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Abstract 

One of the principal obstacles in the development of pipeline analog-to-digital converters (ADCs) is the imprecision 
associated with residue amplification. Operational amplifiers (Op-Amps) that possess high gain and speed are recognized 
for their excessive power consumption, making them unsuitable for employment in proficient analog-to-digital converters 
(ADCs). The study presents a new method for foreground calibration that addresses amplification differences in cyclic-
pipelined ADCs, reducing the need for internal amplifier DC gain. The calibration technique was applied to a cyclic-pipelined 
ADC with a sampling rate of 2 MS/s and 16-bit resolution. The design of this ADC was optimized for area efficiency, and its 
fabrication utilized 180 nm CMOS technology. The analog-to-digital converter (ADC) used a 5-bit resolution sub-ADC 
performing 4 cycles to reduce potential errors. Each cycle contained one bit of redundancy. A fixed-point iterative algorithm 
was used to find the exact gain for each amplifier. Simulation data shows a SINAD of 100. 6 dB, despite a 57 dB DC gain 
amplifier. The ADC's active area is 1. 8 mm2 at 30 consumption. 43 mW. 

Keywords: ADC; 180 nm; Pipeline; Convertor; DC gain 

1. Introduction

The application of condensing techniques in the context of analog-to-digital converters (ADC) is seeing an increase in 
demand, mainly due to their tendency towards extraordinary speed and accuracy in data acquisition. To ensure optimal 
performance, the amplifiers used in these converters must meet certain requirements in terms of characteristics such as 
speed, noise, and linearity. However, the task of designing amplifiers in the field of deep submicron technology poses 
serious challenges due to the limited transmission time and internal amplification of the device. 

Digital calibration methods are widely used in the field of optimization. The purpose of this investigation is to clarify the 
concerns related to ADC and linearity and, furthermore, to reduce the impact of the result. The rest of the amplifiers follow 
strict specifications regarding their continuous power gain. A previous scientific publication [1] raised concerns about the 
presence of errors in the amplification process. The occurrence of this phenomenon can be attributed to the insufficient 
increase in the constant power of the remaining amplifier. The object in question is similar to the structure of the sound, 
which can interfere with the minimum. The telecommunications industry often uses a performance metric known as signal-
to-noise distortion (SINAD) to evaluate signal quality ratings. Existing calibration methods have certain limitations in scope 
and efficiency. The tuning process using dithering methods is associated with suboptimal convergence speed. The literature 
emphasizes the need to apply approaches [2]–[4] to achieve high accuracy, as well as the requirement of slower speeds to 
achieve this result. The purpose of this study is to use the ADC to calculate the conversion errors that occur in the 
downstream stage of the ADC. The calibration technique based on the LMS (Least Mean Square) algorithm has already been 
documented in reference [5]. 

This study presents a new approach to forward signal calibration that effectively addresses issues related to residual 
amplification errors. The proposed methodology is cost-effective. The circular pipeline architecture explained in reference 
[6] is used to reduce the number of capacitors using hardware processing. A key feature of our methodology is the 
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continuous maintenance of all the remaining achievements in the sub-levels, which is facilitated by the use of integrated 
hardware implementation. This result leads to a superior solution for our calibration scheme. By implementing off-chip 
digital processing techniques, accurate measurement and correction of gain errors within amplifiers can be achieved. 

2. An overview of the principle of the ADC circuit 

2.1. Proposed ADC structure 

The presented diagram illustrates the fundamental configuration of a cyclic pipelined analog-to-digital converter with the 
incorporation of single-bit redundancy, as portrayed in Figure 1. The primary procedure entails the utilization of capacitive 
circuits to take representative samples of the input signal and preserve them, followed by the transformation of the analog 
signal into a digital format via the deployment of an N-bit sub-ADC (SADC). The restricted length of digital signals can 
engender quantization errors and residual errors that give rise to substantial divergences between the original signals and 
their quantization levels. In order to enhance the precision of the conversion process, it may be advantageous to implement 
an amplification technique for error estimation and subsequently conduct the A/D conversion through the utilization of 
the "subtraction-amplification-A/D conversion" methodology. 

