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Abstract

Obesity is characterized by an excessive accumulation of body fat, resulting from an imbalance where biochemi-

cal processes related to fat synthesis outpace those responsible for energy expenditure. Genetic predisposition

plays a significant role in the susceptibility to obesity. In this context, gene therapy presents a promising approach

to address obesity as a global health concern by modulating gene expression to favor energy consumption and lipol-
ysis, leading to fat reduction and the restoration of energy homeostasis. Recent advancements in gene therapy

for obesity have leveraged novel vectors and delivery systems. Emerging approaches also use zinc finger proteins,
small interfering RNAs, and self-cleaving ribozymes to modulate gene expression. Despite significant progress, several
challenges remain in optimizing gene therapy for obesity. Key considerations include the selection of appropriate
target genes, understanding long-term effects, ensuring the safety of gene transfer methods, conducting compre-
hensive preclinical studies, and developing strategies to mitigate potential side effects such as the random insertion
of virus-borne transgenes and associated toxicity. Ongoing research and technological innovations will be essential

in overcoming these challenges and translating gene therapy into a viable clinical solution for managing obesity.
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Introduction

Obesity encompasses a diverse group of conditions and
is a complex, multifactorial disorder characterized by
an imbalance between caloric intake and expenditure,
resulting in excessive fat accumulation. Therefore, obe-
sity is defined as an increase in fat mass that negatively
impacts health. Genetic factors and behavioral habits are
closely linked to obesity [1].

Obesity can be classified into primary and secondary
types. Primary obesity is generally attributed to lifestyle
and behavioral factors, while secondary obesity is asso-
ciated with medical conditions such as endocrine dis-
orders, medications, or genetic syndromes [2]. Genetic
obesity can be further divided into monogenic forms
(e.g., leptin or melanocortin-4 receptor (MC4R) deficien-
cies) and syndromic forms (e.g., Prader—Willi syndrome)
[3]. These genetic variants interfere with the energy bal-
ance pathways, contributing to severe early-onset obesity.
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Patients with genetic obesity often show inadequate
responses to conventional treatments such as diet, exer-
cise, or pharmacotherapy [4]. Gene therapy provides
a promising targeted approach by addressing specific
genetic abnormalities. For example, MC4R gene therapy
[5] and leptin gene therapy [6] are critical interventions
for reestablishing metabolic balance in patients with
inherited obesity syndromes.

Multiple genes regulate the expression of proteins and
enzymes responsible for metabolic homeostasis, and
defects in these genes can contribute to obesity [4]. Envi-
ronmental factors, such as increased food intake and
reduced energy expenditure, also significantly influence
obesity risk. Dietary habits, including high-carbohydrate
intake, low physical activity, and sedentary behaviors like
television watching, along with sociocultural influences,
all elevate the risk of obesity. Additionally, restrained eat-
ing, as a psychosocial factor, appears to play a role in the
etiology of obesity [1].

Research shows that obese individuals face a higher
risk of health complications compared to those with
normal weight [2]. Obesity is associated with numerous
disorders, including cardiovascular diseases (e.g., hyper-
tension, coronary heart disease, cerebrovascular dis-
ease, varicose veins, and deep venous thrombosis) and
respiratory conditions (e.g., sleep apnea, breathlessness,
and hypoventilation syndrome). Additionally, obesity
contributes to metabolic disorders (e.g., hyperlipidemia,
diabetes, insulin resistance, and menstrual irregularities),
gastrointestinal issues (e.g., fatty liver, cirrhosis, hemor-
rhoids, hernia, colorectal cancer, and gallstones), and
various malignancies (e.g., breast, endometrial, prostate,
and cervical cancers) (Fig. 1) [7]. Obesity also negatively
affects psychological well-being and cognitive function,
with recent studies showing links to mood disorders, par-
ticularly depression [8].

Obesity can be assessed through various methods,
including anthropometry, bioelectrical impedance analy-
sis, densitometry, and imaging, with body mass index
(BMI) being the most widely used [2]. Higher BMI levels
are associated with increased risks of hypertension, type
2 diabetes, and cardiovascular diseases [3]. Treatment
strategies for obesity include dietary and physical activ-
ity modifications, pharmacotherapy, and bariatric sur-
gery [2]. Measuring BMI and waist circumference helps
evaluate risk factors, guiding the most suitable treatment
approach [7].

Dietary therapy is the primary approach for most indi-
viduals, except in cases such as pregnancy, lactation, or
osteoporosis. Low-calorie diets (LCDs) and very-low-
calorie diets (VLCDs) are common calorie-restriction
methods. Meal replacement programs like Optifast and
Medifast are also available and are considered safe for
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Fig. 1 Related diseases to obesity. Some related diseases to obesity
include: cardiovascular diseases (hypertension, coronary heart
disease, cerebrovascular disease, varicose veins, deep venous
thrombosis), respiratory diseases (apnea, breathless, hypoventilation
syndrome), metabolic disorders (hyperlipidemia, diabetes mellitus,
menstrual irregularities, insulin resistance), gastrointestinal disorders
(fatty liver and cirrhosis, hemorrhoids, hernia, colorectal cancer,
gallstones), and malignancies (breast cancer, endometrial cancer,
prostate cancer, cervical cancer)

weight reduction [7]. Diets high in protein, with low gly-
cemic and fat indices and lower carbohydrate content,
aid in maintaining weight loss. Adherence to these diets
is essential for long-term weight management, and they
should promote lasting health benefits [2].

Physical activity plays a key role in boosting energy
expenditure, reducing fat storage, and supporting energy
balance. Studies indicate that regular exercise improves
cardiovascular fitness and mental well-being [7]. Gradual
increase in aerobic activity is recommended for obese
patients, as exercise also lowers the risk of diabetes and
cardiovascular disease. For long-term weight mainte-
nance, 60—90 min of daily exercise may be necessary.
Exercise is one of the most effective strategies for obesity
prevention, helping to reduce mitochondrial dysfunction
by balancing mitochondrial dynamics and mitophagy,
though the exact mechanism remains unclear [9].

Drug treatment is another strategy for managing obe-
sity, recommended as an adjunct to diet and exercise for
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moderate- to high-risk patients [2]. FDA-approved medi-
cations for long-term weight management include Orl-
istat, lorcaserin, liraglutide, diethylpropion, phentermine,
phendimetrazine, benzphetamine, phentermine—topira-
mate extended release, and naltrexone—bupropion sus-
tained release. These medications primarily aid in dietary
adherence, although only Orlistat and cetilistat specifi-
cally support low-fat diets. If a 4—5% reduction in body
weight is not achieved within three months, the drug
should be discontinued in favor of alternative strategies
[2].

