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In this study, the neutral scalar thermal model is presented for single-phase and so, a single-phase Ray-
leigh-Bénard is investigated. The Shan-Chen model is expressed in the isothermal state, and by combining the
two models, the mixed Shan-Chen thermal method is presented. Then, using a mixed model, a two-phase Ray-
leigh-Bénard with the thermal Shan-Chen method is proposed. Two-phase Rayleigh-Bénard convective heat
transfer is simulated at the relatively high Rayleigh numbers (10%), different Capillary numbers (103 to 10,
and also, various € parameters (parameters related to the temperature difference and thermal expansion). In two-
phase Rayleigh-Bénard convective heat transfer increasing the Rayleigh number leads to the increment of
Rayleigh-Bénard convective heat transfer between the hot and cold wall and the temperature gradient enhances
in the vicinity of the upper wall, lower wall, and interface. It is worth mentioning, that in the two-phase Ray-
leigh-Bénard problem, the variations of the interface are changed only by changing the thermal expansion co-
efficient and the temperature difference between the two walls. The results show that the mixed model can
simulate two-phase thermal flows. The stability of this method is the same as the multi-phase isothermal models,
and it can be applied well for different state equations and relatively high Rayleigh numbers.

However, multiphase thermal flows have not been studied enough.
Rayleigh— Bénard convection is the coordinated movement of a fluid

Introduction

One of the challenges in simulating multi-phase systems by using the
computational fluid dynamic (CFD) is the method for detecting the
location of the interface and applying appropriate boundary conditions
at that location. Hence, in the last years, the Lattice Boltzmann Method
was proposed for modeling these flows. In multi-phase problems,
automatic detection of the location of the interface, the feasibility of
parallel processing, and low computational cost lead to this method,
especially in multi-phase problems. Due to the observation of multi-
phase flows in most industrial and natural processes, researchers have
investigated these kinds of flows experimentally and theoretically. In
recent years, many studies have been conducted on multiphase flows.

* Corresponding author.

that is confined between two thermally conducting plates and is heated
from below to produce a temperature difference. An uncoordinated
movement of fluid particles which allows energy transfer between lower
and upper plates is substituted by a coordinated movement above a
certain temperature gradient. One of the most common multi-phase
thermal problems is two-phase Rayleigh-Bénard convective heat
transfer. The implemented works in the field of LBM for multi-phase
thermal problems are so limited. The research of He et al. [1] and
Zhan and Chen [2] can be mentioned as the earliest studies. They pre-
sented a model of the Shan-Chen method of LBM which is capable of
simulating multi-phase thermodynamic flows. This method is stable
from the thermodynamic perspective at the macroscopic scale. For the
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Nomenclature

A Acceleration of channel (m/s?)

Ca Capillary number

Cs Lattice Sound speed (m/s)

[ Lattice particle Microscopic velocity along a direction (m/
s)

F Particles’ interaction force (N)

fo The distribution function for flow

feat The equilibrium distribution function for the flow domain

G The intensity of fluid/fluid interaction

g Gravitational acceleration

[ The distribution function for the temperature domain

gl The equilibrium distribution function for the temperature
domain

Nu Nusselt number

N Grid size

P Pressure

R Particle Radius (m)

Ra Rayleigh number

T Temperature (K)

T Reference temperature (K)

u Macroscopic velocity vector in x-direction (m/s)

ud Equilibrium velocity (m/s)

uv Horizontal and vertical components of velocity (m/s)

L The length of the horizontal wall

h The distance between the peak and the valley in an
interface wave

X The length of the x-direction

Greek symbols

K Thermal dissipation coefficient (m? /s)

3 Thermal expansion coefficient &®DH

p Density (kg/m>)

] Effective mass

[ Weight coefficient along a-direction

Ty The relaxation time of the flow domain

7T The relaxation time of the temperature domain

u Dynamic viscosity (N.m/ s)

