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Abstract: A photovoltaic (PV) power forecasting prediction is a crucial stage to utilize the stability,
quality, and management of a hybrid power grid due to its dependency on weather conditions. In
this paper, a short-term PV forecasting prediction model based on actual operational data collected
from the PV experimental prototype installed at the engineering college of Misan University in Iraq
is designed using various machine learning techniques. The collected data are initially classified
into three diverse groups of atmosphere conditions—sunny, cloudy, and rainy meteorological cases—
for various seasons. The data are taken for 3 min intervals to monitor the swift variations in PV
power generation caused by atmospheric changes such as cloud movement or sudden changes in
sunlight intensity. Then, an artificial neural network (ANN) technique is used based on the gray
wolf optimization (GWO) and genetic algorithm (GA) as learning methods to enhance the prediction
of PV energy by optimizing the number of hidden layers and neurons of the ANN model. The
Python approach is used to design the forecasting prediction models based on four fitness functions:
R2, MAE, RMSE, and MSE. The results suggest that the ANN model based on the GA algorithm
accommodates the most accurate PV generation pattern in three different climatic condition tests,
outperforming the conventional ANN and GWO-ANN forecasting models, as evidenced by the
highest Pearson correlation coefficient values of 0.9574, 0.9347, and 0.8965 under sunny, cloudy, and
rainy conditions, respectively.

Keywords: neural network; genetic algorithm; gray wolf optimization; photovoltaic; prediction
model; machine learning

1. Introduction

In recent years, several intriguing forms of renewable energy, such as PV, wind,
and geothermal, have been utilized with the power grid to provide green energy and
compensate for the load demand [1,2]. However, solar PV energy is characterized by the
highest development ratio in the world due to its lowest operation cost. Despite this, to
address discrepancies between energy demand and production, specifically for large-scale
PV systems, there is still a need for accurate forecast of PV power generation when it is
connected to the power grid [3–5]. The predictive capability will reduce the impact of PV
fluctuations on the power grid by enhancing stability, guaranteeing energy quality, and
facilitating efficient management [6].

Many scientific studies have been conducted on forecasting PV production, which
includes a range of methodologies, classified as long-term, medium-term, short-term, and
very-short-term forecasts. One of these techniques is ANFIS, which is a hybrid system
combining the learning skills of the NN and the logicizing capabilities of the fuzzy model [7],
which is highly capable of measuring complex data and improving its accuracy in different
situations and different weather conditions. Based on this, the researchers in [8] combined
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FFNN, GA, and ANFIS to foresee the PV energy in the Ios island, southern Greece. They
discovered that combining FFNN, GA, and ANFIS in one model leads to reducing the
absolute error compared to using GA/ANFIS or FFNN only, the MAE of which was
0.4425%. In another study, the scholars in [9] combined GA, PSO, and ANFIS to predict
the PV power in Beijing, and the MAE value obtained from the model reached 3.98. At the
same time, the authors in [10] analyzed a new model combining PSO and ANFIS for about
nine months. Their findings showed that the model proposed is better than other strategies
and the MAE was 3.47. In 2020, the researchers in [2] suggested a PV forecasting model
using the ANFIS system and its comparison with the PSO-ANN model to predict the PV
power from a PV station in Thailand. Their findings proved that the PSO-ANN model has
larger draft power compared with the actual PV power generation, where the MAE was
1.1952 compared with 8.8233 from the PSO-ANN model.

In 2021, the authors in [11] used several techniques based on the factors of the input
data, such as a structural data, time series, and combination approach, to evaluate the
validation of ANN and multiple regression models in forecasting PV power. The data are
sourced from a PV station located in Hungary that is connected to the electrical grid. The
performance comparison revealed that ANN prediction models show higher coefficient of
determination values and lower MAE, MSE, and RMSE values compared to MR models.
Furthermore, the utilization of a hybrid input approach greatly developed the prediction
of the MR and ANN methodologies, leading to an RMSE of 29.57. Next, several studies
also predicted seasonal changes by dividing the data into rainy and dry seasons, as proved
by the researchers in [12], who enhanced the initial model of a daily PV power prediction,
incorporating a multilayer perceptron NN using the PV preprocessing data algorithm
technique. The model was constructed using data obtained from the lower Osoma Dam
PV power plant situated near Abuja, Nigeria. The model achieved nRMSE values of 6.09%
during the rainy season and 6.12% under dry conditions. Meanwhile, the authors in [5]
proposed a simple methodology to reinforce the prediction of PV stations using the wavelet
NN and GA. The GA proved to be highly effective in significantly enhancing prediction
performance, specifically on rainy days by achieved nRMSE values of 1.8%. Additionally,
the hourly data collected in 2019 were utilized in another study [13], which compared ANN,
variational mode decomposition, and external optimizations to predict the performance
of a 100 kW PV plant installed in Beijing, China. The PV energy forecasted using this
proposed algorithm exhibited an RMSE value of 0.0232. It was observed that combining
the algorithms enhanced the performance of the ANN. Therefore, in [14], researchers
employed predictive model improvement algorithms that combined ANN with SVR to
achieve superior results. The PV data were gathered from a rooftop PV plant installed in
Riyadh, Saudi Arabia. The proposed models in this work demonstrated enhanced accuracy
in PV forecasting production specifically for SSO-BPNN1 and CSO-BPNN2 to achieve
RMSE values of 4.8460 kW and 4.5692 kW, respectively.

In Limburg, Belgium, researchers in [15] developed a hybrid deep learning methodol-
ogy using the convolutional NN and the LSTM to predict the output power of 451.82 MW
power plant. The PV data had a resolution of 15 min, and the model exhibited an MAE
value of 1.028. The efficacy of this methodology was most clear during summer. Conversely,
in a separate study [16], the authors proposed a technique that integrated the GA and
DNN to improve the efficiency of DL prediction models in Fez, Morocco. Recently, hourly
resolution data demonstrated notable improvements for the LSTM-GA model, with an
MAE of 0.027 during the summer season. Hence, a new prediction strategy was proposed
in [17] that combines NN and SSA to predict PV power production and was tested on a
500 kW power system in Taiwan. The NN-SSA model outperformed the SVM-SSA and
LSTM-SSA methods, capturing the actual generation pattern accurately to achieve the
lowest MAPE value, 5.34%, for sunny days and the highest MAPE value, 42.55%, for
rainy days. Furthermore, the authors of [18] endeavored to minimize the MAPE ratio by
employing the enhanced sparrow search algorithm to optimize the LSTM and NN models
at a PV facility situated in northern China. The SSA-CLSTM method surpassed individual
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neural network predictions for gradual climate changes and extreme weather changes,
yielding MAPE values of 1.02% and 2.19%, respectively.

