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Abstract

This study investigates the optimization and predictive accuracy of photovoltaic thermal systems’ thermal efficiency using
advanced artificial intelligence algorithms, specifically the artificial neural network (ANN), adaptive neuro-fuzzy inference
system (ANFIS), and relevance vector machine (RVM). Experimental data was collected from a photovoltaic thermal system at
the Research Institute of Petroleum Industry in Tehran, Iran, with critical variables including solar irradiance, inlet temperature,
wind speed, and ambient temperature. The comparative analysis revealed that the artificial neural network model outperformed
other algorithms, achieving the highest predictive accuracy with a root mean square error (RMSE) of 11.704 and an R? value
of 0.959, emphasizing its strength in capturing complex, non-linear data interactions. The adaptive neuro-fuzzy inference
system and relevance vector machine models demonstrated moderate predictive capabilities, with root mean square error
values of 14.704 and 19.606, and R? scores of 0.936 and 0.887, respectively. These results highlight the transformative
potential of artificial intelligence-driven models, particularly the artificial neural network, in enhancing photovoltaic thermal
system efficiency, thereby supporting global renewable energy goals through improved system adaptability and energy yield.
This study advances renewable energy optimization, illustrating that artificial intelligence algorithms can effectively manage
intricate variable relationships in photovoltaic thermal systems. The demonstrated approach sets a foundation for further
research into artificial intelligence-optimized renewable energy solutions, promoting more efficient and resilient infrastructures
essential for sustainable development and climate action.

Keywords Photovoltaic thermal systems - Artificial neural network - Adaptive neuro-fuzzy inference system -
Thermal efficiency optimization - Artificial intelligence algorithms in renewable energy
Predictive modeling for solar systems

Introduction

Photovoltaic thermal (PV/T) systems, with their unique
capability to simultaneously generate electrical and thermal
energy from solar radiation, have become a cornerstone in
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the renewable energy landscape. These hybrid systems pro-
vide a dual benefit, enhancing energy conversion efficiency
while offering a sustainable solution to meet the grow-
ing global demand for clean energy (Herrando and Ramos
2022). The integration of photovoltaic and thermal compo-
nents in a single system enables optimal utilization of solar
resources, reducing carbon emissions and promoting cost-
effective energy production. Consequently, PV/T systems
have emerged as an efficient and eco-friendly alternative
to standalone photovoltaic (PV) or thermal systems, par-
ticularly in regions with abundant solar irradiance (Sornek
2024). Despite their significant promise, optimizing the ther-
mal efficiency of PV/T systems remains a complex challenge.
Performance is dictated by the dynamic interplay of multiple
environmental and operational factors, including solar irra-
diance, wind speed, fluid inlet temperature (Noxpanco et al.
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2020), and ambient temperature. These parameters, subject
to substantial spatial and temporal variability, introduce non-
linear interactions that complicate predictive modeling and
system optimization (Minakova and Zaitsev 2021). Tradi-
tional numerical methods, though widely utilized, often rely
on extensive simplifications that can undermine their accu-
racy and fail to account for the intricate dependencies among
system parameters. As such, developing robust and accurate
predictive models is imperative for advancing PV/T technol-
ogy (Allouhi et al. 2023).

Recent studies, such as Salim et al.’s techno-economic
analysis of hybrid PV/T systems in Iraq (2024), Kareem et al.’s
optimization of microgrid droop control (2024), and Radhi
et al.’s neural network-based PV power forecasting (2024),
highlight innovative approaches to enhance system perfor-
mance and integration.

By capturing intricate parameter interactions and adapting
to dynamic environmental conditions, these models out-
perform conventional approaches, offering unprecedented
accuracy and reliability in performance predictions (Dong
et al. 2023). For example, Ahmadi et al. employed an ANN-
based model to predict the thermal efficiency of a PV/T
solar collector using inputs such as inlet temperature, flow
rate, and solar irradiance. Their model achieved a determina-
tion coefficient (R?) of 0.95, illustrating the robust predictive
capability of ANN in capturing nonlinear system behaviors
(Ahmadi et al. 2020). Further advancements in Al mod-
eling were demonstrated by Jiang et al., who developed a
hybrid approach combining variational mode decomposition
(VMD), convolutional neural networks (CNN), improved
particle swarm optimization (IPSO), and least squares sup-
port vector machines (LSSVM). Their methodology signif-
icantly reduced the average relative error by 15.23% and
the root mean square error by 53.60% compared to tra-
ditional methods, further exemplifying the transformative
potential of Al in renewable energy systems (Jiang et al.
2024). ANFIS, a hybrid model integrating neural networks
with fuzzy logic, has also shown substantial promise in PV/T
system optimization. This approach excels in handling the
uncertainties and nonlinearities inherent in such systems by
deriving interpretable rules from input data and providing
robust predictions of thermal efficiency. Its ability to eluci-
date complex relationships between variables, such as solar
irradiance, wind speed, and fluid inlet temperature, makes
it particularly well-suited for PV/T applications (Vakili and
Salehi 2023). Similarly, multilayer perceptron artificial neu-
ral networks (MLP-ANNSs), known for their flexibility and
adaptability, have been widely utilized for modeling highly
nonlinear systems. A recent study demonstrated that MLP-
ANN could achieve a mean squared error (MSE) of 0.009
and a determination coefficient (R?) of 1.00 in predicting
PV/T system efficiency, underscoring its superior accuracy
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in capturing the multifaceted interactions of environmen-
tal and operational parameters (Zamen et al. 2019). The
present study builds upon these advancements by evalu-
ating the comparative performance of ANN, ANFIS, and
RVM models in predicting the thermal efficiency of PV/T
systems. To ensure robustness and real-world applicability,
the analysis leverages experimental data obtained from the
Research Institute of Petroleum Industry (RIPI) in Tehran,
Iran, as documented by Shojaeefard et al. (2023). This dataset
encompasses a broad spectrum of operational conditions,
capturing key parameters such as solar irradiance, inlet fluid
temperature, wind speed, and ambient temperature. These
factors are widely acknowledged in the literature for their
significant influence on the thermal and electrical perfor-
mance of PV/T systems (Kazem et al. 2024). Among the
evaluated models, the ANN approach demonstrated superior
predictive accuracy, achieving a determination coefficient
(R?) of 0.959 and a root mean square error (RMSE) of
11.704. These results highlight ANN’s exceptional ability
to model complex parameter interactions, offering a reliable
pathway for optimizing system efficiency (Saha and Azad
2024). Beyond the specific contributions to PV/T system
optimization, the integration of advanced Al methodologies
in this study exemplifies the broader potential of Al-driven
approaches in renewable energy research. By leveraging
the theoretical strengths of RVM, ANFIS, and ANN, this
research provides a comprehensive framework for addressing
the challenges posed by dynamic environmental conditions
and nonlinear system behaviors. Moreover, the findings align
with global efforts to transition toward sustainable energy
systems, showcasing Al as a transformative tool for enhanc-
ing the efficiency, reliability, and scalability of renewable
energy technologies (Panagoda et al. 2023). The results of
this study not only advance the field of PV/T optimization
but also underscore the critical role of Al in meeting the
urgent demand for innovative, data-driven solutions to com-
plex energy challenges (Fig. 1).