Gastric partitioning and gastric bypass are surgical
procedures used to treat obesity, typically recommended
when other methods have failed and BMI is excessively
high. These surgeries can positively impact lipid levels,
diabetes, and hypertension associated with severe obe-
sity. However, they may also lead to complications such
as nutritional deficiencies and intractable vomiting. Late
complications can include gallstone formation in about
10% of patients, hair thinning, and excess skin [10].

Additional strategies for treating obesity are under
investigation, including precision drugs, antibody thera-
pies targeting mediators, bioactive compounds for meta-
bolic effects, oxygen therapy to modulate appetite, and
gene therapy [2].

Gene therapy, a novel treatment with potential ben-
efits across various medical fields, can correct altered
genes and enable site-specific modifications for thera-
peutic purposes [11]. Advances in understanding the
molecular basis of obesity and related diseases position
gene therapy as a promising strategy. It aims to increase
or decrease gene products, resulting in fat reduction and
improved energy homeostasis [4].

Obesity arises from biochemical processes involving
enzymes and genes that regulate metabolic homeostasis
and occurs when fat synthesis and accumulation exceed
energy expenditure. Gene transfer aims to produce essen-
tial proteins that maintain metabolic balance by blocking
fat accumulation and enhancing energy expenditure [4].

Literature search strategy

A comprehensive literature review was performed using
the PubMed, Scopus, and Google Scholar databases to
identify English-language articles published till Novem-
ber 1, 2024. The search strategy incorporated key terms,
including Obesity, Gene therapy, Gene transfer tech-
niques, Novel therapeutic strategies, Genes, Biomarkers,
and Therapeutic applications. Abstracts were screened
for relevance, and the full texts of eligible studies were
retrieved and analyzed. To ensure a thorough review, the
reference lists of selected articles were also examined to
identify additional pertinent publications (Fig. 2).
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An overview on obesity as a disorder of energy
homeostasis

Two major environmental factors closely associated
with obesity are diet and lifestyle. High-fat diets (HFDs)
often lead to excessive energy intake due to their appeal-
ing taste, particularly when combined with insufficient
physical activity. Biochemically, obesity is character-
ized by fat storage exceeding permissible limits, result-
ing from processes involving enzymes and genes that
regulate metabolic homeostasis. Obesity develops when
fat synthesis and accumulation outpace energy expendi-
ture [12]. Genetic defects in the coding or regulatory
sequences of proteins responsible for lipid accumulation
and consumption contribute to obesity. Consequently,
current trends in treatment focus on blocking lipid accu-
mulation and increasing energy expenditure. A gene
therapy-based approach aims to transfer coding or non-
coding sequences to produce essential proteins that help
re-establish and maintain metabolic homeostasis [13].

Role of genetic factors in highly variable individual
susceptibility to weight gain

Obesity is influenced by complex interactions among
developmental, behavioral, genetic, and environmental
factors. Evidence from family, twin, and adoption studies
indicates a significant genetic component, with heritabil-
ity estimates for BMI ranging from 0.71 to 0.86. Herita-
bility reflects the proportion of total phenotypic variance
attributable to genes within a specific environment, and
these estimates can vary over time and between popu-
lations [3]. A study involving 45 twin cohorts from 20
countries, aged 0.5 to 19.5, confirmed that environ-
mental factors shared by co-twins influence BMI dur-
ing childhood; however, their impact diminishes by late
adolescence. The findings indicate that genetic factors
predominantly contribute to BMI variation in adoles-
cence across populations of diverse ethnicities, even
when exposed to varying obesity-related environmental
factors [14]. Although the high heritability of obesity-
related phenotypes underscores the genetic influence, it
does not clarify the number of genes involved or their
interactions with environmental factors [3].

Pathways of key genes in regulating energy
homeostasis

Leptin as a main regulator of energy homeostasis

Human studies have demonstrated a strong positive cor-
relation between leptin mRNA concentrations in adipose
tissue and serum leptin levels with fat mass, indicat-
ing that leptin primarily signals increasing energy stores
[6]. However, many individuals exhibit resistance to
both endogenous and exogenous leptin. In fact, leptin’s
physiological role in humans and mice appears to signal
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Fig. 2 A PRISMA diagram illustrating the process of identifying the articles that were included in the study

nutritional deficiency; for instance, fasting or weight loss
leads to decreased leptin levels, which subsequently trig-
gers changes in energy expenditure, energy intake, and
neuroendocrine function to maintain energy homeosta-
sis [15] (Fig. 3).

Melanocortin peptides and their receptors

Leptin activates primary neurons in the hypothalamus
that express pro-opiomelanocortin (POMC). This pre-
cursor is post-translationally processed to produce mel-
anocortin peptides, including alpha, beta, and gamma
melanocortin-stimulating hormone (MSH), which act
as agonists at melanocortin 3 and 4 receptors (Mc3r
and Mc4r) on second-order neurons. Leptin signaling
influences energy balance through both melanocortin-
dependent and melanocortin-independent pathways.
These hypothalamic pathways interact with other brain
regions to regulate energy intake and expenditure [16].

The role of critical genes in obesity

Genes involved in controlling food intake

Balanced activity among genes that code for proteins and
enzymes regulating food intake, fat storage, and metab-
olism is crucial, along with the genes that control their
expression. Numerous genes are associated with suscep-
tibility to human obesity, including leptin, leptin recep-
tor, POMC, Mc4r, and proprotein convertase subtilisin/
kexin, all of which play significant roles in appetite regu-
lation (Fig. 4) [17].

