Evaluating the population

if iterecBo > 1

for e=1:popSize

A=Sections(CB(e,:));

[weight, Stress, Disp] = TenBarTrussCase (A);
Sum=0;

GM=[abs(Stress)/MaxsS;abs(Disp)/Maxd];

for g=1:length(Gm)

G=GM(g)-1;

if G0

Sum=Sum+G;

end

end

merit=weight*(1+Sum)A2;

% cost=eval(CB(e,:)); % evaluating objective function for each agent
agentCost(e,l)=merit;

agentCost(e,2)=e;

end %for

end

% Updating colliding memory
agentCost=sortrows (agentCost) ;

if itereCBO>1

for e=1:cMs
agentCost(popSize-cMs+e,1)=cm(e,1);

for ee=1:NVAR
CB(agentCost(popSize-cMs+e,2),ee)=cm(e,ee+l);
end

end

end

for e=1:cMs

tm(e,1l)=agentCost(e,1l);

tm(e+cMs,1)=cm(e,1);

for ee=1:NVAR
tm(e,ee+l)=CB(agentCost(e,2),ee);

tm(e+cMs, ee+l)=cm(e,ee+l);

end

end

tm=sortrows (tm) ;

for e=1:cMs

cm(e, :)=tm(e,:);

end

agentCost=sortrows (agentCost);

% Evaluating the mass

mass=zeros(popSize,1l);

for e=1:popSize

mass(e, :)=1/(agentCost(e,1));

end
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% Updating CB positions

for e=1:popSize/2

indexS=e; % index of stationary bodies

indexM=popSize/2+e; % index of moving bodies

COR=(1-(itereCBO/MaxItrecB0)); % coefficient of restitution

% velocity of moving bodies before collision
velMb=(((cB(agentCost(indexs,2),:)-CB(agentCost(indexM,2),:))));

% velocity of stationary bodies after collision

velSa=((((1+CoR)*mass (indexM,1))/(mass(indexS,1)+mass(indexM,1))*velmb));
% velocity of moving bodies after collision
velMa=(((mass(indexM,1)-COR*mass (indexS,1))/(mass(indexsS,1)+mass(indexm,1))*velMb));
CB(agentCost(indexM,2), :)=round(CB(agentCost(indexs,2), :)+2*(0.5-rand(1,NVAR)) .*velMa);
CB(agentCost(indexs,?2), :)=round(CB(agentCost(indexs,2), :)+2*(0.5-rand(1,NVAR)) .*velsa);
if rand<pro

tmp=ceil(rand*NVAR) ;
CB(agentCost(indexs,2),tmp)=round(PVB(tmp,2)+rand*(PVB(tmp,2)-PVB(tmp,1)));
end

if rand<pro

tmp=ceil(rand*NVAR) ;
CB(agentCost(indexM,?2),tmp)=round(PVB(tmp,2)+rand*(PVB(tmp,2)-PVB(tmp,1)));
end

for i=1:popSize

for j=1:NVAR

if ¢B(i,j)> PVB(j,2)

CB(i,j)=PVB(j,2);

end

if ¢B(@i,j)< pPvB(j,1)

CB(i,j)=PvB(j,1);

end

end

end

end

ITER=1tereECBO+iterIHsS;

Merit(ITER)=cm(1,1);

if pr==1

if itereECBO==1 || itereCBO==pr50*50

pr50=pr50+1;

fprintf('iter(ECBO)=%4.0f Merit=%6.2f \n',iterECBO+iterIHS,Merit(end)) % Print results at each step
end

end

end % end "while iterECBO < MaxItrecBO"

%%%% end of Phase 2 %%%%

[a, bl=min(Merit);

hold on

plot(Merit, 'Linewidth',2)

plot(b,a,'r*', "Linewidth',2)

hold off

if Method==3

fprintf('Phase2 = %4.0f iteration Merit=%6.2f \n',b-1iterIHS,a)

else

fprintf('iter(ECBO) = %4.0f iteration Merit=%6.2f \n',b,a)

end

end

function [weight, Stress, Disp] = TenBarTrussCase (A)

