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Abstract. An analytical solution of the generalized nonlinear Schrodinger equation which is implemented with
fiber laser applications has been presented. The solution based on the exp-function method which is depending
on time, space and small perturbations has been found. This solution was used to test the behavior and study the
propagation characteristics of laser pulses and compared with some of the researches in the same field and the
nonlinear effects as gain dispersion, second anomalous group velocity dispersion, self phase modulation, and
frequency are investigated. The net results are that the parabolic pulse growth after z ¼ 4 m, and generate a
periodic pulse train, the power of pulse is increased with increasing the length of fiber laser with reduce its width,
the nonlinear effects have a small role on the pulse power, but they effect on the modulation stability of the laser
and lead to generate sideband, the behavior of the pulse converted to chaotic when increasing the frequency. ©
2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.53.4.046101]
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1 Introduction
The production and propagation of the pulse laser have been
hot research topics in fiber optics fields in recent years,1

where the fiber can be doped lightly with some rare-earth
elements and pumped periodically to provide gain, and
the properties of optics in the fibers are largely different
from the pure silica fibers. This type of doped fiber is called
a fiber amplifier.2

A fiber amplifier can be converted into a laser by placing
it inside a cavity designed to provide optical feedback. Such
lasers are called fiber lasers, and fiber-loop mirrors can be
designed to reflect the laser light. One of these cavities is
a ring cavity which is used to realize unidirectional operation
of a laser. In the case of fiber lasers, an additional advantage
is that a ring cavity can be made without using mirrors.3

Erþ3-doped fiber lasers can operate in several wavelength
regions, one of which is 1.55-μm region. This has attracted
the most attention because it coincides with the low-loss
region of silica fibers used for optical communications.4

Lasers, in general, can be classified, according to their tem-
poral dynamics, into four principle modes of operation;
namely continuous-wave (CW), Q-switched, mode-locked
(ML), and Q-switched mode-locked. A CW laser generates
an output optical signal with constant power. For the other
cases of operation regimes, the emitted signal has a pulsed
profile, characterized by parameters such as pulse duration,
frequency repetition rate, pulse energy, and instantaneous
peak power.5 High-power fiber lasers have been realized
from Erbium-doped fiber lasers by highly chirped picosec-
ond pulses in a single-mode erbium-doped amplifier.6–8 One
of the most significant photonics breakthroughs in the last
decade is fiber lasers consisting of a long pumped laser
primarily by diode lasers directed into the fiber cladding.
Average output powers from fiber lasers can reach as high

as 10 kW. Fiber lasers can operate in the CW mode or in
various pulse modes, even picosecond pulses.9,10

In one set of experiments, several diodes used to produce
high pumping power, where four diode-laser bars, each emit-
ting 45 W of power near the 915-nm wavelength, were used
for pumping the fiber laser; the laser emitted up to 110 W of
CW radiation at a wavelength near 1.12 μm, with an optical
conversion efficiency of 58.3% (Ref. 5), optical conversion
efficiency increasing to 81% by Nicholson,11 where 55 W is
produced from a high-power erbium-doped fiber laser oper-
ating at 1.555 μm, with a core pumped by a Raman fiber laser
operating at 1.480 μm with 67 W of pump power.

Erbium fiber with carbon nanotubes (as saturable absorp-
tion and mode locking) are used to generate short optical
pulses at a 22-MHz repetition rate with 50-kW peak power,
1.1-ps pulse width.12 Another technique used for generating
short optical pulses (at 10 kHz with 25-kW peak power,
40-ns pulse width as well as 160-kW peak power with
21-ns pulses at 1.1 kHz) is called a bulk solid-state Q-
switched erbium laser.13

A soliton in fiber lasers is a result of the mutual non-
linear interaction among the laser gain and losses, cavity
dispersion, and fiber nonlinearity, as well as the cavity
effects.14 The important question is how to generate solitons,
which are affected by the gain and losses inside the laser
cavity. The nonlinear Schrödinger equation supports solitons
for both normal and anomalous group velocity dispersion
(GVD).15–21 The mathematical treatments for laser signal
propagation in doped fiber depend on the optics signal
pulse width (T) and the doped ions dipole relaxation time
(T2). When T ≤ T2, the rare-earth ions-doped optics fibers
can be modeled by the well-known Maxwell–Bloch equa-
tion. When T > T2, the description of the evolution pulse
should be the Ginzburg–Landau equation.5
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A very hard task is to find exact solutions, including
soliton equations, because of the changing shape of the non-
linear Schrodinger (NLS) equation according to the
types of the nonlinear effects in the theoretical model, there-
fore one solution method will not be applicable to all equa-
tions. The hyperbolic tangent (tanh) method is a powerful
technique to symbolically compute traveling wave solutions
of nonlinear wave and evolution equations. In particular, the
method is well suited for problems where dispersion, con-
vection, and reaction diffusion phenomena play an important
role.22–24

The inverse scattering transform showed that a solution to
soliton equations exists.25 Hirota developed a technique for
solving soliton equations without requiring the heavy machi-
nery of inverse scattering.26