Methodology

The experimental phase of this study was conducted at the
Research Institute of Petroleum Industry (RIPI) in Tehran,
Iran, where a custom-designed photovoltaic thermal (PV/T)
system was developed, installed, and tested. This system
was engineered to generate empirical data and provide
insights for enhancing thermal efficiency. The setup inte-
grated photovoltaic panels with a thermal collector, enabling
the simultaneous production of electrical and thermal energy
from solar irradiation. This design maximized energy con-
version and utilization, as illustrated in Fig. 2.
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Fig.2 Core architecture of the adaptive neuro-fuzzy inference system (ANFIS) with four input variables and a single output (Lara-Cerecedo et al.
2023)
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Details of the PV/T device properties are provided in
Table 1. To ensure accurate and comprehensive data acqui-
sition, the system was equipped with high-precision sensors
to monitor key environmental and operational parameters in
real-time. These parameters included solar irradiance, inlet
and outlet temperatures, ambient temperature, wind speed,
and fluid flow rates. This suite of instrumentation captured
detailed data essential for evaluating and optimizing the PV/T
system’s thermal performance under diverse environmental
conditions, offering valuable insights for advancing energy
efficiency.

Data Acquisition and Experimental Procedure

The data acquisition process utilized precision sensors con-
nected to a data logger to ensure accurate measurement of
parameters critical to system performance. Measurements
were conducted over multiple days, covering a wide range of
environmental and operational conditions to produce a robust
and representative dataset. The key parameters recorded
included solar irradiance (W/m?), coolant inlet temperature
(°C), coolant outlet temperature (°C), wind speed (m/s), and
ambient temperature (°C). A controlled recirculation flow
rate was maintained to optimize heat extraction from the
PV/T system. All data points were systematically logged
at regular intervals, enabling the capture of the system’s
dynamic response to varying conditions.

Machine Learning Models

In this study, we developed three advanced machine learn-
ing models to predict and optimize the thermal efficiency of
photovoltaic thermal (PV/T) systems: multilayer perceptron
artificial neural network (MLP-ANN), adaptive neuro-fuzzy
inference system (ANFIS), and relevance vector machine
(RVM). Each model was selected based on its unique
strengths in handling complex, nonlinear relationships inher-
ent in PV/T systems.

1. Multilayer perceptron artificial neural network
(MLP-ANN): MLP-ANNSs are renowned for their abil-
ity to model intricate nonlinear interactions without
requiring explicit equations, as they learn directly from
empirical data. This capability makes them particularly
suitable for capturing the multifaceted dependencies
between input parameters—such as solar irradiance, inlet
temperature, wind speed, and ambient temperature—
and the resulting thermal efficiency in PV/T systems.
Their flexibility and adaptability have been demonstrated
in various studies, highlighting their effectiveness in
predicting outcomes across diverse environmental con-
ditions (Vijayalakshmi et al. 2024).

2. Adaptive neuro-fuzzy inference system (ANFIS):
ANFIS combines the learning capabilities of neural net-
works with the interpretability of fuzzy logic, making it adept

Table 1 Key characteristics of
the photovoltaic thermal (PV/T)
system analyzed in this

Electrical characteristics
Solar cells

60 polycrystalline (156 x 156 mm)

study (Shojaeefard et al. 2023) Maximum power, Popp (W)

Voltage at max power, Upypp (V)
Current at max power, Impp (A)
Open-circuit voltage, Uy (V)
Short-circuit current, I (A)

Temperature coefficients

Thermal characteristics

250

30.03

8.33

37.68

8.81

Papp = —0.37%/K
Uoe = —90.7 mV/K
I = +2.85 mA/K

Gross surface area (m2) 1.63

Net surface area (m?) 1.48

Liquid content (1) 1.15

Absorber material Aluminum plate
Collector pipe dimensions (mm) 22 x 0.8
Internal pipe dimensions (mm) 8 x 0.5
Maximum operating temperature (°C) 80

Working pressure (bar) 4

Technical data
Dimensions (mm)
Weight (kg)

Solar glass thickness (mm)

1666 x 992 x 40 £2 mm
22
32
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at modeling complex systems where understanding variable
interactions is crucial. In the context of PV/T systems,
ANFIS can handle the nonlinear relationships between
input parameters, providing interpretable rules that offer
insights into system behavior under varied conditions.
This adaptability and interpretability are especially valu-
able for optimizing PV/T systems (Guerra et al. 2024).

3. Relevance vector machine (RVM): RVM is grounded
in sparse Bayesian learning and is advantageous for
its probabilistic framework and sparse representation,
enabling predictive modeling with minimal reliance on
large datasets. Its ability to capture prediction uncertainty
provides valuable insights into the confidence of its out-
puts, supporting optimization in systems experiencing
fluctuating environmental conditions. This makes RVM
a suitable choice for modeling the dynamic interactions
present in PV/T systems (Wang et al. 2022).

By training these models on experimental data, we aimed to
capture the complex relationships between key input parame-
ters and thermal efficiency, facilitating a nuanced understand-
ing and accurate modeling of PV/T system performance.
This data-driven approach enables effective optimization,
contributing to the advancement of renewable energy tech-
nologies.

Thermal Analysis for the PVT

e Thermal output (Q) The thermal energy output of the
photovoltaic thermal (PV/T) collector is calculated using
the following equation:

1mCp(Tou — Tin)

Nth = T A.G (D
where 1 is the mass flow rate (kg/s), C, is the specific
heat capacity of water (4186J kg’1 K’l), and Tout — Tin
is the temperature difference between the outlet and inlet
water (°C).
This equation calculates the heat absorbed by the fluid as
it passes through the PV/T collector, based on the tem-
perature increase and flow rate of the fluid.

e Thermal efficiency (17 )
The thermal efficiency of the PV/T collector is defined as
the ratio of the thermal energy output to the solar energy
input:

_ O

- AG

1 (2)
where (1) is the thermal efficiency, (Q) useful thermal
energy output of the PV/T collector (W), (A) area of
the collector (m?), and (Q) is the global solar irradiance
incident on the collector surface (W / m?).

