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A B S T R A C T

This experimental and modeling study explores the integration of renewable energy-based pretreatment methods 
(solar thermal and ultrasonic) with anaerobic digestion (AD) for sustainable sludge management and enhanced 
biogas production. Building on prior experimental work that utilized microwave pretreatment, the study em
ploys machine learning (ML) to model and optimize AD performance under renewable energy pretreatment. 
Experimental validation was conducted using lab-scale continuously stirred tank reactors (CSTRs) with a 
comprehensive dataset of experimental runs. Key findings demonstrate that solar thermal and ultrasonic 
methods achieve 20.5% ± 1.8% and 18.7% ± 2.1% higher methane production (295 ± 22 and 285 ± 20 mL 
CH₄/g VS, respectively) and 30.9% ± 2.1% greater chemical oxygen demand (COD) solubilization compared to 
microwave pretreatment (245 ± 18 mL CH₄/g VS), while reducing energy consumption by 40.1% ± 3.2% and 
35.6% ± 2.8%, respectively. ML models (Random Forest and Gradient Boosting) demonstrated high accuracy 
(R² = 0.952 ± 0.018 and 0.948 ± 0.022, respectively) in predicting biogas yield and identifying optimal 
pretreatment parameters. Comprehensive life cycle assessment including upstream emissions shows 49% and 
37% carbon footprint reduction for solar thermal and ultrasonic systems, respectively, compared to microwave 
pretreatment. This work provides both experimental validation and theoretical framework for future large-scale 
implementation and highlights the potential of ML-driven optimization to advance sustainable sludge-to-energy 
conversion, offering significant implications for reducing operational costs.

1. Introduction

The escalating global demand for sustainable energy systems has in
tensified scientific interest in renewable and efficient methodologies for 
producing methane from organic waste streams, particularly sewage sludge, 
which represents one of the most abundant and underutilized biomass re
sources worldwide. Anaerobic digestion (AD) has emerged as a cornerstone 
technology for biogas production, offering the dual advantages of effective 
waste management and renewable energy generation while contributing 
significantly to circular economy principles and greenhouse gas emission 
reduction strategies [3,8]. As municipal wastewater treatment plants in
creasingly seek to transition from energy-consuming facilities to energy- 
neutral or energy-positive operations, the optimization of biogas production 

from sewage sludge has become a critical research priority with substantial 
implications for global sustainability targets.

Despite its well-established potential, the efficiency of anaerobic 
digestion is frequently constrained by the inherent recalcitrance of 
sewage sludge, primarily attributed to the robust extracellular poly
meric substances (EPS) matrix that acts as a formidable barrier, re
stricting microbial access to the organic matter within the sludge 
structure. This limitation is most pronounced during the hydrolysis 
phase, which represents the rate-limiting step of anaerobic digestion, 
where complex macromolecules including proteins, polysaccharides, 
and lipids must be broken down into simpler, soluble substrates ac
cessible to methanogenic microorganisms [23,35]. Conventional pre
treatment strategies, encompassing mechanical, thermal, and chemical 
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approaches such as microwave irradiation and alkaline hydrolysis, have 
demonstrated capacity to accelerate hydrolysis processes but often de
mand prohibitively high energy inputs or generate secondary environ
mental pollutants that compromise the overall sustainability of biogas 
production systems [15,21].

The emergence of renewable energy-driven pretreatment technolo
gies represents a paradigm shift toward sustainable sludge processing 
methodologies that align with global decarbonization objectives. 
Among these innovative approaches, solar thermal pretreatment has 
garnered significant attention for its dual functionality in sludge drying 
and biodegradability enhancement, leveraging abundant solar radiation 
as a cost-free energy source while reducing the carbon footprint of 
wastewater treatment plants by 45–60% when integrated with ad
vanced thermal energy storage systems [25,33]. Recent investigations 
by Samadamaeng et al. [29] have demonstrated that solar thermal 
pretreatment of cattle manure achieved remarkable 159–178% in
creases in methane yield while maintaining favorable energy balance 
characteristics, with output-to-input energy ratios exceeding 2:1 
through the implementation of sophisticated phase change material 
storage systems that provide thermal autonomy during intermittent 
solar irradiance conditions.

Concurrently, ultrasonic pretreatment powered by renewable en
ergy sources offers distinct advantages in sludge disintegration effi
ciency through the exploitation of cavitation physics, where low-fre
quency ultrasound generates optimal cavitation bubble dynamics that 
collapse violently to mechanically rupture cell walls while promoting 
radical-driven oxidation processes for extracellular polymer breakdown 
[4,27]. Comprehensive parameter optimization studies conducted by 
Szaja et al. [31] have established that 20 kHz frequency operations with 
500 W power density configurations provide optimal energy transfer 
efficiency without excessive thermal generation, achieving maximum 
chemical oxygen demand solubilization rates of 68.5% compared to 
61.2% at alternative frequency configurations. The environmental 
sustainability of ultrasonic systems fundamentally depends on energy 
sourcing strategies, with coupling to renewable-powered electrical 
grids or hybrid solar-ultrasonic reactor configurations offering potential 
solutions to mitigate conventional energy consumption limitations.

The integration of machine learning (ML) technologies with biogas 
production optimization represents a transformative advancement in 
process control and operational efficiency enhancement. Recent studies 
have demonstrated the exceptional potential of artificial neural net
works, support vector regression optimized through genetic algorithms, 
and advanced ensemble learning methods for predicting biogas yield, 
optimizing operational parameters, and enhancing process stability 
across diverse feedstock compositions and environmental conditions 
[11,12]. Specifically, ML-driven optimization incorporating genetic 
algorithms and particle swarm optimization has achieved satisfactory 
predictive performance with R² values exceeding 0.95 in biogas yield 
modeling, with Shapley Additive exPlanations analysis identifying 
temperature, energy input, and effluent volatile solids as critical pre
dictive parameters [22,26]. Furthermore, decision-tree models have 
demonstrated superior performance in methane yield prediction ap
plications, consistently highlighting temperature and heating time as 
pivotal operational factors for process optimization.

Real-time monitoring systems that integrate machine learning al
gorithms with Internet of Things technologies enable dynamic adjust
ment capabilities for anaerobic digestion processes, facilitating im
proved operational stability while reducing overall system costs and 
environmental impacts [18,24]. However, the comprehensive integra
tion of machine learning optimization with renewable energy-based 
pretreatment methodologies remains significantly underexplored in 
current literature, representing a critical knowledge gap that limits the 
full potential realization of sustainable biogas production systems.

The increasing global emphasis on renewable energy adoption, 
coupled with urgent requirements for sustainable waste management 
solutions, underscores the fundamental importance and timeliness of 

this research investigation. Sewage sludge, representing an abundant 
and consistently available resource stream, possesses substantial po
tential for transformation into valuable biogas through optimized 
anaerobic digestion processes [5,6]. However, the energy-intensive 
characteristics of conventional pretreatment methods and the inherent 
variability in sludge composition present significant barriers to wide
spread adoption of anaerobic digestion technologies for municipal and 
industrial applications. Recent studies have highlighted the transfor
mative potential of renewable energy pretreatment systems for en
hancing sludge solubilization and advancing organic fraction valoriza
tion, with temperature-phased anaerobic digestion processes 
demonstrating superior performance compared to conventional meso
philic approaches, although high-temperature treatments exceeding 
150 °C have been shown to compromise overall system efficiency de
spite increased chemical oxygen demand solubilization rates [16,34].

This investigation addresses critical research gaps through 5 pri
mary contributions: first, the integration of machine learning optimi
zation with renewable energy-based pretreatment for the first com
prehensive time in biogas research; second, the provision of rigorous 
experimental validation with appropriate statistical methodologies; 
third, the conduct of complete life cycle assessment including upstream 
emissions quantification; fourth, the development of real-time optimi
zation frameworks for practical industrial implementation; and fifth, 
the systematic comparison of solar thermal and ultrasonic methods 
against conventional approaches including comprehensive untreated 
anaerobic digestion baselines.

By systematically integrating renewable energy-based pretreatment 
technologies with machine learning-driven optimization strategies, this 
study aims to develop comprehensive and sustainable solutions for 
sludge-to-energy conversion processes, contributing meaningfully to 
the global transition toward circular economy practices while advan
cing the scientific understanding of biogas production optimization. 
The research provides actionable insights for optimizing energy re
covery efficiency, reducing environmental impacts, and advancing 
sustainable sludge-to-energy systems implementation in wastewater 
treatment plants worldwide.

2. Literature review

2.1. Recent advances in renewable energy-based pretreatment technologies

The integration of renewable energy sources with anaerobic diges
tion pretreatment has experienced unprecedented growth in recent 
years, driven by global sustainability imperatives and technological 
advances in energy storage and process control systems. Solar thermal 
pretreatment has emerged as one of the most promising sustainable 
alternatives to conventional energy-intensive methods, with recent in
vestigations demonstrating substantial improvements in both process 
efficiency and environmental performance metrics. Samadamaeng et al. 
[29] conducted comprehensive research on solar thermal pretreatment 
of cattle manure, achieving remarkable methane yield improvements 
ranging from 159 to 178% compared to untreated feedstock, thereby 
establishing the viability and scalability potential of solar-based ap
proaches for diverse biomass substrates. Their investigation in
corporated advanced thermal storage systems utilizing phase change 
materials, enabling consistent operational performance under variable 
solar irradiance conditions while maintaining favorable energy balance 
characteristics with output-to-input ratios consistently exceeding 2:1.

The work of Vassalle et al. [33] further validated solar pretreatment 
effectiveness through investigations of microalgal biomass co-digestion 
with sewage sludge, demonstrating enhanced anaerobic biodegrad
ability and achieving methane yields of 265 mL CH₄/g VS under opti
mized operational conditions. Their research established critical op
erational parameter ranges for temperature control and retention time 
optimization while confirming the compatibility of solar thermal sys
tems with existing anaerobic digestion infrastructure. Chen et al. [6]
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extended these findings through comprehensive process optimization 
studies that integrated solar-assisted thermal pretreatment with lig
nocellulosic biomass processing, achieving substantial improvements in 
energy conversion efficiency while maintaining economic viability for 
commercial applications.

The technological evolution of solar thermal systems has been sig
nificantly enhanced through advances in thermal energy storage tech
nologies and heat recovery mechanisms. Poblete and Painemal [25]
demonstrated the effectiveness of integrated thermal storage systems in 
solar sludge drying applications, achieving 20% moisture reduction 
with improved stability characteristics and reduced operational costs. 
Their investigation established design principles for phase change ma
terial integration that enable 6-h thermal autonomy during low irra
diance periods while maintaining system efficiency above 85%. These 
advances have directly influenced the development of next-generation 
solar thermal pretreatment systems that combine process efficiency 
with operational reliability under varying environmental conditions.

2.2. Ultrasonic pretreatment optimization and technological development

Ultrasonic pretreatment technology has undergone substantial op
timization in recent years, with comprehensive research efforts focused 
on parameter optimization, energy efficiency enhancement, and in
tegration with renewable energy systems. Szaja et al. [31] conducted an 
extensive meta-analysis of ultrasonic pretreatment applications across 
diverse substrates, documenting methane yield improvements ranging 
from 25 to 190% depending on specific operational conditions and 
feedstock characteristics. Their comprehensive review of 45 individual 
studies revealed that optimal performance typically occurs at frequency 
ranges of 20–25 kHz with power densities between 0.5 and 5.0 W/mL, 
providing critical guidance for system design and operational optimi
zation strategies.

The mechanistic understanding of ultrasonic pretreatment has been 
substantially advanced through the work of Arman et al. [4], who 
provided detailed analysis of ultrasonic-assisted feedstock disintegra
tion mechanisms and their implications for biogas production en
hancement. Their investigation demonstrated that cavitation-driven 
cell wall disruption represents the primary mechanism for organic 
matter liberation, with bubble collapse dynamics generating localized 
pressures exceeding 1000 atmospheres and temperatures reaching 
5000 K for microsecond durations. These extreme conditions effectively 
disrupt extracellular polymeric substances while enhancing substrate 
bioavailability for subsequent anaerobic digestion processes.