0 Contact angle

Subscripts

i Grid direction

ads Solid-liquid

ave Average

0 Reference

first time, by utilizing this model, generating liquid—vapor, boiling
processes, and coagulation were simulated by proposing temperature as
a neutral scalar. First, Yuan and Schaefer [3] described multi-phase re-
lations of isothermal lattice Boltzmann. Then, they explained the neutral
scalar model of lattice Boltzmann. They carried out a two-phase thermal
lattice Boltzmann model by combining these two methods. The appli-
cation of the new model was investigated by presenting numerical
modeling results of a two-phase thermal system inside a rectangular-
shaped channel. Chang and Alexander [4] improved a hybrid model of
lattice Boltzmann for a two-phase fluid. So, they molded the tempera-
ture domain by applying the finite difference method and energy
transfer equation. Their results show that the variations in the interface
are due to the temperature difference and thermal expansion coefficient.
Dong et al. [5] modeled the bubble growth and exit from the super-
heated surface by applying the hybrid thermal method of LBM and also,
modified the multi-phase Shan-Chen model. Atter and Korner [6]
studied developing an algorithm for using LBM to solve thermal free-
surface flow with the liquid-solid phase changes. In addition, they

TCZO

utilized the free-energy model and neutral scalar method for simulating
thermal flow and multi-phase flow, respectively. Chen et al. [7] per-
formed a hybrid model of thermal lattice Boltzmann described boundary
properties according to the total enthalpy. According to that the present
methods are insufficient for thermal flow about the effect of interaction
between the droplet and walls in multi-component problems. Ikeda [8]
presented a new method that is capable of modeling multi-component
multi-phase thermal lattice Boltzmann with high accuracy. Gong and
Cheng [9] performed the bubble growth and exit from a superheated
wall in the pool boiling by utilizing a new development model of the
Shan-Chen model of LBM. Kamali et al. [10] investigated a numerical
method for solving energy consistency equations in two phases when the
effects of phase change are considered. Taghilou and Rahimian [11]
used a thermal lattice Boltzmann method for modeling the behavior of a
droplet on a solid wall. They utilized the free energy model [12] to
obtain the results of the interaction between the droplet and the surface.
The contact angle between the gas, liquid, and solid phases was applied
in their work. Their numerical results indicated that by enhancing the
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Fig. 1. Schematic view of single-phase Rayleigh-Bénard and its boundary conditions.
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related parameters.

graph of two-phase Rayleigh-Bénard and its

ratio of the Prandtl number between the droplet and its surroundings,
thermal dissipation will be delayed inside the droplet. This leads to a
decrease in average droplet temperature. They represented that the heat
flux is focused around the droplet. However, it is not considered in the
gas phase. Li et al. [13] implemented a thermal hybrid model of LBM for
modeling multi-phase thermal flows by applying a modified Shan-Chen
model. TThe numerical results show that the fundamental heat transfer
characteristics in the boiling such as strong transient heat flux fluctua-
tions in the boiling transfer and the property that the maximum latent
heat transfer coefficient in the superheat wall is lower than the
maximum heat flux were presented as well in this method. In Ref. [13],
phase change was investigated, while in the present research, Rayleigh-
Bernard heat transfer was investigated. In addition, researchers [14-17]
presented the influences of additives on the thermal behavior of
convectional fluid and reported an increased heat transfer rate. Their
results show that streamlining enhances with the rise of the Rayleigh
number, while, it decreases with increasing Hartmann number and
particle volume fraction. Multi-phase thermal LBM was studied in a
limited way, however, in the present research; it is investigated by using
the thermal Shan-Chen method for the first time. This method of heat
transfer is simulated for the first time with the Shan-Chen two-phase
model. The ability to simulate thermal two-phase problems with the
Shan-Chen model is one of the innovations of this research. The results
indicate that the mixed model is capable of simulating two-phase ther-
mal flows.

Problem statement
Problem statement in the single-phase Rayleigh-Bénard simulation

Rayleigh-Bénard convective heat transfer is a good criterion for a
thermal system in which a horizontal layer of fluid is heated from the
bottom and the upper boundary is at a lower temperature. In Ray-
leigh-Bénard convective heat transfer when the temperature difference
between upper and lower boundaries is too much, the static conduction
becomes unstable. The temperature of the lower wall (y = 0) and upper
wall (y = 1) are considered Ty, = 1 and T, = 0, respectively. The sche-
matic view of Rayleigh-Bénard convective heat transfer and boundary
conditions are presented in Fig. 1. According to this figure, the periodic
boundary condition is applied to the left and right sides, while; the wall
boundary condition is applied to up and downsides (horizontal walls). In
this figure, H and W are the distance between two walls and the length of
the wall, respectively.
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Problem statement for Rayleigh-Bénard heat transfer in a two-phase
system