Leptin, a protein hormone produced by adipose tissue,
indicates adipose mass and regulates appetite by inhib-
iting neuropeptide Y and agouti-related peptide while
promoting the action of alpha MSH. Leptin signaling
influences energy intake to maintain energy homeosta-
sis, and dysfunction in this pathway can trigger a strong
urge to eat. Leptin binds to its receptor and regulates
hunger sensations [16]. It stimulates primary neurons
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Fig. 3 Leptin as a Main Regulator of Energy Homeostasis. Leptin signals nutritional depletion and initiates changes in energy expenditure,

intake, autonomic nervous system tone, and neuroendocrine function to conserve energy. The hypothalamus coordinates these processes,
regulating circadian rhythms, temperature, sleep, and behaviors such as anger, stress, anxiety, and aggression via connections to the amygdala

and periaqueductal gray (PAG). Through direct and indirect pathways to the brainstem and cortex, hypothalamic neurons modulate ANS tone,
influencing metabolic processes in the liver, heart, pancreas, and gut. Beyond energy homeostasis, leptin also plays critical roles in immune function

and puberty

in the arcuate nucleus of the hypothalamus that express
POMC, which produces melanocortin peptides such
as adrenocorticotropic hormone (ACTH) and alpha,
beta, and gamma MSH [18]. These peptides act as ago-
nists at Mc3r and Mc4r, regulating energy through both
melanocortin-dependent and independent pathways.
These pathways interact with other brain centers to coor-
dinate energy intake and expenditure. Impairments in
the POMC gene can lead to severe early-onset obesity
[18]. Additionally, the synergic effect of single nucleo-
tide polymorphism (SNP) risk alleles in obesogenic
genes, such as the fat mass and obesity-associated pro-
tein (FTO) and Mc4r, influences the obese phenotype in
Greek children and adolescents [19]. Targeted disrup-
tion of the Mc4r gene has been linked to obesity in mice,
while a frameshift mutation in Mc4r is associated with
inherited obesity in humans [5]. Furthermore, adipose
tissue-driven macrophage chemotaxis promoted by pro-
protein convertase subtilisin/kexin type 3 can exacerbate
obesity [20]. Proprotein convertase subtilisin/kexin 1
(PCSK1) is essential for the post-translational processing
of POMC, and defects in PCSK1 can lead to obesity. The

genes mentioned are crucial in regulating eating behavior
and food intake, and any defects or imbalances in their
expression can result in severe obesity in humans [20].

Genes involved in energy expenditure

Numerous studies have identified critical genes associ-
ated with energy expenditure, particularly those encod-
ing uncoupling proteins (UCPs) and adrenergic receptors
(Fig. 4) [21].

UCPs are mitochondrial carrier proteins that transport
fatty acid anions, facilitating a process that reduces ATP
generation during fuel oxidation [22]. UCP1 plays a cru-
cial role in adaptive thermogenic responses, while UCP2
and UCP3 have been linked to metabolic rates, making
them valuable targets for obesity therapies [22]. Activa-
tion of UCP2 can reduce insulin secretion, and UCP3,
expressed in skeletal muscles, is associated with early
obesity [21]. Certain polymorphisms in UCP genes, such
as the UCP1-3826A/G variant, have been connected
to increased obesity susceptibility [21]. Additionally,
UCP1 genetic polymorphisms may lower resting energy
expenditure and disrupt energy balance. For therapeutic
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Fig. 4 Genes with certain roles in obesity including: Genes involved in controlling food intake (leptin, leptin receptor, pro-opiomelanocortin
(POMCQ), subtilisin, and Melanocortin-4-receptor (Mc4r); genes involved in energy expenditure (uncoupling proteins (UCPs) and adrenergic
receptors); genes involved in fat synthesis and accumulation (peroxisome proliferator-activated receptor (PPAR-y), fatty acid-binding protein 4
(FABP4), perilipins, Stearoyl-coenzyme A desaturase 1 (SCD1), adipose triglyceride lipase (ATGL))

purposes, utilizing UCP1 to generate heat and increase
energy expenditure is being investigated [22].

Adrenergic receptors also play essential roles in regu-
lating energy expenditure. Variants of the pB-adrenergic
receptor (B-AR), including polymorphisms such as
Gly389Arg in beta(1)-AR, GIn27Glu in beta(2)-AR,
and Trp64Arg in beta(3)-AR, have significant associa-
tions with obesity [23]. Research indicates a relationship
between the Gly389Arg polymorphism in the beta(1)-
adrenoceptor gene and obesity, with the Arg allele linked
to higher BMI in Caucasian women [24]. Beta 3-adren-
ergic receptor motifs are crucial for lipid metabolism, as
catecholamine activation of beta 3-AR enhances lipolysis
in adipose tissue [25].

Genes involved in fat synthesis and accumulation

Several other genes play crucial roles in fat synthesis
and accumulation (Fig. 4). One key gene is the peroxi-
some proliferator-activated receptor (PPAR), a mem-
ber of ligand-dependent receptors. There are three

isoforms: PPAR-a, PPAR-P, and PPAR-y, each signifi-
cantly influencing metabolism [26]. PPAR-y is particu-
larly important for regulating genes involved in glucose
metabolism, lipid storage, and inflammatory responses.
PPAR-y ligands enhance fatty acid storage and regu-
late the expression of hormones secreted by adipo-
cytes, which also impacts glucose homeostasis, thereby
improving insulin sensitivity [27]. Additionally, PPAR-y
ligands can help prevent adiposity and play a vital role
in the treatment of type 2 diabetes mellitus [26].

The fatty acid-binding protein 4 (FABP4) gene is
highly expressed in adipose tissue and its expres-
sion is regulated by PPAR-y. FABP4 is associated with
eight interacting genes—acpl, ext2, insr, lipe, ostfl,
sncg, uspl5, and vim—all of which contribute to lipid
metabolism [28]. In obesogenic conditions, FABP4/aP2
is released, which decreases insulin secretion. Although
insulin levels typically increase in obesity, feedback
regulation inhibits FABP4 release, leading to disrupted
FABP4 patterns in severely obese patients. Genetic
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disruption of FABP4 has also been shown to cause obe-
sity in mice on HFDs [29].

Perilipins are adipocyte proteins whose expression
is also regulated by PPAR-y in adipose tissue. There are
two isoforms: perilipin A and perilipin B, both of which
inhibit lipolysis by protecting triglycerides from degrada-
tion by lipase [30]. Variations in the perilipin gene have
been linked to obesity, with the PLIN 6 polymorphism
potentially increasing obesity risk in adolescents [31].

Stearoyl-coenzyme A desaturase 1 (SCD1) is a rate-
limiting enzyme that regulates fuel metabolism by cata-
lyzing the synthesis of monounsaturated fatty acids
(MUFASs), such as oleate and palmitoleate, from saturated
fatty acids. MUFAs play a vital role in weight regulation
and are considered potential therapeutic targets for obe-
sity and type 2 diabetes. SCD1 serves as a homeostatic
checkpoint between glucose and lipid metabolism [32].