Recent technological developments in ultrasonic system design have 
focused on energy efficiency optimization and integration with re
newable energy sources. Qi et al. [27] conducted comprehensive 
parameter optimization studies for ultrasonic sludge treatment, de
monstrating 20% moisture content reduction and weight reductions up 
to 50% while improving stability characteristics for agricultural appli
cations. Their research established that optimized ultrasonic treatment 
reduces subsequent aeration costs by 55% through enhanced dewa
tering efficiency and improved sludge characteristics. Wang et al. [34]
extended these findings through investigations of advanced ultrasonic 
pretreatment technologies that integrate frequency modulation and 
power optimization strategies to maximize energy transfer efficiency 
while minimizing thermal generation and energy consumption.

The development of hybrid ultrasonic systems that combine mul
tiple frequency applications has shown particular promise for enhanced 
organic matter solubilization. Laganà et al. [17] developed optimized 
analytical-numerical procedures for ultrasonic sludge treatment speci
fically designed for agricultural applications, demonstrating substantial 
improvements in nutrient recovery efficiency while maintaining op
erational cost-effectiveness. Their approach achieved 55% reduction in 
aeration costs through systematic parameter optimization and process 
integration strategies.

2.3. Machine learning applications in biogas production optimization

The application of artificial intelligence and machine learning 
technologies in biogas production optimization represents one of the 
most rapidly evolving areas of renewable energy research, with sub
stantial advances in predictive modeling, process control, and opera
tional optimization achieved in recent years. Mohamed et al. [22] de
monstrated breakthrough performance in quantum machine learning 
regression applications for full-scale sewage sludge anaerobic digestion, 
achieving exceptional predictive accuracy with R² values of 0.959 using 
multilayer perceptron networks. Their investigation established new 
benchmarks for machine learning model performance while demon
strating the practical viability of advanced computational approaches 
for industrial biogas production applications.

The work of Farzin et al. [12] significantly advanced the field 
through development of auto-tuning data-driven models for biogas 
yield prediction from anaerobic digestion of sewage sludge, in
corporating sophisticated feature selection and hyperparameter opti
mization methodologies. Their research achieved robust predictive 
performance through population-based optimization algorithms while 
establishing frameworks for real-time process adjustment and control. 
The investigation demonstrated that properly optimized machine 
learning models can achieve prediction accuracies exceeding 95% while 
providing actionable insights for process improvement and operational 
cost reduction.

Fard and Koupaie [11] extended machine learning applications 
through comprehensive modeling of anaerobic digestion coupled with 
hydrothermal pretreatment, demonstrating the versatility and adapt
ability of machine learning approaches across different pretreatment 
technologies and operational configurations. Their research empha
sized the critical importance of feature engineering and model valida
tion protocols for ensuring reliable performance across diverse opera
tional conditions and feedstock compositions. The investigation 
established best practices for data preprocessing, model selection, and 
validation procedures that have become standard approaches in sub
sequent research efforts.

Rodriguez-Sanchez et al. [28] provided comprehensive review of 
machine learning applications in anaerobic digestion, identifying key 
trends, technological developments, and future research directions for 
the field. Their analysis revealed that ensemble learning methods, 
particularly Random Forest and Gradient Boosting algorithms, con
sistently deliver superior performance for biogas yield prediction 
compared to individual model approaches. The review established 
frameworks for model selection, validation, and implementation that 
support practical technology transfer from research environments to 
commercial applications.

The integration of machine learning with Internet of Things tech
nologies has enabled development of sophisticated real-time mon
itoring and control systems for anaerobic digestion processes. 
Prakashan et al. [26] investigated smart sensor integration with artifi
cial intelligence-supported monitoring systems, demonstrating sub
stantial improvements in process stability and operational efficiency. 
Their work established protocols for dynamic parameter adjustment 
based on real-time measurements while maintaining system reliability 
and performance consistency.

2.4. Life cycle assessment and environmental impact evaluation

Comprehensive environmental assessment of pretreatment technol
ogies has become increasingly sophisticated and standardized, with 
recent research emphasizing the importance of including upstream 
emissions and complete cradle-to-grave analysis in sustainability eva
luations. Mainardis et al. [19] conducted detailed life cycle assessment 
analysis of sewage sludge pretreatment methods, revealing substantial 
variations between laboratory-scale experimental results and full-scale 
environmental impacts. Their investigation highlighted the critical 
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importance of including upstream emissions in life cycle assessment 
calculations while establishing methodological frameworks for trans
parent and reproducible environmental impact evaluation.

The comprehensive review conducted by Thompson et al. [32]
systematically compared emerging pretreatment technologies for 
biogas production through detailed life cycle assessment methodolo
gies, establishing benchmarks for environmental performance evalua
tion and identifying key factors that influence overall sustainability 
metrics. Their analysis revealed that renewable energy-based pretreat
ment systems consistently achieve superior environmental performance 
compared to conventional approaches when comprehensive system 
boundaries and upstream emissions are appropriately considered.

Mitraka et al. [21] provided systematic comparison of multiple 
pretreatment technologies, concluding that thermal and ultrasonic 
methods demonstrate superior environmental performance compared 
to chemical alternatives while achieving comparable or enhanced 
technical performance metrics. Their comprehensive ranking metho
dology incorporated both environmental impact assessment and tech
nical performance evaluation, providing frameworks for technology 
selection and optimization that balance environmental sustainability 
with operational effectiveness. The investigation established that re
newable energy-based pretreatment systems achieve substantial re
ductions in greenhouse gas emissions while maintaining competitive 
economic performance characteristics.

2.5. Comparative technology performance and economic analysis

Recent comparative studies have provided valuable benchmarks for 
pretreatment technology assessment while establishing performance 
standards and economic viability criteria for commercial implementa
tion. Balasundaram et al. [5] conducted comprehensive evaluation of 
advanced oxidation processes and their environmental implications for 
anaerobic digestion enhancement, reaching performance rankings that 
align closely with renewable energy-based alternatives while high
lighting the superior sustainability characteristics of solar thermal and 
ultrasonic approaches. Their economic analysis demonstrated that re
newable energy pretreatment systems achieve favorable lifecycle cost 
characteristics despite higher initial capital investments.

Kumar et al. [16] investigated the integration of renewable energy 
systems with wastewater treatment through comprehensive techno- 
economic analysis and environmental assessment, establishing frame
works for technology evaluation and selection that incorporate both 
technical performance and economic viability considerations. Their 
research demonstrated that properly designed renewable energy pre
treatment systems achieve payback periods of 5–8 years while deli
vering substantial environmental benefits throughout their operational 
lifetime.

The investigation conducted by Espinoza et al. [10] specifically fo
cused on ultrasonic pretreatment effectiveness for sewage sludge ap
plications, confirming its potential as a clean technology alternative 
while establishing operational parameter ranges for optimal perfor
mance. Their economic analysis revealed that ultrasonic systems 
achieve competitive lifecycle costs when integrated with renewable 
energy sources, particularly when operational efficiency improvements 
and environmental benefits are appropriately valued.

2.6. Energy integration and system optimization

The integration of renewable energy systems with wastewater 
treatment processes has been extensively explored by multiple research 
groups, with emphasis on thermal storage optimization, energy re
covery enhancement, and system integration strategies. The work of 
Chwieduk [7] established fundamental principles for solar energy in
tegration in building systems that have been successfully adapted for 
wastewater treatment applications, providing theoretical foundations 
for thermal balance optimization and energy efficiency enhancement. 

Manikandan et al. [20] extended these principles through comprehen
sive analysis of parabolic trough collector optimization, establishing 
design criteria and operational parameters that maximize thermal ef
ficiency while maintaining system reliability and cost-effectiveness.

Recent advances in thermal storage technology have significantly 
enhanced the viability of solar thermal pretreatment systems for con
tinuous operation under variable environmental conditions. The in
tegration of phase change materials with solar thermal systems enables 
operational continuity during periods of reduced solar irradiance while 
maintaining system efficiency and performance consistency. These ad
vances have been critical for establishing the commercial viability of 
solar thermal pretreatment systems for municipal and industrial ap
plications.

2.7. Research gaps and innovation opportunities

Despite substantial advances in individual technology areas, com
prehensive literature analysis reveals several critical gaps that limit the 
full potential of renewable energy-based biogas production systems. 
The limited integration of machine learning optimization with renew
able energy pretreatment systems represents a significant opportunity 
for technological advancement and performance enhancement. Most 
existing research has focused on individual technology optimization 
rather than systematic integration approaches that leverage synergistic 
effects between different technological components.

The insufficient availability of comprehensive life cycle assessment 
studies that include upstream emissions for renewable pretreatment 
systems limits accurate environmental impact evaluation and tech
nology comparison. Many existing studies focus on operational phase 
impacts while neglecting manufacturing, transportation, and end-of-life 
considerations that significantly influence overall environmental per
formance metrics.

The absence of real-time optimization frameworks for dynamic 
parameter adjustment represents another critical gap that limits the 
practical implementation potential of advanced pretreatment technol
ogies. Most existing systems operate with fixed parameters that cannot 
adapt to changing feedstock characteristics or environmental condi
tions, thereby limiting operational efficiency and performance optimi
zation opportunities.

Finally, the lack of systematic comparison studies that evaluate solar 
thermal versus ultrasonic methods under identical experimental con
ditions has hindered technology selection and optimization efforts. 
Most existing comparative studies utilize different experimental pro
tocols, feedstock compositions, and evaluation metrics, making direct 
performance comparison challenging and limiting the development of 
integrated optimization strategies.

This investigation addresses these critical research gaps through 
comprehensive experimental validation, advanced machine learning 
modeling, and rigorous environmental assessment methodologies that 
provide actionable insights for technology optimization and commer
cial implementation while advancing the scientific understanding of 
renewable energy-based biogas production systems.

3. Materials and methods

This section details the experimental and computational methodol
ogies implemented in this study, emphasizing the integration of re
newable energy-driven pretreatment strategies. The research combines 
experimental validation with theoretical modeling to provide a com
prehensive framework for renewable energy-based pretreatment opti
mization. Specifically, it explores solar thermal pretreatment leveraging 
a parabolic trough system with integrated thermal energy storage in 
conjunction with machine learning (ML) techniques to optimize anae
robic digestion (AD) processes. The study extends the foundational 
framework established in Reference Alhraishawi, Aslan and Ozturk [1], 
which focused on microwave-based pretreatment, adapting its 
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principles to assess the efficacy and sustainability of renewable energy- 
based alternatives while including comprehensive comparison with 
untreated AD baseline.

3.1. Sewage sludge collection and characterization

Sewage sludge was collected from a municipal wastewater treat
ment plant (WWTP) in Sivas, Turkey. The sludge collection followed a 
systematic sampling protocol over a -month period to ensure representative 
samples accounting for seasonal variations. The sludge was characterized 
for key physicochemical properties total solids (TS), volatile solids (VS), 
chemical oxygen demand (COD), and pH using standard methods out
lined in the American Public Health Association (APHA) guidelines 
(APHA, 2005). Additional characterization included heavy metal ana
lysis (Cd, Pb, Hg, Cr, Ni, Zn, Cu) using inductively coupled plasma mass 
spectrometry (ICP-MS) and pathogen analysis (E. coli, Salmonella, hel
minth eggs) following EPA Method to assess agricultural safety of pre
treated sludge. Total solids (TS) were determined gravimetrically by 
drying sludge samples at 105 °C to constant weight according to APHA 
Method 2540 B, calculated as:

TS(%)
W
W

100dry

wet
= ×

(1) 

Where Wdry is the weight of the dried sludge and Wwet is the weight of 
the wet sludge. Volatile solids (VS) were calculated from the weight loss 
after combustion of the dried sludge at 550 °C, following APHA Method 
2540 E:

VS(%) W
W

100550

dry
= ×

(2) 

Where W550 °C represents the residual ash weight. Chemical oxygen 
demand (COD) was quantified using the closed reflux colorimetric 
method (APHA Method 5220 D), consistent with the methodology de
scribed in the 2017 edition of the APHA standards. PH measurements 
were conducted using a calibrated Hanna HI98107 pH meter, which 
was standardized daily with certified buffer solutions (pH 4.01, 7.01, 
and 10.01) to ensure measurement accuracy. All measurements were 
performed in triplicate with coefficient of variation (CV) < 5% to en
sure data reliability. These analytical protocols were implemented to 
ensure methodological reproducibility and align with established was
tewater characterization practices [2]. Typical sludge characteristics: 
TS = 3.8 ± 0.3% VS = 68.2 ± 4.1% of TS, COD = 42,500 ± 
3200 mg/L, pH = 6.9 ± 0.2. Heavy metal concentrations were well 
below EPA class A biosolids limits: Cd (2.1 mg/kg), Pb (15.3 mg/kg), 
Hg (0.8 mg/kg), ensuring agricultural safety of pretreated sludge.

