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A B S T R A C T

In this study, the neutral scalar thermal model is presented for single-phase and so, a single-phase Ray
leigh–Bénard is investigated. The Shan-Chen model is expressed in the isothermal state, and by combining the 
two models, the mixed Shan-Chen thermal method is presented. Then, using a mixed model, a two-phase Ray
leigh–Bénard with the thermal Shan-Chen method is proposed. Two-phase Rayleigh–Bénard convective heat 
transfer is simulated at the relatively high Rayleigh numbers (105), different Capillary numbers (10− 3 to 10− 4), 
and also, various ε parameters (parameters related to the temperature difference and thermal expansion). In two- 
phase Rayleigh–Bénard convective heat transfer increasing the Rayleigh number leads to the increment of 
Rayleigh–Bénard convective heat transfer between the hot and cold wall and the temperature gradient enhances 
in the vicinity of the upper wall, lower wall, and interface. It is worth mentioning, that in the two-phase Ray
leigh–Bénard problem, the variations of the interface are changed only by changing the thermal expansion co
efficient and the temperature difference between the two walls. The results show that the mixed model can 
simulate two-phase thermal flows. The stability of this method is the same as the multi-phase isothermal models, 
and it can be applied well for different state equations and relatively high Rayleigh numbers.

Introduction

One of the challenges in simulating multi-phase systems by using the 
computational fluid dynamic (CFD) is the method for detecting the 
location of the interface and applying appropriate boundary conditions 
at that location. Hence, in the last years, the Lattice Boltzmann Method 
was proposed for modeling these flows. In multi-phase problems, 
automatic detection of the location of the interface, the feasibility of 
parallel processing, and low computational cost lead to this method, 
especially in multi-phase problems. Due to the observation of multi- 
phase flows in most industrial and natural processes, researchers have 
investigated these kinds of flows experimentally and theoretically. In 
recent years, many studies have been conducted on multiphase flows. 

However, multiphase thermal flows have not been studied enough. 
Rayleigh– Bénard convection is the coordinated movement of a fluid 
that is confined between two thermally conducting plates and is heated 
from below to produce a temperature difference. An uncoordinated 
movement of fluid particles which allows energy transfer between lower 
and upper plates is substituted by a coordinated movement above a 
certain temperature gradient. One of the most common multi-phase 
thermal problems is two-phase Rayleigh–Bénard convective heat 
transfer. The implemented works in the field of LBM for multi-phase 
thermal problems are so limited. The research of He et al. [1] and 
Zhan and Chen [2] can be mentioned as the earliest studies. They pre
sented a model of the Shan-Chen method of LBM which is capable of 
simulating multi-phase thermodynamic flows. This method is stable 
from the thermodynamic perspective at the macroscopic scale. For the 
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first time, by utilizing this model, generating liquid–vapor, boiling 
processes, and coagulation were simulated by proposing temperature as 
a neutral scalar. First, Yuan and Schaefer [3] described multi-phase re
lations of isothermal lattice Boltzmann. Then, they explained the neutral 
scalar model of lattice Boltzmann. They carried out a two-phase thermal 
lattice Boltzmann model by combining these two methods. The appli
cation of the new model was investigated by presenting numerical 
modeling results of a two-phase thermal system inside a rectangular- 
shaped channel. Chang and Alexander [4] improved a hybrid model of 
lattice Boltzmann for a two-phase fluid. So, they molded the tempera
ture domain by applying the finite difference method and energy 
transfer equation. Their results show that the variations in the interface 
are due to the temperature difference and thermal expansion coefficient. 
Dong et al. [5] modeled the bubble growth and exit from the super
heated surface by applying the hybrid thermal method of LBM and also, 
modified the multi-phase Shan-Chen model. Atter and Korner [6]
studied developing an algorithm for using LBM to solve thermal free- 
surface flow with the liquid–solid phase changes. In addition, they 