Rayleigh-Bénard convective heat transfer is used extensively in the
industry. Here, this problem is described by using LBM. In the previous
section, this problem is presented as a single phase. Here, two immis-
cible fluids with different temperatures are proposed which are between
two isothermal solid plates. Fig. 2 shows these two parallel plates and
the interface of two fluids. The system is two layers of immiscible fluids
with the same thickness of h; = hy = 0.5H, the width of W, and the
height of H. The ratio of densities is p, = 0.33. According to Fig. 2, the
deformation of the interface is considered as ¢ = Aﬁh. As mentioned, the
lower wall is hot with a temperature of T, = 1 and the upper wall is cold
with a temperature of T, = 0. In this figure, the vertical walls are
considered periodic. At the beginning of the process, the interface is a
straight line, which becomes a parabola by applying two Ray-
leigh-Bénard phases.

Governing equations in the thermal Shan-Chen method of LBM
Governing equations in multi-phase LBM

This method was invented by Shan and Chen [14] in 1993 and was
called their names. Nowadays, among all multi-component or multi-
phase lattice Boltzmann models, the Shan-Chen method has extensive
application due to its high flexibility and simplicity. In the multi-phase
multi-component Shan-Chen method of LBM, a distribution function is
determined. The application of this method is in simulating the common
surface of two-phase currents without calculating the surface tension.
All multiphase and multicomponent fluids can be simulated with this
method. The following equations are written for each distribution
function [3]:

fo(x +e,dt, t+8t) = fo(x,t) — 1 [fo(x,t) — £1(x, 1)) (€D)]

v

Where 7, is called the relaxation time for the flow field. f, is distribution
function for flow, In addition, in this model, the equilibrium distribution
function is determined as [3]:

3e,.u  9(e,ud)*  3uc?
2 4 2
c? 2] 2¢?

£9(x,6) = 0up(x)[1+ @

where w,, ¢; and u®? are the weight coefficient, sound speed in the grid
unit, and equivalent velocity, respectively. In the D,Qq model which is
used in this research [3]:
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Macroscopic properties are computed as follows:

N N
p=> fu=1 f (5)
N N
pu = Zf‘,ea = Z e, (6)

Where p is the viscosity determined as:

0, = csz('r(I —0.56t) @)

The F is the interaction between particles which includes the intermo-
lecular forces such as the volume forces, fluid-solid, and fluid—fluid
forces. The interaction force of fluid—fluid at each point of the grid can
be computed as follows:
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Fi(x, )= —G(x)()_way(x+ e,dt, t)e, ®)

In Equation (8), G is the intermolecular power parameter influencing the
obtained results by using the Shan-Chen model from the numerical and
physical perspective. y(x) is a molecular potential function. The mo-
lecular potential function of y(x) is expressed as the function of x by its
dependency on the density and is called the effective mass [18]:

pxt)

Po

W) = pol1 - exp( - ©

Where constant of p,, is the reference density. By selecting the various
shapes for y(x) in the above equation, it can be achieved different state
equations for single-component multi-phase non-ideal fluid. Eventually,

by using the effective weight function, the below state function is pre-
sented for computing pressure as follows:

p =X +coGly(x) ] (10)

If the fluid is in the vicinity of the surface, a force is proposed for the
interaction of fluid-solid:

Faas(X,1) = — Gaaep (X, 1)) _wa8(X + €,0t)e, an

where s(x + e,dt) is an indicator function which is equal to zero for fluid
and 1 for solid. For both fluids, the value of G,q4s is equaled with multi-
signed which is negative for hydrophilic fluid and positive for lipophilic
fluid. A force is applied to fluid due to channel acceleration, as:

F; =p(x)a 12)
All of these forces such as fluid—fluid force (F7), fluid-solid force (Fs),
and a force due to fluid motion inside the channel applied as the Rey-

nolds number and F3 which is applied in the equilibrium velocity term,
are as follows:

F, total

p(x)

where, Fiotq) is as.Fipq = F1 + F2 + F3[3].

ul=u+

13)

Single-phase thermal LBM

Single-phase thermal LBM is defined by applying a neutral scalar
model. In a thermal system, if the effects of viscosity and thermal
pressure are not considerable, in the neutral scalar method, the tem-
perature domain is presented as follows [18]:

I wVT = V.(.VT) 14)
oT

where « and u are the thermal dissipation coefficient and total fluid
velocity, respectively. In the neutral scalar method, according to the
neutral nature of the temperature domain, similar to the density, one
distribution function is proposed for temperature as follows:

(X + .0t t450) = g, (6, — [g,(x.8) ~ (X, as)
T

where 77 is known as the relaxation time for temperature. The
equilibrium distribution function for temperature is defined as:

9(e,.u)?