Previous studies on the many new approaches for finding
the exact solutions to nonlinear wave equations included the
homogeneous balance method,27,28 the hyperbolic tangent
expansion method,29,30 the trial function method,31 the non-
linear transform method,32 the Backlund transform,33 the
generalized Riccati equation method,34,35 split-step Fourier
method,14 transformed rational function method,36 and
Exact 1-soliton solutions of complex-modified KdVequation
with variable coefficients using solitary wave ansat.37

In solving problems, there are mainly two types of tech-
niques: analytic and numerical. Analytical methods are the
more rigorous ones, providing exact solutions, but they
become hard to use for complex problems. Numerical
methods have become popular with the development of com-
puting capabilities, and although they give approximate
solutions. The problem we have studied is finding solitary
wave solutions through a core of the fiber laser, where the
interaction of linear and nonlinear mechanisms makes it
difficult to find general analytical solutions. In this work,
we find an analytical solution for the NLS equation which
describe the generating of train pulses with a high power
∼650 W through Erþ3 ring cavity length 8 m.

Our goal is to obtain a solution for the NLS equation in
which include on nonlinear effects as gain dispersion ,
anomalous GVD, self phase modulation (SPM) and gain ,
by simplifying it, the method developed in this article is
only applicable to pulse widths that are much longer than
100 fs for the dipole relaxation time T ≫ T2. We find
two equations; the first equation describes the shape of
laser pulse and the second equation provides the phase of
the laser pulse. Section 2.1 focuses on solving equation of
laser phase and Sec. 2.2 covers solution to the equation of
the pulse shape. This model includes a study of the effects
of SPM (Kerr effect), anomalous GVD, frequency and a
small perturbations of amplitude and width of pulse on
the behavior of the laser pulse during ring cavity.

2 Mathematical Analysis of the Model
The mathematical description of optical pulse propagation in
a core fiber laser employs the NLS equation, and is satisfied
by the pulse envelope Aðz; tÞ in the presence of gain
dispersion, the losses for cavity and fiber, gain, GVD, and
SPM. The amplitude Aðz; tÞ can be assumed to be real if
the laser frequency ω coincides with the atomic transition
frequency ωo This equation can be written as5

i
∂A
∂z

¼ B1

∂A
∂t

þ 1

2
ðigcT2

2 þ B�
2Þ
∂2A
∂t2

− γjAj2Aþ iðgc − αÞA;
(1)

where t is the time in the rest frame, z is the propagation
distance, α is total losses, including fiber, cavity and satu-
rable absorber losses.

Note that Eq. (1) is written in the frame of reference
moving with group velocity vg ¼ B−1

1 , transforming to
a reference frame moving with the pulse and introducing
the new coordinates T ¼ t − B1z. By doing this, we elimi-
nate the term B1ð∂A∕∂tÞ from the left-hand side of Eq. (1).
B2 is the GVD coefficient of the host fiber described by

B�
2 ¼

d2k
dω2

¼ 1

c

�
2
dn
dω

þ ω
d2n
dω2

�
: (2)

The parameter d2k∕dω2 is associated with the refractive
index. The fiber nonlinearity γ ¼ ðn2ω∕cAeffÞ accounts for
SPM effects induced by the host, ω is the carrier frequency,
n2 is the nonlinear refractive index (units m2∕W), c is the
speed of light in a vacuum, and Aeff is the effective fiber
core area. In doped fibers, the gain medium responds on
a time scale much slower than that of the pulse width and
realized by pumping the dopants. As a result, the saturated
gain may be approximated as gc ¼ goð1þ pave∕psatÞ−1,
where psat is the saturation power of the gain medium, go
is the average small-signal gain, and pave represents the aver-
age power over the cavity length L. pave∕psat ¼ 0.01 When
T2 ¼ 100 fs (is doped ions dipole relaxation time),3 gcT2

2 is
a frequency-dependent gain dispersion factor. The saturable
absorber is described by a simplified transfer function
α ¼ αoð1þ pave∕psatÞ−1.

If we make the transformation

ᾱ ¼ αþ αo þ αc; B2 ¼ B�
2 þ igcT2

2; g ¼ gc − ᾱ: (3)

Equation (1) is reduced to

i
∂A
∂z

¼ 1

2
B2

∂2A
∂T2

− γjAj2Aþ igA: (4)

Assume the exp-type shape of the pulse remains
unchanged during propagation but allows its parameter to
evolve with the propagation distance z. In this case, a suitable
form of the optical field is

Aðz; τÞ ¼ aðzÞfðτÞeiφ: (5)

aðzÞ is small perturbations of amplitude, fðτÞ is the initial
amplitude function to the time τ. Therefore, we can write
the phase profile φðτ; zÞ in terms of wave number kðzÞ
and carrier frequency ω of the pulse as

φðτ; zÞ ¼ ωτ − kðzÞ: (6)

It is useful to make the transformation

τ ¼ uðzÞðT − B2ωzÞ; (7)

where uðzÞ is small perturbations of the pulse width.
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By calculating (∂A∕∂z), Eq. (5) is found to satisfy