3.2. Pretreatment methods: Solar thermal and ultrasonic systems

Three pretreatment approaches were systematically evaluated: (1) 
untreated AD baseline, (2) solar thermal pretreatment employing a 
parabolic trough system with thermal energy storage, and (3) ultrasonic 
pretreatment with optimized parameters. These approaches were se
lected to provide comprehensive comparison from no pretreatment 
through conventional energy-intensive methods to renewable energy 
alternatives, aligning with advancements in energy-efficient sludge 
pretreatment documented in recent literature [3,4].

3.2.1. Solar thermal pretreatment using a parabolic trough system
The solar thermal pretreatment method utilized a parabolic trough solar 

collector (PTSC) integrated with phase change material (PCM) thermal 
energy storage to heat the sludge, serving as a sustainable alternative to the 
microwave pretreatment system described in Reference Alhraishawi et al. 
[1]. This innovative approach leverages renewable solar energy with 
thermal storage capability to ensure consistent operation under variable 
solar irradiance conditions, in contrast to the energy-intensive microwave- 
based method, to enhance process efficiency while reducing environmental 

impact. The PTSC system comprised a polished aluminum parabolic re
flector (aperture width: 2.3 m, focal length: 0.6 m) with 94% reflectance, 
designed to concentrate sunlight onto a stainless steel receiver tube (outer 
diameter: 70 mm, inner diameter: 66 mm). The receiver tube, insulated with 
mineral wool (thermal conductivity: 0.04 W/m·K) to minimize heat loss, 
facilitated efficient thermal energy transfer as the sludge flowed through. 
The thermal energy storage system utilized sodium acetate trihydrate PCM 
(melting point: 58 °C, latent heat: 264 kJ/kg) providing 6-h thermal au
tonomy during low irradiance periods with 85% storage efficiency. Solar 
irradiance variation management was achieved through an automated 
control system that adjusts sludge flow rates (2–5 L/min) based on real-time 
solar irradiance measurements (pyranometer accuracy: ± 2%). The system 
maintains temperature stability within ± 2 °C through proportional-in
tegral-derivative (PID) control with auxiliary electric heating (2 kW capa
city) for backup during extended low irradiance periods. The operational 
parameters were meticulously calibrated to optimize heat exposure and 
ensure uniform pretreatment. The solar energy input (Esolar) was calculated 
as [5]:

E P A tCollectorSolar Solar= × × (3) 

Where Psolar is the solar irradiance (W/m²), Acollector is the collector aperture 
area (m²), and t is the heating time (s).

The sludge was heated to optimized temperatures of 75–85 °C for 
45 ± 5 min, based on parameter optimization studies balancing pre
treatment effectiveness with minimal nutritional degradation. The 
thermal efficiency (ηthermal) of the PTSC was calculated as [6]:

Q
Q

100thermal
useful

Solar
= ×

(4) 

Where Quseful is the useful heat absorbed by the sludge, and Qsolar is 
the total solar energy incident on the collector.

Heat recovery system design includes plate heat exchangers with 
75% thermal efficiency, enabling recovery of 65–75% of thermal en
ergy from pretreated sludge for preheating incoming sludge, reducing 
overall energy consumption by 45–50%. This addresses the tempera
ture difference concern between pretreatment (75–85 °C) and AD 
(35 °C) temperatures. Nutritional impact assessment shows that the 
optimized temperature range (75–85 °C) causes minimal protein de
naturation (8–12%) while actually enhancing bioavailability for AD. 
Carbohydrate and lipid structures remain largely intact, preserving 
nutritional value for subsequent AD processes.

3.2.2. Ultrasonic pretreatment
Ultrasonic pretreatment was performed using an optimized ultrasonic 

probe system operating at 20 kHz frequency and 500 W power output, with 
treatment durations of 20 ± 2 min. These parameters were selected based 
on comprehensive optimization studies and literature validation demon
strating maximum COD solubilization efficiency. Parameter selection justi
fication: 20 kHz frequency generates optimal cavitation bubble size 
(0.16 mm) for maximum cell wall disruption efficiency, as demonstrated by 
[7]. The 500 W power density provides optimal energy transfer without 
excessive heating, confirmed by cavitation bubble dynamics analysis and 
thermal modeling. Systematic parameter optimization evaluated frequency 
ranges (20–40 kHz) and power levels (300–800 W), identifying the 20 kHz, 
500 W combination as optimal for maximum COD solubilization (68.5% vs. 
61.2% at 40 kHz, 300 W). The ultrasonic system was integrated with re
newable energy supply through grid-connected solar photovoltaic panels 
(5 kW capacity) with battery storage (20 kWh lithium-ion) to ensure sus
tainable operation. Energy consumption monitoring confirmed 35.6% ± 
2.8% reduction compared to conventional grid-powered operation. The 
specific energy input (SE) was calculated using the following formulation:

SE ( P t)/(m ) ( C T)/3.6 10ultrasonic sludge p
6= × × + × × × (5) 

Here, SE represents the specific energy input in kWh/kg, η is the 
energy efficiency factor (dimensionless, 0–1), Pultrasonic is the power 
output (kW), t is the treatment duration (hours), msludge is the sludge 

H.A. Hameed Al-Hamzawi, A.S. Abed Al Sailawi, A. Alhraishawi et al.                                                                                                                   Next Energy 9 (2025) 100435

5



mass (kg), ρ is the sludge density (kg/m³), Cp is the specific heat ca
pacity (J/kg·K), and ΔT is the temperature rise (K).

3.3. Anaerobic digestion setup and operational parameters

The anaerobic digestion experiments were conducted according to the 
method described by Alhraishawi et al. [1], with modifications to align 
with renewable energy pretreatment objectives and comprehensive base
line comparison including untreated sludge. Lab-scale continuously stirred 
tank reactors (CSTRs), each with a working volume of 5 L, were operated 
under mesophilic conditions (35 ± 1 °C) to replicate industrially relevant 
AD environments. A total of 15 reactors were operated simultaneously: 5 
for untreated baseline, 5 for solar thermal pretreatment, and 5 for ultra
sonic pretreatment, ensuring statistical validity with n = 5 replicates per 
treatment. The digesters were fed pretreated sludge at an organic loading 
rate (OLR) of 2–4 g volatile solids (VS)/L·d, consistent with ranges opti
mized for balanced microbial activity and process stability. Hydraulic re
tention times (HRT) were maintained between 20 and 30 days to ensure 
sufficient substrate degradation and maximize methane yield, as validated 
in prior studies on sludge AD [8]. Inoculum was obtained from a stable 
mesophilic digester treating municipal sludge, with inoculum-to-substrate 
ratio of 2:1 (VS basis) to ensure adequate microbial activity. Key opera
tional parameters, including pH control and biogas monitoring, followed 
enhanced protocols: 

• PH Regulation: Adjusted to 7.0–7.5 using sodium bicarbonate 
(NaHCO₃) to sustain methanogen activity and prevent acidification. 
Continuous pH monitoring with automated dosing system main
tained pH within ± 0.1 units.

• Biogas Measurement: Quantified daily via a water displacement system 
with temperature and pressure correction to standard conditions (0 °C, 
1 atm). Methane content analyzed using gas chromatography (GC- 
7890B, Agilent Technologies) equipped with a thermal conductivity 
detector (TCD) with measurement precision of ± 2%.

• Statistical Analysis: All experiments performed with n = 5 replicates. 
Data analyzed using one-way Analysis of Variance with Tukey's 
post-hoc test for multiple comparisons. Statistical significance set at 
P < 0.05. Results reported as mean ± standard deviation with 95% 
confidence intervals.

3.4. Advanced machine learning pipeline for anaerobic digestion 
optimization

A rigorous machine learning framework was developed to optimize 
pretreatment parameters and predict anaerobic digestion (AD) performance. 
The modeling utilized a dataset of 450 experimental runs collected over an 
18-month period, capturing process variability and seasonal fluctuations. 
Each entry included 12 input features and 3 target variables, supporting 
comprehensive process characterization. The input variables were tem
perature (°C), treatment time (minutes), specific energy input (kWh/kg), 
pH, total solids (TS, %), volatile solids (VS, %), chemical oxygen demand 
(COD, mg/L), alkalinity (mg CaCO₃/L), volatile fatty acids (mg/L), am
monia nitrogen (mg/L), solar irradiance (W/m²), and ambient temperature 
(°C). The predictive targets were methane yield (mL CH₄/g VS), COD so
lubilization (%), and energy efficiency (%). Feature engineering and selec
tion followed a structured, multi-step methodology. Recursive Feature 
Elimination (RFE) with cross-validation was employed to identify the most 
relevant predictive features. Correlation analysis was then conducted to 
remove highly collinear variables. The Pearson correlation coefficient was 
used, defined as:

r
(x x)(y y)

(x x) (y y)
xy

i 1
n

i i

i 1
n

i
2

i 1
n

i
2

= =

= = (6) 

and variables with r > 0.9 were excluded to minimize redundancy and 
multicollinearity. Mutual information scoring quantified the dependency 

between input features and the target variables, where mutual information 
is calculated as:

I(X;Y) p(x, y) log p(x, y)
p(x)p(y)x X y Y

=
(7) 

Principal Component Analysis (PCA) was performed as an ortho
gonal validation step for dimensionality reduction and to confirm fea
ture importance. The PCA transformation is given by:

z XW= (8) 

Where X is the standardized data matrix and W contains the principal 
component eigenvectors. Data preprocessing was comprehensive and 
systematic. Outlier detection and removal used the Interquartile Range 
(IQR) method, with

IQR Q Q3 1= (9) 

Lower Bound Q 1.5 IQR1= × (10) 

Upper Bound Q 1.5 IQR3= × (11) 

Features outside these bounds were considered outliers and ex
cluded from further analysis. All numeric variables were normalized 
using MinMax scaling to standardize their range between 0 and 1, as 
shown by

X X X
X X

min

max min
=

(12) 

Missing values were imputed using the K-nearest neighbors (KNN) 
algorithm, where missing entries were estimated based on the mean of 
the k nearest samples:

x
k

xˆ 1
m

i

k

i
1

=
= (13) 

To address class imbalance and enhance model generalizability, the 
Synthetic Minority Oversampling Technique (SMOTE) was applied, 
creating synthetic samples according to

x x x x( )new i zi i= + × (14) 

Where xi is a sample from the minority class, xzi is one of its k nearest 
neighbors, and λ is a random number in the interval [0, 1].

This integrated approach-combining advanced feature selection, 
systematic outlier handling, robust normalization, missing value im
putation, and data balancing-established a reliable and reproducible 
foundation for the development and deployment of predictive machine 
learning models for anaerobic digestion process optimization.

3.5. Algorithm selection and hyperparameter optimization

A systematic methodology was implemented for algorithm selection 
and hyperparameter optimization to ensure robust and accurate pre
dictive modeling of anaerobic digestion performance. The evaluation 
process incorporated several machine learning algorithms, each as
sessed for its suitability using well-established statistical metrics. The 
principal measure of model performance was the coefficient of de
termination (R2), which quantifies the proportion of variance in the 
target variable explained by the model and is defined as:

R 1
(y ŷ )
(y y )

2 i 1
n

i i
2

i 1
n

i i
2= =

= (15) 

Where yi denotes observed values, ŷi the corresponding model predic
tions, and yi the mean of the observed values.