Adipose triglyceride lipase (ATGL) is another crucial
enzyme in fat synthesis and hydrolysis, playing an essen-
tial role in adipogenesis. Research indicates an independ-
ent association between ATGL levels and waist-to-hip
ratio, as well as overall body fat content, highlighting the
close relationship between ATGL and obesity [33].

Gene-based approaches to obesity prevention

Gene therapy strategies have significantly advanced in
treating and preventing obesity. These strategies primar-
ily focus on two approaches: transferring therapeutic
genes to provide functional gene copies and knocking
down endogenous genes to reduce the production of
obesity-related gene products [34].

Metreleptin, a recombinant form of human leptin, is
effective in patients with congenital leptin deficiency and
generalized lipodystrophy. However, its efficacy is limited
in more common obesity cases due to lipid tolerance or
resistance. Consequently, combining leptin with other
agents may enhance its weight loss effects [35]. Studies
have shown that recombinant adenovirus (Ad)-mediated
leptin gene transfer can positively impact obesity and dia-
betes [6]. In experiments with adult mature mice, admin-
istering recombinant adeno-associated virus (AAV)
encoding the leptin gene into the third cerebroventricle
helped protect against weight gain, increasing energy
expenditure while decreasing food intake. This approach
resulted in improved body weight homeostasis, reduced
adiposity, and lowered insulin and triglyceride levels,
indicating its potential for long-term obesity treatment
strategies. In addition to leptin therapy, ciliary neuro-
trophic factor (CNTE), a cytokine from the IL-6 family,
has been tested to bypass leptin pathways [36].

AMP-activated protein kinase (AMPK) is a key gene-
activated downstream of leptin signaling, playing a cru-
cial role in regulating metabolism, food intake, and
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energy expenditure through its interactions with vari-
ous hormones, including leptin, adiponectin, and ghrelin
[37].

Adiponectin, a polypeptide hormone secreted by adi-
pose tissue, exemplifies upstream targeting of AMPK
signaling pathways. This adipocytokine is significant in
obesity and has two receptor isoforms, AdipoR1 and Adi-
poR2, that mediate its effects. Studies have shown that
adiponectin administration can lead to weight reduction,
suggesting that adiponectin replacement therapy may be
an effective strategy for treating obesity [38]. For instance,
research involving HFD-fed obese mice (C57BL/6]) dem-
onstrated a lentiviral vector under adiponectin promoter
gene delivery improved insulin sensitivity, metabolic
activity, vascular function, and decreased adipocyte size,
fibrosis, inflammation, and oxidative stress markers [39].

Stearoyl-CoA desaturase (SCD1) plays a significant
role in leptin signaling and AMPK activation. Disruption
of the SCD1 gene in mice leads to diet-induced obesity
and increased insulin sensitivity, suggesting that SCD1
downregulation could be a promising target for obesity
treatment [40]. Research has shown that hepatic SCD1
knockdown can effectively mediate lipid and glucose
metabolism [32].

Skeletal muscles also regulate metabolism through
engineered respiratory uncoupling. Mice with enhanced
expression of UCP1 demonstrated improved insulin
sensitivity and resistance to obesity, indicating that par-
tial respiratory uncoupling may be beneficial for obesity
treatment [41].

Glucagon-like peptide-1 (GLP-1) is an incretin hor-
mone that reduces food intake and stimulates insulin
release. GLP-1 receptor agonists are available for treating
obesity in prediabetic and type 2 diabetes (T2D) patients
[42]. Exendin-4, a GLP-1 receptor agonist, is used as an
injectable treatment for T2D. Initially developed for
short-term use, a helper-dependent adenoviral (HDAd)
vector has been employed to achieve long-term expres-
sion of Ex4 [43]. Studies have shown that transferring the
Ex4 gene can effectively treat obesity in mice on HFD,
with additional benefits in reducing fat synthesis [44].

Brain-derived neurotrophic factor (BDNF), a member
of the “neurotrophin” family, plays a key role in regulat-
ing food intake and addressing obesity in specific mouse
model [45]. Research has shown that intraperitoneal and
subcutaneous administration of BDNF reduces food
intake and significantly improves obesity in mice [45].
Moreover, delivering the AAV-mediated BDNF gene
in mice has shown promise in preventing age-related
weight gain, enhancing glucose tolerance, and reducing
inflammation. This is achieved through the suppression
of pro-inflammatory genes in both the hypothalamus and
adipose tissue, highlighting its potential as a therapeutic
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strategy for managing metabolic and inflammatory con-
ditions associated with aging [46].

Fibroblast growth factors (FGFs), particularly FGF19,
FGF21, and FGF23, play essential roles in metabolic regu-
lation. FGF19 is involved in cholesterol and bile acid syn-
thesis, while FGF23 regulates phosphate and vitamin D
metabolism. Knock-in and knock-out studies have shown
that FGF21 is critical for glucose and lipid metabolism.
Transgenic FGF21 mice exhibit lower levels of insulin,
serum cholesterol, and triglycerides and demonstrate
resistance to both age- and diet-induced obesity [47].
Studies demonstrated that the administration of AAV-
FGF21 in mouse models of obesity, whether induced by
diet or genetics, resulted in notable metabolic improve-
ments. These benefits included a reduction in body
weight, a decrease in adipocyte size, and diminished
inflammation, as well as a mitigation of hepatic steatosis
and fibrosis [48, 49] (Fig. 5).

Moreover, FGF21 gene transfer via hydrodynamic
delivery in obese C57BL/6 mice on a high-fat diet (HFD)
reduced adiposity, improved glucose regulation, and
modulated the expression of genes involved in thermo-
genesis and adipogenesis [49].

Irisin, a cleaved and secreted fragment of fibronectin
type III domain-containing 5 (FNDCS5), plays a critical
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role in metabolic regulation and is controlled by per-
oxisome proliferator-activated receptor-y coactivator-1
(PGC1)-a. FNDC5/irisin has been shown to improve
glucose and lipid metabolism and insulin resistance in
obese mice. It utilizes the cAMP-PKA-HSL/perilipin
pathway to enhance lipolysis, making it a promising
target for therapeutic interventions [50, 51]. Addition-
ally, irisin’s activation of p38 mitogen-activated kinase
and extracellular signal-regulated kinase pathways,
which upregulate UCP1, contributes to obesity regula-
tion and supports glucose homeostasis [52].