utilized the free-energy model and neutral scalar method for simulating 
thermal flow and multi-phase flow, respectively. Chen et al. [7] per
formed a hybrid model of thermal lattice Boltzmann described boundary 
properties according to the total enthalpy. According to that the present 
methods are insufficient for thermal flow about the effect of interaction 
between the droplet and walls in multi-component problems. Ikeda [8]
presented a new method that is capable of modeling multi-component 
multi-phase thermal lattice Boltzmann with high accuracy. Gong and 
Cheng [9] performed the bubble growth and exit from a superheated 
wall in the pool boiling by utilizing a new development model of the 
Shan-Chen model of LBM. Kamali et al. [10] investigated a numerical 
method for solving energy consistency equations in two phases when the 
effects of phase change are considered. Taghilou and Rahimian [11]
used a thermal lattice Boltzmann method for modeling the behavior of a 
droplet on a solid wall. They utilized the free energy model [12] to 
obtain the results of the interaction between the droplet and the surface. 
The contact angle between the gas, liquid, and solid phases was applied 
in their work. Their numerical results indicated that by enhancing the 

Nomenclature

A Acceleration of channel (m/s2)

Ca Capillary number
cs Lattice Sound speed (m/s)
eα Lattice particle Microscopic velocity along α direction (m/ 

s)
F Particles’ interaction force (N)
fα The distribution function for flow
feq1 The equilibrium distribution function for the flow domain
G The intensity of fluid/fluid interaction
g Gravitational acceleration
gα The distribution function for the temperature domain
geq The equilibrium distribution function for the temperature 

domain
Nu Nusselt number
N Grid size
P Pressure
R Particle Radius (m)
Ra Rayleigh number
T Temperature (K)
T* Reference temperature (K)
u Macroscopic velocity vector in x-direction (m/s)

ueq Equilibrium velocity (m/s)
u,v Horizontal and vertical components of velocity (m/s)
L The length of the horizontal wall
h The distance between the peak and the valley in an 

interface wave
x The length of the x-direction

Greek symbols
κ Thermal dissipation coefficient (m2 /s)
β Thermal expansion coefficient (K− 1)
ρ Density (kg/m3)
ψ Effective mass
ωα Weight coefficient along α-direction
τv The relaxation time of the flow domain
τT The relaxation time of the temperature domain
µ Dynamic viscosity (N.m/ s)
θ Contact angle

Subscripts
i Grid direction
ads Solid-liquid
ave Average
0 Reference

Fig. 1. Schematic view of single-phase Rayleigh–Bénard and its boundary conditions.

M.M. Al-Zahiwat et al.                                                                                                                                                                                                                        Results in Chemistry 13 (2025) 101975 

2 



ratio of the Prandtl number between the droplet and its surroundings, 
thermal dissipation will be delayed inside the droplet. This leads to a 
decrease in average droplet temperature. They represented that the heat 
flux is focused around the droplet. However, it is not considered in the 
gas phase. Li et al. [13] implemented a thermal hybrid model of LBM for 
modeling multi-phase thermal flows by applying a modified Shan-Chen 
model. TThe numerical results show that the fundamental heat transfer 
characteristics in the boiling such as strong transient heat flux fluctua
tions in the boiling transfer and the property that the maximum latent 
heat transfer coefficient in the superheat wall is lower than the 
maximum heat flux were presented as well in this method. In Ref. [13], 
phase change was investigated, while in the present research, Rayleigh- 
Bernard heat transfer was investigated. In addition, researchers [14–17]
presented the influences of additives on the thermal behavior of 
convectional fluid and reported an increased heat transfer rate. Their 
results show that streamlining enhances with the rise of the Rayleigh 
number, while, it decreases with increasing Hartmann number and 
particle volume fraction. Multi-phase thermal LBM was studied in a 
limited way, however, in the present research; it is investigated by using 
the thermal Shan-Chen method for the first time. This method of heat 
transfer is simulated for the first time with the Shan-Chen two-phase 
model. The ability to simulate thermal two-phase problems with the 
Shan-Chen model is one of the innovations of this research. The results 
indicate that the mixed model is capable of simulating two-phase ther
mal flows.