This equation represents the fraction of incident solar
energy that is converted into useful thermal energy by
the PV/T system.

Multilayer Perceptron Artificial Neural Network
(MLP-ANN)

The artificial neural network (ANN) is a computational
model inspired by the structure and functionality of the
human brain. It consists of interconnected nodes, or “neu-
rons,” which collaboratively process and transmit informa-
tion across the network. Each node produces an output based
on a nonlinear combination of its input values. The “weight”
parameter within the network determines the strength or
intensity of the signal at each connection, influencing how
information is processed and passed forward. In an MLP-
ANN, activation functions play a critical role in transforming
inputs into outputs within each node. Three common activa-
tion functions are as follows (Zamen et al. 2019).

Linear Activation

fx)=x 3)

This function is straightforward, outputting the input value
as is, allowing for linear relationships to be maintained.

Sigmoid Activation

fx) =

4
I4+e* @
The sigmoid function maps any input to a value between
0 and 1, making it useful for scenarios where probabilities or
bounded outputs are desired.

Hyperbolic Tangent

f&) = —"7== (&)
e

Adaptive Neuro-Fuzzy Inference System (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS) is a
multi-layered, feed-forward network structure that combines
neural network adaptability with fuzzy logic principles.
It consists of neurons connected through weighted links,
allowing it to model complex, nonlinear systems. ANFIS
operates through a five-layer architecture, which has been
well-documented in the literature as an effective method for
handling fuzzy systems by combining least squares estima-
tion and backpropagation to optimize its parameters. In this
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system, forward propagation is used to determine the conse-
quent parameters (P;, g;, i), as seen in the defuzzification
layer. Meanwhile, the backpropagation algorithm minimizes
error by adjusting the premise parameters (a;, b;, ¢;), in the
fuzzification layer through gradient descent. Layer descrip-
tions and equations:

e Layer 1 (Fuzzification layer): In this layer, input signals
are transformed based on membership functions. Each
neuron processes an input using a function associated
with linguistic terms, which are represented by square
nodes. The output of each neuron in this layer, Ol.l, is
calculated by a membership function, w4, (x), as follows:

N bi
0} = pa,(x) = exp <— (x — C’) ) ©)

Here, x is the input, while a;, b;, and ¢; are parameters
that shape the membership function.

Sensors
(Temperature,

e Layer 2 (Rule layer): This layer computes the activation

strength of each rule by multiplying membership values
from Layer 1. The output, Oiz, is given by:

07 = pa; (x) x g, (y) ™

Layer 3 (Normalization layer): Here, each rule’s firing
strength is normalized by dividing it by the sum of all
firing strengths. The output for each rule in this layer,
0,.3, is expressed as:

0} = _ Wi 8)

w1 + wy

where w; represents the firing strength of each rule.

e Layer 4 (Defuzzification layer): In this layer, the con-

sequent parameters are applied to the normalized firing
strengths, yielding an output O;‘:

O = w; fi = wi(pix +qiy +ri) )

Data processing &

Irradiance, wind
speed )

preprocessing

ANN model

Feedback loop
(Performance Monitor)

(predict Efficiency &
Control parameters

Real-Time Decisions
(Adjust inlet Temp,
Flow Rate)

System Actuation
(Valve Adjustmenets,
Flow control)

Fig.3 Flowchart of the real-time photovoltaic thermal (PV/T) system management framework integrating ANN-based predictions
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Here, p;, qi, and r; are parameters associated with each
rule’s consequent function.
e Layer 5 (Output layer): This layer produces the overall
output of the system by summing the outputs from Layer
4. The final output, 01‘5’ is calculated as:
i Wi fl
=2 wifi= Z o (10)
Figure 3 illustrates the ANFIS structure, showing four
input variables linked through five layers, where the first
three layers represent the premise part, and the final two lay-
ers constitute the consequent part. This architecture enables
ANFIS to effectively model and interpret complex systems
through a combination of fuzzy logic rules and adaptive neu-
ral learning.

Relevance Vector Machine (RVM)

The relevance vector machine (RVM) is a Bayesian approach
to sparse kernel modeling, commonly employed for regression
and classification tasks. Like the Support Vector Machine
(SVM), it utilizes a similar mathematical framework but
offers probabilistic outputs and fewer support vectors, known
as “relevance vectors,” resulting in a more efficient and
interpretable model. RVM uses Bayesian inference to find
parsimonious solutions, ensuring only the most relevant input
vectors are included in the final model, which contributes to
its sparsity. In the context of photovoltaic thermal (PV/T)
systems, RVM can be leveraged to predict performance by
classifying or regressing key environmental and operational
variables, offering an accurate probabilistic model that effec-
tively captures nonlinear relationships within the data. Below
are the key mathematical formulations and equations that out-
line the RVM methodology. RVM starts with a linear model
framework, where the objective is to predict an output y(x)
based on input x, expressed as:

N
Y =) wigi(x) (11)
i=1

where w; represents the weights for each basis function,
¢i (x) denotes the chosen basis function. In vector notation,
the model can be written as:

t=¢w-+e (12)
where (t) is the target vector, (¢) is the design matrix of

basic functions, (¢) is the noise term with a Gaussian distri-
bution.

Probabilistic Output and Likelihood: RVM introduces a
probabilistic perspective to the model by assuming that each
observation follows a Gaussian distribution:

pt | w, o) = Qro?) N exp (—% e — ¢w||2> (13)
o

where o2 is the variance of the noise term, N is the number
of data points.

Prior distribution on weights: To encourage sparsity, RVM
imposes a Gaussian prior on the weights, leading most
weights to converge towards zero while retaining only the
relevant vectors:

N
[N 0.0 (14)

i=1

pr(wla)=

This Bayesian posterior allows for a probabilistic approach,
aiding in the identification of relevance vectors that con-
tribute meaningfully to the model.

Hyperparameter optimization via marginal likelihood:
The optimal values of « and o2 are determined by maxi-
mizing the marginal likelihood:

p(t ] a.0?) = / Pt | w,o?)p(w | @) dw (15)

This process identifies the best-fitting model parameters
that maximize the likelihood of observing the target data,
promoting a sparse solution.