829 = w,T[1 + 3e,.u+ 5

u2
- E] (16)

Similar to density, the temperature is obtained by summing all of the
distribution functions, as:

T= Zga a7)

a=0
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Where,x = (TT 7%> ¢26t, hence, the Prandtl number can be defined as

follows:
v 21,—-1
Pr=—-—= 18
R PR | (18)

By changing 7, or 7r it can be created with different Prandtl numbers.

Two non-dimensional numbers of Prandtl and Rayleigh numbers are
used for describing the states of the system which Prandtl number is
obtained from Equation (18) and the Rayleigh number is defined as
follows:

_ gBATH?
- UK

Ra 19)

Where, g, , and H are the gravitational acceleration, thermal expansion
coefficient, and the grid size along the y-direction. Boussinesq approx-
imation was applied for two-phase RB convection [4]. In this paper, the
Boussinesq approximation is applied which assumes that density is
proposed to be constant in the consistency equation, except in the term
of buoyancy force which density varies linearly with temperature.

PG = Pﬂg(T - Tavg) (20)

Where g and Tayg are the buoyancy force in the weight unit and the
initial temperature, respectively. This problem is simulated by using a
neutral scalar thermal model. In this method, a wall buoyancy condition
is applied to the wall.

Multi-phase thermal LBM

In the current work, two-phase thermal flow can be modeled with the
combination of equations of the double-distribution function model of
thermal LBM and the multi-phase Shun-Chen model. In this model, fluid
dynamics are modeled by using the Shan-Chen model while for deter-
mining the temperature domain, a further equation of neutral scalar is
used and by defining an external force term, it is merged with the multi-
phase isothermal method. The term buoyancy force which is due to
gravitational force and also, the temperature difference is presented as
[18]:

)

PG = p(x)g( f@) ~ prg(T—Ty) @1

where (p) is average density in all of the fluid regions, g is gravitational
acceleration, Ty is the reference temperature whose value is equal to the
temperature of the system in the condition of pure convection and also,
is a fluid thermal expansion which is proposed equal for both fluids. On
the left side of Equation (21), the first term shows the buoyancy force
caused by density difference, and also, the second term indicates the
gravitational force caused by temperature difference. Although this
method has a modest concept, it can be applied to the various state
equations of an ideal gas and extracted temperature domain. In com-
parison with the other multi-phase thermal methods, the presented
model has a simpler concept and higher stability because there is no
demand to augment particle velocity or trace interface. In this method,
the stability is computed by fluid dynamics and also, and the tempera-
ture domain does not influence it. Capillary and Rayleigh’s numbers
include all of the impressive parameters except the pressure and contact
angle of the surface. These non-dimensional parameters can be
computed as follows:

uy(T - Tﬂvg)Ny

_ gpHTHPr
N ’ AT

gfATH
Ra 2 =pv .

Ca = *—— Nugg =1+ (22)

where p, g, p and Ny are the density of each fluid, gravitational ac-
celeration, thermal expansion coefficient, and grid size along the y-
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Table 1

The value of the average Nusselt number in
the various grid sizes for Ra =8 x 10*
and..Ca = 4.6 x 1074

grid size Nlavg
50 x 100 2.54
90 x 180 2.6

150 x 300 2.62

direction, respectively. In addition, AT is the difference between the
upper and lower walls (AT = Ty —T¢ = 1), uy is the velocity in the y-
direction, T* is the fluid temperature in the pure conduction (the
reference temperature), Ny is grid size along the y-direction, and all
parameters in () Represent average flow in all of the regions and ¢ is
surface tension. It should be noted that in this problem, the parameter of
e = SAT has significant importance. For a non-dimensioning time, t =

\ /gﬁ 15 is proposed.