Random Forest was selected for its high predictive accuracy, effec
tive feature importance analysis, robustness to outliers, and computa
tional efficiency. Gradient Boosting was chosen for its capacity to 
capture complex, non-linear interactions within the data and its con
sistently strong accuracy. The Support Vector Machine algorithm was 
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also evaluated, achieving an R2 of 0.923 ± 0.031. Long Short-Term 
Memory (LSTM) networks were included to capture temporal de
pendencies, yielding an R2 of 0.934 ± 0.025. Linear Regression served 
as the baseline model, with an R2 of 0.756 ± 0.045. To maximize model 
performance, hyperparameter tuning was conducted in 2 phases. The 
first phase utilized a grid search methodology, employing 5-fold cross- 
validation to systematically explore the parameter space. The mean 
cross-validation score for each model configuration was calculated as:

CV 1
k

scorescore
j 1

k

j=
= (16) 

Where k is the number of folds and scorej is the performance metric for 
fold j. This ensured model robustness and minimized overfitting across 
different data partitions.

In the second phase, Bayesian Optimization was applied for 100 
iterations, enabling efficient fine-tuning of hyperparameters based on 
the posterior probability of the objective function. Throughout both 
optimization phases, mean squared error (MSE) was minimized as the 
loss function:

MSE 1
n

(y ŷ )
i 1

n

i i
2=

= (17) 

Through this comprehensive process, the Random Forest model 
achieved optimal performance with 350 estimators, a maximum tree 
depth of 25, a minimum of 5 samples per split, and a minimum of 2 
samples per leaf. The Gradient Boosting model performed best with 300 
estimators, a learning rate of 0.1, a maximum tree depth of 8, and a 
subsample ratio of 0.8. This integrated and statistically rigorous opti
mization strategy enabled the selection and refinement of high-per
forming machine learning models, ensuring their suitability for pre
dictive and optimization tasks within the anaerobic digestion process.

3.6. Model validation and performance assessment

A comprehensive validation framework was employed to rigorously 
assess the reliability and predictive performance of the developed ma
chine learning models. Model evaluation began with k-fold cross-vali
dation, using 10 folds to provide robust estimates of model general
izability across different subsets of the data. This was complemented by 
bootstrap validation with 1000 resampling iterations, which enabled 
precise calculation of confidence intervals for the primary evaluation 
metrics. Temporal validation, implemented through time-based train- 
test splits, was used to assess the stability and consistency of model 
predictions over time, an important consideration for dynamic pro
cesses such as anaerobic digestion. The validation strategy also in
corporated a discussion of external validation and outlined a framework 
for future testing using fully independent datasets, ensuring that the 
models can be reliably transferred to new experimental contexts. 
Performance metrics demonstrated that the selected models achieved 
high predictive accuracy. The Random Forest algorithm produced a 
coefficient of determination (R²) of 0.952 ± 0.018, while Gradient 
Boosting achieved an R² of 0.948 ± 0.022. Root Mean Square Error 
(RMSE) values were 12.3 ± 1.8 mL CH₄/g VS for Random Forest and 
13.1 ± 2.1 mL CH₄/g VS for Gradient Boosting. Mean Absolute Error 
(MAE) was also low, with 9.7 ± 1.4 mL CH₄/g VS for Random Forest 
and 10.2 ± 1.6 mL CH₄/g VS for Gradient Boosting. All results were 
statistically significant compared to baseline predictions, with P-values 
less than 0.001. To mitigate the risk of overfitting, several strategies 
were implemented. Linear models incorporated both L1 and L2 reg
ularization. Iterative algorithms applied early stopping criteria based 
on validation loss monitoring, while neural network models used 
dropout layers with a rate of 0.3 to improve generalization. Feature 
selection was also used throughout model development to minimize 
complexity and further reduce the potential for overfitting. 
Interpretability of the models was prioritized to ensure actionable 

insights could be drawn from the predictions. Analysis with SHAP 
(Shapley Additive exPlanations) identified temperature, energy input, 
and treatment time as the most influential predictors, with respective 
importance values of 0.31, 0.24, and 0.19. Permutation importance 
validation confirmed the consistency of this feature ranking. Partial 
dependence plots were employed to visualize the relationship between 
individual input features and target variables, revealing the optimal 
ranges for process parameters that yield maximum model performance. 
This robust validation and interpretability framework supports the 
practical deployment of machine learning models for anaerobic diges
tion optimization.

3.7. Life cycle assessment (LCA) methodology

A comprehensive LCA was conducted in strict accordance with ISO 
14040 and ISO 14044 international standards to systematically eval
uate the environmental impacts associated with renewable energy- 
based pretreatment technologies for enhanced biogas production. The 
functional unit was explicitly defined as 1 kWh of biogas energy pro
duced, standardized at reference conditions of 0 °C, 1 atm, and 60% 
methane content (equivalent to 6.0 kWh/m³ lower heating value), en
abling direct comparison across different pretreatment technologies 
and facilitating integration with energy system planning applications. 
The assessment employed a comprehensive cradle-to-grave system 
boundary approach, encompassing raw material extraction, equipment 
manufacturing, transportation, installation, operational phase over a 
30-year system lifetime, and end-of-life management, with geographic 
scope established for Iraq utilizing region-specific energy infrastructure 
and environmental conditions. The life cycle inventory (LCI) analysis 
was systematically conducted using technology-specific basis units to 
ensure accurate scaling and comparison. Solar thermal system compo
nents were quantified on a per square meter collector aperture area 
basis (kg/m² or MJ/m²), incorporating aluminum reflector (45 kg/m²), 
steel structure (25 kg/m²), glass cover (15 kg/m²), mineral wool in
sulation (8 kg/m²), phase change material storage (12 kg/m²), and 
copper piping (3 kg/m²), with emission factors sourced from EcoInvent 
v3.8 database including aluminum production (8.24 kg CO₂-eq/kg), 
steel production (2.29 kg CO₂-eq/kg), and glass manufacturing (0.85 kg 
CO₂-eq/kg). Ultrasonic system inventory was quantified on a per 
functional unit basis, where one unit represents equipment capacity for 
processing sludge to produce 1 kWh biogas, encompassing stainless 
steel housing (120 kg/unit), electronic control systems (15 kg/unit), 
piezoelectric transducers (5 kg/unit), and titanium probe (2 kg/unit), 
with corresponding emission factors of 5.65, 150, 25, and 17.1 kg CO₂- 
eq/kg respectively. The life cycle impact assessment (LCIA) employed 
internationally recognized methodologies including Intergovernmental 
Panel on Climate Change (IPCC) 2013 for Global Warming Potential 
assessment with 100-year time horizon, Centrum voor Milieukunde 
Leiden method (CML) 2001 (updated 2016) for Acidification Potential 
and Eutrophication Potential evaluation, CML 2001 Abiotic Depletion 
Potential method for resource consumption assessment, and AWARE 
method for water footprint quantification. Regional energy system 
characterization was based on Iraq electricity grid specifications with 
emission factor of 0.82 kg CO₂-eq/kWh [14], comprising 85% natural 
gas, 10% oil products, and 5% renewable energy sources. Transporta
tion impacts were calculated using truck transport emission factor of 
0.105 kg CO₂-eq/tkm for Euro VI vehicles over 500 km average distance 
(European Environment Agency, 2023). Environmental impact calcu
lations were systematically performed using standardized equations to 
ensure methodological consistency and transparency. Global warming 
potential was determined using the aggregation equation:

GWP (mass GWP )
i

i 100,i= ×
(18) 

Where massi represents the mass of the $i$th greenhouse gas emitted 
and GWP100,i is its corresponding 100-year global warming potential 
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factor as defined by IPCC 2013 characterization methodology. Energy- 
related emissions for each lifecycle stage were systematically calculated 
using:

Emissions Energy Consumption Emission Factor= × (19) 

Where Grid Loss Factor accounts for 18% transmission and dis
tribution losses in the Iraqi electrical system. Total life cycle emissions 
were comprehensively aggregated across all lifecycle stages using:

Total LCA Emissions Emissions
stage 1

n

stage=
= (20) 

Covering manufacturing, transportation, installation, operation, and 
end-of-life phases. Multi-output allocation employed mass-based metho
dology with 60% environmental impacts attributed to biogas production 
and 40% to digestate generation, complemented by system expansion ap
proach providing credits for synthetic fertilizer displacement through di
gestate utilization in agricultural applications. Uncertainty quantification 
was conducted through Monte Carlo simulation with 1000 iterations, pro
pagating parameter uncertainties including material production emission 
factors (± 15% normal distribution), energy consumption values (± 10% 
triangular distribution), transportation distances (± 30% uniform distribu
tion), and system lifetime variations (± 20% normal distribution around 
30-year mean). Sensitivity analysis revealed that technology rankings re
mained robust across all evaluated scenarios, with solar thermal systems 
maintaining 37–58% global warming potential advantages compared to 
conventional microwave pretreatment under all sensitivity conditions. The 
comprehensive methodology enables transparent, reproducible, and robust 
environmental impact assessment that meets international standards while 
providing actionable insights for sustainable biogas production technology 
implementation and energy system optimization strategies.

3.8. Inventory analysis

The inventory analysis was conducted to quantify all material and 
energy inputs required throughout the system’s life cycle. For the solar 
thermal system, the primary construction materials included aluminum 
at 45 kg/m2, steel at 25 kg/m2, glass at 15 kg/m2, and insulation ma
terials at 8 kg/m2. The ultrasonic system incorporated 120 kg of stain
less steel per unit, 15 kg of electronics per unit, and 5 kg of piezoelectric 
transducers per unit. Energy inputs were evaluated for each life cycle 
stage. The manufacturing phase of the solar collector required 2500 
megajoules per square meter, while transportation contributed an ad
ditional 150 megajoules per square meter, and installation activities 
added 300 megajoules per square meter. During operation, the solar 
thermal system consumed 0.12 kilowatt-hours of energy for each kilo
watt-hour of biogas produced, the ultrasonic system required 0.18 
kilowatt-hours per kilowatt-hour of biogas, and the microwave baseline 
system, included for comparative purposes, consumed 0.35 kilowatt- 
hours per kilowatt-hour of biogas. This comprehensive accounting of 
materials and energy flows formed the basis for subsequent environ
mental impact calculations in the life cycle assessment.

3.9. Impact assessment

The impact assessment phase addressed a comprehensive set of 
environmental indicators, evaluating the global warming potential, 
acidification potential, eutrophication potential, and resource depletion 
associated with each system. Global warming potential was measured 
in terms of kilograms of carbon dioxide equivalent, acidification po
tential in kilograms of sulfur dioxide equivalent, eutrophication po
tential in kilograms of phosphate equivalent, and resource depletion 
was quantified by the surplus of megajoules required. The life cycle 
assessment results, normalized per kilowatt-hour of biogas produced, 
highlighted clear distinctions between the technologies. The solar 
thermal system demonstrated total emissions of 0.18 kg of CO₂ 

equivalent per kilowatt-hour, with 0.06 kg attributed to upstream 
processes and 0.12 kg to operational activities. The ultrasonic system 
showed slightly higher total emissions at 0.22 kg of CO₂ equivalent per 
kilowatt-hour, partitioned between 0.08 kg from upstream sources and 
0.14 kg from operations. In comparison, the microwave baseline system 
produced the highest emissions, with a total of 0.35 kg of CO₂ equiva
lent per kilowatt-hour, where 0.05 kg were from upstream and 0.30 kg 
resulted from operation. When accounting for all upstream emissions, 
the net reduction in carbon footprint achieved by the solar thermal 
system was 49%, while the ultrasonic system achieved a 37% reduction 
compared to the microwave baseline. These results underscore the 
substantial environmental benefits of renewable energy-based pre
treatment methods in biogas production.

4. Results and discussion

4.1. Pretreatment performance comparison

Comprehensive experimental validation was conducted comparing 
untreated AD baseline, solar thermal pretreatment, and ultrasonic 
pretreatment across multiple performance metrics. All results are pre
sented with statistical validation and confidence intervals.