Predictive distribution for new data: For a new input x,,
the predictive distribution is calculated as:

(s Ix*,t)=/p(y* | X4, w, ) p(w | £, @, 0%) dw (16)

Data Collection

Data were collected from the experimental work presented
in Shojaeefard et al. (2023), which investigated photovoltaic
thermal (PVT) systems using water as the cooling fluid
in the climate of Tehran. This research was conducted at
the Research Institute of Petroleum Industry (RIPI). The
study focused on key parameters affecting PVT performance,
including ambient temperature (7,), wind speed (U), inlet
temperature (7;,), outlet temperature (7,,;), and mass flow
rate (m). From this experimental work, both the thermal effi-
ciency and thermal power output were obtained.

Hyperparameter Tuning and Model Configuration

This study employed a comprehensive hyperparameter tun-
ing process to optimize the predictive performance of
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the machine learning models used for photovoltaic ther-
mal (PV/T) system efficiency prediction. Systematic tuning
methods were applied to ensure the models were tailored to
the dataset’s characteristics, enhancing accuracy and gener-
alizability. The specific tuning approaches and the resulting
configurations for the artificial neural network (ANN), adap-
tive neuro-fuzzy inference system (ANFIS), and relevance
vector machine (RVM) are detailed below and summarized
in Table 2. A grid search approach was utilized for ANN
to explore combinations of key parameters systematically,
ensuring the best architectural and learning configurations.
ANFIS parameters were optimized through a manual trial-
and-error approach, focusing on interpretability and adapt-
ability. For RVM, random search was employed to efficiently
identify optimal kernel types and regularization strengths.
These configurations provide a robust foundation for accu-
rately modeling the complex, nonlinear dynamics inherent
in PV/T systems.

Real-Time System Management Framework

The integration of an artificial neural network (ANN) into
a real-time management system for photovoltaic thermal
(PV/T) systems, as depicted in Fig. 3, provides a com-
prehensive and adaptive framework to optimize system
performance under dynamic environmental conditions. This
workflow begins with high-precision sensors that capture
critical environmental and operational parameters, includ-
ing solar irradiance, wind speed, and ambient temperature.
These measurements form the basis for the system’s real-time
data-driven decision-making processes.

The collected data undergoes preprocessing to ensure its
reliability and consistency. This stage involves cleaning the
data to address issues such as noise, outliers, and missing
values, as well as normalizing the inputs to align with the
requirements of the ANN model. By standardizing the data,
preprocessing ensures that the subsequent predictive analy-
ses are both accurate and robust.

Table 2 Hyperparameters of machine learning models

Model Hyperparameter Final value

ANN Number of hidden layers 2
Neurons per layer 128, 64
Activation function ReLU
Learning rate 0.001
Dropout rate 0.2

ANFIS Number of membership functions 3
Membership function type Triangular
Learning algorithm Hybrid learning

RVM Kernel type Gaussian
Kernel width 1.5
Regularization parameter 0.01

@ Springer

At the core of this framework lies the ANN model,
which leverages its ability to model complex, non-linear
relationships between input variables to predict critical
system parameters such as thermal efficiency. Trained on
experimental data, the ANN dynamically accounts for inter-
dependencies between factors like solar irradiance, fluid
inlet temperature, and wind speed, delivering precise pre-
dictions that guide system optimization. These predictions
are passed to the decision-making module, where real-time
operational adjustments are determined. The system evalu-
ates the ANN’s outputs to recommend modifications such
as adjusting inlet fluid temperature or flow rates, ensur-
ing optimal efficiency under the prevailing environmental
conditions. This decision-making process exemplifies the
ANN’s ability to translate predictive insights into action-
able operational strategies. Following the decision-making
stage, system actuators implement the recommended adjust-
ments. These actuators control key operational elements,
such as valve positions or flow rates, to align system per-
formance with the optimized parameters. This actuation
step highlights the system’s responsiveness to environmen-
tal changes, enabling continuous operational efficiency. To
further enhance system performance, a feedback loop is
incorporated to monitor the outcomes of implemented adjust-
ments and refine the ANN model. By comparing actual
system performance with predicted outcomes, this feedback
mechanism iteratively improves the model’s accuracy and
adaptability over time. This process ensures that the system
remains effective in responding to long-term changes in envi-
ronmental conditions or operational demands.

Figure 3 effectively encapsulates this integrated framework,
illustrating the seamless interaction between sensors, data
preprocessing, ANN-based predictions, real-time decision-
making, and system actuation. This approach demonstrates
the transformative potential of ANN-driven frameworks in
renewable energy systems, providing a scalable and efficient
solution for real-time optimization. By integrating advanced
machine learning techniques with adaptive control strategies,
this framework offers a robust methodology for enhancing
the efficiency and reliability of PV/T systems in diverse oper-
ational contexts.

Results

The experiments were performed during peak midday solar
irradiance on October 10, 2021, ensuring stable and high
radiation levels crucial for evaluating PV/T system perfor-
mance. Key parameters analyzed included inlet temperature,
wind speed, ambient temperature, and solar irradiance. The
water mass flow rate was kept constant at 0.032-0.033, kg/s
to isolate the effects of these variables on thermal efficiency.
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Fig.4 Solar irradiance measurements for Tehran during the study period
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Fig.5 Bubble curve of investigated parameters
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relationship highlights the importance of optimizing input
parameters to enhance system performance.

As shown in Fig. 4, solar irradiance remained consistently
high during the experiment, providing a stable basis for ana-
lyzing its impact on system efficiency. Figure5 illustrates
the relationship between thermal efficiency and solar irradi-
ance. Thermal efficiency was highest at lower inlet water
temperatures, confirming an inverse relationship between
these variables. This underscores the importance of optimiz-
ing inlet conditions to improve system performance.

Parameter Interactions and System Dynamics

The scatter matrix in Fig. 6 illustrates the relationships among
the system’s measured variables, including solar irradiance,
ambient and inlet temperatures, power output, and thermal
efficiency. A positive correlation between solar irradiance
and thermal efficiency indicates that increased solar input
directly enhances efficiency. The strong correlation between
inlet and outlet temperatures confirms the system’s consis-
tent heat transfer performance, essential for efficient PV/T
operation. Maintaining stable mass flow rates allowed for

Scatter Matrix Plot for All Measured Variables
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Fig.6 Scatter matrix plot for all measured variables
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isolating the effects of individual variables, highlighting the
importance of managing solar irradiance and inlet tempera-
ture to optimize thermal output.