Numerical procedure and assumptions
Grid validation
To ensure the results independency from the grid size, this problem is

simulated in different grid sizes and obtained Nusselt numbers are
compared with each other. In fluid dynamics, the Nusselt number (Nu) is

005— = 005
Y —— ~0.10—
00 020
5= Y | |
045

T e ol
055 /N

I — 060060
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the ratio of convective to conductive heat transfer in a fluid. Table 1
indicates the computed Nusselt number in different grid sizes for Ra =
8 x 10* and Ca = 4.6 x 10~*. The Rayleigh number (Ra) for a fluid is a
dimensionless number associated with buoyancy-driven flow, also
known as free or natural convection and the capillary number (Ca) is a
dimensionless quantity representing the relative effect of viscous drag
forces versus surface tension forces acting across an interface between a
liquid and a gas, or between two immiscible liquids. As seen, the vari-
ation of the Nusselt number is about 2 %. Hence, the time of solving is
lower in the larger grids, Also, if the grids become larger than a certain
limit, the answers will not be accurate. in the following simulations, a
90 x 180 grid is used. The average Nusselt number is calculated by
Nugyg =1 [ % which the integral is on the hot surface and L is the height
of the cavity. Variation of the Nusselt number was taken unidirectional
Because heat transfer takes place in the vertical direction and the Nusselt
number shows the changes of heat transfer in the horizontal direction
well.

Validation

Before studying the effective parameters in the Rayleigh-Bénard
phenomenon, validation is performed for the computer program. Fig. 3
compares the temperature domain of the present study with the results
of Chang and Alexander [4] for Ra = 8 x 10* and Ca = 4.6 x 10~* and
e =0.15 in two-time steps (¢ = BAT). The lattice Boltzmann method
(LBM) is extended to include the effects of interfacial tension and its

(b). t = 720

Fig. 3. Time changes of isothermal lines in the present study (right side) and Chang and Alexander [4] (left side) for..Ra = 8 x 10* Ca = 4.6 x 10~%,¢ = 0.15
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(d). Isothermal lines in Ra = 105

Fig. 4. Isothermal liens and streamlines for Rayleigh-Bénard problem in different Rayleigh numbers and Pr = 1.
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(c). Ra = 2x10°

Fig. 5. Isothermal lines (left side) and streamlines (right side) for Ca = 4.6 x 10~ ¢ = 0.15 and different Rayleigh numbers.

temperature dependence and is applied to the problem of buoyancy-
driven flow in a nonisothermal two-phase system. No prior assump-
tions are made regarding the shape and dynamic roles of the interface.
The behavior of the interface is obtained as part of the solution of the
lattice Boltzmann equations. A parametric study of the effects of ther-
mally induced density change, buoyancy, and surface tension variation
with temperature on interface dynamics, flow regimes, and heat transfer
is presented.

As seen, by enhancing the number of time steps time step,(In all these
studies, time is dimensionless and it means the number of steps.) the
interface between two fluids changes, and convective heat transfer be-
comes complete. In addition, since this work is transient, there is a
proper agreement between the two works. The only difference is that in
this paper because of high spurious current, the temperature rises
abnormally at the boundary of two fluids. Spurious current is one of the
defects of the used method that causes errors in the results. This effect

can be reduced by using modified methods. One of the disadvantages of
the present study is that the effects of false velocities at the fluid
boundary are significant and can cause many changes. These two studies
should be compared qualitatively with each other because different
equations were used and the origin of time steps in the two studies are
different from each other. The two studies, are very similar in terms of
increasing the number of time steps time step, the heat transfer becomes
more complete and reaches a stable state. In Figs. 1-a, Rayleigh-Bénard
heat transfer has not occurred completely and in the isothermal lines,
there are fewer ascending and descending. As seen, in both works, there
is lower Rayleigh-Bénard heat transfer in the fluid with low density
(upper fluid). If the density of two fluids is equal, the problem will be
similar to the Rayleigh-Bernard single phase. Since, heat transfer is the
time needed, as time passes, Rayleigh-Bénard convective heat transfer
occurs and the ascending and descending of isothermal lines become
more regular. When conductive heat transfer flow is started, the random
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motions start in the microscopic scale automatically. After these effects
appear on the macroscopic scale, fluid formation occurs as the Bénard
convective cells. The period of Bénard cells will continue as stable until
there is a constant temperature difference between the two plates. This
period alternates from clockwise to counterclockwise in the x-direction.
It is worth mentioning that the variations of surface tension are not
calculated because, in the Shan-Chen model, the surface tension is ob-
tained from the Laplace test and cannot be changed directly.