% Ten bar truss case 1
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e=10*10A6;R0=0.1; P = 100%10A3;
nodes = 360*[2, 1; 2, 0; 1, 1; 1, O0; 0, 1; 0, O];
conn = [5,3; 3,1; 6,4; 4,2; 3,4; 1,2; 5,4; 6,3; 3,2; 4,1];

for j=1:2:3;
for i=1:length(conn)
if j==1

Tmm(i,j) =2*conn(i,j)-1;
Tmm(i, j+1)=2*conn(i,j);
else
Tmm(i,j) =2*conn(i,j-1)-1;
Tmm(i, j+1)=2*conn(i,j-1);
end
end
end
K=zeros(2*1ength(nodes));
% Generate stiffness matrix for each element and assemble it.
for i=1:1ength(conn)
Im=Tmm(i,:);
con=conn(i,:);
k=PlaneTrussElement(e, A(i), nodes(con,:));
KC(Tm, Tm) = KCIm, Tm) + k;
end

% Define the load vector
R = zeros(2*1ength(nodes),1); R(4)=-P; R(8)=-P;
% Nodal solution and reactions
[Disp, reactions] = Nodalsoln(k, R, [9,10,11,12], zeros(4,1));
results=[];
for i=1:Tength(conn)
results = [results; PlaneTrussResults(e, A(i),
nodes(conn(i,:),:), Disp(Imm(i,:)))];
end
weight=Ro*360* (A(L)+A(2)+A(3)+A(4)+A(5)+A(6) +sqrt(2)* (A(7)+A(8)+A(9)+A(10)));
Stress=results(:,2);
end
function [d, rf] = Nodalsoln(k, R, debc, ebcvals)
% [nd, rf] = Nodalsoln(K, R, debc, ebcvals)
% Computes nodal solution and reactions
% K = global coefficient matrix
% R = global right hand side vector
% debc = Tist of degrees of freedom with specified values
% ebcvals = specified values
dof = length(R);
df = setdiff(l:dof, debc);
Kf = K(df, df);
Rf = R(df) - K(df, debc)*ebcvals;
dfvals = Kf\Rf;
d = zeros(dof,1);
d(debc) = ebcvals;
d(df) = dfvals;
rf = K(debc, :)*d - R(debc);
end

function k = PlaneTrussElement(e, A, coord)
% PlaneTrussElement(e, A, coord)
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% Generates stiffness matrix for a plane truss element

% e = modulus of elasticity

% A = area of cross-section

% coord = coordinates at the element ends

x1=coord(1,1); yl=coord(1,2);

x2=coord(2,1); y2=coord(2,2);

L=sqrt((x2-x1)A2+(y2-y1)A2);

Ts=(x2-x1)/L; ms=(y2-yl)/L;

k = e*A/L*[1sA2, 1s*ms,-1sA2,-1s*ms;
Is*ms, msA2,-Ts*ms,-msA2;
-1sA2,-1s*ms,1sA2,Ts*ms;
-1s*ms,-msA2,1s*ms,msA2];

end

function results = PlaneTrussResults(e, A, coord, disps)
% results = PlaneTrussResults(e, A, coord, disps)
% Compute plane truss element results

% e = modulus of elasticity

% A = Area of cross-section

% coord = coordinates at the element ends

% disps = displacements at element ends

% The output quantities are eps = axial strain

% sigma = axial stress and force = axial force.
x1=coord(1,1); yl=coord(1,2);

x2=coord(2,1); y2=coord(2,2);
L=sqrt((x2-x1)A2+(y2-y1)A2);

Ts=(x2-x1)/L; ms=(y2-yl)/L;

T=[1s,ms,0,0; 0,0,1s,ms];

d = T*disps;

eps= (d(2)-d(1))/L;

sigma = e.*eps;

force = sigma.*A;

results=[eps, sigma, forcel;

end

)
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APPENDIX B

MATLAB CODE FOR THE 18-BAR TRUSS DESIGN EXAMPLE

%%%%% ECBO ESL for 18 bar truss dis %%%%
%060676%6%6 %60676% %960676%6%6%6
ESL=1; % Linear=1 % Best dynamic=2 % heaviest feasible dynamic=3
% ) FkwwE ECR Fwwi )
% Initializing variables