Hypoxia-inducible factors (HIFs) are key regulators
of cellular responses to hypoxia, crucial for cell sur-
vival and energy homeostasis. HIF-1q, a significant sen-
sor for energy balance, also influences food intake and
lipid/glucose metabolism. Hypothalamic inhibition of
HIF-1a affects obesity, making it a promising therapeu-
tic target for obesity and type 2 diabetes [53].

Chronic inflammation is linked to obesity, largely due
to adipose-infiltrating macrophages. Depleting these
macrophages can improve metabolism in C57BL/6
mice on a HFD [54]. IL-10 gene transfer enhances glu-
cose metabolism and may also help suppress chronic
inflammation [54].

AAV-FGF21 gene therapy

BAT Liver Bone
Thermogenesis 1 Steatosis ! Lengthe
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Fig. 5 AAV-FGF21 gene therapy enhances metabolic health in diet-induced obese (DIO) mice. Adeno-associated virus (AAV)-mediated FGF21
expression delivers the following metabolic benefits across targeted tissues. BAT: brown adipose tissue, WAT: white adipose tissue
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Obesity is closely linked to insulin resistance. c-Jun
amino-terminal kinases (JNKs) influence insulin action,
and their activity increases with obesity [55]. The absence
of JNK1 improves insulin sensitivity and reduces adipos-
ity, suggesting JNK as a potential therapeutic target for
obesity. In HFD-induced and genetically obese mice, Ad-
mediated JNK1 shRNA reduces JNK1 expression, lower-
ing insulin concentration. This JNK1 knockdown strategy
shows promise in treating obesity [56]. Obesity-induced
insulin resistance can lead to pancreatic -cell apopto-
sis. Beta-trophin plays a crucial role in pancreatic B-cell
proliferation, and its overexpression via hydrodynam-
ics-based methods enhances glucose tolerance. These
findings suggest beta-trophin as a potential therapeutic
target for obesity [57].

Gene therapy as a new approach in modern
medicine

A historical overview of gene therapy

Gene therapy uses genes to treat or prevent disorders.
Initially focused on life-threatening conditions like can-
cer, it is now recognized for its potential to improve
non-life-threatening conditions affecting quality of life.
Advances in vectors, mechanisms, and approaches have
enabled more effective treatments [58].

Gene therapy began developing in the 1960s and early
1970s, marked by the uptake and expression of exog-
enous DNA in mammalian cells and discoveries about
RNA tumor viruses and reverse transcription. In the
1980s, ethical discussions emerged, and by 1983, phe-
notype correction studies began [59]. The first approved
clinical trial in 1990 targeted adenosine deaminase defi-
ciency, followed by trials for chronic granulomatous
disease (CGD) in the late 1990s. Numerous trials have
occurred since, though early results were sometimes
unsuccessful [60].

Gene therapy initially targeted monogenic defects, with
successful trials expanding its scope to cancer, heart fail-
ure, Parkinson’s, diabetes, and other conditions [61].

In 1999, the death of Jesse Gelsinger, who had ornithine
transcarboxylase deficiency, temporarily hindered gene
therapy development due to his adverse reaction to an
adenovirus carrier. Progress resumed in 2002 with SCID
treatment in children, and in 2003, gene transfer into
the brain was achieved using polyethylene glycol-coated
liposomes, bypassing viral vectors that cannot cross the
blood-brain barrier. This approach holds promise for
treating Parkinson’s disease [61]. In 2005, an adenovirus
vector was successfully used to repair deafness in guinea
pigs, alongside advancements in treating myeloid cell-
related diseases and inherited retinal conditions [62].
Early trials faced severe side effects in some patients.
However, with advanced tools and Phase I/1I trials, gene
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therapy has achieved strong clinical results, establishing
it as a clinical reality [61].

The therapeutic effects of gene therapy

After a 50-year journey, gene therapy has become a
promising treatment for various disorders. Although
early studies encountered severe side effects, advances
in vector engineering have improved its safety [63].
AAV and lentiviral vectors offer good safety and moder-
ate efficacy, particularly in delivering transgenes to the
brain. Oncolytic viruses have been used to target cancer
cells, and adenoviral vectors of simian origin are being
explored for their potential in immune response induc-
tion through vaccination [64].

Ex vivo gene therapies have shown effectiveness in
treating adult and pediatric acute lymphoblastic leuke-
mia, diffuse large B cell lymphoma, chronic lymphocytic
leukemia, and multiple myeloma, primarily through T
cell applications. Conditions like [B-thalassemia, sickle
cell anemia, and Wiskott—Aldrich syndrome are being
targeted using hematopoietic stem and progenitor cells
(HSPCs). Current in vivo gene therapy trials are advanc-
ing treatments for Parkinson’s disease, spinal muscular
atrophy, hemophilia A and B, Hunter’s syndrome, lipo-
protein lipase deficiency, and inherited retinal dystrophy
[63].

Gene therapy has shown promise in treating blindness,
neuromuscular diseases, hemophilia, immunodeficiency,
and cancer. Engineered T cells, in particular, have ben-
efited patients with lymphoid malignancies. While these
advancements offer significant improvements, challenges
remain, including the prevention of genotoxicity, off-tar-
get genome editing, and immune responses [63].

Recent genome-editing strategies using engineered or
bacterial nucleases have advanced the field considerably.
While gene addition relies on viral vectors, gene editing
enables gene addition, ablation, and correction, allowing
precise modifications in eukaryotic genomes by intro-
ducing DNA double-strand breaks (DSBs) [65]. Liver-
directed gene therapy exemplifies in vivo applications of
gene editing [64].

Current trends of gene therapy

Recent developments in gene therapy and our growing
understanding of its mechanisms offer optimism for the
future. Advances using recombinant adeno-associated
viruses (rAAV), novel vectors, and insights into micro-
RNAs and CRISPR/Cas9 technology enhance the poten-
tial for treating genetic and infectious disorders. Current
studies focus on the biodistribution of vector compo-
nents and the associated risks of carcinogenesis. CRISPR/
Cas9 and RNA interference (RNAi)-based therapies
demonstrate greater potential for treating certain genetic
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disorders compared to older strategies, particularly for
autosomal dominant diseases. CRISPR/Cas9 can repair
genes in situ while preserving the necessary elements
for normal physiological regulation [66]. Although it
appears to be a permanent solution for correcting genetic
disorders, concerns about efficacy and safety remain. A
key goal of gene therapy is to control gene expression.
Compounds like tetracycline and estrogen/progesterone
receptor modifiers have shown promising results in regu-
lating genes in cell cultures and animal models. However,
immune responses to transcriptional activator domains
have hindered clinical application. Two-component
RNA-based systems have been developed, offering spe-
cific features that may help narrow the therapeutic win-
dows of expression in gene therapy [67].