The SVM model exhibits a superior accuracy and computational efficiency based
on nonlinear data [19]. Meanwhile, in [20], the authors improved the ACO approach to
optimize SVM model parameters to show superior predictive accuracy and consistency
across several seasons. The ACO-SVM forecasting model achieved an MAE value of 0.1569.
Similarly, researchers in [21] introduced the IMWOA algorithm to enhance the SVM model
for PV energy prediction to exhibit its exceptional predictive capability on both sunny and
cloudy days. Hence, it achieved an MAE of 0.212 under clear skies and sunlight.

As noticed, the most published research for this topic concentrates on the prognostic
of PV production in relation to the irradiance of various areas. However, previous studies
have not explored the energy forecasting specifically within the southern region of Iraq,
particularly concerning the effects of irradiance and temperature on PV power output.
This study takes a critical gap in the literature by offering new insights into the distinctive
climatic conditions of this region and their implications for PV generation. Consequently,
the current study delves into the development of a PV model that integrates machine
learning techniques to forecast the PV energy in Iraq. Within this paper, real and recent
data for various seasons of 2024 were obtained from the location of University of Misan
in the south of Iraq for 3 min intervals based on the PLC data acquisition system, which
is considered the most accurate system to collect PV data. Thus, the applied time period
enables monitoring of rapid fluctuations in PV energy production caused by atmospheric
changes such as cloud movement or sudden changes in sunlight intensity. In addition,
two ANN optimization algorithms are utilized to compare between them. Further, they
are implemented for the first time in the PV data collected from a 1400 W PV system
installed at the University of Misan, Department of Electrical Engineering, Iraq. Those PV
forecasting models are tested across various seasons for three various weather states: sunny,
cloudy, and rainy circumstances. Based on the results, the developed predictive forecasting
models show the efficacy of the PV forecasting models at three-minute intervals to diverse
weather scenarios. However, the comparative analysis between the ANN integrated with
the two algorithms and the conventional ANN revealed that the GWO-ANN is closer to
the GA-ANN. Notably, the GA-ANN forecasting model shows the highest performance
across all weather conditions, with accurate predictive capability even during rainy periods
and the highest efficiency on sunny days owing to increasing solar radiation availability.
This study can assist national grid operators in estimating the potential energy output from
solar panels, thereby improving the planning and management of solar energy resources.
The remaining parts of this paper are presented as follows. Section 2 presents the effect
of solar power production. Section 3 presents the principal work of ANN, GA, and GWO
techniques, highlighting its main concepts and their importance to the current study. In
Section 4, a data acquisition system is explained. The methodological framework of the
proposals is implemented in Section 5. Section 6 discusses and analyzes the major results.
Finally, Section 6 includes the conclusions and contributions of this study.

2. Background

Wind and solar energy are considered the most reliable and sustainable renewable
energy sources due to their huge potential and widespread accessibility. The sun is com-
monly a celestial body that emits and radiates solar energy to provide solar power of
1367 W/m2 above the Earth’s atmosphere [22,23]. As a result, PV systems have garnered
global acknowledgment to assume a critical role in providing environmentally friendly and
renewable energy [24]. Hence, the installation of PV systems has experienced significant
expansion in recent years [25]. Although, the principal work of the PV cell is to transform
solar radiation of the sun into electricity based on the theory of the photon voltage [26].
Variable weather factors influence its PV generation, such as temperature, wind, and hu-
midity. Thus, researchers in [27] discovered the outcome of humidity on the surrounding
temperature around the PV system. However, it primarily relies on the solar radiation
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received by the panels, which is not consistent [25]. Hence, the variable properties of
energy sources that cause the instability and inability to predict solar energy supplies can
be attributed to the fundamental factors that contribute the prediction difficulty to ensure
the reliability of the energy system [28]. Therefore, researchers in [29] have demonstrated
that ANNs are capable of dealing with the uncertainty problems related to solar radiation.

Accurate prediction of energy generation in solar power plants is crucial for enhanc-
ing control, optimizing the efficiency of these PV stations, and guaranteeing the stable
performance of the utilized grid [30,31]. Hence, predicting an accurate forecasting of PV
energy will assist independent energy producers or energy authorities in enhancing energy
planning and management [31]. Furthermore, the precision of predicting diminishes as
the horizontal forecasting increases, even using the same prognosing technique. Therefore,
it is essential to choose an appropriate time frame when creating a prognosing model to
ensure that the accuracy of PV forecasting remains at a suitable level. Basically, the PV
forecasting prediction is categorized into four kinds regarding the collection time of data
and their training processing: very-short-term, short-term, medium-term, and long-term, as
presented in Figure 1 [32]. The very short term is the first prediction type that is processed
and is the data collected from 1 s to 1 h, whereas the short-term prediction time is from
1 to 24 h, in which data are utilized to enhance the PV system security. Meanwhile, the
medium-term prognostication has a prediction time from 1 week to 1 month to improve
the future availability of electric power by maintaining the power planning schedule. Next,
the long-term forecasting is used to span from one month to one year to design a beneficial
planning generation, as well as transmission and distribution authorities. It also aids in
energy bidding and enhances security operations. This study aims to employ machine
learning approaches to develop a PV generation forecasting model for different scenarios,
focusing specifically on short-term prediction.
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3. Machine Learning Forecasting Model

In this section, the ANN forecasting model based on GA and GWA optimization
methods are explained in detail.

3.1. ANN Approach

An ANN is a reckoning model that emulates the learning and adaptation technicality
observed in the human brain. It was introduced as the first neural model by McCulloch-
Bates in 1943 [33]. The system has interconnected neural units to assess input to derive
conclusions. Hence, the progress in deep learning techniques allows the ANN model
to improve its ability based on combining the information of the input collected data,
resulting in enhancing their accuracy [34]. The architecture of the ANN model can be
classified into two distinct types: feedforward and feedback networks [35]. However, the
feedforward classification is commonly employed due to its lower memory consumption
during implementation. Furthermore, it has effectively addressed nonlinear systems, such
as a PV array.