Problem statement

Problem statement in the single-phase Rayleigh–Bénard simulation

Rayleigh–Bénard convective heat transfer is a good criterion for a 
thermal system in which a horizontal layer of fluid is heated from the 
bottom and the upper boundary is at a lower temperature. In Ray
leigh–Bénard convective heat transfer when the temperature difference 
between upper and lower boundaries is too much, the static conduction 
becomes unstable. The temperature of the lower wall (y = 0) and upper 
wall (y = 1) are considered Th = 1 and Tc = 0, respectively. The sche
matic view of Rayleigh–Bénard convective heat transfer and boundary 
conditions are presented in Fig. 1. According to this figure, the periodic 
boundary condition is applied to the left and right sides, while; the wall 
boundary condition is applied to up and downsides (horizontal walls). In 
this figure, H and W are the distance between two walls and the length of 
the wall, respectively.

Problem statement for Rayleigh–Bénard heat transfer in a two-phase 
system

Rayleigh–Bénard convective heat transfer is used extensively in the 
industry. Here, this problem is described by using LBM. In the previous 
section, this problem is presented as a single phase. Here, two immis
cible fluids with different temperatures are proposed which are between 
two isothermal solid plates. Fig. 2 shows these two parallel plates and 
the interface of two fluids. The system is two layers of immiscible fluids 
with the same thickness of h1 = h2 = 0.5H, the width of W, and the 
height of H. The ratio of densities is ρr = 0.33. According to Fig. 2, the 
deformation of the interface is considered as ε = Δh

H . As mentioned, the 
lower wall is hot with a temperature of Th = 1 and the upper wall is cold 
with a temperature of Tc = 0. In this figure, the vertical walls are 
considered periodic. At the beginning of the process, the interface is a 
straight line, which becomes a parabola by applying two Ray
leigh–Bénard phases.

Governing equations in the thermal Shan-Chen method of LBM

Governing equations in multi-phase LBM

This method was invented by Shan and Chen [14] in 1993 and was 
called their names. Nowadays, among all multi-component or multi
phase lattice Boltzmann models, the Shan-Chen method has extensive 
application due to its high flexibility and simplicity. In the multi-phase 
multi-component Shan-Chen method of LBM, a distribution function is 
determined. The application of this method is in simulating the common 
surface of two-phase currents without calculating the surface tension. 
All multiphase and multicomponent fluids can be simulated with this 
method. The following equations are written for each distribution 
function [3]: 

fα(x+ eαδt, t+ δt) = fα(x, t) −
1
τν
[fα(x, t) − feq

α (x, t)] (1) 

Where τv is called the relaxation time for the flow field. fα is distribution 
function for flow, In addition, in this model, the equilibrium distribution 
function is determined as [3]: 

feq
α (x, t) = ωαρ(x)[1+3eα.ueq

c2
s

+
9(eα.ueq)

2

2c4
s

+
3ueq2

2c2
s

(2) 

where ωα, cs and ueq are the weight coefficient, sound speed in the grid 
unit, and equivalent velocity, respectively. In the D2Q9 model which is 
used in this research [3]: 

eαi =

[
0 1 0
0 0 1

− 1 0 1
0 − 1 1

− 1 − 1 1
1 − 1 1

]

(3) 

ωα = [
4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

] (4) 

Macroscopic properties are computed as follows: 

ρ =
∑N

α
fα =

∑N

α
feq

α (5) 

ρu =
∑N

α
fαeα =

∑N

α
feq

α eα (6) 

Where ρ is the viscosity determined as: 

υσ = c2
s (τσ − 0.5δt) (7) 

The F is the interaction between particles which includes the intermo
lecular forces such as the volume forces, fluid–solid, and fluid–fluid 
forces. The interaction force of fluid–fluid at each point of the grid can 
be computed as follows: 

Fig. 2. Schematic graph of two-phase Rayleigh–Bénard and its 
related parameters.
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Fl(x, t)= − G(x)(
∑