Results and discussion
Results for single-phase Rayleigh-Bénard

Fig. 4 shows Rayleigh-Bénard convection for different Rayleigh
numbers in Pr = 1. When the value of the Rayleigh number is low, the
heat transfer only occurs as the conductive heat transfer and tempera-
ture distribution show pure conduction according to Figs. 4-a. In this
figure, only thermal conduction occurs and there is no convective flow.
However, when the Rayleigh number is greater than the critical Ray-
leigh number, each small turbulence causes the start of the convective
heat transfer. Figs. 4-b indicates the flow domain in convective heat
transfer. As seen these lines are completely symmetric and convective
flow in the Rayleigh-Bénard convection is illustrated in a good way.
According to Figs. 4-c, by developing flow, it finally system reaches a
stable state with the specified temperature distribution and as seen in
Figs. 4-d, the temperature in the wall increases, but its value is not
noticeable and is not specified in the figure. For this two-dimensional
horizontal channel which is influenced by periodic boundary condi-
tions from the walls, the value of the critical Rayleigh number is equal to
Ra. = 1708 by linear stability theory.

When the Rayleigh number becomes greater than the critical Ray-
leigh number, in addition to conductive heat transfer, convective heat
transfer also occurs. According to that convective heat transfer is
dominated, due to this phenomenon, the fluid assumes a regular and
specified shape similar to the hexagonal cell which in fluid dynamics
science and related phenomenon to the convective cells is called Bénard
cells.

Results for Rayleigh-Bénard heat transfer in a two-phase system

Two-phase Rayleigh-Bénard

Rayleigh-Bénard convective heat transfer is extensively used in the
industry where here this problem is described with the aid of LBM. In the
previous section, this problem is presented as a single phase. Here, two
immiscible fluids with different temperatures are considered between
two isothermal solid plates. A two-layer system of immiscible fluids with
an equal thickness of h; = hy = 0.5H, the width of W and height of H.
The ratio of densities is equal to p, = 0.33.

The effect of the changes in Rayleigh number

Fig. 5 shows the variations of streamlines and isothermal lines in p, =
0.33andCa = 4.6 x 10~* for the various Rayleigh numbers. It is worth
mentioning that 10° is considered a high Rayleigh number [14]. By
incrementing the Rayleigh number from 1.2 x 10% to 8 x 10*, the var-
iations of the amplitude of interface augment, however by enhancing
Rayleigh number from 8 x 10* to 2 x 10°, the interface is almost un-
changed. The parameter range used is due to the possibility of validation
with the reference article and the fact that the equations are responsible
in a certain range.

By augmenting the Rayleigh number, the temperature gradient in-
creases in the vicinity of the upper wall, lower wall, and interface. Ac-
cording to this figure, in the upper fluid which has a lower density, flow
domain circulation is weaker this subject shows that by increasing
density, heat transfer augments. According to %’1 parameter, by changing
the Rayleigh number, the variations of the interface are not influenced
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significantly. Fig. 6 indicts the variations of interface for each Rayleigh
number in Ca = 4.6 x 10~*ande = 0.1. It can be concluded that the
variations of interface change insignificantly by increasing Rayleigh
numbers. In addition, in this figure, the results of the present study are
compared with the results of Chang and Alexander [4]. The insignificant
difference in the graph is due to the different solving methods of the two
types of research. It should be noted that two works have used different
methods to solve the problem and this has caused differences in the
diagrams. The emergence of spurious currents has made the problem
problematic. Also, in this work, we are trying to measure the ability of
the two-phase Boltzmann network method, which can be improved with
the modified model. Fig. 7 illustrates the average Nusselt number for
each Rayleigh number for Ca = 4.6 x 10~*ande = 0.15. The average
Nusselt number increases by augmenting the Rayleigh number indi-
cating that Rayleigh-Bénard heat transfer increments by incrementing
the Rayleigh number. Fig. 7 compares the average Nussle number with
the results of Chang and Alexander [4] in different Rayleigh numbers
which indicate good agreement. According to the last results in Fig. 5, by
increasing the Ra number, the temperature gradient near the walls
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increases which causes the Nu number increment. Thus, Nu growth is a
result of a temperature gradient in the vicinity of walls.

The effect of changes in Capillary number

The effect of changes in Capillary number on the changes in the
interface is illustrated in Fig. 8 in Ra = 8 x 10*and ¢ = 0.15 which the
changes of surface tension with temperature are neglected. As seen, in
lower Capillary numbers, the changes of interface enhance up to 4.2 %,
after that by incrementing Capillary number, the variations of the
interface are almost unchanged. In this figure, the present results are
compared with the results of Chang and Alexander [4]. As seen, in a
Capillary number of less than 2 x 10~*, the results of Chang and Alex-
ander [4] have a small difference from the results of this paper. How-
ever, in higher Rayleigh numbers, appropriate concordance is seen. The
reason for this small difference is because of different simulation
methods.