 

Figure 1 Cyclic pipelined ADC with 1-bit redundancy has a basic structure 

The illustration presented in Figure 2 depicts the arrangement of the proposed circuitry for the analog-to-digital converter 
(ADC). The system under consideration contains a semi-weighted capacitor register with 5-bit capacitance, a residual 
amplifier, a 6-bit signed analog-to-digital converter (ADC), and the necessary logic to ensure stable operation. The detection 
of residual faults in circuit capacitors is facilitated by utilizing a common node. Additionally, residual gain control can be 
achieved using an amplifier. The final analog-to-digital (A/D) output is computed by processing the digital code received 
from each substage using on-chip or off-chip methods. A major advantage of the analog-to-digital converters (ADCs) under 
consideration is hardware-based residual gain integration, which requires a single gain value across all substages, resulting 
in improved performance. The following sections illustrate the above-mentioned advantage. 
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Figure 2 Outline the ADC's design. 
 

2.2. Requirements for residual amplifiers without calibration 

A practical amplifier, unlike an ideal amplifier, has a finite gain, called Avol or open-loop gain. Insufficient reinforcement 
occurs as a result of the phenomenon mentioned above. Consequently, the resultant fluctuations in the output will 
unavoidably diminish the precision of the complete analog-to-digital conversion process. 

In the context of amplification technology, an optimal amplifier is defined as an amplifier whose amplification result at each 
individual sublevel can be expressed as Vout,i = 2N -1 Vres,i, where N represents the sub-analog number of bits from the 
digital converter and the index i refers to the specific stage. Determining the derivative difference of the practical increment 
is done by the following method: 

 

To determine the final gain, a division operation must be performed in which the gain error is divided by a factor of 2i (N-
1). The above observations show that the main reason for the decline in performance is due to profit errors that occur at 
the beginning. It follows that the total voltage swing, denoted as Vout,adc, can be calculated using the expression Vout, 
1/2N-1. 

Given that the initial input to the residual amplifier, denoted as Vres,1, is the difference between Vin and Vdac,1, it is 
possible to require that Vres,1 be divided by the same equation as Vres,1  U (0, VSLSB). Here, VSLSB represents the least 
significant bit (LSB) of the subframe. In this way, it is basic that the error within the yield adjusts to the dispersion of 
Vout,adc U(0, Q), with Q symbolizing the coefficient. 
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The overall performance of the system will be limited by both gain error and quantization noise, which are statistically 
unrelated variables. Therefore, the signal-to-noise ratio and distortion (SINAD) of the entire analog-to-digital converter 
(ADC) can be calculated. 

 

The root mean square (RMS) of amplification errors, denoted as Vout,adc,rms, is commensurate with Q, whereas Vq, rms, 
is indicative of the RMS of quantization noise pervading the entire analog-to-digital converter (ADC) system. The depicted 
data in Figure 3 provides evidence that an inadequate DC gain of the residual amplitude leads to dominant amplification 
errors, which subsequently affect the quantization noise. As a result, a sine wave that maintains a linear relationship with 
respect to its DC gain is obtained. Moreover, it can be observed from Figure 3 that the mathematical analysis explicated in 
equation (3) is verified. 

 

Figure 3 Consideration of SINAD and DC gain for residual amplifiers is critical in a 4-cycle pipelined ADC, as low gain can 
limit performance. 

3. Proposal for a calibration protocol 

3.1. Basic calibration strategy 

Although amplifiers have a high DC gain, it is not essential for reducing amplification errors. Assuming that all sub-stages 
have equal gains represented by 'G' due to using the same hardware, the A/D conversion result should be adjusted 
accordingly. 