The ANN consists of three layers, an input layer, hidden layers, and an output
layer [36]. The rectified linear unit (ReLU) function is commonly used in feedforward
NNs to determinate the gradient issue, which is typically assigned a value of 0 in practical
scenarios. In this work, the ANN model is trained by input irradiance and surrounding
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temperature using the Keras library in Python approach. The model is compiled with
Adam optimizer and MSE as the loss function. Figure 2 illustrates the creation of the ANN,
while Tabel 1 shows the fixed parameter configuration utilized in the models. In addition,
the connectivity between neurons in each layer is generated using the multiplication of the
weights (w) from other neurons with the input (x) and bias terms (b) from the previous lay-
ers [37]. The weights of the nodes of ANN are randomly assigned to improve the model’s
performance. Equation (1) provides the arithmetical determination of this disseminating
processing system.

yi = ∑m
i=1 wijxi + bi (1)
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3.2. GA Optimization

The GA is a technology inspired by nature and genetics that was initially proposed
by John Holland and later gained fame through research conducted by David Goldberg
in 1989 [38]. The algorithm has shown success in solving optimization problems and has
proven effective in intelligently exploring a vast and complex search space [39]. The major
objective of the GA in this work is to modify the architecture of the ANN using suitable
genetic operators in order to find the most optimum solution. Hence, the GA is categorized
as a global search algorithm that depends on the notion of amalgamating several answers
rather than depending on a solitary solution [40,41]. This approach has demonstrated
efficacy in solving optimization issues and it is proven to be successful in the adaptive
exploration of a wide and intricate research domain [39].

The GA commences by initializing the population, which comprises the collection of
solutions represented by chromosomes. Firstly, the population size is set to 10 chromosomes
for the purpose of genetic enhancement. Then, a new population is created by selecting
solutions from a pre-existing population [42]. Subsequently, the probability of crossing is
established. A pair of individuals serve as parents to generate children by the exchange
of a portion of the maternal DNA, with a mutation chance of 0.1. Next, a mutation stage
refers to the process of changing or altering certain genes within a chromosome to produce
different chromosomes as new input solutions for the subsequent generation [41]. Finally,
the steps are repeated until the high number of repetitions is scoped.

3.3. GWO Estimation

The optimization algorithm of the GWO is designed to replicate the social structure
and hunting observed behaviors [43]. The GWO algorithm was introduced by Mirjalili et al.
in 2014 to handle optimization problems through the simulation of the hunting behavior
of gray wolves. In this model, the position of each wolf is considered as a prospect value
to the optimal issue [3]. The population can be categorized into four different factors,
namely alpha (α), which represents the main and dominant leader who is responsible for
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the final decision based on the best management, while beta (β) is an alpha’s adviser who
is the first candidate for leadership if the alpha dies or becomes older. Meanwhile, omegas
and subordinates (delta) are the lowest level in the hierarchy, which represent the third
and fourth factors in the GWO algorithm [44]. The three most optimal solutions for the
alpha, beta, and delta are selected based on the assumption that these wolves have superior
knowledge about their prey’s location. The GWO adjusts its position in a two-dimensional
search space based on the values of the alpha, beta, and delta, as illustrated in Figure 3. The
final position will be randomly located within a circle with processing determined by the
positions of these three factors in the search space [45]. The wolves use their sensory input
to approximate the location of the prey, while the remaining wolves adjust their positions
in the vicinity of the prey randomly. These processes are performed using the following
equations [3].
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Equations (2) and (3) are utilized to represent the prey-surrounding behavior exhibited
by gray wolves [45].

→
D =

∣∣∣∣→C ·→x p(t)−
→
x (t)

∣∣∣∣ (2)

→
x (t + 1) =

→
x P(t)−

→
A·

→
D (3)

where
→
A and

→
C represent the degree vectors of the present iteration. Meanwhile, the

position vectors of the prey and grey wolf are represented by
→
x p and

→
x , respectively. The

vectors
→
A and

→
c are computed using Equations (4) and (5), with

→
a linearly lowered from

2 to 0 during iteration and
→
r 1 and

→
r 2 , which are chosen randomly between [0, 1]. The

function of “Initialize Wolf” is created and “Update Position” represents modified wolf
positions using the GWO equations based on Equations (4) and (5).

→
A = 2

→
a ·→r 1 −

→
a (4)

→
c = 2·→r2 (5)

where
→
x a represents the best search agent of the optimal solutions, while

→
x β and

→
x δ

represent the second and third best search agent, respectively, which are chosen to simulate
gray wolf hunting behavior. In the next iterations, the additional search agent adjusts their
positions based on the optimal search agent’s position using Equations (6)–(8):

→
Da =

∣∣∣∣→C1·
→
x a −

→
x
∣∣∣∣, →

Dβ =

∣∣∣∣→C2·
→
x β −

→
x
∣∣∣∣, →

Dδ =

∣∣∣∣→C3·
→
x δ −

→
x
∣∣∣∣ (6)
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→
x 1 =

→
x a −

→
A1·

→
Da,

→
x 2 =

→
x β −

→
A2·

→
Dβ,

→
x 3 =

→
x δ −

→
A3·

→
Dδ (7)

→
x (t + 1) =

→
x 1(t) +

→
x 2(t) +

→
x 3(t)

3
(8)

4. Data Acquisition System

To collect the experiential data of PV power regarding weather conditions, a data
acquisition system is employed, as shown in Figure 4. This component includes the solar
panels, inverter, sensors, and PLC. Firstly, four Euronet EU-M 350W solar panels were
used from EURONET Company, with each panel evaluated as having a maximum power
output of 350 watts, as shown in Figure 5. The specifications of the solar panel appear
in Table 1. Secondly, sensors are utilized, such as a pyranometer, which is a device to
measure the irradiance of the surface that is usually expressed in W/m2, which works on
the principle of thermal fountain technology. Thermal fountains are a device that generates
a current when exposed to thermal radiation. Meanwhile, the thermocouple sensor (RTD
Sensor) is employed to measure the surrounding temperature around the PV panels, which
is usually expressed in Celsius. To measure the PV electrical parameters consequently, a
current sensor ACS758LCB-050B-PFF-T was utilized. This sensor provides accurate and
linear current measurements using Hall effect technology, while voltage sensors ARD774
are used to collect the PV voltage. Thirdly, a Siemens Automation S7-1200 PLC is designed
and programmed carefully to ensure accurate data collection in the meteorological station.
Then, a Euronet 5.5k gold inverter is used to convert the DC power into AC power from
EURONET Company. The key feature of this device is its ability to seamlessly transition to
battery power in the event of a power outage, ensuring continuous operation of devices
even in the absence of the AC power grid.