α
ωaψ(x+ eαδt, t)eα (8) 

In Equation (8), G is the intermolecular power parameter influencing the 
obtained results by using the Shan-Chen model from the numerical and 
physical perspective. ψ(x) is a molecular potential function. The mo
lecular potential function of ψ(x) is expressed as the function of x by its 
dependency on the density and is called the effective mass [18]: 

ψ(x) = ρ0[1 − exp
(

−
ρ(x, t)

ρ0

)

] (9) 

Where constant of ρ0 is the reference density. By selecting the various 
shapes for ψ(x) in the above equation, it can be achieved different state 
equations for single-component multi-phase non-ideal fluid. Eventually, 
by using the effective weight function, the below state function is pre
sented for computing pressure as follows: 

p = c2
s ρ+ c0G[ψ(x) ]2 (10) 

If the fluid is in the vicinity of the surface, a force is proposed for the 
interaction of fluid–solid: 

Fads(x, t) = − Gadsρ(x, t)
∑

α
ωas(x+ eαδt)eα (11) 

where s(x + eαδt) is an indicator function which is equal to zero for fluid 
and 1 for solid. For both fluids, the value of Gads is equaled with multi- 
signed which is negative for hydrophilic fluid and positive for lipophilic 
fluid. A force is applied to fluid due to channel acceleration, as: 

F3 = ρ(x)a (12) 

All of these forces such as fluid–fluid force (F1), fluid–solid force (F2), 
and a force due to fluid motion inside the channel applied as the Rey
nolds number and F3 which is applied in the equilibrium velocity term, 
are as follows: 

ueq = u+
τFtotal

ρ(x) (13) 

where, Ftotal is as.Ftotal = F1 + F2 + F3[3].

Single-phase thermal LBM

Single-phase thermal LBM is defined by applying a neutral scalar 
model. In a thermal system, if the effects of viscosity and thermal 
pressure are not considerable, in the neutral scalar method, the tem
perature domain is presented as follows [18]: 

∂T
∂T

+u.∇T = ∇.(κ∇T) (14) 

where κ and u are the thermal dissipation coefficient and total fluid 
velocity, respectively. In the neutral scalar method, according to the 
neutral nature of the temperature domain, similar to the density, one 
distribution function is proposed for temperature as follows: 

gα(x+ eαδt, t+ δt) = gα(x, t) −
1
τT

[gα(x, t) − geq
α (x, t)] (15) 

where τT is known as the relaxation time for temperature. The 
equilibrium distribution function for temperature is defined as: 

geq
α = ωαT[1 + 3eα.u +

9(eα.u)2

2
−

u2

2
] (16) 

Similar to density, the temperature is obtained by summing all of the 
distribution functions, as: 

T =
∑

α=0
gα (17) 

Where,κ =

(

τT − 1
2

)

c2
s δt, hence, the Prandtl number can be defined as 

follows: 

Pr =
v
κ
=

2τv − 1
2τT − 1

(18) 

By changing τv or τT , it can be created with different Prandtl numbers.
Two non-dimensional numbers of Prandtl and Rayleigh numbers are 

used for describing the states of the system which Prandtl number is 
obtained from Equation (18) and the Rayleigh number is defined as 
follows: 

Ra =
gβΔTH3

νκ
(19) 

Where, g, β, and H are the gravitational acceleration, thermal expansion 
coefficient, and the grid size along the y-direction. Boussinesq approx
imation was applied for two-phase RB convection [4]. In this paper, the 
Boussinesq approximation is applied which assumes that density is 
proposed to be constant in the consistency equation, except in the term 
of buoyancy force which density varies linearly with temperature. 

ρG = ρβg
(
T − Tavg

)
(20) 

Where g and Tavg are the buoyancy force in the weight unit and the 
initial temperature, respectively. This problem is simulated by using a 
neutral scalar thermal model. In this method, a wall buoyancy condition 
is applied to the wall.