NVAR=12; % Number of design variables

popSize=40; % Size of the population

cMs=0.1*popSize; % Ccolliding memory size

maxIt=50; % Max. number of interation (without ESL method)
pro=0.4; % Pro prameter

% 1imits

MaxS=138; % Max. stress (MPa)

Maxd=203; % Max. displacement (mm)

% range of variables

Sections = linspace(1%*100,150%100,100);

x=6.35%10A3/2; y=6.35%10A3/2; X = linspace(-x,x,100); Y = Tinspace(-y,y,100);
PvB=[1 Tength(Sections); 1 length(Sections); 1 Tength(Sections);...
1 Tength(sections); 1 length(X); 1 length(Y); 1 length(X); 1 length(Y);...
1 Tength(X); 1 length(Y); 1 length(X); 1 length(Y)];

% random initial designs

for i=1:popSize

for j=1:NVAR

CB(i,3j)=round(rand(1)*(PvB(j,2)-PVB(j,1))+PVB(j,1));

end

end

agentCost=zeros(popSize,2); % array of agent costs

% Ccolliding memory;

% The first column contains CB costs and the remaining columns include CB positions
Inf=1e100; % infinity

cm=zeros (cMs,NVAR+1) ;

tm=zeros (2*cMs ,NVAR+1) ; % Temporary memory

for e=1:cMs

cm(e,1)=Inf;

end

% Start iteration

iter=0; % counter

while iter < maxIt

iter=iter+l;

% Evaluating the population

parfor e=1l:popSize
Dv=[Sections(CB(e,1:4)),Xx(cB(e,5:8)),Y(CB(e,9:12))];

[Mass, Stress, Max_d, nodes, Disp, Kf] = EighlOBarTruss (DV);
Sum=0;

GM=[abs(Stress(:))/MaxsS;abs(Disp(:))/Maxd];

for g=1:1ength(Gm)
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G=GM(g)-1;

if G>0

SUM=SuUm+G;

end

end

merit(e)=Mass*(1+Sum)A2; % evaluating merit function for each agent

end %for

agentCost(:,1)=merit(:); agentCost(:,2)=1:popSize;

% Updating colliding memory

agentCost=sortrows(agentCost);

if iter>1

for e=1l:cMs

agentCost(popSize-cMs+e,1l)=cm(e,l);

for ee=1:NVAR

CB(agentCost(popSize-cMs+e,2) ,ee)=cm(e,ee+l);

end

end

end

for e=1l:cMs

tm(e,1l)=agentCost(e,1l); tm(e+cMs,1l)=cm(e,l);

for ee=1:NVAR

tm(e,ee+l)=CB(agentCost(e,2),ee); tm(e+cMs,ee+l)=cm(e,ee+l);

end

end

tm=sortrows(tm);

for e=1l:cMs

cm(e, :)=tm(e,:);

end

agentCost=sortrows(agentCost);

% Evaluating the mass

mass=zeros (popSize,1l);

for e=1:popSize

mass (e, :)=1/(agentCost(e,1));

end

% Updating CB positions

for e=1:popSize/2

indexS=e; % index of stationary bodies

indexM=popSize/2+e; % index of moving bodies

COR=(1-(iter/maxIt)); % coefficient of restitution

% velocity of moving bodies before collision
velMb=(((cB(agentCost(indexsS,2),:)-CB(agentCost(indexM,2),:))));

% velocity of stationary bodies after collision

velSa=((((1+CoR)*mass (indexM,1))/(mass(indexS,1)+mass(indexM,1))*velMb));
% velocity of moving bodies after collision
velMa=(((mass(indexM,1)-COR*mass (indexS,1))/(mass(indexS,1)+mass(indexM,1))*velMb));
CB(agentCost(indexm,2),1:4)=round(CB(agentCost(indexs,2),1:4)+2*(0.5-rand(1,4)).*velMa(1l:4));
CB(agentCost(indexM,2),5:NVAR)=round(CB(agentCost(indexS,2),5:NVAR)+2*(0.5-rand(1,NVAR-
4)).*velMa(5:NVAR));
CB(agentCost(indexs,2),1:4)=round(CB(agentCost(indexs,2),1:4)+2*(0.5-rand(1,4)).*velsa(1l:4));
CB(agentCost(indexs,2),5:NVAR)=round(CB(agentCost(indexS,2),5:NVAR)+2*(0.5-rand(1,NVAR-
4)).*velsa(5:NVAR));