Finally, the electricity is sourced from solar panels with the initial portion of the energy
being allocated to the load, while the remaining energy is applied to the batteries. The
batteries are connected in series with the supplied power to provide the offline mode of the
system during the night subsequently. Experimental data were recorded in this research to
predict the daily performance of the PV model associated with an independent PV facility
located in the campus of University of Maysan in Iraq. The data are recorded for variable
temperatures and solar radiations that are measured by the dedicated temperature and
radiation sensors. To record the parameters of the PV power production, the current and
voltage sensor within its transfer registers is utilized. Then, the PLC system is accessed via
the directive of a data register generation. Lastly, a communication approach between the
data acquisition system and the computer terminal is facilitated through the web server
interface to ensure a reliable and fast means of communication.

Energies 2024, 17, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 4. The system architecture of a data acquisitor system. 

 
Figure 5. The outdoor PV system combined at the Engineering campus of University Misan, Iraq. 

Table 1. Specifications of the practical PV module. 

Values Characteristics 
90 Cell Number 

41.07 V Open circuit voltage 
34.23 V Maximum power voltage 
11.25 A Short circuit current 
10.23 A Maximum power current 
350 W Maximum power point 
19 KG  Weight 

1755 × 1038 × 35 mm Dimension (mm) 
−40 °C to +80 °C Operating Temperature 

30 Tilt angle 
180 Azimuth angle 

EU-M350W PV cell model 

5. NN-GA and NN-GWO Prediction Model 
Determining the parameters of ANN model is an important step for implementing 

the accurate ANN model because the low MSE value of ANN training can be learned 
quickly. Therefore, in this work, the number of layers and neurons was determined based 
on the GA and the GWO algorithms. Figures 6 and 7 show the framework of proposed 

Figure 4. The system architecture of a data acquisitor system.



Energies 2024, 17, 4301 8 of 23

Energies 2024, 17, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 4. The system architecture of a data acquisitor system. 

 
Figure 5. The outdoor PV system combined at the Engineering campus of University Misan, Iraq. 

Table 1. Specifications of the practical PV module. 

Values Characteristics 
90 Cell Number 

41.07 V Open circuit voltage 
34.23 V Maximum power voltage 
11.25 A Short circuit current 
10.23 A Maximum power current 
350 W Maximum power point 
19 KG  Weight 

1755 × 1038 × 35 mm Dimension (mm) 
−40 °C to +80 °C Operating Temperature 

30 Tilt angle 
180 Azimuth angle 

EU-M350W PV cell model 

5. NN-GA and NN-GWO Prediction Model 
Determining the parameters of ANN model is an important step for implementing 

the accurate ANN model because the low MSE value of ANN training can be learned 
quickly. Therefore, in this work, the number of layers and neurons was determined based 
on the GA and the GWO algorithms. Figures 6 and 7 show the framework of proposed 

Figure 5. The outdoor PV system combined at the Engineering campus of University Misan, Iraq.

Table 1. Specifications of the practical PV module.

Values Characteristics

90 Cell Number
41.07 V Open circuit voltage
34.23 V Maximum power voltage
11.25 A Short circuit current
10.23 A Maximum power current
350 W Maximum power point
19 KG Weight

1755 × 1038 × 35 mm Dimension (mm)
−40 ◦C to +80 ◦C Operating Temperature

30 Tilt angle
180 Azimuth angle

EU-M350W PV cell model

5. NN-GA and NN-GWO Prediction Model

Determining the parameters of ANN model is an important step for implementing the
accurate ANN model because the low MSE value of ANN training can be learned quickly.
Therefore, in this work, the number of layers and neurons was determined based on the
GA and the GWO algorithms. Figures 6 and 7 show the framework of proposed models
for the GA optimization and GWO optimization, respectively, which are used to find the
optimized structure of ANN. These algorithms consisted of three steps as follows.

5.1. Processing Data

In the first stage of training, the collected data are loaded using the Pandas library in
Python approach and then undergo preprocessing using a straightforward approach to
remove the unavailable radiations and missing data. Data processing aims to obtain high-
quality datasets, which is a prerequisite for building an accurate prophetic model, while
the purpose of training is to provide the system with the ability to apply its knowledge
of new data to predict it. The data samples are then classified into three labels based on
atmosphere patterns: cloudy, rainy, and sunny, distributed over various seasons from the
year 2024. Data samples were taken for two days of each season to classify each type of
weather. During the data division, the alternating indices’ function is defined. This function
takes the number of samples, denoted as n, and the training ratio, referred to as train ratio.
In this case, 60% of the value is selected for the training ratio. Next, the array of indices is
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generated, which includes indices ranging from 0 to n − 1. Subsequently, two lists of train
indices and test indices are initialized to store the indices for training and testing purposes.
Ultimately, the data are iterated over time in increments of 20 steps, and the indices are
appended to the two lists according to the computed blocks.
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During the testing phases, the most current PV and weather data are utilized, as
depicted in Figure 8. The obtained datasets are analyzed and categorized to ascertain the
specific meteorological conditions relevant to the given day. Sampling occurs at a time
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resolution of 3 min for around 13-hours every day and varies in response to the level of
radiation received or the amount of sunshine hitting the solar panels. It should be noted
that there is a reduction in the duration of daylight hours on certain days, particularly in
January. During the heavy rainfall case, the data readings become unavailable due to the
radiation being very low and the radiation sensor being unable to read it. Therefore, in the
absence of solar radiation data, these measurements are removed from the dataset. The
input variables are subsequently inputted into the corresponding ANN model, depending
on the weather type. The forecast model’s outcome is subsequently assessed using R2,
MAE, RMSE and MSE. The results are subsequently enhanced by the algorithm methods
employed in this study.
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5.2. ANN-GA and ANN-GWO Optimization Model