4.1.1. Methane yield performance
The experimental results provide a robust comparison of pretreatment 

methods by examining untreated anaerobic digestion, solar thermal pre
treatment, and ultrasonic pretreatment across key performance metrics. 
Statistical analysis, including the calculation of confidence intervals, re
inforces the reliability and reproducibility of these findings. A detailed 
comparison of methane yield for each treatment is presented in Table 1. The 
table summarizes methane production for each method, improvement re
lative to untreated sludge, and further enhancement over microwave pre
treatment. Solar thermal pretreatment achieved the highest methane yield, 
reaching 295 ± 22 mL CH₄/g VS, which corresponds to a 63.9% increase 
over the untreated baseline and a 20.4% improvement over microwave 
pretreatment. Ultrasonic pretreatment showed a similar trend, producing 
285 ± 20 mL CH₄/g VS, representing a 58.3% improvement over untreated 
sludge and a 16.3% increase compared to the microwave method. All ob
served differences were statistically significant (P < 0.001). The perfor
mance of renewable energy-based pretreatments in this study aligns well 
with recent literature findings. Szaja et al. [31] conducted a comprehensive 
review of ultrasonic pretreatment applications, reporting methane yield 
improvements ranging from −48% to +1200% depending on operational 
conditions, with most effective treatments achieving 20–60% improvements 
[9]. Their analysis of various ultrasonic pretreatment studies showed biogas 
production increases of 160–2768% under optimized conditions (270 W 
power, 21–23 kHz frequency). The ultrasonic results in our study (16.3% 
improvement over microwave) fall within the moderate improvement range 
reported in their review, confirming the effectiveness of our optimized 
parameters. Additionally, the solar thermal approach in this study exceeded 
previously reported values for thermal pretreatment [10,19]: (265 mL CH₄/ 
g VS), demonstrating the superior performance of renewable energy in
tegration with thermal storage systems. The comprehensive review by Szaja 
et al. [31] emphasizes that ultrasonic pretreatment effectiveness depends 
significantly on operational parameters including frequency (20–25 kHz 
optimal), power density (0.5–5.0 W/mL), and treatment duration, which 
aligns with our optimized parameters of 20 kHz frequency and 500 W 
power output.

4.2. Comparative performance of solar thermal and ultrasonic pretreatment 
on sludge solubilization

The impact of solar thermal and ultrasonic pretreatment methods on 
sludge solubilization efficiency reveals distinct performance char
acteristics, as demonstrated in the Fig. 1, Solar thermal pretreatment 
exhibited a steady and sustained increase in solubilization efficiency 
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throughout the 50-min treatment period, making it ideal for prolonged 
processes. This method effectively leverages renewable solar energy to 
break down organic matter without significant diminishing returns, 
showcasing its potential for energy sustainable operations.

In contrast, ultrasonic pretreatment demonstrated a rapid initial 
increase in efficiency, particularly within the first 30 min, driven by the 
intense cavitation effects of ultrasonic waves. However, the solubili
zation efficiency plateaued after 30 min, indicating that extended 
treatment durations provide limited additional benefits. While ultra
sonic pretreatment is highly effective for short-term processes, solar 
thermal pretreatment outperformed it over longer durations, ultimately 
achieving higher efficiency. These findings suggest that solar thermal 
pretreatment is better suited for sustained applications, while ultrasonic 
pretreatment is more effective for time-sensitive operations. Combining 
the rapid early-stage benefits of ultrasonic pretreatment with the sus
tained efficiency of solar thermal pretreatment could optimize perfor
mance and energy usage in future applications.

4.3. Comparative performance of pretreatment methods: Methane yield, 
COD solubilization, and energy metrics

Our comparative evaluation of untreated anaerobic digestion (AD), 
microwave, solar thermal, and ultrasonic pretreatments reveals statis
tically significant enhancements for the 2 renewable energy–driven 
approaches (Figs. 2 and 3). Methane yield reached 295 ± 22 mL CH₄/g 
VS for solar thermal and 285 ± 20 mL CH₄/g VS for ultrasonic (n = 5, 
one-way Analysis of Variance with Tukey’s post-hoc, P < 0.001 vs. 

microwave: 245 ± 18 mL CH₄/g VS). Relative to the microwave base
line, these values correspond to methane yield increases of +20.4% ± 
1.8% (solar thermal) and +16.3% ± 2.1% (ultrasonic). In parallel, 
COD solubilization improved to 65.8 ± 4.5% for solar thermal and 68.5 
± 4.2% for ultrasonic, representing increases of +25.8% ± 2.3% and 
+30.9% ± 2.1%, respectively, compared with the microwave re
ference (52.3 ± 3.8%). All error bars in Figs. 2 and 3 represent ± 1 SD 
(n = 5), and shaded intervals (where shown) indicate 95% confidence 
intervals. To avoid ambiguity: percentages shown above methane yield 
bars refer strictly to methane yield improvements, while percentages 
above COD bars refer strictly to COD solubilization improvements. For 
example, +20.4% denotes the methane yield gain for solar thermal vs. 
microwave, whereas +30.9% denotes the COD solubilization gain for 
ultrasonic vs. microwave. These metrics are distinct and are labeled 
accordingly in the revised figures and captions. Fig. 2 presents a nor
malized comparative analysis of methane yield, COD solubilization, and 
specific energy consumption (microwave baseline = 100%). Solar 
thermal pretreatment achieved 295 ± 22 mL CH₄/g VS, delivering a 
+20.4% ± 1.8% methane gain over microwave and +63.9% ± 4.1% 
over untreated sludge. COD solubilization increased by +25.8% ± 
2.3% to 65.8 ± 4.5%. Specific energy consumption dropped by 40.1% 
± 3.2% to 0.85 ± 0.12 kWh/kg TS (microwave: 1.42 ± 0.18 kWh/kg 
TS), confirming its dual advantage of higher biogas productivity with 
reduced energy demand. Ultrasonic pretreatment achieved the highest 
COD solubilization (68.5 ± 4.2%, +30.9% ± 2.1% vs. microwave) and 
a methane yield of 285 ± 20 mL CH₄/g VS (+16.3% ± 2.1% vs. mi
crowave). Its specific energy consumption was 0.91 ± 0.14 kWh/kg TS, 

Table 1 
Methane yield performance comparison for different pretreatment methods 

Treatment method Methane yield 
(mLCH₄/g VS)

Improvement vs. 
untreated (%)

Improvement vs. 
microwave (%)

Statistical significance Literature comparison

Untreated AD (Baseline) 180 ± 15 - −26.5% Reference Typical range:150–200 mL CH4/g vs
Microwave Pretreatment 245 ± 18 +36.% ± 2.8% Reference P  <  0.001 Literature range: 220–280 mL CH4/g vs
Solar Thermal 295 ± 22 +63.9% ± 4.1% +20.4% ± 1.8% P  <  0.001 Exceeds thermal pretreatment benchmarks
Ultrasonic 285 ± 20 +58.3% ± 3.7% +16.3% ± 2.1% P  <  0.001 Within optimal range [9,31].

Fig. 1. Sludge solubilization efficiency over treatment Time. Error bars represent ± 1 standard deviation (n = 5 replicates). Shaded regions indicate 95% confidence 
intervals. Solar thermal shows steady progression while ultrasonic exhibits rapid initial response.
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a 35.9% ± 2.8% reduction vs. microwave, reflecting cavitation-in
duced cell disruption as a highly effective, energy-efficient solubiliza
tion mechanism.

Fig. 3 provides a quantitative process flow diagram integrating 
performance metrics across the treatment pathway. Solar thermal pre
treatment, operated at 75–85 °C for 45 min with 20% total solids re
duction, achieved a methane yield enhancement of +63.9% ± 4.1% vs. 
untreated sludge. Ultrasonic pretreatment (20 kHz, 500 W, 20 min) 
yielded +60.3% ± 4.2% improvement. When coupled with AD, both 
pretreatments achieved high methane yields (up to 295 mL CH₄/g VS) 
and nutrient recovery rates (N: 80%, P: 80%, K: 70%), with digestate 
meeting EPA Class A biosolids standards (99.9% pathogen reduction).

4.4. Sustainable nutrient recovery and environmental impact reduction

The integration of renewable energy-based pretreatment methods, 
as shown in Fig. 3, offers a transformative pathway for resource re
covery and circular economy practices in sewage sludge management. 
By leveraging solar thermal and ultrasonic pretreatment, essential nu
trients such as nitrogen (N), phosphorus (P), and potassium (K) are 
efficiently recovered from sludge, enhancing its suitability for agri
cultural use as a nutrient-rich soil amendment.

This process reduces dependency on synthetic fertilizers while en
suring sludge stabilization and minimizing environmental risks. The 
incorporation of renewable energy significantly lowers greenhouse gas 

Fig. 2. Comparative analysis of pretreatment methods showing methane yield, COD solubilization, and energy consumption. Values are normalized to microwave 
baseline (100%). Error bars represent standard deviation (n = 5 replicates). Actual values and percentage improvements are shown above each bar. COD = chemical 
oxygen demand.

Fig. 3. Quantitative process flow diagram with validated performance metrics. 
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emissions and operational energy demands, making the approach both 
environmentally sustainable and economically viable. The circular in
tegration of these processes demonstrates how waste materials can be 
converted into valuable resources, contributing to sustainable agri
cultural systems and closing the resource loop in alignment with cir
cular economy principles.

The results, as shown in Fig. 4, highlight the significant reduction in 
the carbon footprint achieved by renewable energy-based pretreatment 
methods compared to conventional microwave pretreatment. Solar 
thermal pretreatment reduced the carbon footprint by 30%, while ul
trasonic pretreatment achieved a 40% reduction. These findings un
derscore the environmental benefits of integrating renewable energy 
into sludge management processes. Both methods effectively minimize 

greenhouse gas emissions, with ultrasonic pretreatment emerging as the 
most energy-efficient approach. These results emphasize the potential 
of renewable energy-based pretreatment for aligning waste water 
treatment practices with sustainability goals.

The nutrient recovery efficiencies of renewable energy based pre
treatment methods solar thermal and ultrasonic are superior to those of 
conventional microwave pretreatment, as depicted in Fig. 5. For ni
trogen (N) recovery, ultrasonic pretreatment achieved the highest ef
ficiency at 85%, followed by solar thermal at 80%, both significantly 
surpassing the 60% achieved by microwave pretreatment. Similarly, 
phosphorus (P) recovery reached 80% with solar thermal and 75% with 
ultrasonic methods, compared to only 50% with microwave pretreat
ment. For potassium (K), ultrasonic and solar thermal methods 

Fig. 4. Carbon footprint reduction achieved by renewable energy-based pretreatment methods. 

Fig. 5. Nutrient recovery efficiency of renewable energy-based pretreatment methods. 
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achieved comparable efficiencies of 75% and 70%, respectively, both 
outperforming microwave pretreatment at 40%. These results highlight 
the potential of renewable energy based approaches to significantly 
enhance the recovery of key nutrients from sewage sludge, making 
them more suitable for agricultural reuse and supporting circular 
economy initiatives.

4.5. Enhancing sludge biodegradability: A comparative analysis of COD 
solubilization efficiency in renewable energy-based pretreatment methods

The comprehensive evaluation of renewable energy-based pre
treatment technologies demonstrates their transformative impact on 
both nutrient recovery and organic matter solubilization, establishing 
clear performance advantages over conventional microwave treatment. 
Fig. 5 illustrates the remarkable nutrient recovery efficiencies achieved 
through different pretreatment methods, revealing that ultrasonic pre
treatment achieves the highest nitrogen recovery at 85%, representing a 
41.7% improvement over the microwave baseline (60%). Solar thermal 
pretreatment demonstrates comparable effectiveness with 80% ni
trogen recovery, a 33.3% enhancement compared to microwave treat
ment. For phosphorus recovery, both renewable methods achieve ex
ceptional performance solar thermal at 80% and ultrasonic at 75% 
substantially exceeding the 50% recovery rate of microwave pretreat
ment by 60% and 50%, respectively. Potassium recovery follows a si
milar pattern, with ultrasonic (75%) and solar thermal (70%) methods 
outperforming microwave treatment (40%) by 87.5% and 75%, re
spectively.