The effect of variation of € parameter

In this section, the effect of variation of € = AT parameter is
investigated. According to Fig. 9, by increasing ¢, the variations of the
interface are enhanced. Consequently, the variations of the interface are
changed only by changing the thermal expansion coefficient and the
temperature difference between the two walls. When the value of ¢ is too
high, the variations of the interface cannot be neglected. Fig. 10 repre-
sents the variations of interface with the € parameter in Ra = 8 x
10*andCa = 4.6 x 10~*. As seen, in Fig. 10 the deformation of the
interface augments by increasing €. When € < 0.1, the rate of deforma-
tion is less than 3 % which can be neglected. However, for higher ¢, the

(b). £ =03

Fig. 9. Isothermal lines (left side) and streamlines (right side) in different ¢ in..Ra = 8 x 10*andCa = 4.6 x 10~*
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variations of the interface cannot be neglected. If the density of two
fluids is not equal, the range will change. In general, in the high time
step, the amplitude will change and these changes are related to the
characteristic length.

Conclusion

In the current work, a multi-phase thermal model of LBM is
described. In this model, by using the Shan-Chen model of LBM and the
neutral scalar model of LBM, fluid mechanics, and temperature domain
are simulated, respectively. The multi-phase thermal model of LBM is
presented from the combination of the single-phase thermal model and
the multi-phase isothermal model of LBM. For instance, the single-phase
Rayleigh-Bénard problem and the effects of the Rayleigh number are
studied on heat transfer. In Rayleigh-Bénard convection heat transfer, if
the Rayleigh number is greater than the critical Rayleigh number, it
causes instability in the flow domain which leads to creating convective
heat transfer. By augmenting the Rayleigh number, the rate of heat
transfer is enhanced. In the following, two-phase Rayleigh-Bénard
convective heat transfer is analyzed in different Rayleigh and Capillary
numbers and also, at different times. In the two-phase Rayleigh-Bénard
problem, by enhancing the Rayleigh number, the temperature gradient
increases in the vicinity of upper and lower walls and interface, and also,
the power of flow domain circulation becomes weaker. At high Rayleigh
numbers, the influence of spurious currents increases, which affects the
accuracy of the results. The variations of the interface are not consid-
erably influenced by changing the Rayleigh number according to Aﬁ”
parameter. In lower Capillary numbers, the changes of interface
augment up to 4.2 % then by increasing Capillary number; the variations
of the interface are almost constant. In Rayleigh-Bénard, the variations
of the interface are changed only by changing the thermal expansion
coefficient and temperature difference between the two walls. By aug-
menting ¢, the deformation of the interface increases. If ¢ < 0.1, the rate
of deformation is less than 3 % this small ratio is negligible, however for
higher ¢, the changes in the interface cannot be neglected. As can be seen
in all the shapes and descriptions, the changes in the shape of the
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common surface have the greatest effect on the parameter ¢. Moreover,
employing the Shan-Chen model for simulation of the common surface
of multi-phase flow prepares needless conditions to calculate surface
tension in numerical commutations. In future research, the effects of
spurious current can be reduced by using the modified Shan-Chen model
to make the answers more realistic. It is also possible to simulate
problems in which phase change occurs. The results indicate that in
multi-phase problems the presence of temperature as an obstacle, delays
reaching the stable state.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
No data was used for the research described in the article.

References

[1] X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann
method in the incompressible limit, J. Comput. Phys. 146 (1998) 282-300.

R. Zhan, H. Chen, Dynamics of rising CO5 bubble plumes in the QICS field
experiment: Part 2-Modelling, Int. J. Greenhouse Gas Control (2002).

P. Yuan, L. Schaefer, A thermal lattice Boltzmann two-phase flow model and its
application to heat transfer problemsdPart 2. Integration and validation, J. Fluids
Eng. 128 (2006) 151-156.

Q. Chang, and J. I. D Alexander., “Application of the lattice Boltzmann method to
two-phase Rayleigh-Bénard convection with a deformable interface.” Journal of
Computational Physics, vol. 212, pp. 473-489, 2006.

Z. Dong, W. Li, Y. Song, A numerical investigation of bubble growth on and
departure from a superheated wall by lattice Boltzmann method, International
Journal Heat and Mass Transfer 53 (2010) 4908-4916.