 

The calibrated output voltage across the ADC is denoted by the symbols Vout, adc, and cali. Di, on the other hand, denotes 
the N-bit digital symbol produced by each substage of the A/D conversion. A significant reduction in gain errors can be 
achieved by using digital codes together with their respective gains when calculating the final result for each sub-stage. It 
is important to note that taking "G" during two consecutive analog-to-digital conversions can increase the resolution of the 
system by the order of "log2 G" bits. According to our design, using M = 4 cycles and N = 5 ADC subcircuits, we are able to 
calculate the effective number of bits (ENOB) that is theoretically possible. 
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According to the red line in Figure 3, it was observed that the amplifier with a constant gain of 40 dB can achieve a resolution 
of 16 bits, considering the gain of the G control. The focus of the investigation is to determine the precise control gain of the 
existing amplifier. 

3.2. Estimate stage gain 

Given the limitations of our analytical capacity in relation to circular structures, we have opted to broaden our examination 
of the data flow by utilizing the more conventional chain structure, as illustrated in Figure 4. The chain consists of two 
distinct constituents, namely the primary stage of the pipeline and the secondary component known as the analog-to-digital 
converter (ADC) or BADC. After the analog-to-digital conversion process, a residual voltage denoted by Vres1 is initially 
generated and then amplified through a gain factor denoted by G1. BADC performs an additional analog-to-digital 
conversion to determine the magnitude of the boosted residual voltage (G1Vres). To create the DBE feedback digital code, 
a process was developed to sum the digital codes obtained from each subphase, namely D2, D3, and D4. 

 

Figure 4 The pipelined system consists of two components: the initial stage and BADC 

Because our ability to analyze circular structures is limited, we chose to expand the data flow and assess it using the more 
conventional chain structure, as depicted in Figure 4. The chain is comprised of two separate components: the primary 
pipeline stage and the secondary analog-to-digital converter (ADC), also referred to as a BADC. The input signal Vin is kept 
at a constant amplitude, and two separate control codes are used throughout the MUX to obtain the remaining two signals. 
The above signals are amplified by G1 and then quantified using the Back-E technique. 

 

To prevent the increase in residual voltage G1 Vresi from exceeding the full scale range of BADC, it is important that the 
control codes Code and Vin are chosen carefully and widely. Following this principle, we set Win to 0, code (1) to 0, and 
code (2) to 1. Then we observe the inequality of the quantization results. 

 

As we know, BADC quantization output consists of D2, D3, and D4, which can be written as: 
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The numerical expression spoken to by condition (9) could be a cubic condition that as it were incorporates the variable G, 
which recognizes the evenhanded commitment of each sub-level. Moreover, it can be watched that this condition falls inside 
the genuine number set based on Banach's hypotheses. 

3.3. Correct calibration accuracy 

The solution to Equation (9) can be ascertained through the utilization of iterative techniques, namely fixed point iteration 
or Newton-Raphson iteration. This is graphically depicted in Figure 5. The computational resource requirements for 
achieving precision in function G are contingent upon the degree of accuracy sought. The following section will undertake 
an analysis of how alterations in the computed G value have an impact on the general resolution of the system. The process 
of calibration entails establishing the estimated interstage gain, denoted as G∗, which is equivalent to the actual gain GA, 
with the inclusion of the deviation parameter, ∆G. By utilizing numerical documentation in scholarly composing, the over 
condition can be communicated as G∗ = GA ± ∆G = GA (1 ± η). The variable η denotes the discrepancy between the observed 
and computed amplification. This formulation conforms to the style of academic writing. The information presented follows 
a formal methodology. The scientific notion of ∆G/GA delineates the alteration in Gibbs free energy (∆G) with respect to 
the standard free energy (GA) for a particular reaction or system. Recognizing the importance of recognizing the inherent 
limitations of the η coefficient, it is essential to consider that it may encompass supplementary sources of inaccuracies, 
including calibrated systematic or random errors, imposed restrictions on the precision of calculations, and other assorted 
factors. 