Multi-phase thermal LBM

In the current work, two-phase thermal flow can be modeled with the 
combination of equations of the double-distribution function model of 
thermal LBM and the multi-phase Shun-Chen model. In this model, fluid 
dynamics are modeled by using the Shan-Chen model while for deter
mining the temperature domain, a further equation of neutral scalar is 
used and by defining an external force term, it is merged with the multi- 
phase isothermal method. The term buoyancy force which is due to 
gravitational force and also, the temperature difference is presented as 
[18]: 

ρ(x)G = ρ(x)g
(

1 −
〈ρ〉

ρ(x)

)

− βρg(T − T0) (21) 

where 〈ρ〉 is average density in all of the fluid regions, g is gravitational 
acceleration, T0 is the reference temperature whose value is equal to the 
temperature of the system in the condition of pure convection and also, β 
is a fluid thermal expansion which is proposed equal for both fluids. On 
the left side of Equation (21), the first term shows the buoyancy force 
caused by density difference, and also, the second term indicates the 
gravitational force caused by temperature difference. Although this 
method has a modest concept, it can be applied to the various state 
equations of an ideal gas and extracted temperature domain. In com
parison with the other multi-phase thermal methods, the presented 
model has a simpler concept and higher stability because there is no 
demand to augment particle velocity or trace interface. In this method, 
the stability is computed by fluid dynamics and also, and the tempera
ture domain does not influence it. Capillary and Rayleigh’s numbers 
include all of the impressive parameters except the pressure and contact 
angle of the surface. These non-dimensional parameters can be 
computed as follows: 

Ra =
gβHTHPr

ν2 , Ca = ρν
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gβΔTH

σ

√

,Nuavg = 1+
uy
(
T − Tavg

)
Ny

ΔT
(22) 

where ρ, g, β and Ny are the density of each fluid, gravitational ac
celeration, thermal expansion coefficient, and grid size along the y- 
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direction, respectively. In addition, ΔT is the difference between the 
upper and lower walls (ΔT = TH − TC = 1), uy is the velocity in the y- 
direction, T* is the fluid temperature in the pure conduction (the 
reference temperature), Ny is grid size along the y-direction, and all 
parameters in 〈 〉 Represent average flow in all of the regions and σ is 
surface tension. It should be noted that in this problem, the parameter of 
ε = βΔT has significant importance. For a non-dimensioning time, t =

̅̅̅̅̅̅̅̅
H

gβΔT

√
is proposed.

Numerical procedure and assumptions

Grid validation

To ensure the results independency from the grid size, this problem is 
simulated in different grid sizes and obtained Nusselt numbers are 
compared with each other. In fluid dynamics, the Nusselt number (Nu) is 

the ratio of convective to conductive heat transfer in a fluid. Table 1
indicates the computed Nusselt number in different grid sizes for Ra =

8 × 104 and Ca = 4.6× 10− 4. The Rayleigh number (Ra) for a fluid is a 
dimensionless number associated with buoyancy-driven flow, also 
known as free or natural convection and the capillary number (Ca) is a 
dimensionless quantity representing the relative effect of viscous drag 
forces versus surface tension forces acting across an interface between a 
liquid and a gas, or between two immiscible liquids. As seen, the vari
ation of the Nusselt number is about 2 %. Hence, the time of solving is 
lower in the larger grids, Also, if the grids become larger than a certain 
limit, the answers will not be accurate. in the following simulations, a 
90 × 180 grid is used. The average Nusselt number is calculated by 
Nuavg =

1
L
∫ ∂T

∂x which the integral is on the hot surface and L is the height 
of the cavity. Variation of the Nusselt number was taken unidirectional 
Because heat transfer takes place in the vertical direction and the Nusselt 
number shows the changes of heat transfer in the horizontal direction 
well.