if rand<pro
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tmp=ceil(rand*NVAR) ;
CB(agentCost(indexs,2),tmp)=round(PVB(tmp,1)+rand*(PVB(tmp,2)-PVB(tmp,1)));
end

if rand<pro

tmp=ceil(rand*NVAR) ;
CB(agentCost(indexM,2),tmp)=round(PVB(tmp,1)+rand*(PVB(tmp,2)-PVB(tmp,1)));
end

for i=1:popSize

for j=1:NVAR

if ¢8(i,j)> PvB(j,2)

CB(i,j)=PvB(j,2);

end

if ¢B(i,j)< pPvB(,1)

CB(i,j)=PvB(j,1);

end

end

end

end

Merit(iter)=cm(1,1);

% Print results at each step

if iter==1 || iter==10 || iter==50 || iter==100 || iter==200 || iter==400 || iter==800
fprintf('iter=%d merit= %6.3f \n',iter,Merit(iter))

end

if iter==1

maxiter=600; % Max. number of interation (ESL method)

maxCy=25; % Max. number of cycles

bestCost=cm(1,1) ;bestbesign=cm(1l,2:end);
[cBesT,CMes1,bestD,bestM,MERIt,EsTIter]=ESLsubdis(CB,cm,bestDesign,bestCost,maxiter,maxCy,ESL);
CB=CBes]1;

cm=CMes];

end

end % while

[bestcost, interation]=min(Merit); bestbesign=cm(1l,2:end);

plot(Merit)

Dnsa=popSize*interation; Lnsa=popSize*sum(EslIter);

fprintf('BestCost= %6.3f(kg), Number of Dyn Ana.= %d, Number of Sta Ana.= %d, Time= %1.1f
(min)\n', ...

bestcost, Dnsa, Lnsa, toc/60)

function [Mass, Stress, Max_d, nodes, d, Kf]=EighlOBarTruss(DV)

% Transient analysis of a plane truss

global mf kf Rf

% g = 386.4;

e = 69%10A3; rho = 2765/1000A3; P=-59.3%10A3;

At = DV(1); Ab = DV(2); Av = DV(3); Ad = DV(4);

X = 6.35%10A3; Y = 6.35%10A3;

x3=X*4+DV(5) ; y3=Y*0+DV(6) ;x5=X*3+DV(7);y5=Y*0+DV(8); Xx7=X*2+DV(9);
y7=Y*0+DV(10); x9=Xx*1+DV(11l);y9=Y*0+DV(12);

nodes = [X*5, Y*1; X*4, Y*1; x3, y3; X*3, Y*1; x5, y5; X*2, Y*1; X7, y7;...
X*1, Y*1; x9, y9; 0, v*1; 0, 0];

conn = [1, 2; 1, 3; 2, 3; 2, 4; 3, 4; 3, 5; 4, 5; 4, 6; 5, 6; 5, 7; 6, 7;6, 8;7, 8;...
7, 9; 8, 9; 8, 10; 9, 10; 9, 11];
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elems = size(conn,1l);

Tmm=[1;

A=zeros(elems,1);

A(1)=At;A(4:4:16)=At; A(6:4:18)=Ab; A(2)=Ab; A(5:4:17)=Ad; A(3:4:15)=Av;
for i=l:elems

Tmm = [Tmm; [2*conn(i,1)-1, 2*conn(i,1),2*conn(i,2)-1, 2*conn(i,2)]1];
end

debc = [19,20,21,22]; ebcvals=zeros(length(debc),1);
dof=2*size(nodes,1);

M=zeros (dof); K=zeros(dof);

R = zeros(dof,1); R(2)=P; R(4)=P; R(8)=P; R(12)=P; R(16)=P;

% Generate equations for each element and assemble them.