Performance Evaluation of ANN Model Training
for Thermal Efficiency Prediction in PV/T Systems

Figure7 illustrates the training performance of the multi-
layer perceptron artificial neural network (MLP-ANN),
demonstrating its capacity to learn from the dataset and con-
verge toward an optimal solution. The training loss curve,
measured by the mean squared error (MSE), shows a sharp
initial decline, starting at approximately 0.07 and drop-
ping significantly within the first ten epochs. This rapid
decrease reflects the model’s initial adaptation to data pat-
terns. As training progresses, the reduction in MSE slows and
stabilizes at around 0.001 after 25 epochs, indicating effec-
tive error minimization without overfitting. The final MSE
aligns closely with the best line (MSE = 0.001), confirming
the model’s robustness and accuracy. While the theoretical
benchmark (MSE = 0.000) is not fully achieved, the perfor-
mance demonstrates high accuracy relative to the target. This
convergence pattern highlights that the MLP-ANN model
is well optimized for predicting thermal efficiency in PV/T
systems. The smooth curve and stable endpoint indicate a
well-generalized model capable of capturing the complex,
non-linear relationships inherent in the data, confirming its
reliability and suitability for this application.

RMSE Convergence and Stabilization of Model
Performance Across Iterations

Figure 8 shows the progression of root mean squared error
(RMSE) across iterations, illustrating the model’s learning
stability and convergence. Separate lines represent Train
RMSE (dashed green), Test RMSE (solid blue), and the
Min Test RMSE reference (dotted red), indicating the lowest
test error achieved. Early iterations exhibit RMSE fluctua-
tions, with peaks around 40, reflecting the model’s adaptation
phase as it adjusts to capture data patterns. Over succes-
sive iterations, RMSE declines sharply, converging near the
Min Test RMSE line. Stabilization occurs around iteration
15, where Test RMSE plateaus at approximately 15, indi-
cating diminishing returns from further training. The Train
RMSE follows a similar pattern, demonstrating effective gen-
eralization with minimal overfitting. Comparative RMSE
values for linear regression (0.030) and RVM (0.037) pro-
vide benchmarks, positioning the current model as achieving
comparable accuracy with stable convergence and low error
variability. These findings confirm the model’s predictive
consistency and robustness for accurate output forecasting.

Design and Configuration of Input Membership
Functions for Fuzzy Logic Model

Figure9 illustrates the membership functions for the fuzzy
logic model’s input variables: temperature, solar irradiance,
wind speed, and ambient temperature. Each input is divided
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Fig.7 Artificial neural network (ANN) training performance across iterations
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Fig.8 Root mean squared error (RMSE) values for each iteration

into three categories low, medium, and high to provide a
continuous interpretation of their influence on system per-
formance. Smooth transitions between membership levels
ensure gradual adjustments, essential for accurate fuzzy mod-
eling. The temperature membership function defines low
up to approximately 25 °C, medium between 25 and 32
°C, and high above 32 °C. This overlapping segmentation
allows precise control over thermal behavior while avoid-
ing abrupt changes. For solar irradiance, low covers values
below 970 W m~2, medium ranges from 970 to 1020 W
m~2, and high includes values above 1020 W m~2. These
divisions reflect the system’s ability to respond smoothly
to solar input changes, a key factor in photovoltaic effi-
ciency. The wind speed membership function assigns low
to speeds below 2.5 m s~! medium from 2.5 to 3.5 ms~!,
and high above 3.5 ms~!. This segmentation accounts for
wind’s cooling effects, where low speeds provide minimal
cooling and high speeds enhance convective heat dissipa-
tion. Ambient temperature membership defines low up to 30
°C, medium from 30 to 40 °C, and high above 40 °C. These
transitions adapt to external temperature variations, affecting
heat transfer efficiency. The overlapping categories across
all membership functions ensure flexibility and continuity,
allowing the model to adapt to environmental changes. This
configuration enhances the fuzzy logic system’s ability to
manage complex, non-linear dependencies, improving pre-
dictive accuracy under real-world conditions.
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The results in Fig. 10 compare the performance of three
predictive models: artificial neural network (ANN), adaptive
neuro-fuzzy inference system (ANFIS), and relevance vec-
tor machine (RVM)—in estimating thermal efficiency based
on experimental data. Figure9a illustrates the ANN model,
showing a moderate correlation between predicted and exper-
imental values, with points dispersed around the ideal line.
The model achieves a root mean square error (RMSE) of
0.078, indicating reasonable predictive capability. However,
it underpredicts at higher thermal efficiency values, high-
lighting variability and reduced precision compared to the
other models. While the ANN model captures overall trends,
itlacks the accuracy needed for precise alignment with exper-
imental data.

The residual analysis shown in Fig. 11 evaluates the accu-
racy and error distribution of the three predictive models:
artificial neural network (ANN), adaptive neuro-fuzzy infer-
ence system (ANFIS), and relevance vector machine (RVM).
(ANN), adaptive neuro-fuzzy inference system (ANFIS),
and relevance vector machine (RVM)—in estimating ther-
mal efficiency. The ANN residuals plot (Fig. 11a) displays a
broader distribution, ranging from approximately —0.10 to
0.20, with a noticeable peak around small positive values.
This range suggests higher variability in prediction errors,
with a slight tendency toward overestimation. These results
align with the previously observed variability in ANN’s pre-
dictive performance. The ANFIS residuals plot (Fig. 11b)
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Fig.9 Trained membership function for input elements

reveals a narrower distribution, with most residuals con-
centrated between —0.04 and 0.04. This clustering around
zero reflects the lower RMSE observed for ANFIS, indicat-
ing smaller prediction errors and more stable performance.
However, occasional slight underpredictions are observed.
The RVM residuals plot (Fig. 11c) exhibits a similarly tight
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distribution, with residuals confined to the —0.04 to 0.04
range. This minimal variability highlights RVM’s ability to
achieve high predictive accuracy with few significant devia-
tions. The concentration of residuals near zero underscores
RVM’s consistency and effectiveness in capturing thermal
efficiency values.
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Regression Analysis of Thermal Efficiency
Predictions

The regression plots in Fig. 12 compare the performance of
the relevance vector machine (RVM), adaptive neuro-fuzzy
inference system (ANFIS), and artificial neural network
(ANN) models in predicting thermal efficiency relative to
experimental data. Each subplot shows predicted thermal
efficiency (y-axis) against experimental thermal efficiency
(x-axis), with a red line representing the ideal 1:1 fit
where predictions perfectly match experimental values. In
Fig. 12a, the RVM model demonstrates strong alignment
with the experimental values, with data points closely clus-
tered around the ideal fit line. The minimal residual spread
indicates high accuracy and consistent predictions across the
observed efficiency range, highlighting RVM’s robustness
and precision. Figure 12b shows the ANFIS model’s perfor-
mance, which also aligns well with the experimental data but
exhibits slightly greater variation than RVM. While most data
points are near the ideal line, some scatter is observed, partic-
ularly at higher efficiency values. This suggests that ANFIS
maintains high predictive accuracy but is slightly more sen-
sitive to variability compared to RVM. In Fig. 12¢, the ANN
model displays the largest scatter around the ideal fit line,
especially at lower efficiency values. Although it captures
general trends, the deviations from the ideal line are more
pronounced, indicating higher variability and reduced accu-
racy relative to RVM and ANFIS.