Tissue engineering is rapidly advancing, particularly in
the realm of meniscal repair, where previous limitations
have been addressed through ongoing research. This pro-
gress offers promising new avenues for utilizing tissue
engineering and regenerative medicine to effectively treat
meniscal lesions [68].

In human orthopedic regenerative medicine, gene
therapy using viral vectors plays a vital role in enhancing
the intrinsic repair capabilities of orthopedic tissues. The
integration of viral gene vectors with tissue engineering
strategies presents a significant opportunity to improve
in vivo applications and overcome existing challenges.
As preclinical data expand, biomaterial-guided viral gene
therapy may unlock exciting potential in this field [69].

Significant efforts have been made to engineer recom-
binant viral vectors for therapeutic gene delivery, with
nanotechnology enhancing drug delivery solutions. Oral
gene therapy, due to its advantages, has shown consider-
able promise in treating conditions that were previously
difficult to address with older methods [70].

Targeted diseases by gene therapy strategies

Today, gene therapy is an effective strategy for treating
autoimmune diseases, thanks to a better understanding
of the immunological basis of these disorders. Its goals
include regulating pro-inflammatory cytokine levels,
controlling lymphocyte infiltration, and modulating gene
expression to maintain immune tolerance [71].

Gene therapy also shows promise for patients with
sickle cell disease, which is caused by a homozygous mis-
sense mutation in the B-globin gene that leads to hemo-
globin S polymerization. Treatment using lentiviral
vector-mediated antisickling p-globin has successfully
corrected disease hallmarks without recurrence of sickle
cell crises [72].

In the context of Alzheimer’s disease (AD), a leading
cause of dementia, gene therapy offers new approaches
for studying and potentially treating neurodegenerative
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disorders. Recombinant adeno-associated viruses are
particularly suited for both basic research and therapeu-
tic applications due to their transduction specificity and
long-term gene expression capabilities. They can be pre-
cisely injected into specific brain regions at various life
stages, enhancing their therapeutic potential [73].

Gene therapy has shown significant promise in treat-
ing Pompe disease (PD), a monogenic disorder caused by
mutations in the acid alpha-glucosidase gene (GAA) [74].
While enzyme replacement therapy (ERT) has improved
PD prognosis, it has its limitations. Gene therapy offers a
potential long-term solution through sustained Gaa gene
expression, presenting hopeful prospects for additional
therapeutic options [74].

Inherited retinal diseases also benefit from gene ther-
apy. Trials using AAV vectors have demonstrated encour-
aging safety and efficacy results [75].

Advancements in genetic modification through gene
therapy hold great promise for cancer treatment [76].
Preclinical models have shown tumor regression and
reduced metastasis [77].

Breast cancer is the most prevalent cancer among
women [78], and advancements in gene therapy are
showing promise in its treatment [76]. Researchers are
exploring the use of various viral vectors to deliver thera-
peutic genes, including adenovirus, AAV, lentivirus, pox-
virus, reovirus, baculovirus, and herpesvirus [76]. Each
vector offers unique advantages in targeting cancer cells
and enhancing therapeutic efficacy [76].

Perspective on gene therapy in obesity and associated
disorders

Mutations in human genes related to energy expendi-
ture and food intake can contribute to obesity, highlight-
ing the importance of genetic factors. Overexpressing a
transcription factor to suppress genes responsible for
fat accumulation may inhibit lipogenesis and reduce fat
storage [79]. Animal studies have demonstrated the effec-
tiveness of gene transfer of BDNF, irisin, and FGF, result-
ing in reduced fat mass [45, 46, 50]. While gene therapy
shows promise for treating obesity, further studies are
needed to evaluate its safety before clinical trials can pro-
ceed [79]. In addition to the previously mentioned genes,
discovering new genes that block lipogenesis or enhance
energy expenditure could help maintain metabolic home-
ostasis, even in the presence of excessive energy intake
[79].

Three methods are used to regulate gene expression:
viral vectors, nonviral vectors, and physical methods [61].
While viral vectors are the most prevalent, synthetic vec-
tors offer improved safety, albeit with lower efficiency
[61]. In addition to hydrodynamic gene transfer, research
is focused on developing more effective gene delivery
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systems to address the limitations of current methods
[61]. Advancements in human genome sequencing and
mapping of obesity-related genes are expanding the
druggable gene pool, enabling targeted interventions at
the nucleic acid level [79]. Moreover, innovations in vec-
tor technology may facilitate the long-term expression of
therapeutic genes [80].

Promoter analysis and vector engineering advance-
ments are fostering optimism about overcoming gene
silencing challenges [80]. Selecting the appropriate gene
for obesity treatment is crucial; although obesity itself is
not lethal, it can lead to serious complications, necessitat-
ing assurance of the therapeutic gene’s safety. Innovations
in gene therapy that focused on regulating metabolism
have the potential to enhance the quality of life [4].

Obesity also increases cancer risk, particularly for
prostate cancer (PCa), which appears to correlate with
rising obesity rates [81]. Diagnosing PCa can be challeng-
ing due to lower levels of prostate-specific antigen (PSA)
in obese men. Leptin’s molecular, endocrinological, and
genetic characteristics link it to PCa development. Ele-
vated leptin levels, influenced by obesity and genetic vari-
ants of the leptin gene, may drive androgen-independent
PCa progression. This presents a significant challenge:
blocking peripheral lipid action without disrupting its
physiological functions [81].

Currently, gene therapy remains an underdeveloped
approach to treating diseases. However, advancements in
molecular therapeutics are shifting focus from pharma-
ceutical companies to genetic therapeutic strategies for
obesity and its associated conditions [79].