Mass=0;

for i=l:elems

con = conn(i,:);

Tm = Tmm(i, :);

[m, k, mass] = TransientPlaneTrussElement(e, A(i), rho, nodes(con,:));
M(CIm, Tm) = M(CTm, Tm) + m;

KC(Tm, Im) = KClm, Tm) + k;

Mass=Mass+mass;

end

% Adjust for essential boundary conditions

dof = length(R);

df = setdiff(1l:dof, debc);

Mf = m(df, df);
Kf = k(df, df);
Rf = R(df) - K(df, debc)*ebcvals;

% Setup and solve the resulting first order differential equations
u0 = zeros(length(Mf),1);

v0 = zeros(length(Mf),1);

[t,d] = ode23('TrussobE', [0,8],[u0; vO0]);
d=d(:,1:18);d(:,19:22)=0;
v=d(:,1:18);v(:,19:22)=0;

Max_S=0;

for i=l:elems

con = conn(i,:);

for j=1:1ength(t)

disps=d(j,Tmm(i,:));

results = PlaneTrussResults(e, A(i), nodes(con,:), disps');
Stress(j,i)= results;

if abs(stress(j,i))>Max_S
Max_S=abs(Stress(j,i));

a=j;b=1;

end

end

end

Max_d=max (max(abs(d)));
[Max,d_i]l=max(abs(d));
[Max_d,d_j]=max(Max) ;

Function
[cBes1,CMes],bestD,bestM,MERIT,EsTIter]=ESLsubdis(CB,CM,bestDesign,MERIT,maxIt,maxCy,Method)
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% This function is the ESL step

%%%% input

CB: Colliding bodies matrix

CM: Colliding memory matrix

bestDesign: the best design what will be used to generate ESLs
MERIT: merit value of the best design

maxiter: maximum number of iterations for each cycle

Method: ESL1, ESL2, or ESL3

%%%% output

CBesl: the best colliding bodies matrix

CMes1: the best colliding memory matrix

bestD: matrix that stores the best design at the end of each cycle
bestM: vector that stores the best merit value at the end of each cycle
MERIT: best merit value

EslIter: vector that stores number of iterations of each cycle
NVAR=12; popSize=40; cMs=0.1*popSize; pro=0.4;

% 1imits

MaxS=138; Maxd=203;

% range of variables

Sections = Tinspace(1*100,150%100,100); x=6.35%10A3/2;y=6.35%10A3/2;
X = Tinspace(-x,x,100); Y = linspace(-y,y,100);

PVB=[1 Tength(Sections); 1 length(Sections); 1 Tength(Sections);...
1 Tength(Sections); 1 length(X); 1 Tength(Y); 1 length(X); 1 length(Y);...
1 Tength(X); 1 length(Y); 1 Tength(X); 1 length(Y)];
Design=[Sections(bestDesign(l:4)) ,X(bestDesign(5:8)),Y(bestbesign(9:12))];
[Mass, Stress, Max_d, nodes, d, K] = EighlOBarTruss (Design);
CMes1=CM;

for cycles=1:maxCy

clear Merit; clear FDM

ESL=K*d(:,1:18)"';

agentCost=zeros(popSize,2);

if cycles>1

for i=1:popSize

for j=1:NVAR

CB(i,j)=round(rand(1)*(PvB(j,2)-PVB(j,1))+PVB(j,1));

end

end

end

cm=CMes1; 1iter=0;

while iter < maxIt

iter=iter+l;

parfor e=1:popSize

[Mass, stress, disp]=StaticEighlOBarTruss([Sections(CB(e,1:4)),x(cB(e,5:8)),Y(cB(e,9:12))],ESL);
GM=[abs (stress)/Maxs;abs(disp)/Maxd];

Sum=0;

for g=1:1ength(Gm)

G=GM(g)-1;

if G>0

SUM=SuUm+G;

end

end

merit(e)=Mass* (1+Sum)A2;