Taken together, Fig. 11 highlights that while all three mod-
els effectively capture the relationship between experimental
and predicted thermal efficiencies, RVM provides the most
accurate predictions with minimal residual scatter. ANFIS
performs well but shows minor limitations in precision, while
ANN demonstrates the greatest prediction variability. These
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results underscore RVM’s comparative advantage in predict-
ing thermal efficiency, followed by ANFIS and ANN.

Final Comparative Results of Predictive Algorithm
Performance

Table 3 presents the performance metrics for all algorithms,
evaluated using root mean square error (RMSE) and the
coefficient of determination (R?). These metrics reflect each
model’s predictive accuracy and goodness of fit.

The artificial neural network (ANN) demonstrated the
best performance with the lowest RMSE and highest R?,
indicating superior predictive accuracy. In contrast, the rel-
evance vector machine (RVM) exhibited the highest RMSE
and lowest R?, reflecting its lower accuracy. The adaptive
neuro-fuzzy inference system (ANFIS) showed intermediate
results, balancing the performance of ANN and RVM.

Discussion and Validation of Results
General Analysis of Results

The comparative analysis of the three machine learn-
ing models—multilayer perceptron artificial neural net-
work (MLP-ANN), adaptive neuro-fuzzy inference system
(ANFIS), and relevance vector machine (RVM) revealed dis-
tinct strengths and limitations, highlighting their suitability
for predicting and optimizing the thermal efficiency of pho-
tovoltaic thermal (PV/T) systems.

The ANN model demonstrated superior performance,
achieving the lowest root mean square error (RMSE) of
11.704 and the highest coefficient of determination (R?) of
0.959. This can be attributed to its multi-layer architecture,
which allows for capturing complex, non-linear relation-
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Table 3 Performance metrics for all algorithms

Algorithm RMSE  R?

Relevance vector machine (RVM) 19.606 0.887
Adaptive neuro-fuzzy inference system (ANFIS) 14.704 0.936
Artificial neural network (ANN) 11.704 0.959

ships between input parameters and thermal efficiency. The
ANN’s flexibility and adaptability enable it to model intricate
dependencies, making it the most accurate predictor among
the tested models. However, as shown in the residual plots
(Fig. 11a), the ANN exhibited slight variability at lower ther-
mal efficiency values, indicating sensitivity to certain data
distributions and outliers.

The ANFIS model showed moderate predictive accuracy,
with an RMSE of 14.704 and an R? value of 0.936. Its hybrid
approach, combining fuzzy logic with neural networks, facil-
itated interpretable rule-based modeling and adaptability to
diverse environmental conditions. ANFIS excelled in cap-
turing stable medium-range efficiencies, as evidenced by its
consistent performance across varied input ranges. However,
Fig. 12b highlights slight overprediction tendencies at higher
efficiency values, suggesting limitations in its ability to gen-
eralize under highly dynamic conditions.

The RVM model, grounded in sparse Bayesian learn-
ing, provided valuable insights into prediction uncertainty
but exhibited the lowest predictive accuracy, with an RMSE
of 19.606 and an R? value of 0.887. Its sparse representa-
tion allowed for computational efficiency, but its reliance on
fewer data points limited its capacity to capture intricate non-
linear dependencies. As shown in Fig. 1 1c, RVM predictions
displayed significant scatter, particularly at higher thermal
efficiency levels, reflecting its reduced accuracy in handling
dynamic interactions within PV/T systems.

These findings indicate that while ANN is the most
robust tool for predicting PV/T thermal efficiency due to its
accuracy and adaptability, ANFIS offers a balance between
interpretability and moderate accuracy, making it useful
for scenarios requiring insights into variable interactions.
Conversely, RVM’s computational efficiency and ability to
quantify uncertainty make it suitable for simpler, less com-
plex applications or scenarios where confidence intervals are
critical.

By understanding the strengths and weaknesses of each
model, this study provides a framework for selecting the
most appropriate methodology based on specific PV/T sys-
tem requirements and operational conditions.

ML Model Validation for PV/T Thermal Efficiency

The validation results presented in Table 4 underscore a
rigorous comparative analysis of machine learning models
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Table 4 Performance comparison of machine learning models in pre-
dicting PV/T system efficiency

Model Study RMSE R?
ANN Present study 11.704 0.959
ANN Ahmadi et al. (2020) Not specified 0.95
ANFIS Present study 14.704 0.936
ANFIS Vijayalakshmi et al. (2024) 4851.7 0.7777
RVM Present study 19.606 0.887

employed for predicting the thermal efficiency of photo-
voltaic thermal (PV/T) systems. The study demonstrates
that the artificial neural network (ANN) significantly outper-
formed the adaptive neuro-fuzzy inference system (ANFIS)
and relevance vector machine (RVM) in terms of predictive
accuracy and robustness.

The ANN model achieved an RMSE of 11.704 and
an R? value of 0.959, reflecting its capability to capture
approximately 96% of the variance in the data. Its superior
performance is attributed to its multilayer architecture, which
excels at modeling complex nonlinear dependencies between
environmental variables and thermal efficiency. The results
are consistent with prior findings, such as those reported by
Ahmadi et al. (2020), where an ANN model achieved an R2
of 0.95.

The ANN’s implementation in this study, complemented
by advanced hyperparameter optimization and 5-fold cross-
validation, highlights its reliability and adaptability under
diverse operational conditions.