Gene therapy approaches for treatment
and prevention of obesity
Gene-editing techniques
The ability to control gene expression is crucial for the
long-term success of gene therapy. Over the years, vari-
ous systems have been developed and tested, most of
which rely on engineered transcription factors (TFs)
that bind to specific DNA sequences to either activate or
suppress transgene expression. While some of these sys-
tems allow functional control, limitations have prevented
their adoption in clinical gene therapy applications [61].
Table 1 presents key gene therapy strategies and their
outcomes for the prevention and treatment of obesity.
Zinc finger proteins (ZFPs), due to their ability to rec-
ognize specific DNA sequences, have significant thera-
peutic potential. The ZFP transcription factor (ZFP TF)
system addresses many limitations. ZFPs contain a DNA-
binding domain that recognizes specific sequences and
another domain that activates or suppresses the target
gene. Engineered based on natural transcription fac-
tors, ZFPs can also be combined with domains from
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integrases and other proteins to create useful tools [82].
ZFP 423 plays a crucial role in maintaining white adipose
cell function. Although its levels remain unchanged dur-
ing adipogenesis, ectopic expression of ZFP 423 in non-
adipogenic murine cells can activate the gene encoding
peroxisome proliferator-activated receptor y (Ppary),
enhancing the adipogenic potential of these cells [82].

Another approach to gene expression regulation is
RNAI, initially discovered in nematode worms as a
sequence-specific response to double-stranded RNA
(dsRNA) that triggers mRNA degradation. This technol-
ogy has expanded opportunities for in vivo gene knock-
down, particularly for preclinical target validation [83].
During RNAi, long dsRNA generates small interfering
RNAs (siRNAs), which inhibit target gene expression.
A study demonstrated the role of exosomal miRNA in
regulating glucose and lipid metabolism in mice [84].
However, the disease state may influence the efficacy of
specific RNAi delivery methods, presenting a potential
limitation [83].

Genetic modulation requires precise methods to alter
target genes. Tools such as engineered DNA-binding pro-
teins (e.g., ZFPs and transcription activator-like effector
(TALE) proteins) and RNAi enable genetic modification,
but ZFPs and TALEs are challenging and costly to design
and develop [72].The CRISPR (clustered regularly inter-
spaced short palindromic repeats) system offers precise
genetic engineering across various cell types. Combining
CRISPR interference (CRISPRi) with a targeted nonviral
gene delivery system shows promise for treating obesity
and obesity-induced type 2 diabetes (Fig. 6). For instance,
the targeted delivery of CRISPRi against Fabp4 to white
adipocytes could reduce body weight safely and effec-
tively [85]. CRISPR, combined with AAV, also shows sig-
nificant potential for treating genetic disorders. A study
demonstrated CRISPR’s success in addressing obesity
caused by haploinsufficiency in a murine model, offering
hope for broader therapeutic applications [86].

RNA-based gene technology is another regulatory sys-
tem that incorporates sequences encoding self-cleaving
ribozymes into the transcriptional region of a transgene.
This approach eliminates the need for protein transacti-
vator expression or promoter elements [87].

Vectors used in gene therapy for obesity

Obesity is a chronic condition, and for gene therapy
to be effective, therapeutic transgene expression must
persist long-term, matching the enduring nature of
obesity. According to the body weight (BW) set-point
hypothesis, BW tends to return to its original level once
stimuli like dieting or exercise are removed. Therefore,
whether through integration into the host cell chro-
mosome or episomal expression, sustained transgene
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Genome editing techniques
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Fig. 6 In vitro and in vivo therapeutic gene-editing strategies for obesity treatment. Gene-editing therapeutics are categorized into two primary
approaches: in vivo and in vitro. In vivo gene-editing strategy (left): This method involves directly delivering vectors containing the desired

gene cargo and editing machinery into targeted tissues or organs, enabling on-site gene modifications. In vitro gene-editing strategy (right):

This approach consists of four key steps: (1) Cell isolation and culture: Collect the required cells from the donor and culture them in vitro. (2)
Genome editing: Use an appropriate gene-editing platform (e.g., TALENSs, ZFNs, or CRISPR) to modify the cell genome. (3) Cell expansion: Cultivate
and expand the edited cells in vitro. 4) Cell transplantation: Inject the edited cells back into the patient to achieve therapeutic effects. AAV:
adeno-associated virus, TALENS: transcription activator-like effector nucleases, ZFNs: zinc finger nucleases

expression is essential [61]. Past efforts have introduced
three primary delivery methods: viral vectors, nonvi-
ral vectors, and physical or synthetic vectors. Current
research focuses on developing more efficient deliv-
ery systems and addressing the limitations of existing
approaches [4, 80].

Despite safety concerns surrounding viral vectors, they
remain the most widely used method for gene delivery.
Physical methods, while safer, are generally less efficient.
Among nonviral approaches, hydrodynamic gene trans-
fer stands out for its higher efficiency [80].

Viruses can transfer their genes to host cells, mak-
ing them powerful tools for gene delivery. rAAV vectors
are particularly attractive for gene therapy due to their
ability to transduce differentiated cells, lack of patho-
genicity, and broad host range. Studies have shown that
rAAV administration is associated with minimal toxic-
ity [80]. The long-term safety profile of rAAV has made
it a cornerstone in advancing gene therapy approaches
such as gene knockdown, gene editing, and more [80].
For instance, studies have demonstrated that continu-
ous hypothalamic overexpression of glial cell line-derived
neurotrophic factor (GDNF) via AAV2 leads to signifi-
cant weight loss in aged rats [88].

Mutations in the Mc4r are a common cause of severe
early-onset obesity. In the energy balance regulation
pathway, BDNF acts downstream of Mc4r, and studies
have shown that AAV-mediated hypothalamic BDNF
gene transfer can help alleviate obesity. This gene therapy
prevents obesity development and impacts food intake,
hyperleptinemia, and energy expenditure, without caus-
ing cardiovascular side effects. These promising results
make BDNF gene therapy a viable option for treating
Mc4r-deficient obese patients [89].

Hydrodynamic delivery is another effective method
used in gene therapy studies due to its high efficiency and
simplicity, providing a near-perfect approach for in vivo
intracellular DNA delivery. This method requires only the
essential DNA sequences to be injected into a targeted
blood vessel, helping to mitigate some of the concerns
associated with other vector types [90]. Two examples of
its applications are as follows:

1. FGF21 plays a critical role in glucose and lipid
metabolism. Using hydrodynamic delivery to trans-
fer the FGF21 gene increases its mRNA levels in the
liver, leading to higher blood levels of FGF21, which
can help alleviate HFD-induced obesity [91].
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2. The fusion gene of exendin-4 and al-antitrypsin,
known as EAT, is designed to combat obesity and
related metabolic disorders such as fatty liver. This
gene encodes a protein with the exendin-4 peptide
at the N-terminus of human al-antitrypsin. Hydro-
dynamic transfer of the EAT gene to mice prevents
HFD-induced obesity [44].