 

Figure 5 G and G∗ in red and blue respectively are important indicators of a system's performance. Gk's gray color 
indicates the computed value after k iterations. 

The root mean square (RMS) value can be used to express the collective gain error and quantization noise of the analog-to-
digital converter (ADC). 

 

The abbreviation of SINAD can be obtained as follows: 
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The determination of the coefficient was conducted by means of computing the relative root-mean-square (RMS) amplitude 
of the output discrepancy and quantization noise. 

 

Using Equations (12) and (13) can help estimate the degradation of the accuracy of a common analog-to-digital converter 
(ADC). The above equations show that a larger relative error leads to a greater negative impact on the actual gain (GA) 
when it remains constant in absolute value. 

The limited BADC solution creates a difference between the actual control gain GA and the value G determined by the 
calibration approach. Equation (7) can be used to estimate the maximum difference caused by the BADC solution. 

 

In addition, there is another inevitable factor that causes estimation errors. This factor is caused by the miscalculations that 
occur during the iterative algorithm, as shown in Figure 5. Considering the calculation errors introduced by the finite 
number of iterations, the highest deviation from the closed-loop gain will be Gmax. Additionally, the SINAD reduction can 
be calculated using the data in Figure 6. 

 

Figure 6 Limited iteration and insufficient back-end resolution are key factors behind SINAD degradation. 

Finally, after careful evaluation of calibration accuracy and power consumption, we decided to perform six iterations to 
correct the problem (9). As a result, a reduction in SINAD of about 3.6 dB was observed, which is considered within the 
acceptable range.
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4. Results obtained from a simulation 

The outcomes of the simulation are displayed in Figure 7. The experiment incorporated an input signal frequency of 
167.968775 kHz and a sampling rate of 2 MHz. Following calibration, notable enhancements were observed in the 
spurious-free dynamic range (SFDR) and effective number of bits (ENOB) of the analog-to-digital converter (ADC). It is 
noteworthy that the preliminary measurements, measuring 73.08 dB and 10.8 bits, respectively, underwent a 
substantial escalation to 106.80 dB and 16.4 bits. The residual amplifier exhibited a power dissipation of 16.73 mW, 
whereas the flash analog-to-digital converter (ADC) and accompanying components exhibited power dissipation rates 
of 13.14 mW and 0.56 mW, respectively, for the entire analog-to-digital converter (ADC). In order to facilitate 
comparative analysis, pertinent studies are presented in Table 1. 

 

Figure 7 The input signal's power spectrum was analyzed in two scenarios. 

 

Table 1 This paper compares performance measures 

.Technology 
[nm] 

Architectu
re 

Supply 
[V]  

Sampling Rate 
[MHz]  

Power 
[mW]  

SINAD 
[dB]  

ENOB 
[bit]    

180 Cyclic  1.8 2 30.43 100.65 16.4 
our 
work 

130 SAR  3.3 / 1.2 0.1 0.059 83.92 13.62 1 

180 Pipelined  1.8 0.002 0.00793 84.6 13.76 8 

90 Cyclic  1.4 1 0.49 62.25 10.05 6 

180 SAR 1.8 125 385 78.6 12.76 9 
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5. Conclusion 

This paper introduces a methodology for achieving foreground gain calibration that effectively addresses the linear 
inaccuracies associated with inter-stage amplifiers within cyclic pipelined analog-to-digital converters (ADCs). Notably, 
this approach serves to mitigate the need for excessively high levels of direct current (DC) gain provision within said 
amplifiers. The Fix-Point Iteration algorithm is a pragmatic method that can facilitate the computation of the precise 
gain of individual amplifiers. Based on the simulation outcomes, it is apparent that a DC-gain amplifier of 57 dB has the 
ability to achieve a SINAD of 100.06 dB.. 
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