Validation

Before studying the effective parameters in the Rayleigh–Bénard 
phenomenon, validation is performed for the computer program. Fig. 3
compares the temperature domain of the present study with the results 
of Chang and Alexander [4] for Ra = 8 × 104 and Ca = 4.6 × 10− 4 and 
ε = 0.15 in two-time steps (ε = βΔT). The lattice Boltzmann method 
(LBM) is extended to include the effects of interfacial tension and its 

Table 1 
The value of the average Nusselt number in 
the various grid sizes for Ra = 8 × 104 

and..Ca = 4.6× 10− 4

grid size Nuavg

50 × 100 2.54
90 × 180 2.6
150 × 300 2.62

Fig. 3. Time changes of isothermal lines in the present study (right side) and Chang and Alexander [4] (left side) for..Ra = 8× 104,Ca = 4.6× 10− 4, ε = 0.15
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Fig. 4. Isothermal liens and streamlines for Rayleigh–Bénard problem in different Rayleigh numbers and Pr = 1.
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temperature dependence and is applied to the problem of buoyancy- 
driven flow in a nonisothermal two-phase system. No prior assump
tions are made regarding the shape and dynamic roles of the interface. 
The behavior of the interface is obtained as part of the solution of the 
lattice Boltzmann equations. A parametric study of the effects of ther
mally induced density change, buoyancy, and surface tension variation 
with temperature on interface dynamics, flow regimes, and heat transfer 
is presented.

As seen, by enhancing the number of time steps time step,(In all these 
studies, time is dimensionless and it means the number of steps.) the 
interface between two fluids changes, and convective heat transfer be
comes complete. In addition, since this work is transient, there is a 
proper agreement between the two works. The only difference is that in 
this paper because of high spurious current, the temperature rises 
abnormally at the boundary of two fluids. Spurious current is one of the 
defects of the used method that causes errors in the results. This effect 

can be reduced by using modified methods. One of the disadvantages of 
the present study is that the effects of false velocities at the fluid 
boundary are significant and can cause many changes. These two studies 
should be compared qualitatively with each other because different 
equations were used and the origin of time steps in the two studies are 
different from each other. The two studies, are very similar in terms of 
increasing the number of time steps time step, the heat transfer becomes 
more complete and reaches a stable state. In Figs. 1-a, Rayleigh–Bénard 
heat transfer has not occurred completely and in the isothermal lines, 
there are fewer ascending and descending. As seen, in both works, there 
is lower Rayleigh–Bénard heat transfer in the fluid with low density 
(upper fluid). If the density of two fluids is equal, the problem will be 
similar to the Rayleigh-Bernard single phase. Since, heat transfer is the 
time needed, as time passes, Rayleigh–Bénard convective heat transfer 
occurs and the ascending and descending of isothermal lines become 
more regular. When conductive heat transfer flow is started, the random 

Fig. 5. Isothermal lines (left side) and streamlines (right side) for Ca = 4.6 × 10− 4, ε = 0.15 and different Rayleigh numbers.
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motions start in the microscopic scale automatically. After these effects 
appear on the macroscopic scale, fluid formation occurs as the Bénard 
convective cells. The period of Bénard cells will continue as stable until 
there is a constant temperature difference between the two plates. This 
period alternates from clockwise to counterclockwise in the x-direction. 
It is worth mentioning that the variations of surface tension are not 
calculated because, in the Shan-Chen model, the surface tension is ob
tained from the Laplace test and cannot be changed directly.

Results and discussion

Results for single-phase Rayleigh–Bénard

Fig. 4 shows Rayleigh–Bénard convection for different Rayleigh 
numbers in Pr = 1. When the value of the Rayleigh number is low, the 
heat transfer only occurs as the conductive heat transfer and tempera
ture distribution show pure conduction according to Figs. 4-a. In this 
figure, only thermal conduction occurs and there is no convective flow. 
However, when the Rayleigh number is greater than the critical Ray
leigh number, each small turbulence causes the start of the convective 
heat transfer. Figs. 4-b indicates the flow domain in convective heat 
transfer. As seen these lines are completely symmetric and convective 
flow in the Rayleigh–Bénard convection is illustrated in a good way. 
According to Figs. 4-c, by developing flow, it finally system reaches a 
stable state with the specified temperature distribution and as seen in 
Figs. 4-d, the temperature in the wall increases, but its value is not 
noticeable and is not specified in the figure. For this two-dimensional 
horizontal channel which is influenced by periodic boundary condi
tions from the walls, the value of the critical Rayleigh number is equal to 
Rac = 1708 by linear stability theory.