R R R R R X

R R R R R X
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end
agentCost(:,1)=merit(:); agentCost(:,2)=1:popSize; agentCost=sortrows(agentCost);
if iter>1
for e=1l:cMs
agentCost(popSize-cMs+e,1l)=cm(e,l);
for ee=1:NVAR
CB(agentCost(popSize-cMs+e,2) ,ee)=cm(e,ee+l);
end
end
end
for e=1l:cMs
tm(e,1l)=agentCost(e,1l); tm(e+cMs,1l)=cm(e,l);
for ee=1:NVAR
tm(e,ee+l)=CB(agentCost(e,2),ee); tm(e+cMs,ee+l)=cm(e,ee+l);
end
end
tm=sortrows(tm);
for e=1l:cMs
cm(e, :)=tm(e,:);
end
agentCost=sortrows(agentCost); mass=zeros(popSize,1l);
for e=1:popSize
mass (e, :)=1/(agentCost(e,1));
end
for e=1:popSize/2
indexS=e; indexM=popSize/2+e;
COR=(1-(iter/maxit));
velMb=(((cB(agentCost(indexsS,2),:)-CB(agentCost(indexM,2),:))));
velSa=((((1+CoR)*mass (indexM,1))/(mass(indexS,1)+mass(indexM,1))*velMb));
velMa=(((mass(indexM,1)-COR*mass (indexS,1))/(mass(indexS,1)+mass(indexM,1))*velMb));
CB(agentCost(indexm,2),1:4)=round(CB(agentCost(indexS,2),1:4)+2*(0.5-rand(1,4)).*velMa(1l:4));
CB(agentCost(indexM,2),5:NVAR)=round(CB(agentCost(indexS,2),5:NVAR)+2*(0.5-rand(1,NVAR-
4)).*velMa(5:NVAR));
CB(agentCost(indexs,2),1:4)=round(CB(agentCost(indexs,2),1:4)+2*(0.5-rand(1,4)).*velsa(1l:4));
CB(agentCost(indexs,2),5:NVAR)=round(CB(agentCost(indexS,2),5:NVAR)+2*(0.5-rand(1,NVAR-
4)).*velsa(5:NVAR));
if rand<pro
tmp=ceil(rand*NVAR) ;
CB(agentCost(indexs,2),tmp)=round(PVB(tmp,1)+rand*(PVB(tmp,2)-PVB(tmp,1)));
end
if rand<pro
tmp=ceil(rand*NVAR) ;
CB(agentCost(indexM,2),tmp)=round(PVB(tmp,1)+rand*(PVB(tmp,2)-PVB(tmp,1)));
end
for i=1:popSize
for j=1:NVAR
if ¢8(i,j)> PvB(j,2)
CB(i,j)=PvB(j,2);
end
if ¢B(i,j)< pPvB(,1)
CB(i,j)=PvB(j,1);
end
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end

end

end

Merit(iter)=cm(1,1);

% Stoping critera

if iter>0.25*maxIt

if (Merit(iter-round(0.1l*maxIt))-Merit(iter))/Merit(iter) <=10A-3
break

end

end

end

Dv=[Sections(bestDesign(1l:4)) ,X(bestDesign(5:8)),Y(bestbesign(9:12))];
bestDesign=cm(1,2:end); bestcost=cm(1l,1);

if Method==2 || Method==3

AA=[cm(:,2:end);CB(1:10,:)];

fd=0;

for i=1:10+cMs
Dv=[Sections(AA(i,1:4)),X(AACT,5:8)),Y(AA(T,9:12))];

[Mass, Stressnew,Max_d, nodes, dnew, Knew]=EighlOBarTruss(DV);
GM=[abs(Stressnew(:))/MaxS;abs(dnew(:))/Maxd];

Sum=0;

for g=1:1ength(Gm)

G=GM(g)-1;

if G>0

SUM=Sum+G;

end

end

Meritt(i)=Mass* (1+Sum)A2;

if Sum==

fd=fd+1;