In contrast, the ANFIS model exhibited moderate accu-
racy, with an RMSE of 14.704 and an R? value of 0.936.
Its hybrid architecture, which integrates fuzzy logic and neu-
ral networks, enables interpretable rule-based insights while
maintaining adaptability to varied environmental conditions.
Compared to findings by Vijayalakshmi et al. (2024), where
ANFIS achieved an RMSE of 4851.7 and an R? of 0.7777, the
results of the present study reflect a significant improvement.
However, ANFIS displayed limitations in generalizing under
highly dynamic conditions, particularly at higher efficiency
ranges, where slight overprediction was observed.

The RVM model, despite its computational efficiency and
ability to quantify prediction uncertainty, demonstrated the
lowest predictive performance, with an RMSE of 19.606 and
an R? value of 0.887. While RVM’s sparse Bayesian learn-
ing framework provides valuable insights into prediction
uncertainty, its limited capacity to capture intricate nonlinear
relationships hinders its applicability to complex PV/T sys-
tems. The scatter observed in RVM predictions, particularly
at higher efficiency levels, underscores these limitations.

In summary, the ANN model emerged as the most robust
and accurate tool for predicting PV/T system efficiency,
particularly in complex and dynamic environments. ANFIS
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offers a balance between moderate accuracy and inter-
pretability, making it suitable for scenarios requiring insights
into variable interactions. RVM, while less precise, remains
a viable option in contexts where computational efficiency or
uncertainty quantification is prioritized over accuracy. These
findings provide a comprehensive evaluation of model per-
formance, positioning the study within the broader body of
literature and advancing the state-of-the-art in PV/T system
optimization through machine learning methodologies.

Insights for Model Improvement

The comparative analysis of the predictive models—artificial
neural network (ANN), adaptive neuro-fuzzy inference
system (ANFIS), and relevance vector machine (RVM)—
revealed nuanced insights into their performance under
varying operational contexts. While the ANN demonstrated
superior accuracy across most conditions, achieving the low-
est RMSE (11.704) and highest R? (0.959), its performance
varied in datasets with lower thermal efficiency. The resid-
ual analysis (Fig. 11a) indicates that ANN exhibited slight
overpredictions at the lower end of thermal efficiency val-
ues. This limitation arises due to its sensitivity to outliers and
imbalanced data distributions, which could be mitigated by
applying additional preprocessing techniques, such as outlier
removal or data augmentation.

ANFIS performed moderately well, offering an interpretable
model structure and consistent predictions in medium-range
thermal efficiencies. However, it struggled to generalize
at higher efficiency levels, as evidenced by overprediction
tendencies (Fig. 11b). This issue likely stems from the rule-
based nature of ANFIS, which, while effective for mid-range
conditions, may require additional rule tuning or hybridiza-
tion with optimization algorithms to improve accuracy under
dynamic environmental fluctuations.

RVM, on the other hand, excelled in computational effi-
ciency and uncertainty quantification but was limited in
capturing intricate, non-linear relationships. The model’s
residual plot (Fig. 11c) shows significant scatter at higher
thermal efficiencies, indicating reduced robustness in highly
dynamic contexts. This could be attributed to RVM’s sparse
representation, which, while computationally advantageous,
may omit critical interactions when the dataset contains com-
plex interdependencies.

By contextualizing the strengths and weaknesses of each
model, this study highlights areas for improvement and
avenues for future research. The ANN’s sensitivity to outliers
could be addressed through enhanced data preprocessing,
while ANFIS may benefit from incorporating advanced
rule optimization techniques. For RVM, integrating it with

hybrid frameworks or increasing data density in training may
improve its adaptability to dynamic conditions.

Critical Evaluation of ANN Limitations

This study critically evaluates the limitations of artificial neu-
ral networks (ANNSs) and outlines the strategies implemented
to mitigate these challenges, particularly in the context of
optimizing photovoltaic thermal (PV/T) system efficiency.
ANNSs, while highly effective at modeling complex and
nonlinear relationships, are prone to overfitting, especially
when the model complexity exceeds the scope of the train-
ing dataset. To address this, dropout regularization was
employed, randomly deactivating a subset of neurons during
training to enhance generalizability. Additionally, early stop-
ping was utilized to terminate the training process once the
validation loss stabilized, preventing overtraining and ensur-
ing a balance between model accuracy and robustness.

The computational demands of ANNs, which arise from
their large parameter spaces and iterative training processes,
were mitigated using model pruning techniques. By remov-
ing less impactful neurons or connections post-training, the
computational complexity was reduced without compromis-
ing predictive performance. This optimization is particularly
relevant for real-time PV/T system management, where
resource constraints often necessitate efficient models.

Furthermore, recognizing the dependence of ANNs on the
quality and diversity of training data, this study incorporated
data augmentation methods to expand the training dataset
artificially. This approach introduced variability reflective of
real-world conditions, enhancing the model’s adaptability. A
cross-validation framework was also implemented to evalu-
ate the robustness of the model across diverse environmental
scenarios, ensuring its generalizability.

Conclusion

This study presented a comprehensive evaluation of machine
learning algorithms to predict and optimize the thermal
efficiency of photovoltaic thermal (PV/T) systems using
experimental data collected from a system operating in
Tehran. The artificial neural network (ANN) model demon-
strated superior predictive accuracy, achieving a root mean
square error (RMSE) of 11.704 and a coefficient of deter-
mination (R?) of 0.959. These results represent a significant
improvement over previous studies, such as Ahmadi et al.
(2020), who reported an R? of 0.95 for an ANN-based
model, and Vijayalakshmi et al. (2024), who achieved an
R? of 0.936 using an adaptive neuro-fuzzy inference system
(ANFIS). The ANN’s ability to capture complex, non-linear

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Process Integration and Optimization for Sustainability

interactions between variables underscores its potential as a
transformative tool for renewable energy optimization.

The findings of this study have important practical impli-
cations for the design and operation of PV/T systems. By
achieving a thermal efficiency prediction accuracy of over
95%, the ANN model provides a reliable framework for opti-
mizing system performance under dynamic environmental
conditions. This level of accuracy is critical for maximiz-
ing energy yield and reducing operational costs, making
PV/T systems more economically viable and environmen-
tally sustainable. Furthermore, the integration of advanced Al
methodologies, such as ANN and ANFIS, into real-time man-
agement systems can enhance the adaptability and resilience
of renewable energy infrastructures, supporting global efforts
to transition toward clean energy solutions.

Recommendations

This study highlights several areas for advancing machine
learning methodologies in optimizing photovoltaic thermal
(PV/T) systems. To enhance predictive performance and gen-
eralizability, future research should focus on the following:

1. Hyperparameter optimization: Employ advanced opti-
mization methods, such as Bayesian optimization and
evolutionary algorithms, to refine critical model param-
eters and improve accuracy across diverse conditions.