When the Rayleigh number becomes greater than the critical Ray
leigh number, in addition to conductive heat transfer, convective heat 
transfer also occurs. According to that convective heat transfer is 
dominated, due to this phenomenon, the fluid assumes a regular and 
specified shape similar to the hexagonal cell which in fluid dynamics 
science and related phenomenon to the convective cells is called Bénard 
cells.

Results for Rayleigh–Bénard heat transfer in a two-phase system

Two-phase Rayleigh–Bénard
Rayleigh–Bénard convective heat transfer is extensively used in the 

industry where here this problem is described with the aid of LBM. In the 
previous section, this problem is presented as a single phase. Here, two 
immiscible fluids with different temperatures are considered between 
two isothermal solid plates. A two-layer system of immiscible fluids with 
an equal thickness of h1 = h2 = 0.5H, the width of W and height of H. 
The ratio of densities is equal to ρr = 0.33.

The effect of the changes in Rayleigh number
Fig. 5 shows the variations of streamlines and isothermal lines in ρr =

0.33andCa = 4.6 × 10− 4 for the various Rayleigh numbers. It is worth 
mentioning that 105 is considered a high Rayleigh number [14]. By 
incrementing the Rayleigh number from 1.2 × 103 to 8× 104, the var
iations of the amplitude of interface augment, however by enhancing 
Rayleigh number from 8 × 104 to 2× 105, the interface is almost un
changed. The parameter range used is due to the possibility of validation 
with the reference article and the fact that the equations are responsible 
in a certain range.

By augmenting the Rayleigh number, the temperature gradient in
creases in the vicinity of the upper wall, lower wall, and interface. Ac
cording to this figure, in the upper fluid which has a lower density, flow 
domain circulation is weaker this subject shows that by increasing 
density, heat transfer augments. According to Δh

H parameter, by changing 
the Rayleigh number, the variations of the interface are not influenced 

significantly. Fig. 6 indicts the variations of interface for each Rayleigh 
number in Ca = 4.6× 10− 4and ε = 0.1. It can be concluded that the 
variations of interface change insignificantly by increasing Rayleigh 
numbers. In addition, in this figure, the results of the present study are 
compared with the results of Chang and Alexander [4]. The insignificant 
difference in the graph is due to the different solving methods of the two 
types of research. It should be noted that two works have used different 
methods to solve the problem and this has caused differences in the 
diagrams. The emergence of spurious currents has made the problem 
problematic. Also, in this work, we are trying to measure the ability of 
the two-phase Boltzmann network method, which can be improved with 
the modified model. Fig. 7 illustrates the average Nusselt number for 
each Rayleigh number for Ca = 4.6× 10− 4and ε = 0.15. The average 
Nusselt number increases by augmenting the Rayleigh number indi
cating that Rayleigh–Bénard heat transfer increments by incrementing 
the Rayleigh number. Fig. 7 compares the average Nussle number with 
the results of Chang and Alexander [4] in different Rayleigh numbers 
which indicate good agreement. According to the last results in Fig. 5, by 
increasing the Ra number, the temperature gradient near the walls 

Fig. 6. The variations of interface for each Rayleigh number in..Ca = 4.6×

10− 4and ε = 0.1

Fig. 7. The variations of average Nusselt number for each Rayleigh number 
in..Ca = 4.6× 10− 4and ε = 0.15
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increases which causes the Nu number increment. Thus, Nu growth is a 
result of a temperature gradient in the vicinity of walls.