FD(fd, :)=DV; FDM(fd,1l)=Meritt(i);

end

end

AC(:,1)=Meritt;AC(:,2)=1:10+cMs; AC=sortrows(AC); MeriT=AC(1l,1);
if Method==2
Design=[Sections(AACAC(1,2),1:4)),X(AACAC(L,2),5:8)),Y(AA(AC(1,2),9:12))1];
else

if fd>0

FDM(:,2)=1:fd; FDM=sortrows(FDM); Design=FD(FDM(end,2),:);

else

Design=[Sections(AA(AC(1,2),1:4)) ,X(AACAC(1,2),5:8)),Y(AACAC(L,2),9:12))];
end

end

bestD(cycles, :)=Design;

[Mass, Stressnew,Max_d, nodes, dnew, Knew]=EighlOBarTruss(Design);
elseif Method==1

Design=[Sections(bestDesign(l:4)) ,X(bestDesign(5:8)),Y(bestDesign(9:12))];
bestD(cycles, :)=bestDesign;

[Mass, Stressnew,Max_d, nodes, dnew, Knew]=EighlOBarTruss(Design);
GM=[abs(Stressnew(:))/MaxS;abs(dnew(:))/Maxd];

Sum=0;

for g=1:1ength(Gm)
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G=GM(g)-1;

if G>0

SUM=SuUm+G;

end

end

MeriT=Mass* (1+Sum)A2;

else

AA=[cm(:,2:end);CB(1:10,:)];

fd=0;

for i=1:10+cMs
Dv=[Sections(AA(i,1:4)),X(AACT,5:8)),Y(AA(T,9:12))];
[Mass, stress, disp]=StaticEighl0BarTruss(DV,ESL);

GM=[abs (stress)/Maxs;abs(disp)/Maxd];

Sum=0;

for g=1:1ength(Gm)

G=GM(g)-1;

if G>0

SUM=SuUm+G;

end

end

Meritt(i)=Mass* (1+Sum)A2;

if Sum==

fd=fd+1; FD(fd, :)=DV; FDM(fd,1)=Meritt(i);

end

end

AC(:,1)=Meritt(:); AC(:,2)=1:10+cMs; AC=sortrows(AC);

if fd>0

FDM(:,2)=1:fd; FDM=sortrows(FDM); Design=FD(FDM(end,2),:);
else

Design=[Sections(bestDesign(l:4)) ,X(bestDesign(5:8)),Y(bestbDesign(9:12))];
end

bestD(cycles, :)=Design;

[Mass, Stressnew,Max_d, nodes, dnew,
Knew]=Eighl0BarTruss([Sections(bestDesign(1l:4)),X(bestDesign(5:8)),Y(bestbDesign(9:12))1);
GM=[abs(Stressnew(:))/MaxS;abs(dnew(:))/Maxd];

Sum=0;

for g=1:1ength(Gm)

G=GM(g)-1;

if G>0

SUM=SuUm+G;

end

end

MeriT=Mass* (1+Sum)A2;

[Mass, Stressnew,Max_d, nodes, dnew, Knew]=EighlOBarTruss(Design);
end

fprintf('cycle= %d iter= %d Merit= %4.2f \n',cycles,iter,MeriT)
clear d; clear K

d=dnew; K=Knew; bestD(cycles,:)=Design; bestM(cycles)=MeriT;EslIter(cycles)=iter;
if (MeriT < MERIT)

MERIT=MeriT;

if Method==1

CMes1=cm; CBes1=CB;
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else

CBes1=CB; CMes1(:,1)=AC(1l:cMs,1); CMesl1(:,2:end)=AACAC(1:cMs,2),:);
end

end

if cycles>=5

if MERIT>=bestM(end)

if bestM(end)==bestMm(end-2)

break

end

else

if MERIT<bestM(end) & MERIT<bestM(end-1)
break

end

end

end

end

end

function sigma = PTaneTrussResults(e, A, coord, disps)
% results = PlaneTrussResults(e, A, coord, disps)

% Compute plane truss element results

% e = modulus of elasticity

% A = Area of cross-section

% coord = coordinates at the element ends

% disps = displacements at element ends

% The output quantities are eps = axial strain

% sigma = axial stress and force = axial force.
x1=coord(1,1); yl=coord(1,2); x2=coord(2,1); y2=coord(2,2);
L=sqrt((x2-x1)A2+(y2-y1)A2); T1s=(x2-x1)/L; ms=(y2-yl)/L;
T=[1s,ms,0,0; 0,0,1s,ms];

d = T*disps;

eps= (d(2,:)-d(1,:))/L; sigma = e.*eps;

function [Mass, stress, d]=StaticEighlOBarTrusstest(DV,ESL)

e = 69*%10A3; rho = 2765/1000A3;