2. Inclusion of additional variables: Expand input param-
eters to incorporate humidity, atmospheric pressure,
seasonal effects, and system aging. These additions will
enable models to better capture environmental dynamics
and long-term system performance.

3. Hybrid and ensemble models: Explore hybrid frame-
works, such as ANFIS combined with optimization
algorithms, and ensemble techniques like boosting and
bagging to improve model robustness and adaptability
under complex conditions.

4. Enhanced data preprocessing: Strengthen data qual-
ity through outlier detection, balancing techniques like
SMOTE, and advanced feature engineering to uncover
hidden patterns and improve predictive reliability.

5. Validation across contexts: Extend experiments to mul-
tiple geographic locations and diverse climatic condi-
tions, ensuring the broader applicability and reliability
of the models.

6. Exploration of advanced AI techniques: Investigate
state-of-the-art approaches, including gradient boosting
machines, transformer-based models, and deep reinforce-
ment learning, to complement traditional methods and
drive further advancements.

@ Springer

By addressing these areas, future studies can refine Al-driven
methodologies, enhance PV/T system optimization, and con-
tribute significantly to the development of sustainable and
efficient renewable energy technologies.

Author Contributions H.A.H. conceptualized and designed the study.
A.S.A. performed the data collection and analysis. Q.A. contributed to
the methodology and provided technical guidance. M.A. prepared the
manuscript draft and performed data visualization. All authors reviewed
and approved the final manuscript.

Funding This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Data Availability The data supporting the findings of this study are
available from the corresponding author upon reasonable request.

Declarations

Conflict of Interest The authors declare no competing interests.

References

Ahmadi MH et al (2020) Evaluation of electrical efficiency of pho-
tovoltaic thermal solar collector. Eng Appl Comput Fluid Mech
14(1):545-565

Allouhi A, Rehman S, Buker MS, Said Z (2023) Recent technical
approaches for improving energy efficiency and sustainability of
PV and PV-T systems: a comprehensive review. Sustain Energy
Technol Assess 56:103026

Dong H, Xu C, Chen W (2023) Modeling and configuration optimiza-
tion of the rooftop photovoltaic with electric-hydrogen-thermal
hybrid storage system for zero-energy buildings: consider a cumu-
lative seasonal effect. Build Simul (Springer) 16:1799-1819

Guerra M1, de Aratjo FM, de Carvalho Neto JT, Vieira RG (2024) Sur-
vey on adaptative neural fuzzy inference system (ANFIS) architec-
ture applied to photovoltaic systems. Energy Syst 15(2):505-541

Herrando M, Ramos A (2022) Photovoltaic-thermal (PV-T) systems
for combined cooling, heating and power in buildings: a review.
Energies 15(9):3021

Jiang J, Hu S, Xu L, Wang T (2024) Short-term PV power prediction
based on VMD-CNN-IPSO-LSSVM hybrid model. Int J Low-
Carbon Technol 19:1160-1167

Kareem RM (2024) Optimal operation of droop control in microgrids
using different techniques optimization. Misan J Eng Sci 3(2):48—
95

Kazem HA et al (2024) Performance evaluation of solar photo-
voltaic/thermal system performance: an experimental and artificial
neural network approach. Case Studies Thermal Engi 61:104860

Lara-Cerecedo LO, Hinojosa JF, Pitalda-Diaz N, Matsumoto Y,
Gonzdlez-Angeles A (2023) Prediction of the electricity gener-
ation of a 60-kW photovoltaic system with intelligent models
ANFIS and optimized ANFIS-PSO. Energies 16(16):6050

Minakova K, Zaitsev R (2021) Photovoltaic thermal PV/T systems:
increasing efficiency method. In: 2021 IEEE 2nd KhPI week on
advanced technology (KhPIWeek) (IEEE), pp 303-306

Noxpanco MG, Wilkins J, Riffat S (2020) A review of the recent
development of photovoltaic/thermal (Pv/t) systems and their
applications. Future Cities Environ 6:9-9

Panagoda L et al (2023) Advancements in photovoltaic (Pv) technology
for solar energy generation. J Res Technol Eng 4(30):30-72

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Process Integration and Optimization for Sustainability

Radhi SM, Al-Majidi S, Abbod M, Al-Raweshidy H (2024) Predicting
solar power generation utilized in Iraq power grid using neural
network. Misan J Eng Sci 3(1):38-62

Saha G, Azad AAM (2024) A review of advancements in solar PV-
powered refrigeration: enhancing efficiency, sustainability, and
operational optimization. Energy Rep 12:1693-1709

Salim H, Rashed J (2024) Techno-economic feasibility analysis of
hybrid renewable energy system by using particle optimization
technique for the rural border areas in Iraq: case study. Misan J
Eng Sci 3(2):14-31

Shojaeefard MH, Al-Hamzawi HAH, Sharfabadi MM (2023) Evalu-
ating the performance of photovoltaic thermal systems in varied
climate conditions: an exergy and energy analysis approach. Int J
Heat Technol 41(6)

Sornek K (2024) Assessment of the impact of direct water cooling and
cleaning system operating scenarios on PV panel performance.
Energies 17(17):4392

Vakili M, Salehi SA (2023) A review of recent developments in the
application of machine learning in solar thermal collector mod-
elling. Environ Sci Pollut Res 30(2):2406-2439

Vijayalakshmi P, et al (2024) Comparative analysis of ANN and ANFIS
models for solar energy prediction: advancing forecasting accuracy
in photovoltaic systems. In: AIP Conference Proceedings (AIP
Publishing), vol 3231

Wang Y, Xie B, Shiyuan E (2022) Adaptive relevance vector machine
combined with Markov-chain-based importance sampling for reli-
ability analysis. Reliab Eng Syst Safety 220:108287

Zamen M, Baghban A, Pourkiaei SM, Ahmadi MH (2019) Optimization
methods using artificial intelligence algorithms to estimate thermal
efficiency of PV/T system. Energy Sci Eng 7(3):821-834

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature™).

Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.

These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.

We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.

While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

1. use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access
control;

2. use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is
otherwise unlawful;

3. falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in
writing;

4. use bots or other automated methods to access the content or redirect messages

5. override any security feature or exclusionary protocol; or

6. share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal
content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.

These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.

To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.

Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.

If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice(@springernature.com



mailto:onlineservice@springernature.com