The effect of changes in Capillary number
The effect of changes in Capillary number on the changes in the 

interface is illustrated in Fig. 8 in Ra = 8 × 104 and ε = 0.15 which the 
changes of surface tension with temperature are neglected. As seen, in 
lower Capillary numbers, the changes of interface enhance up to 4.2 %, 
after that by incrementing Capillary number, the variations of the 
interface are almost unchanged. In this figure, the present results are 
compared with the results of Chang and Alexander [4]. As seen, in a 
Capillary number of less than 2× 10− 4, the results of Chang and Alex
ander [4] have a small difference from the results of this paper. How
ever, in higher Rayleigh numbers, appropriate concordance is seen. The 
reason for this small difference is because of different simulation 
methods.

The effect of variation of ε parameter
In this section, the effect of variation of ε = βΔT parameter is 

investigated. According to Fig. 9, by increasing ε, the variations of the 
interface are enhanced. Consequently, the variations of the interface are 
changed only by changing the thermal expansion coefficient and the 
temperature difference between the two walls. When the value of ε is too 
high, the variations of the interface cannot be neglected. Fig. 10 repre
sents the variations of interface with the ε parameter in Ra = 8×

104and Ca = 4.6× 10− 4. As seen, in Fig. 10 the deformation of the 
interface augments by increasing ε. When ε ≤ 0.1, the rate of deforma
tion is less than 3 % which can be neglected. However, for higher ε, the 

Fig. 8. The changes of interface for each Capillary number in..Ra = 8×

104 andε = 0.15

Fig. 9. Isothermal lines (left side) and streamlines (right side) in different ε in..Ra = 8× 104and Ca = 4.6× 10− 4
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variations of the interface cannot be neglected. If the density of two 
fluids is not equal, the range will change. In general, in the high time 
step, the amplitude will change and these changes are related to the 
characteristic length.

Conclusion

In the current work, a multi-phase thermal model of LBM is 
described. In this model, by using the Shan-Chen model of LBM and the 
neutral scalar model of LBM, fluid mechanics, and temperature domain 
are simulated, respectively. The multi-phase thermal model of LBM is 
presented from the combination of the single-phase thermal model and 
the multi-phase isothermal model of LBM. For instance, the single-phase 
Rayleigh–Bénard problem and the effects of the Rayleigh number are 
studied on heat transfer. In Rayleigh–Bénard convection heat transfer, if 
the Rayleigh number is greater than the critical Rayleigh number, it 
causes instability in the flow domain which leads to creating convective 
heat transfer. By augmenting the Rayleigh number, the rate of heat 
transfer is enhanced. In the following, two-phase Rayleigh–Bénard 
convective heat transfer is analyzed in different Rayleigh and Capillary 
numbers and also, at different times. In the two-phase Rayleigh–Bénard 
problem, by enhancing the Rayleigh number, the temperature gradient 
increases in the vicinity of upper and lower walls and interface, and also, 
the power of flow domain circulation becomes weaker. At high Rayleigh 
numbers, the influence of spurious currents increases, which affects the 
accuracy of the results. The variations of the interface are not consid
erably influenced by changing the Rayleigh number according to Δh

H 
parameter. In lower Capillary numbers, the changes of interface 
augment up to 4.2 % then by increasing Capillary number; the variations 
of the interface are almost constant. In Rayleigh–Bénard, the variations 
of the interface are changed only by changing the thermal expansion 
coefficient and temperature difference between the two walls. By aug
menting ε, the deformation of the interface increases. If ε ≤ 0.1, the rate 
of deformation is less than 3 % this small ratio is negligible, however for 
higher ε, the changes in the interface cannot be neglected. As can be seen 
in all the shapes and descriptions, the changes in the shape of the 

common surface have the greatest effect on the parameter ε. Moreover, 
employing the Shan-Chen model for simulation of the common surface 
of multi-phase flow prepares needless conditions to calculate surface 
tension in numerical commutations. In future research, the effects of 
spurious current can be reduced by using the modified Shan-Chen model 
to make the answers more realistic. It is also possible to simulate 
problems in which phase change occurs. The results indicate that in 
multi-phase problems the presence of temperature as an obstacle, delays 
reaching the stable state.
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