At = DV(1); Ab = DV(2); Av = DV(3); Ad = DV(4);

X = 6.35%10A3; Y = 6.35%10A3;

x3=X*44DV(5) ; y3=Y*0+DV(6) ;x5=X*3+DV(7);y5=Y*0+DV(8); Xx7=X*2+DV(9);
y7=Y*0+DV(10); x9=X*1+DV(11);y9=Y*0+DV(12);

nodes = [X*5, Y*1; X*4, Y*1; x3, y3; X*3, Y*1; x5, y5; X*2, Y*1; X7, y7;...
x*1, v*1; x9, y9; 0, v*1; 0, 0];

conn = [1, 2; 1, 3; 2, 3; 2, 4; 3, 4; 3, 5; 4, 5; 4, 6; 5, 6; 5, 7; 6, 7; 6, 8; 7, 8;...
7, 9; 8, 9; 8, 10; 9, 10; 9, 11];

elems = size(conn,l);

Tmm=[1;

A=zeros(elems,1);

A(1D)=At;A(4:4:16)=At; A(6:4:18)=Ab; A(2)=Ab; A(5:4:17)=Ad; A(3:4:15)=Av;
for i=l:elems

Tmm = [Tmm; [2*conn(i,1)-1, 2*conn(i,1),2*conn(i,2)-1, 2*conn(i,2)]1];

end

debc = [19,20,21,22]; ebcvals=zeros(length(debc),1);

dof=2*size(nodes,1);

M=zeros (dof); K=zeros(dof);
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[iesT,jes1]=size(ESL);

R = zeros(dof,jesl) ; R(1l:iesl,:)=ESL;

% Generate equations for each element and assemble them.

Mass=0;

for i=l:elems

con = conn(i,:);

Tm = Tmm(i, :);

[m, k, mass] = TransientPlaneTrussElement(e, A(i), rho, nodes(con,:));
M(Im, Tm) = MCIm, Tm) + m;

KC(Im, Tm) = K(Im, Tm) + k;
Mass=Mass+mass;
end

% Adjust for essential boundary conditions

df = setdiff(l:dof, debc);

Mf = m(df, df); kf = K(df, df); Rf = R(df,:);

d=1linsolve(Kf,Rf);d(19:22,:)=0;

for i=l:elems

results(i,:) = PlaneTrussResults(e, A(i), nodes(conn(i,:),:), d(Imm(i,:),:));
end

stress=results(:); d=d(:);

function [m, k, mass] = TransientPlaneTrussElement(e, A, rho, coord)
% Generates mass & stiffness matrices for a plane truss element
% rho = mass density

% e = modulus of elasticity

% A = area of cross-section

% coord = coordinates at the element ends

x1=coord(1,1); yl=coord(1,2);

x2=coord(2,1); y2=coord(2,2);

L=sqrt((x2-x1)A2+(y2-y1)A2);

Ts=(x2-x1)/L; ms=(y2-y1l)/L;

k = e*A/L*[1sA2, 1s*ms,-1sA2,-1s*ms;

Ts*ms, msA2,-1s*ms,-msA2;

-1sA2,-1s*ms,1sA2,1s*ms;

-1s*ms,-msA2,1s*ms,msA2];

mass=rho*A*L;
m = ((mass)/6)*[2, 0, 1, 0; 0, 2, 0, 1;
i, 0, 2, 0;0, 1, 0, 21;

function ddot = TrussODE(t, d)
% function to set up equations for a transient truss problem
global mMf Kkf Rf

if t>=2

ft=0;

else

ft=sin(pi*t/2);

end

n=length(d);

u=d(1:n/2); v = d(n/2+1:n);
vdot = inv(Mf)*(Rf*ft - Kf*u);
udot = v;

ddot [udot; vdot
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