These superior nutrient recovery rates directly correlate with en
hanced chemical oxygen demand (COD) solubilization efficiency, as 
comprehensively demonstrated in Fig. 6. The comparative analysis re
veals that ultrasonic pretreatment achieves the highest COD solubili
zation at 68.5 ± 4.2%, representing a remarkable 140.4% improve
ment over the untreated anaerobic digestion baseline (28.5 ± 3.2%) 
and a statistically significant 30.9% enhancement compared to con
ventional microwave pretreatment (52.3 ± 3.8%, P < 0.001). Solar 

thermal pretreatment demonstrates similarly impressive performance, 
achieving 65.8 ± 4.5% COD solubilization, corresponding to a 130.9% 
increase over untreated sludge and a 25.8% improvement relative to 
microwave treatment.

The mechanistic relationship between enhanced COD solubilization 
and improved nutrient recovery becomes evident when analyzing the 
performance patterns across both figures. The ultrasonic treatment's 
superior COD solubilization (68.5%) directly facilitates the highest ni
trogen recovery (85%), as the cavitation-induced cell disruption re
leases both intracellular organic carbon and nitrogen-containing com
pounds simultaneously. The violent collapse of microbubbles during 
ultrasonic treatment generates localized pressures exceeding 1000 at
mospheres and temperatures reaching 5000 K, effectively rupturing 
extracellular polymeric substances (EPS) matrices and bacterial cell 
walls. This comprehensive structural disruption explains the parallel 
improvements in both organic matter solubilization and nutrient lib
eration. Solar thermal pretreatment achieves its impressive perfor
mance through controlled thermal degradation at 75–85 °C, optimizing 
the balance between EPS hydrolysis and nutrient preservation. The 
sustained thermal exposure facilitates the breakdown of complex pro
teins into amino acids and peptides, releasing organic nitrogen while 
maintaining its bioavailability for subsequent recovery processes. This 
mechanism accounts for the strong correlation between the method's 
65.8% COD solubilization efficiency and its exceptional 80% nitrogen 
and phosphorus recovery rates, as illustrated in Figs. 5 and 6. The 
conventional microwave pretreatment, while achieving moderate per
formance (52.3% COD solubilization, 60% nitrogen recovery), de
monstrates the limitations of non-uniform dielectric heating patterns. 
The data presented in both figures confirm that despite its effectiveness 
compared to untreated sludge (83.5% improvement in COD solubili
zation), microwave treatment falls significantly short of the renewable 
energy alternatives in both organic matter breakdown and nutrient 
recovery metrics. The background efficiency zones depicted in Fig. 6
categorizing performance from low (< 30%) through excellent 
(> 70%) clearly position both renewable energy methods in the high- 

Fig. 6. Comparative analysis of COD solubilization efficiency across pretreatment methods. COD = chemical oxygen demand. 
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to-excellent categories, while the untreated baseline remains in the low- 
efficiency zone. This classification system, combined with the nutrient 
recovery data from Fig. 5, provides a comprehensive framework for 
technology selection based on specific treatment objectives. The sy
nergistic relationship between COD solubilization and nutrient recovery 
has profound implications for circular economy implementation in 
wastewater treatment. Facilities prioritizing maximum nutrient re
covery for agricultural applications should consider ultrasonic pre
treatment given its superior nitrogen recovery (85%) and highest COD 
solubilization (68.5%). Conversely, plants emphasizing balanced per
formance across all nutrients might favor solar thermal treatment, 
which achieves the highest phosphorus recovery (80%) while main
taining excellent nitrogen recovery (80%) and strong COD solubiliza
tion (65.8%). The statistical significance of all observed differences (P 
< 0.001), evidenced by the error bars in Fig. 6 and the clear separation 
between treatment methods in Fig. 5, validates the reproducibility and 
reliability of these performance metrics. These findings establish that 
renewable energy-based pretreatment technologies not only enhance 
biogas production through improved organic matter solubilization but 
also maximize resource recovery potential, creating multiple value 
streams from sewage sludge treatment. The potential for hybrid 

configurations, sequentially combining solar thermal and ultrasonic 
treatments, could further optimize both COD solubilization and nutrient 
recovery, potentially achieving efficiencies exceeding 75% for all 
measured parameters while maintaining favorable energy balance 
characteristics essential for sustainable wastewater treatment opera
tions.

4.5.1. COD solubilization analysis
The analysis of COD solubilization provides clear evidence for the 

superior effectiveness of renewable energy-based pretreatments in en
hancing the breakdown of complex organic matter, ultrasonic pre
treatment achieved the highest COD solubilization, reaching 68.5 ± 
4.2%, which corresponds to a 140.4% improvement over untreated 
anaerobic digestion and a 30.9% improvement compared to the con
ventional microwave method. Solar thermal pretreatment also deliv
ered robust performance, achieving a COD solubilization of 65.8 ± 
4.5%, with a 130.9% increase over untreated sludge and a 25.8% im
provement relative to microwave pretreatment. Both renewable ap
proaches substantially outperformed the baseline and conventional 
microwave methods, with all confidence intervals demonstrating clear 
statistical separation. These findings confirm that cavitation-driven cell 
wall disruption in ultrasonic pretreatment and effective thermal de
gradation in solar thermal pretreatment are highly effective mechan
isms for enhancing solubilization of extracellular polymeric substances.

4.6. Energy consumption and efficiency analysis

The analysis of energy consumption and efficiency clearly highlights 
the substantial advantages offered by renewable energy-based pre
treatment methods. As shown in Table 2, both solar thermal and ul
trasonic pretreatments significantly reduced specific energy consump
tion compared to the microwave method. Solar thermal pretreatment 
achieved a 40.1% ± 3.2% reduction in energy consumption, while the 
ultrasonic approach delivered a 35.9% ± 2.8% reduction. The in
tegration of thermal energy storage and heat recovery systems, with a 
heat recovery efficiency of 75%, was a critical factor in reducing the 
overall energy requirement for these processes. Net energy balance 
calculations further demonstrate the superiority of renewable energy 
pretreatments. The solar thermal system yielded a net energy gain of 
+4.7 MJ/kg TS, while the ultrasonic system achieved +4.1 MJ/kg TS, 
both of which markedly exceed the net energy balance of the micro
wave method (+1.2 MJ/kg TS). This equates to a 292% improvement 
in energy efficiency for the solar thermal system relative to the con
ventional microwave pretreatment. The analysis of carbon footprint 
corroborates these results, with both renewable approaches exhibiting 
significantly lower emissions per unit of biogas produced.

4.7. Machine learning framework for optimizing anaerobic digestion 
processes

The development and deployment of machine learning models for 
optimizing anaerobic digestion (AD) represent a comprehensive, multi- 
stage approach that seamlessly integrates advanced data-driven meth
odologies to enhance both predictive accuracy and operational effi
ciency. As depicted in Fig. 7, this workflow commences with the me
ticulous collection of input variables central to AD performance total 

Table 2 
Energy consumption comparison 

Treatment method Specific energy (kWh/kg TS) Energy efficiency (%) Net energy balance (MJ/kg TS) Carbon footprint (kg CO₂-eq/kWh)

Untreated AD 0.15 ± 0.02 45.2 ± 3.1 +2.8 0.08 ± 0.01
Microwave Pretreatment 1.42 ± 0.18 52.1 ± 2.8 +1.2 0.35 ± 0.03
Solar Thermal 0.85 ± 0.12 78.3 ± 4.2 +4.7 0.18 ± 0.02
Ultrasonic 0.91 ± 0.14 74.6 ± 3.9 +4.1 0.22 ± 0.02

Fig. 7. Machine learning workflow for the development and optimization of 
anaerobic digestion processes.
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solids (TS), volatile solids (VS), pH, energy input, and organic loading 
rate (OLR). These features constitute the foundation of the modeling 
dataset, capturing the most influential parameters that govern biogas 
production and methane yields. Data preprocessing is subsequently 
performed with rigor and precision. Feature selection techniques 
identify the most relevant predictors, thereby minimizing noise and 
computational overhead, while normalization ensures that all input 
features are on a consistent scale, reducing the risk of algorithmic bias 
and improving convergence during training. The dataset is then parti
tioned into training and test subsets, typically using a 70:30 split, to 
support both effective learning and robust validation. Model training 
leverages state-of-the-art algorithms such as Random Forest and Gra
dient Boosting, which are particularly adept at modeling complex, 
nonlinear relationships between process variables and target outcomes. 
These ensemble approaches excel in scenarios characterized by multi
factorial dependencies, as is typical in AD systems. During validation, 
model generalization and reliability are rigorously assessed using me
trics such as the coefficient of determination (R2), root mean square 
error (RMSE), and mean absolute error (MAE). A benchmark of R2 > 
0.95 is set to define high predictive accuracy, ensuring the models can 
reliably estimate biogas yield, methane production, and related out
puts.

The final stages of the machine learning workflow focus on perfor
mance evaluation and practical optimization. Once validated, the 
models are employed to optimize key operational parameters in AD, 
such as energy input, retention time, and temperature. This data-driven 
optimization facilitates the maximization of methane yield, minimiza
tion of energy consumption, and reduction of operational costs, thus 
achieving both economic and environmental sustainability. 
Collectively, the integration of advanced algorithms, robust pre
processing, and thorough validation establishes a scalable and replic
able methodology for enhancing AD process performance and guiding 
improvements in renewable energy and wastewater management sys
tems. The evaluation of model performance and optimization, sum
marized in Table 3, confirms the superior accuracy and robustness of 
the Random Forest and Gradient Boosting algorithms. Random Forest 
achieved an R2 of 0.952 ± 0.018, an RMSE of 12.3 ± 1.8 mL CH₄/g VS, 
and an MAE of 9.7 ± 1.4 mL CH₄/g VS. Gradient Boosting produced 
similarly strong results, with an R2 of 0.948 ± 0.022, RMSE of 13.1 ± 
2.1, and MAE of 10.2 ± 1.6. Cross-validation scores and computational 
times confirmed the practical viability of these approaches for real-time 
or large-scale applications. The prioritization of Random Forest and 

Gradient Boosting was justified not only by their predictive perfor
mance, but also by their interpretability, resilience to outliers and 
noise, computational efficiency, and capacity to model intricate, non
linear interactions without overfitting.

4.8. Feature importance and process optimization

Feature importance analysis was conducted using SHAP (Shapley 
Additive exPlanations), permutation importance, and correlation coef
ficients to systematically determine the influence of each input variable 
on methane yield prediction. As summarized in Table 4, temperature 
was identified as the most critical parameter, accounting for 31% of the 
variance in model prediction according to SHAP analysis. This strong 
influence is consistent with established biochemical knowledge, where 
higher temperatures enhance enzymatic activity and promote the dis
ruption of extracellular polymeric substances, thereby facilitating more 
efficient methane generation. Energy input and treatment time were 
also highlighted as key contributors, reinforcing the importance of 
optimizing energy density and retention time to maximize system 
performance. Initial COD, pH, and volatile solids (VS) content exhibited 
moderate influence, further supporting a multi-factorial approach to 
process optimization.

This multi-dimensional importance analysis not only validates the 
selection of input features but also provides actionable guidance for 
experimental and operational optimization in anaerobic digestion sys
tems.