In the second stage, GA and GWO optimization are used to find the parameters of the
ANN model using Python code. Initially, the population size is set to 10. The alteration
ratio is determined by selecting the value of 10% for the occurrence of a mutation in the
model. Subsequently, the crossover rate is established at 80%, representing the likelihood
of hybridization taking place between the two models. Finally, the number of iterations is
defined and a total of five iterations are selected. The permissible range for the number
of hidden layers in the ANN is between 1 and 5 layers, while the range for the number
of neurons in each layer is between 10 and 128 neurons to avoid overfitting. Then, the
performance measures of R2, MAE, RMSE, MSE, and RE are utilized as the fitness function.
Table 2 illustrates the major parameters of the GA algorithm based on the ANN model.
To check the accomplishment of the GA algorithm, several individual tests are selected to
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be genetically transmitted directly to the next generation. Then, crossing and mutation
operations are performed with the current population to generate the next step. Finally,
after obtaining the number of hidden layers and the optimal neuron, the network is applied
to the training data and prediction simulations until the number of iterations is completed
and the final results are printed.

Secondly, the GWO algorithm is utilized with the ANN model to compare with the
previous method. The ANN-GWO method is set, namely the number of wolves and
the number of steps, while the rest of the elements were implemented randomly. The
suggested idea depends on two main steps. In the first stage, the specific factors known as
“Initialize Wolf” and “Update Position” are created and modified for the next wolf positions
using GWO Equations (4) and (5). These procedures perform a fixed number of iterations
and evaluate the performance, also taking into account the ranges of hidden layers and
neurons of ANN model. Meanwhile, the second step involves the training processing of
the ANN model based on developing the next number of layers and neurons from the
optimized GWO algorithm. Finally, its performance for the next position is evaluated
using testing data based on Equations (6)–(8). To address the performance of training data
for each iteration, a stop condition is designed. In the final step of the training PV data,
the GA and GWO algorithms are adopted to address the execution of the ANN based on
the fitness functions of R2, MAE, RMSE, and MSE. Because of that, the GA has a robust
ability and good execution to determine the best ANN topology accurately when compared
with the GWO-ANN and conventional ANN algorithms. In the next stage, the fitness
functions of the ANN model are tested to assess the execution of PV prediction under
various weather conditions.

Table 2. The constant parameter settings of a GA algorithm.

Parameters Description

Activation function ReLU
Number of inputs Solar radiation and Temperature

Number of outputs 1
Maximum epochs 1000

Number of Iteration 5
Number of populations 10
Optimization method Adam
Layer Number of NN 1

Hidden Neurons Number of NN 10
Mutation rate 0.1
Crossover rate 0.8
loss function MSE

5.3. Evaluation Indicators

In the last stage, the appropriate evaluation metrics of the ANN model are chosen
to examine the prediction and effectiveness of the PV generations. These metrics test
the model’s accuracy, thus enhancing the credibility of the predictive results and their
applicability. In this work, four fitness functions are used, such as evaluation metrics, R2,
MAE, RMSE, and MSE, which can be called using the Sklearn library in Python. It is worth
noting that the accuracy of the model shows an inverse relationship with the values of
these evaluation metrics. At the same time, the level of accuracy of the model shows a
direct relationship with R2.

• MSE is determined as Equation (9):

MSE =
1
M ∑M

m=1(P_actual − P_prediction)2 (9)

where m is the training data sample from 1 to M, based on actual and predicted power
values.
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• RMSE is calculated based on Equation (10):

RMSE =

√
∑M

m=1(P_actual − P_prediction)2

M
(10)

• MAE is defined as Equation (11):

MAE =
1
M ∑M

m=1(P_actual − P_prediction) (11)

• R2 measures the model’s predictive ability, as demonstrated in Equation (12):

R2 = 1 −

√√√√ ∑M
m=1(P_actual − P_prediction)2

∑M
m=1(P_actual − mean(P_actual))2 (12)

The value of R2 approaches 1 as the degree to which the statistical model successfully
predicts an outcome.

• The relative error is calculated through Equation (13):

Relative Error(%) =
P_actual − P_prediction

P_actual
× 100 (13)

6. Results and Discussion

This study utilizes real data obtained from the PV power system situated within the
College of Engineering building at the University of Misan, Iraq. The PV data were taken
randomly based on six days for each condition state from different seasons of 2024. They
were collected at three-minute intervals, spanning from 6 a.m. to 5 p.m. PV generation
is influenced by several external elements, including sun radiation, ambient temperature,
and cloud cover. Ultimately, the Matplotlib and Seaborn libraries in the Python approach
library were utilized to create the visual depictions of the outcomes.

6.1. Sunny Days

The objective of this categorization test is to address the validation of the PV forecasting
model in sunny weather circumstances. Precisely, a total of 1158 samples were recorded
from 6 days that had clear skies. These samples were uniformly spread among various
seasons to depict sunny weather circumstances. In total, 361 samples were taken on the
17th and 22nd of January to represent the winter season. Then, the 12th and 21st of March
were chosen to represent the spring season, with a total of 384 samples, while the 7th and
8th of June were selected to represent the summer season, with 413 samples. The number
of samples fluctuated due to the incidence of sunlight on the solar panels.

Figure 9 depicts the MAE values, comparing the predicted and actual power genera-
tion. The X-axis shows time divided into intervals of 3 min, while the Y-axis represents the
MAE in watts. Figure 9a demonstrates that the MAE function of the ANN-GA forecast-
ing model is occasionally the lowest compared to the ANN and ANN-GWO models, as
indicated in Table 3. On days with clear skies, the MAE values recorded by the ANN-GA,
ANN, and ANN-GWO are 16.0403 W, 17.3919 W, and 17.0240 W, respectively. Meanwhile,
the MSE associated with ANN-GA is generally the lowest compared to the ANN and
ANN-GWO, as indicated in Figure 10a and Table 3, which refers to the difference between
the predicted and actual power generation of the PV system reducing to about 420.6154 W,
462.6080 W, and 477.552 W, respectively. According to the previous values, it is clear that
the conventional ANN has a good MAE in sunny weather circumstances compared to the
ANN-GWO model. However, it has failed to reach the required values of MSE and RMSE;
as periods shift, certain patterns may emerge that impact the performance of each model in



Energies 2024, 17, 4301 13 of 23

distinct ways. Nevertheless, it has been verified that the ANN-GWO model outperforms
the ANN model in various conditions characterized by cloudiness and rainfall.
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Figure 11a illustrates a comparison test between the theoretical PV power and the
actual PV power for the three models during the periods of sunny days. It can be notable
that there are fluctuations in the real capacity at various time intervals, with a peak occurring
on January 17th at 12:03 p.m. and a trough on 3rd March at 8:25 a.m. Generally, the models
are enhanced through the utilization of the GA and the GWO algorithm to exhibit a superior
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performance and accuracy, as they closely track the actual power levels in both high and
low scenarios. In contrast, the basic ANN model drifts away from the standard generation
of the PV test. Therefore, employing the optimization methods, such as the GA and GWO
algorithm in the NN model, is essentially to enhance the precision of predictions in related
applications for energy management and stability of the utilized power grid when it is
connected with a PV plant.
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Table 3. Summarized prediction results of sunny days for PV model.