E. Attar, C. Korner, Lattice Boltzmann model for thermal free surface flows with
liquid-solid phase transition, International Journal Heat and Fluid Flow. 32 (2011)
156-163.

S. Chen, K.H. Luo, C. Zheng, A simple enthalpy-based lattice Boltzmann scheme for
complicated thermal systems, J. Comput. Phys. 231 (1) (2012) 8278-8294.

M. Ikeda, A novel multi-phase multi-component thermal lattice boltzzman model,
J. Comput. Phys. 200 (2012) 153-176.

S. Gong, P. Cheng, Lattice Boltzmann simulation of periodic bubble nucleation,
growth and departure from a heated surface in pool boiling, International Journal
Heat and Mass Transfer 53 (2013) 123-132.

M. R. Kamali, J. J. J.Gillissen, and H. A. Akker,* Lattice-Boltzmann-based two-
phase thermal model for simulating phase change,” Physical Review E, vol. 88, pp.
267-275, 2013.

M. Taghilou, M.H. Rahimian, Lattice Boltzmann model for thermal behavior of a
droplet on the solid surface, Int. J. Therm. Sci. 86 (2014) 1-11.

T. Lee, Effects of incompressibility on the elimination of parasitic currents in the
lattice Boltzmann equation method for binary fluids, Computational Mathematic.
58 (2009) 987-989.

Q. Li, Q. J. Kang, M. M. Francois, Y. L. He, and Luo K. H.,“Lattice Boltzmann
modeling of boilingheat transfer: The boiling curve and the effects of wettability,”
International Journal of Heat and Mass Transfer,vol. 85, pp. 787-796, 2015.

X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple
phases and components, Phys. Rev. E 47 (1993) 1815-1819.

Kh. Hosseinzadeh - So. Roghani - A. R. Mogharrebi - A. Asadi - D. D. Ganji,
“Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal
porous medium by effect of radiation and magnetic field”, Thermal Analysis and
Calorimetry.2020, s10973-020-10376-9.

A. K. Rostami, Kh. Hosseinzadeh & D. D. Ganji, “Hydrothermal analysis of ethylene
glycol nanofluid in a porous enclosure with complex snowflake shaped inner wall”,
Waves in Random and Complex Media.2020, 1745-5030 (Print) 1745-5049.

Kh. Hosseinzadeh, So. Roghani, A. R. Mogharrebi, A. Asadi & D. D. Ganji,
“Hydrothermal analysis of ethylene glycol nanofluid in a porous enclosure with
complex snowflake shaped inner wall”, Journal of Thermal Analysis and
Calorimetry volume 143, pages1413-1424(2021),2020.

A.o. Xu, W. Shyy, T. Zhao, Lattice Boltzmann modeling of transport phenomena in
fuel cells and flow batteries, Acta Mech. Sin. 33 (2017), https://doi.org/10.1007/
510409-017-0667-6.

[2]

[3]

[4]

[5]

[6]

[71
[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]


http://refhub.elsevier.com/S2211-7156(24)00671-4/h0005
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0005
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0010
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0010
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0015
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0015
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0015
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0025
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0025
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0025
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0030
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0030
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0030
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0035
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0035
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0040
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0040
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0045
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0045
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0045
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0055
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0055
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0060
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0060
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0060
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0145
http://refhub.elsevier.com/S2211-7156(24)00671-4/h0145
https://doi.org/10.1007/s10409-017-0667-6
https://doi.org/10.1007/s10409-017-0667-6

	Using of multi-phase thermal model of the lattice Boltzmann method for simulation of two-phase Rayleigh–Bénard convective h ...
	Introduction
	Problem statement
	Problem statement in the single-phase Rayleigh–Bénard simulation
	Problem statement for Rayleigh–Bénard heat transfer in a two-phase system

	Governing equations in the thermal Shan-Chen method of LBM
	Governing equations in multi-phase LBM
	Single-phase thermal LBM
	Multi-phase thermal LBM

	Numerical procedure and assumptions
	Grid validation
	Validation

	Results and discussion
	Results for single-phase Rayleigh–Bénard
	Results for Rayleigh–Bénard heat transfer in a two-phase system
	Two-phase Rayleigh–Bénard
	The effect of the changes in Rayleigh number
	The effect of changes in Capillary number
	The effect of variation of ε parameter


	Conclusion
	Declaration of competing interest
	Data availability
	References