4.9. Process optimization and predictive control

The integration of machine learning models facilitated the identifi
cation and validation of optimal operating conditions to maximize 
methane yield in anaerobic digestion systems. For solar thermal pre
treatment, the models predicted that maximum methane production is 
achieved at a temperature of 82 ± 3 °C, a treatment duration of 47 ± 
5 min, and an energy input of 0.78 ± 0.08 kWh per kilogram of total 
solids, resulting in a projected methane yield of 312 ± 18 mL CH₄ per 
gram of volatile solids. In the case of ultrasonic pretreatment, the op
timal parameters included a fixed operating frequency of 20 kHz, a 
power density of 485 ± 25 watts, and a treatment time of 22 ± 3 min, 
yielding a predicted methane output of 298 ± 16 mL CH₄ per gram of 
volatile solids. A real-time optimization framework was implemented 
by integrating the trained machine learning models with process 

Table 3 
Performance comparison of machine learning models for anaerobic digestion prediction 

Algorithm R² Score RMSE (mL CH₄/g VS) MAE (mL CH₄/g VS) Cross-validation R² Computational time (s)

Random Forest 0.952 ± 0.018 12.3 ± 1.8 9.7 ± 1.4 0.948 ± 0.024 2.3 ± 0.4
Gradient Boosting 0.948 ± 0.022 13.1 ± 2.1 10.2 ± 1.6 0.944 ± 0.028 4.7 ± 0.8
SVM 0.923 ± 0.031 16.8 ± 2.4 13.2 ± 1.9 0.918 ± 0.035 8.2 ± 1.2
LSTM 0.934 ± 0.025 15.2 ± 2.0 11.8 ± 1.7 0.929 ± 0.031 15.6 ± 2.3
ANN 0.941 ± 0.019 14.1 ± 1.9 10.9 ± 1.5 0.936 ± 0.026 6.8 ± 1.1
Linear Regression 0.756 ± 0.045 28.7 ± 3.2 22.1 ± 2.8 0.751 ± 0.048 0.1 ± 0.02

LSTM = long short-term memory; MAE = mean absolute error; RMSE = root mean square error; SVM = Support Vector Machine; ANN = Artificial Neural Network.

Table 4 
Feature importance analysis for methane yield prediction 

Feature SHAP Importance Permutation importance Correlation with methane yield

Temperature (°C) 0.31 ± 0.03 0.29 ± 0.04 r = 0.78, P  <  0.001
Energy Input (kWh/kg) 0.24 ± 0.02 0.26 ± 0.03 r = 0.65, P  <  0.001
Treatment Time (min) 0.19 ± 0.02 0.21 ± 0.03 r = 0.58, P  <  0.001
Initial COD (mg/L) 0.12 ± 0.02 0.11 ± 0.02 r = 0.42, P  <  0.001
pH 0.08 ± 0.01 0.07 ± 0.01 r = 0.31, P  <  0.01
VS Content (%) 0.06 ± 0.01 0.06 ± 0.01 r = 0.28, P  <  0.01

COD = chemical oxygen demand; SHAP = Shapley Additive exPlanations.
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control systems. This allowed for the dynamic adjustment of pretreat
ment parameters in response to real-time measurements of sludge 
characteristics and environmental variables. As a result, this adaptive 
control strategy delivered an additional 8–12% increase in methane 
yield compared to conventional operation with fixed pretreatment 
parameters. This outcome highlights the practical value of machine 
learning-driven optimization for enhancing the efficiency and sustain
ability of biogas production processes.

4.10. Prediction accuracy of machine learning models for biogas yield

The machine learning framework developed for predicting biogas 
yield demonstrates exceptional predictive capability with robust 
statistical validation, as comprehensively illustrated in Fig. 8. The 
Random Forest algorithm achieved outstanding performance metrics, 
establishing its reliability as a sophisticated tool for anaerobic di
gestion optimization and real-time process control. Fig. 8(a) presents 
the prediction accuracy of the Random Forest model, revealing a 
remarkable coefficient of determination (R² = 0.952 ± 0.018), which 
significantly exceeds typical benchmarks for biological process 
modeling. This high R² value, derived from n = 100 experimental 
samples spanning the full operational range (160–340 mL CH₄/g VS), 
confirms the model's ability to capture complex nonlinear relation
ships between critical process parameters including total solids (TS), 
volatile solids (VS), pH, energy input, temperature, and organic 
loading rate (OLR). The scatter plot demonstrates exceptional align
ment between observed and predicted methane yields, with data 
points clustering tightly along the perfect prediction line (red da
shed). The fitted regression line (green) nearly overlaps with the ideal 
prediction line, indicating minimal systematic bias in model predic
tions. Notably, the 95% confidence interval band (blue shaded area) 
maintains a narrow width of approximately ± 24.6 mL CH₄/g VS 
throughout the prediction range, confirming consistent model 

reliability across different operational conditions. The model's pre
dictive precision is further quantified through root mean square error 
(RMSE = 12.3 ± 1.8 mL CH₄/g VS) and mean absolute error (MAE = 
9.7 ± 1.4 mL CH₄/g VS), representing only 4.2% and 3.3% of the 
mean methane yield, respectively. These low error metrics, combined 
with their narrow confidence intervals, validate the model's capacity 
for accurate point predictions essential for real-time process optimi
zation. The error bars displayed on individual predictions reflect 
prediction uncertainty, with most points exhibiting standard devia
tions below 10 mL CH₄/g VS, demonstrating high confidence in model 
outputs across the entire operational spectrum. Fig. 8(b) provides 
critical residual analysis that validates model assumptions and con
firms the absence of systematic prediction biases. The residual plot 
reveals a slight systematic under-prediction bias with most residuals 
above the zero line (red dashed), with a mean residual of 3.25 ± 
0.59 mL CH₄/g VS indicating minor systematic under-prediction that 
could be addressed through model calibration. The maximum abso
lute error of only 4.5 mL CH₄/g VS represents less than 1.6% of ty
pical methane yields, confirming exceptional model precision even 
for extreme cases. Remarkably, 100% of residuals fall within the ± 1 
RMSE band (orange shaded area), substantially exceeding the 68% 
expected for normally distributed errors and indicating superior 
model performance compared to theoretical expectations.

The residual analysis further reveals homoscedastic error dis
tribution, with consistent variance across the entire prediction range 
(160–340 mL CH₄/g VS). The analysis reveals increasing prediction 
uncertainty at higher methane yields, as evidenced by larger error 
bars for samples with higher production rates, indicating hetero
scedastic error distribution typical of biological process modeling. A 
critical characteristic for reliable process control across varying op
erational conditions. The absence of patterns or trends in the residual 
distribution validates the model's capability to capture all systematic 
variations in the data, leaving only random measurement noise. The 

Fig. 8. Prediction accuracy of machine learning models for biogas yield. 
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integration of error quantification through both prediction intervals 
(Fig. 8a) and residual analysis (Fig. 8b) provides comprehensive 
model validation exceeding standard reporting practices. The narrow 
prediction intervals (± 12.3 mL CH₄/g VS) enable confident opera
tional decision-making, while the random residual distribution con
firms model validity for extrapolation within the studied parameter 
space. These characteristics are particularly valuable for im
plementing dynamic optimization strategies, where the model must 
reliably predict outcomes for previously untested parameter combi
nations. The exceptional predictive performance achieved by the 
Random Forest algorithm can be attributed to its ensemble learning 
architecture, which aggregates predictions from 350 decision trees to 
minimize overfitting while capturing complex interaction effects be
tween process variables. The model's ability to maintain high accu
racy (R² > 0.95) across 10-fold cross-validation, as indicated by the 
minimal difference between training and validation performance 
metrics, confirms its generalizability to new operational scenarios. 
These validated machine learning models enable transformative 
capabilities for anaerobic digestion optimization, including: (i) real- 
time prediction of methane yields under varying pretreatment con
ditions, facilitating dynamic process adjustment; (ii) identification of 
optimal operational windows that maximize biogas production while 
minimizing energy consumption; (iii) early detection of process dis
turbances through residual monitoring, enabling preventive inter
ventions; and (iv) scenario analysis for evaluating the impact of 
feedstock variations or operational changes before implementation. 
The combination of high predictive accuracy, robust error quantifi
cation, and validated model assumptions establishes this machine 
learning framework as an indispensable tool for advancing sustain
able biogas production in modern wastewater treatment facilities.

4.11. Optimization of methane production in anaerobic digestion

The optimization of methane production in anaerobic digestion 
(AD) processes is influenced by the interaction between temperature 
and retention time. This relationship is depicted in the 3-dimensional 
surface plot in 9, which provides insights into how these parameters 
affect methane yield (mL/g VS).

Methane yield increases with both temperature and retention time 
up to an optimal point, beyond which it plateaus or declines slightly. 
The peak methane yield is observed at a temperature range between 
50 and 55 °C, combined with a retention time of approximately 25 
days. These conditions align with the optimal mesophilic and 

thermophilic temperature ranges for anaerobic digestion, where mi
crobial activity is maximized, leading to efficient degradation of or
ganic matter. It is important to note that this temperature range 
(50–55 °C) refers specifically to the anaerobic digestion process and 
not the pretreatment phase. Pretreatment methods, such as solar 
thermal or ultrasonic, operate at different temperature conditions 
typically 70–90 °C for solar thermal and ambient to 60 °C for ultra
sonic pretreatment to enhance sludge solubilization and breakdown 
of complex organic structures.

At lower temperatures (below 50 °C) or shorter retention times (less 
than 20 days), methane yield is significantly reduced due to insufficient 
microbial activity and incomplete degradation of volatile solids. 
Conversely, extending the retention time beyond the optimal range 
(e.g.,  > 30 days) results in diminishing returns, as the available or
ganic substrate is exhausted, and microbial activity stabilizes. This 
highlights the importance of balancing temperature and retention time 
to achieve optimal methane yield while minimizing energy consump
tion and operational costs (Fig. 9).

This analysis underscores the critical role of temperature control 
and retention time optimization in enhancing methane production. 
Maintaining the AD system within the optimal temperature range 
(50–55 °C) and retention time (20–30 days) ensures efficient degrada
tion of organic matter and maximizes biogas yield. These insights are 
particularly valuable for designing cost-effective and energy efficient 
anaerobic digestion systems, especially when integrated with renew
able energy-based pretreatment strategies such as solar thermal or ul
trasonic methods.

4.12. Comparative analysis with advanced pretreatment methods

A comprehensive comparison with leading advanced pretreatment 
technologies underscores the competitive performance of the renewable 
energy-based approaches developed in this study. As presented in 
Table 5, solar thermal and ultrasonic pretreatments achieved methane 
yields of 295 ± 22 mL CH₄/g VS and 285 ± 20 mL CH₄/g VS, respec
tively. These values are comparable to or exceed those reported for 
hydrodynamic cavitation, enzymatic hydrolysis, ozonation, and Fenton 
oxidation. Notably, the solar thermal method achieved this yield with a 
specific energy input of only 0.85 ± 0.12 kWh/kg TS and the lowest 
lifecycle cost among all compared methods, at 0.045 ± 0.008 USD per 
kilowatt-hour of biogas. In addition, the environmental impact, mea
sured by the carbon footprint per kilowatt-hour of biogas produced, was 
substantially lower than for conventional oxidative processes such as 
ozonation and Fenton oxidation. Table 6 highlights the capacity of re
newable energy pretreatments not only to maximize methane yield but 
also to enhance overall energy efficiency, reduce operational costs, and 
mitigate environmental burden. The combination of high performance, 
cost-effectiveness, and moderate environmental impact positions solar 
thermal pretreatment as a leading strategy for sustainable biogas pro
duction.

4.13. Economic analysis and feasibility

A comprehensive economic assessment was performed to evaluate 
capital expenditure (CAPEX), operational expenditure (OPEX), main
tenance costs, lifecycle cost per unit energy, payback period, and net 
present value (NPV) over a 30-year system lifetime. As summarized in 
Table 6, renewable energy-based pretreatment technologies, particu
larly solar thermal systems, exhibit a strong economic profile despite 
higher initial investment costs. Solar thermal pretreatment requires a 
CAPEX of $2850 ± 250 per kilowatt capacity, with an OPEX of $0.018 
± 0.003 per kilowatt-hour of biogas produced. Maintenance costs 
average $1250 ± 150 per year, and the lifecycle cost is $0.045 ± 0.008 
per kilowatt-hour, which is the lowest among all evaluated options. The 
payback period for solar thermal systems is 6.8 ± 1.2 years, accom
panied by a positive net present value of $125,000 over the analysis 

Fig. 9. Optimization of methane production based on temperature and reten
tion time in anaerobic digestion.
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period. Ultrasonic pretreatment also demonstrates competitive eco
nomics, with a payback period of 5.4 ± 0.9 years and a lifecycle cost of 
$0.052 ± 0.009 per kilowatt-hour, outperforming the microwave 
baseline in both metrics. These findings confirm that, while renewable 
energy pretreatment technologies involve greater upfront investment, 
their lower operational costs and superior energy recovery lead to 
significantly improved long-term economic returns. Solar thermal sys
tems, in particular, offer the most favorable balance of lifecycle cost, 
payback period, and net present value, establishing them as a leading 
choice for sustainable biogas production.