Days Method RMSE (Watts) MSE (Watts) MAE (Watts) R2

Sunny
ANN 21.5097 462.6680 17.3919 0.9532

ANN-GA 20.5089 420.6154 16.0403 0.9574
ANN-GWO 21.8529 477.5520 17.0240 0.9516

6.2. Cloudy Days

In this categorization test, the PV prediction model is proposed for cloudy weather
circumstances regarding various seasons. A total of 1063 samples were collected from
six evenly distributed cloudy days across various seasons. Specifically, 330 samples were
taken on the 2nd and 18th of January to represent the winter season, 356 samples were
taken on 11th and 14th of March to represent the spring season, and 377 samples were taken
on 22nd and 24th of June to represent the summer season. In overcast weather, the total
number of samples is lower compared to bright weather due to the obstruction of sunlight
by clouds, which prevents the solar panels from receiving sufficient light. Additionally,
the sensor employed may not be sensitive enough to accurately measure the amount of
radiation reaching it, resulting in some readings not being recorded.

The findings presented in Figures 9b and 10b indicate the decline in MAE and MSE
values for the suggested ANN-GA model. However, it is worth noting that ANN-GA
initially exhibited the biggest percentage error during the 18th of January. Nevertheless,
the model’s performance improves, subsequently surpassing both ANN and ANN-GWO.
Hence, the MAE values range from 0 to 80 W throughout time is determined by computing
the mean value of the ANN-GA, ANN, and ANN-GWO models, which are 17.8099 W,
21.8080 W, and 18.1780 W, respectively. Meanwhile, the MSE values for the models are
615.0131 W, 774.8360 W, and 629.6826 W, respectively.

Figure 11b introduces a rapprochement case between the anticipated and actual power
generation using the ANN, ANN-GA, and ANN-GWO models in a short term with cloudy
weather. Regarding reduction in solar radiation during cloudy weather tests, the production
of PV electrical energy decreases throughout these time intervals. Significant spikes in the
power consumption can be detected at specific intervals, for instance the day of 1/18 at
4:19 p.m. and during the specific period of day 3/14 at 8:36 a.m. These times occur as a
consequence of reduced activity caused by cloud cover obstructing the sun’s radiation.
Therefore, it may be inferred that the stable power predictions closely align with the actual
capacity of the PV system. Hence, the three models demonstrate accurate prediction during
calm periods but, during quick fluctuations, the ANN-GA and ANN-GWO algorithms
exhibit superior performance with higher accuracy and more adaptability to the changes
in weather conditions. Hence, the R2 values for the GA-ANN, ANN, and ANN-GWO are
0.9347, 0.9209, and 0.9332, respectively, as indicated in Table 4.

Table 4. Summarized prediction results in cloudy days for PV model.

Days Method RMSE (Watts) MSE (Watts) MAE (Watts) R2

Cloudy
ANN 27.2917 744.8360 21.8080 0.9209

ANN-GA 24.7995 615.0131 17.8099 0.9347
ANN-GWO 25.0934 629.6826 18.1780 0.9332

6.3. Rainy Days

In this case, rainy weather circumstances are utilized to assess the proposed PV
forecasting prediction model. A total of 809 samples of a rainy state were collected over
6 days distributed across various seasons. To represent the winter season, the heaviest rain
days were chosen, which were 11th and 30th of January, to collect 212 samples of these days.
Moreover, there were 210 samples on the 19th and 24th of March that represent the spring
season and 387 samples on the 20th and 10th of June that represent the summer season.
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Notably, during January, the duration of daylight hours is decreased in the heavy rainy
weather states, which was not recorded in the PV data due to rain-laden clouds blocking
radiation. Meanwhile, In June, there was a light rainfall on the 10th owing to the rising
temperature. Additionally, a cloudy day was included to make up for the shortage of days
with both sunny and cloudy weather. This is because June typically experiences intense
sunlight and high temperatures in southern Iraq.

Figure 9c illustrates the MAE observed between forecasted and actual power genera-
tion during rainy weather conditions. Based on the data in this figure, it can be shown that
the MAE associated with the ANN-GA is occasionally lower than that of both ANN and
ANN-GWO, as indicated in Table 5, specifically on the rainfall days. As a result, the MAE
values of the suggested models for three proposals were recorded as 14.3067 W, 16.4599 W,
and 15.8127 W, respectively.

Figure 10c shows the discrepancy in MSE between predicted and observed power
generation during rainy weather conditions that are closer to zero. On one side, the MSE
value of the ANN-GWO reaches 30,000 watts during the period from 8 a.m. to 12 noon on
11 January, as well as during the period of 10 to 11 a.m. on 10 June. There is an increase
up to 50,000 in the ANN power prediction due to the excessive energy used during these
periods, where the peak solar radiation level was recorded at 467.5926 W/m2 on 10 June
at 10:32 a.m. On the other side, the solar irradiance level was recorded as 193.8658 W/m2

and 133.9699 W/m2, between this point, in 3 min intervals. In this case, the fluctuation
in the ANN prediction happens due to this rapid change in the solar irradiance. This
sudden fluctuation in the input irradiance indicates a limitation in its ability to handle
rapid variations in the input data of ANN model.

Table 5. Summarized prediction results of rainy days for PV model.