Challenges, limitations, and advantages

Challenges with targeting critical genes in obesity

Gene therapy is a promising treatment for single-gene
disorders, although it faces several challenges. One such
challenge is gene silencing, which can occur in many bio-
logical systems, hindering sustained expression of the
transgene. To address this, significant progress has been
made in promoter analysis and vector engineering to
minimize gene silencing [61].

Another critical challenge is selecting the appropriate
gene for obesity treatment. Unlike cancer or single-gene
deficiencies, obesity is a chronic condition that, while not
lethal, can lead to various medical complications. There-
fore, it is essential to ensure that the effects of gene trans-
fer are long-lasting and safe, with careful consideration of
the long-term safety of gene expression [61].

Obesity typically manifests similarly among patients,
but the underlying causes of fat accumulation can vary.
When leptin replacement is administered both periph-
erally and centrally, it initially leads to weight reduction
[15]. However, over time, leptin resistance develops, and
understanding the specific mechanisms of this resistance
is crucial. There are two approaches for the peripheral
administration of leptin gene therapy, although leptin
insensitivity remains a challenge. While successful in
some obese patients, showing improvements in treating
metabolic abnormalities, leptin therapy alone does not
offer a viable long-term solution. Alternative methods are
needed to effectively treat the majority of obesity patients
[15].

Large-scale genome-wide studies have identified
numerous loci associated with adiposity traits, and the
number of these loci will continue to grow as larger pop-
ulation studies are conducted. The value of genome-wide
association studies lies in the discovery of new genes
involved in both known and novel pathways. While pin-
pointing the specific genes within each locus remains a
challenge, advancements in approaches and methods
may help integrate this data. Collaboration between
geneticists and physiologists is essential to identify the
causal genes, which is a crucial step [92].

Safety concerns also present challenges. For exam-
ple, while adiponectin (Acrp30) replenishment may
reduce body fat, further research on the safety of gene
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therapy strategies is needed. Another challenge is trans-
lating laboratory methods to clinical applications, such
as the efficient delivery of siRNA. Although there have
been successes in vector-mediated siRNA delivery both
in vitro and in vivo, challenges remain [84].

Gene therapy shows promise for obesity treatment, but
safety studies, including pharmacokinetics, biodistribu-
tion, and toxicity assessments in large animal models,
are essential before clinical implementation. Despite the
challenges, gene therapy has the potential to significantly
improve the regulation of metabolism and enhance the
quality of life [4].

Benefits and limitations of applying gene-editing
techniques in clinical practice

Gene editing, as a new technology, enhances our ability
to alter human traits both physically and mentally [93].
While the therapeutic potential of gene editing is advanc-
ing, it is crucial to consider the safety and specificity of
this method in each editing process. Since gene therapy
has permanent effects on cell function, safety is a critical
factor. Unintended modifications can result in long-last-
ing consequences that alter cell function. Furthermore, a
lack of specificity may increase the risk of random gene
integration, posing safety concerns [94]. The develop-
ment of artificial endonucleases with tailored specificity
offers hope for preventing random insertions, allowing
for the correction of mutated genes at a targeted locus.
This approach differs from other gene therapies that rely
on random insertions into various pathways [61].

Genome editing technologies, with their precision akin
to a scalpel, can overcome many challenges associated
with viral vector-mediated semi-random genomic inser-
tions. Gene editing can be performed ex vivo on cells or
through in vivo delivery of the editing machinery (Fig. 6).
It is anticipated that numerous clinical genome editing
trials will be conducted in the coming years [63].

Despite some limitations, gene therapy and its tools
play a crucial role in genetic modification and are becom-
ing essential for targeted genome alterations. These tools
are customizable, easy to target, and can be used to cre-
ate desired mutations in specific genes. They are poised
to revolutionize industries such as food, biopharmaceu-
ticals, and the treatment of various genetic diseases [95].

Unlike viral vectors, which are limited to gene addition,
gene editing provides a precise approach for gene addi-
tion, gene ablation, and gene correction. It is crucial to
foster greater involvement from the biotechnology and
pharmaceutical sectors to accelerate the delivery of these
treatments to patients. Despite its efficacy, gene edit-
ing faces challenges, such as genotoxicity and off-target
effects, and improving gene transfer and its efficacy to
therapeutic levels remains essential [63].
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CRISPR/Cas9 is a genome editing method that allows
for the correction of genomic errors. It also enables the
activation or silencing of genes in cells and organisms
quickly and cost-effectively. This technology has been
used to repair defective DNA in mice with genetic dis-
orders, and as mentioned, it holds potential for treating
obesity and obesity-induced type 2 diabetes by perform-
ing precise genetic engineering in a variety of cells [66].

Initially, gene therapy was considered primarily for life-
threatening disorders such as cancer and inborn defects
[61]. However, it is now being explored for a broader
range of conditions, including those that negatively
impact the quality of life. Over the past decade, various
vector and delivery methods have been developed, and to
maximize the potential benefits of gene therapy, it must
be efficient, persistent, and low in toxicity [96].

Conclusion and future outlook

In recent years, obesity has garnered significant atten-
tion from both the media and the medical community.
However, despite increased awareness, the sedentary
lifestyle persists. Although many major pharmaceutical
companies have developed various weight-maintenance
drugs, no single drug has proven to be safe and effec-
tive for treating obesity. As a result, recent advances in
molecular therapies have shifted the focus of pharmaceu-
tical companies toward genetic approaches for obesity
treatment. Human genome sequencing and the identifi-
cation of genes linked to a higher risk of obesity will sig-
nificantly expand the pool of druggable targets, allowing
for the development of treatments that target macromol-
ecules at the nucleotide level. Additionally, advancements
in vector generation have brought us closer to the tech-
nological reality of targeting metabolically active tissues
and achieving long-term expression of therapeutic genes.
One major obstacle in implementing reliable gene ther-
apy protocols and controlling gene expression will soon
be addressed by applying the gene therapy techniques
discussed in this review.
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