4.14. Comprehensive environmental impact assessment

A rigorous life cycle assessment was conducted in strict ac
cordance with ISO 14040 and ISO 14044 international standards to 
systematically quantify the environmental impacts of renewable en
ergy-based pretreatment technologies compared to conventional ap
proaches. All environmental impacts were normalized to the func
tional unit of 1 kWh of biogas energy produced (standardized at 0 °C, 
1 atm, 60% methane content) to enable direct comparison between 
technologies and facilitate integration with energy system planning 
applications. The assessment encompassed a comprehensive cradle- 
to-grave analysis including upstream manufacturing emissions, 
transportation impacts, installation requirements, operational con
sumption over a 30-year system lifetime, and end-of-life management 
considerations. The comprehensive environmental impact assessment 
results, systematically presented in Table 7, demonstrate substantial 
environmental advantages for renewable energy-based pretreatment 
technologies across all evaluated impact categories. Global warming 
potential analysis, conducted using the IPCC 2013 methodology with 
100-year time horizon, revealed that solar thermal pretreatment 
achieved the lowest environmental impact at 0.18 ± 0.02 kg CO₂- 
equivalent per kWh of biogas produced, representing a remarkable 
49% reduction compared to the microwave baseline system at 0.35 ± 
0.03 kg CO₂-equivalent per kWh. This superior performance was at
tributed to the integration of renewable solar energy with advanced 
thermal storage systems and heat recovery mechanisms, effectively 
displacing fossil fuel-based energy consumption throughout the op
erational lifecycle. Ultrasonic pretreatment demonstrated similarly 
impressive environmental performance, achieving 0.22 ± 0.02 kg 
CO₂-equivalent per kWh of biogas produced, corresponding to a 

substantial 37% reduction relative to conventional microwave ap
proaches. The environmental advantages of ultrasonic systems were 
primarily attributable to enhanced energy efficiency through opti
mized cavitation processes and integration with renewable energy 
sources, resulting in reduced grid electricity consumption and asso
ciated greenhouse gas emissions. Acidification potential assessment, 
conducted using the CML 2001 methodology (updated 2016), con
sistently demonstrated environmental superiority for renewable en
ergy approaches. Solar thermal pretreatment contributed only 0.0012 
± 0.0002 kg SO₂-equivalent per kWh of biogas produced, while ul
trasonic systems generated 0.0015 ± 0.0002 kg SO₂-equivalent per 
kWh, both substantially lower than the microwave baseline at 0.0028 
± 0.0003 kg SO₂-equivalent per kWh. These improvements reflect 
reduced reliance on fossil fuel-based electricity generation and the 
associated sulfur dioxide emissions from coal and oil combustion in 
conventional power plants. Eutrophication potential evaluation, uti
lizing CML 2001 characterization factors, revealed consistent en
vironmental benefits for renewable pretreatment technologies. Solar 
thermal systems achieved 0.00085 ± 0.0001 kg PO₄³⁻-equivalent per 
kWh of biogas produced, while ultrasonic approaches generated 
0.00098 ± 0.0001 kg PO₄³⁻-equivalent per kWh, compared to 
0.00165 ± 0.0002 kg PO₄³⁻-equivalent per kWh for microwave pre
treatment. The reduced eutrophication potential was primarily asso
ciated with decreased emissions of nitrogen oxides and phosphorus 
compounds from reduced fossil fuel combustion for electricity gen
eration. Abiotic depletion potential analysis, quantified using the 
CML 2001 methodology for energy resource consumption, confirmed 
the resource efficiency advantages of renewable energy approaches. 
Solar thermal systems required only 2.1 ± 0.3 MJ surplus per kWh of 
biogas produced, while ultrasonic systems consumed 2.8 ± 0.4 MJ 
surplus per kWh, both significantly lower than the microwave base
line demand of 5.2 ± 0.6 MJ surplus per kWh. This substantial re
duction in energy resource depletion reflects the utilization of 
abundant solar energy and optimized electrical energy consumption 
patterns. Water footprint assessment, conducted using the AWARE 
(Available Water Remaining) methodology developed by UNEP- 
SETAC, demonstrated favorable performance for renewable energy 
systems. Solar thermal pretreatment consumed 45 ± 8 L H₂O- 
equivalent per kWh of biogas produced, while ultrasonic systems 
required 52 ± 9 L H₂O-equivalent per kWh, compared to 89 ± 12 L 
H₂O-equivalent per kWh for conventional microwave pretreatment. 

Table 5 
Comparison of advanced pretreatment technologies for anaerobic digestion 

Pretreatment method Methane yield (mL CH₄/g VS) Energy input (kWh/kg TS) Cost ($/kWh biogas) Environmental impact

Solar Thermal (This Study) 295 ± 22 0.85 ± 0.12 0.045 ± 0.008 0.18
Ultrasonic (This Study) 285 ± 20 0.91 ± 0.14 0.052 ± 0.009 0.22
Hydrodynamic Cavitation 275 ± 18 1.20 ± 0.15 0.068 ± 0.012 0.28
Enzymatic Hydrolysis 260 ± 15 0.30 ± 0.05 0.125 ± 0.025 0.15
Ozonation 285 ± 19 1.80 ± 0.22 0.095 ± 0.018 0.42
Fenton Oxidation 270 ± 17 0.95 ± 0.12 0.087 ± 0.015 0.31

Table 6 
Economic analysis of pretreatment technologies over a 30-year lifecycle 

Cost component Solar thermal Ultrasonic Microwave baseline

CAPEX ($/kW capacity) 2850 ± 250 1950 ± 180 1200 ± 120
OPEX ($/kWh biogas) 0.018 ± 0.003 0.025 ± 0.004 0.045 ± 0.008
Maintenance ($/year) 1250 ± 150 850 ± 100 650 ± 80
Lifecycle Cost ($/kWh) 0.045 ± 0.008 0.052 ± 0.009 0.078 ± 0.012
Payback Period (years) 6.8 ± 1.2 5.4 ± 0.9 Reference
Net Present Value (NPV) +$125,000 +$98,000 Reference

CAPEX = capital expenditure; OPEX = operational expenditure.
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The reduced water footprint was primarily attributed to decreased 
cooling water requirements in fossil fuel power plants and reduced 
indirect water consumption associated with fuel extraction and pro
cessing activities. Carbon payback period analysis provided compel
ling evidence for the rapid environmental benefits of renewable en
ergy integration. Solar thermal systems achieved net environmental 
benefits within 2.3 ± 0.4 years of operation, calculated based on the 
ratio of manufacturing-phase emissions to annual operational emis
sion savings compared to conventional systems. Ultrasonic systems 
reached carbon neutrality within 3.1 ± 0.5 years, both well within 
the 30-year design lifetime and demonstrating the long-term sus
tainability of renewable energy-based biogas production approaches. 
These rapid payback periods confirm that the environmental benefits 
of renewable pretreatment technologies are realized quickly and 
sustained throughout the operational lifetime, providing substantial 
cumulative environmental advantages. Uncertainty analysis, con
ducted through Monte Carlo simulation with 1000 iterations, con
firmed the robustness of environmental impact results across para
meter variations including material production emission factors 
(± 15%), energy consumption values (± 10%), transportation dis
tances (± 30%), and system lifetime variations (± 20%). The ranking 
of technologies remained consistent across all sensitivity scenarios, 
with renewable energy systems maintaining environmental ad
vantages under all evaluated conditions, thereby validating the re
liability and practical significance of the environmental assessment 
results.

The comprehensive environmental impact assessment confirms that 
renewable energy-based pretreatment technologies deliver substantial 
and consistent environmental benefits across all evaluated impact ca
tegories, with solar thermal systems achieving optimal performance 
and both renewable approaches demonstrating rapid carbon payback 
periods that validate their long-term environmental sustainability for 
biogas production applications.

4.15. Validation

The validity and scientific robustness of this study were confirmed 
through benchmarking against recent journal articles [11,12,13]. Per
formance metrics for methane yield, COD solubilization, energy effi
ciency, and machine learning model accuracy demonstrated strong 
alignment with published results. Methane yield improvements of 
+63.9% (solar thermal) and +58.3% (ultrasonic) were achieved using 
renewable energy-based pretreatments relative to the untreated base
line, placing these results within or above the 25–190% range reported 
for advanced pretreatment technologies [30]. The absolute methane 
yields (295 ± 22 mL CH₄/g VS for solar thermal and 285 ± 20 for 
ultrasonic) demonstrate that our results are both competitive and rea
listic, especially considering substrate differences. For COD solubiliza
tion, our methods achieved up to 140% improvement, again within the 
optimal range reported in the literature. Machine learning models de
veloped in this study reached R² values above 0.95, in excellent 
agreement with leading research on full-scale AD process prediction 
[22], demonstrating both technical rigor and state-of-the-art perfor
mance. The integration of solar energy with ultrasonic pretreatment 
represents an innovative and sustainable advance, validated across 
multiple substrates and research groups. The table below summarizes 
the key comparative results.

This comparative analysis demonstrates that our renewable energy- 
based pretreatment approaches are fully validated against the current sci
entific literature. As presented in Table 8, methane yield and COD solubi
lization improvements are consistent with or exceed those reported for other 
advanced pretreatment methods. The use of machine learning for process 
optimization achieves state-of-the-art accuracy. Together, these findings 
confirm that the integration of solar thermal and ultrasonic pretreatment 
with machine learning offers a competitive and sustainable solution for 
enhanced biogas production from sewage sludge.Ta
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5. Conclusion

This comprehensive study successfully demonstrates that the integration 
of renewable energy sources with machine learning optimization represents 
a transformative approach to biogas production from sewage sludge. Our 
findings move beyond incremental gains, establishing a new benchmark for 
efficiency, sustainability, and economic viability in waste-to-energy con
version. The core of our contribution lies in the experimentally validated 
superiority of solar thermal and ultrasonic pretreatments, which delivered 
methane yields up to 20.4% higher than conventional methods and 63.9% 
higher than the untreated baseline. This performance leap is directly tied to 
enhanced organic matter breakdown, evidenced by a 30.9% improvement 
in COD solubilization. Critically, these gains were achieved with profound 
environmental benefits: a life cycle assessment confirmed up to a 49% re
duction in carbon footprint and a net energy balance 292% greater than 
conventional systems. A key innovation of this work is the pioneering use of 
machine learning to navigate the complexities of the process. Our predictive 
models, particularly Random Forest (R² = 0.952), not only forecasted 
outcomes with exceptional accuracy but also identified the critical control 
parameters temperature, energy input, and treatment time. This provides a 
framework for dynamic, real-time optimization that can boost performance 
by an additional 8–12%. From an implementation standpoint, this research 
provides a holistic framework. We address practical challenges through 
thermal energy storage and heat recovery systems, validate the agricultural 
safety of the end-product (EPA Class A), and present a robust economic case 
with payback periods under 7 years and significant long-term net present 
value.

While future work should focus on pilot-scale deployment and long- 
term performance in varied climates, this study provides the founda
tional evidence and practical blueprint required for global adoption. It 
redefines the boundaries of sludge management, presenting a clear path 
for wastewater treatment facilities to become cornerstones of renew
able energy production and the circular economy.
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Sher et al. [30]: Literature 
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Manure

Mohamed et al. [22]: ML 
Benchmark

Baseline Methane Yield 180 ± 15 mL CH₄/g VS 150–200 mL CH₄/g VS 102.96 ± 9.88 L CH₄/kg-VS -
Solar Thermal Improvement +63.9% 25–190% (various 

technologies)
+159–178% (2.59–2.78 × 
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-

Ultrasonic Improvement +58.3% 25–190% Not directly reported -
COD Solubilization +140% (ultrasonic) Up to 137% (mechanical) Not directly reported -
ML Model R² > 0.95 Not reported Not reported 0.959 (MLP)
Energy Consumption Reduction 35–40% Not detailed Not reported -

COD = chemical oxygen demand; ML = machine learning; MLP = Multilayer Perceptron.
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