Days Method RMSE (Watts) MSE (Watts) MAE (Watts) R2

Rainy
ANN 29.0796 845.6225 16.4599 0.8250

ANN-GA 22.3597 499.9573 14.3067 0.8965
ANN-GWO 25.4140 645.8738 15.8127 0.8663

In general, it is noticed that the GA-ANN prediction is the lowest compared to the
ANN and ANN-GWO models, as explained in Table 5. Notably, the GA optimization
shows consistently the superior performance across different scenarios when the MSE
values of the proposed model, ANN, and ANN-GWO are 499.9573 W, 845.6225 W, and
645.8738 W, respectively. Furthermore, Table 5 displays the R2 of the proposed model, NN,
and NN-GWO, which are reported as 0.8965, 0.8250, and 0.8663, respectively, as shown in
Figure 12b, due to a slightly lower correlation compared to clear-sky conditions.

Figure 11 displays the temporal variations in electrical power among the three models
during the three-period tests. Figure 11a shows that the values between the real PV
power and estimative PV power match roughly when the irradiances are clear on sunny
days. Meanwhile, Figure 11b shows less matching between the two power tests on a
cloudy day. However, Figure 11c addresses the significant spikes in power levels, namely
on 6/10 at 10:18 a.m. This is because of the higher fluctuation recordings for the input
irradiance during this time of year when the rain was very heavy and fast, leading to
cloud cover blocking the sun’s rays at intervals. Hence, the graph shows sharp fluctuations
in power generation on those days. Furthermore, the output energy was diminished
compared to sunny and cloudy days due to the presence of rain and clouds, which might
obstruct the irradiance reaching the PV panels. This reduction can lead to lower solar
energy productivity during rainy days. Nevertheless, the projected values produced by the
suggested model continue to closely align with the real energy measurements.



Energies 2024, 17, 4301 18 of 23

Energies 2024, 17, x FOR PEER REVIEW 18 of 25 
 

 

MAE values of the suggested models for three proposals were recorded as 14.3067 W, 
16.4599 W, and 15.8127 W, respectively. 

Figure 10c shows the discrepancy in MSE between predicted and observed power 
generation during rainy weather conditions that are closer to zero. On one side, the MSE 
value of the ANN-GWO reaches 30,000 watts during the period from 8 a.m. to 12 noon on 
11 January, as well as during the period of 10 to 11 a.m. on 10 June. There is an increase 
up to 50,000 in the ANN power prediction due to the excessive energy used during these 
periods, where the peak solar radiation level was recorded at 467.5926 W/m2 on 10 June at 
10:32 a.m. On the other side, the solar irradiance level was recorded as 193.8658 W/m2 and 
133.9699 W/m2, between this point, in 3 min intervals. In this case, the fluctuation in the 
ANN prediction happens due to this rapid change in the solar irradiance. This sudden 
fluctuation in the input irradiance indicates a limitation in its ability to handle rapid vari-
ations in the input data of ANN model. 

Table 5. Summarized prediction results of rainy days for PV model. 

Days Method  RMSE (watts) MSE (watts) MAE (watts) R2 

Rainy 
ANN 29.0796 845.6225 16.4599 0.8250 

ANN-GA 22.3597 499.9573 14.3067 0.8965 
ANN-GWO 25.4140 645.8738 15.8127 0.8663 

In general, it is noticed that the GA-ANN prediction is the lowest compared to the 
ANN and ANN-GWO models, as explained in Table 5. Notably, the GA optimization 
shows consistently the superior performance across different scenarios when the MSE val-
ues of the proposed model, ANN, and ANN-GWO are 499.9573 W, 845.6225 W, and 
645.8738 W, respectively. Furthermore, Table 5 displays the R2 of the proposed model, NN, 
and NN-GWO, which are reported as 0.8965, 0.8250, and 0.8663, respectively, as shown in 
Figure 12b, due to a slightly lower correlation compared to clear-sky conditions. 

 
(a) 

 

15

15.5

16

16.5

17

17.5

ANN-Sunny GA-Sunny GWO-Sunny

M
A

E(
w

at
ts

)

MAE-Sunny

Energies 2024, 17, x FOR PEER REVIEW 19 of 25 
 

 

 
(b) 

 

 
(c) 

Figure 12. Comparison of MAE and R2 performance measurements across different meteorological 
seasons. (a) Sunny days, (b) cloudy days, and (c) rainy days. 

Figure 11 displays the temporal variations in electrical power among the three mod-
els during the three-period tests. Figure 11a shows that the values between the real PV 
power and estimative PV power match roughly when the irradiances are clear on sunny 
days. Meanwhile, Figure 11b shows less matching between the two power tests on a 
cloudy day. However, Figure 11c addresses the significant spikes in power levels, namely 
on 6/10 at 10:18 a.m. This is because of the higher fluctuation recordings for the input 
irradiance during this time of year when the rain was very heavy and fast, leading to cloud 
cover blocking the sun’s rays at intervals. Hence, the graph shows sharp fluctuations in 
power generation on those days. Furthermore, the output energy was diminished com-
pared to sunny and cloudy days due to the presence of rain and clouds, which might 
obstruct the irradiance reaching the PV panels. This reduction can lead to lower solar en-
ergy productivity during rainy days. Nevertheless, the projected values produced by the 
suggested model continue to closely align with the real energy measurements.  

In Figure 12, comparisons of MAE and R2 performance measurements across differ-
ent meteorological seasons are presented. It is provided that the GA-ANN forecasting al-
gorithm accommodates the most accurate PV generation pattern in three different climatic 
condition tests when compared with the outperformed ANN and ANN-GWO models, as 
it achieved the highest values of R2 under sunny, cloudy, and rainy conditions at about 
0.9516, 0.95332, and 0.8663, respectively, when it approached 1 as the degree to which the 
statistical model successfully predicts the outcome. Meanwhile, it is shown that the MAE 
values are closer to zero to refer to better prediction performance during the sunny, 
cloudy, and rainy days at about 17.0240 W, 18.1780 W, and 15.8127 W, respectively. 

Figure 13 shows the relative error value between the power prediction and the power 
generation for the three-day cases. As noticed from Figure 13a, the ANN-GA forecasting 

13
13.5

14
14.5

15
15.5

16
16.5

17

ANN-Rainy GA-Rainy GWO-Rainy

M
A

E 
(w

at
ts

)

MAE-Rainy 

0

5

10

15

20

25

ANN-Cloudy GA-Cloudy GWO-Cloudy

M
A

E(
w

at
ts

)

MAE-Cloudy

Figure 12. Comparison of MAE and R2 performance measurements across different meteorological
seasons. (a) Sunny days, (b) cloudy days, and (c) rainy days.

In Figure 12, comparisons of MAE and R2 performance measurements across different
meteorological seasons are presented. It is provided that the GA-ANN forecasting algo-
rithm accommodates the most accurate PV generation pattern in three different climatic
condition tests when compared with the outperformed ANN and ANN-GWO models, as
it achieved the highest values of R2 under sunny, cloudy, and rainy conditions at about
0.9516, 0.95332, and 0.8663, respectively, when it approached 1 as the degree to which the
statistical model successfully predicts the outcome. Meanwhile, it is shown that the MAE
values are closer to zero to refer to better prediction performance during the sunny, cloudy,
and rainy days at about 17.0240 W, 18.1780 W, and 15.8127 W, respectively.
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Figure 13 shows the relative error value between the power prediction and the power
generation for the three-day cases. As noticed from Figure 13a, the ANN-GA forecasting
model demonstrates the greatest stability compared with the ANN-GWO and the ANN
prediction models. In addition, the ANN approach exhibits larger and more pronounced
swings, particularly during the periods of days 1/22 and 6/8, where the relative error
exceeds 100% and falls below −100%. Hence, the ANN-GA forecasting model achieves the
lowest relative percentage error of about 4.5%, while the ANN-GWO and ANN prediction
models reach 5.5% and 6%, respectively. Figure 13b exhibits several abrupt changes
characterized by significant increases and decreases in the relative inaccuracy when the
actual PV power and the predicted PV power of cloudy days are compared. It is noticed
that some error rates exceed 400%, while others fall below −100%, indicating the presence
of significant flaws in prediction. Hence, it can be provided that the ANN-GA approaches
exhibit the highest accuracy and stability in the PV predicting generation as compared
to the ANN-GWO and ANN methods. Consequently, the ANN-GA forecasting model
acquires the lowest relative percentage error of about 6.5%, while the ANN-GWO and
ANN prediction models reach 7% and 12.5%, respectively.

Finally, Figure 13c illustrates a consistently constant relative error around zero for long
periods in rainy weather. However, there is a specific period, namely 3/24 at 9:24 a.m.,
during which significant and abrupt negative fluctuations occur. These fluctuations result
in a substantial decrease in relative error, reaching values as low as −5000% for all methods.
This is because the PV system is influenced by fluctuations in weather conditions, as its
performance is closely tied to the level of solar radiation that is significantly low and varies
on rainy days. As a results, the ANN-GA forecasting model acquires the lowest relative
percentage error of about 40%, while the ANN and ANN-GWO prediction models reach
44% and 56.5%, respectively.

Lastly, Table 6 summarizes the comparison of PV energy regarding relative percentage
errors for three categorization tests. It is demonstrated that enhancing PV prediction is
a crucial objective to increase the unpredictability of weather conditions on rainy and
overcast days. As a result, the ANN has been developed by using two different algorithms.
Hence, the ANN-GA prediction model outperforms the other approaches in all-weather
circumstances, since the measured values of the fitness functions were significantly lower
than those of the other methods, indicating the commendable performance of this model.
On the other hand, the main limitation of this research is that the PV data have been used
as specific to a particular region, and only temperature and solar radiation were considered
as inputs for the proposed models. It will be better to collect the PV data from various
regions, with potential improvements by incorporating additional inputs such as humidity,
dust, and other meteorological factors that could influence the accuracy of PV prediction.

Table 6. Relative percentage error for sunny, cloudy, and rainy days.

Method Sunny Days Cloudy Days Rainy Days

ANN-GA 4.5% 6.5% 40%
ANN-GWO 5.5% 7% 56.5%

ANN 6% 12.5% 44%

Finally, the previous studies that have been mentioned in this paper focused on
designing the PV power prediction models based on different techniques. Meanwhile, our
research used very recent data collected from the year of 2024, which set it apart from
previous works. In addition, two different NN optimization methods were implemented to
compare between them. The results showed almost similar performance when compared
to the research conducted by researchers in [46], which used a 5 min time resolution.
The study reported an RMSE of 19.87%, while our research yielded an RMSE of 20.5089
for sunny weather conditions, despite the differences in the proposed methodologies.
Furthermore, the study that was conducted by researchers in [47], North China, which
focused on the winter period from 2016 to 2018, showed an RMSE of 6.23 MWh for clear
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days. In comparison, we found an RMSE of 20.5089 watts for clear days that indicates
the accuracy and effectiveness of the proposed methods, even when considering different
weather conditions and data ranges.
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7. Conclusions

This study has designed a PV forecasting model based on machine learning approaches
to assess the effective production of PV power in the geographic areas of Iraq for the first
time. To summarize, real data of the PV system installed at the University of Misan/college
of Engineering are collected at intervals every three minutes of daily production to ana-
lyze the PV effectiveness based on the ANN model. This model combines two different
advanced optimization algorithms, GA and GWO techniques, to regulate the elements of
the ANN model. Rainy, cloudy, and sunny days for different seasons are tested to address
the performance of the forecasting models under various weather conditions. Finally, they
have been evaluated based on four statistical measures: R2, MAE, RMSE, and MSE. The
methodology of training the ANN model using the GA optimization has shown that it is
efficient to determine the ideal number of layers and neurons of the ANN model, resulting
in adjusting the lower fitness functions. Consequently, the relative percentage error value
between the PV prediction and the PV generation is the lowest at about 4.5%, 6.5%, and
40% for sunny, cloudy, and rainy days, respectively. In addition, the findings showed
that the MAE value of the ANN-GA model was 14.3067, 17.8099, and 16.0403 watts for
rainy, cloudy, and sunny weather, respectively. Hence, the GA-NN forecasting model has
achieved remarkable precision, more reliability, and excellent performance in predicting
the actual PV power under various weather conditions. It is imperative in future research
to explore more suitable methodologies in different scenarios to enhance the accuracy of
PV predictions.
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ANFIS Adaptive neural fuzzy interference system
ACO Ant Colony Optimization
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CNN Convolution Neural Network
DL Deep Learning
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FFNN Feedforward Neural Network
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GWO Gray Wolf Optimization
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MSE Mean Square Error
MR Multiple Regression
PV Photovoltaic
PSO Particle Swarm Optimization
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