∂Aðz; τÞ
∂z

¼
��

iκ 0
zaðzÞ þ

∂aðzÞ
∂z

�
fðτÞ þ aðzÞ ∂fðτÞ

∂τ
∂τ
∂z

�
eiφ;

(8)

where κ 0
z ¼ dk∕dz. To find the term dτ∕dz taking d∕dz for

Eq. (7),

dτ
dz

¼ duðzÞ
dz

T − B2ω

�
uðzÞ þ z

duðzÞ
dz

�
: (9)

From Eq. (7) we get

T ¼ τ

uðzÞ þ uðzÞB2ω: (10)

By substituting Eq. (10) into Eq. (9), pulse width is found
to evolve with z as

dτ
dz

¼ uzðzÞ 0
uðzÞ τ − uðzÞB2ω; (11)

where uzðzÞ 0 ¼ duðzÞ∕dz. Substituting Eq. (11) into Eq. (8)
yields

∂Aðz; τÞ
∂z

¼
��

iκ 0
zaðzÞ þ

daðzÞ
dz

�
fðτÞ

þ
�
τ
uzðzÞ 0
uðzÞ − uðzÞB2ω

�
aðzÞ dfðτÞ

dτ

�
eiφ: (12)

Taking the second derivative of Eq. (5) with respect to T
yields:

∂2Aðz;τÞ
∂T2

¼
�
2iωuðzÞdfðτÞ

dτ
−ω2fðτÞþu2ðzÞd

2fðτÞ
dτ2

�
aðzÞeiφ:

(13)

Substituting Eqs. (12) and (13) into Eq. (4), after some
algebra, we obtain the following equation:�
κ 0
z þ i

azðzÞ 0
aðzÞ −

ω2B2

2
− γaðzÞ2f2ðτÞ þ ig

�
fðτÞ

− iτ
uzðzÞ 0
uðzÞ

dfðτÞ
dτ

þ uðzÞ2B2

2

d2fðτÞ
dτ2

¼ 0; (14)

where azðzÞ 0 ¼ daðzÞ∕dz separating the real and imaginary
parts of Eq. (14), we obtain the following two equations:

d2fðτÞ
dτ2

þ
�

2κ 0z
uðzÞ2B2

−
�

ω

uðzÞ
�

2

−
γ

B2

�
aðzÞ
uðzÞ

�
2

fðτÞ2
�
fðτÞ¼0;

(15)

τ
uzðzÞ 0
uðzÞ

dfðτÞ
dτ

þ
�
azðzÞ 0
aðzÞ − gaðzÞ

�
fðτÞ ¼ 0: (16)

Equation (15) takes the form:

f 0 0ðτÞ þQfðτÞ − δfðτÞ3 ¼ 0; (17)

where

f 0 0
τ ðτÞ ¼ d2fðτÞ∕dτ2; δ ¼ γ

B2

�
aðzÞ
uðzÞ

�
2

and

Q ¼ 2κ 0
z

uðzÞ2B2

−
�

ω

uðzÞ
�

2

: (18)

Equation (17) governs the pulse shape. This nonlinear
equation can be solved by multiplying it by dfðτÞ∕dτ and
integrating over τ; the result is

½f 0
τðτÞ�2 þ

Q
2
fðτÞ2 − δ

4
fðτÞ4 ¼ C; (19)

whereC is a constant of integration. Using the boundary con-
dition that both fðτÞ and dfðτÞ∕dτ vanish as τ → �∞, from
this it follows that C ¼ 0.

½f 0
τðτÞ�2 þ

Q
2
fðτÞ2 − δ

4
fðτÞ4 ¼ 0: (20)

2.1 Phase Equation

Finding the relation between Q and δ, and introducing a new
independent variable:

fðτÞ ¼ 1 − x2;
d
dτ

¼ ð1 − x2Þ d
dx

: (21)

Substituting Eq. (21) into Eq. (20) yields�
ð1−x2Þ d

dx
ð1−x2Þ

�
2

þQ
2
ð1−x2Þ2− δ

4
ð1−x2Þ4 ¼ 0: (22)

Equating the coefficient of xi, i ¼ 0; 1; 2, we obtain the
following equation:

Q ¼ 1; δ ¼ −2: (23)

Substituting Eq. (23) into Eq. (18), we get the following
equations:

∂κ
∂z

¼ B2

2
ω2 −

γ

4
aðzÞ2; (24)

aðzÞ ¼
ffiffiffiffiffiffiffiffi
2B2

γ

s
uðzÞ: (25)

Taking d∕dz for Eq. (25) and dividing it by Eq. (25) we
get

a 0
zðzÞ
aðzÞ ¼ uzðzÞ 0

uðzÞ : (26)

Multiply Eq. (16) by fðτÞ and integrating with respect τ,
where τ → �∞ this yields

uzðzÞ 0
uðzÞ

Z
∞

−∞
τ
dfðτÞ
dτ

fðτÞdτþ
�
azðzÞ 0
aðzÞ −

g

2

�Z
∞

−∞
f2ðτÞdτ ¼ 0

(27)
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�
azðzÞ 0
aðzÞ −

g

2
−
1

2

uzðzÞ 0
uðzÞ

�Z
∞

−∞
f2ðτÞdτ ¼ 0; (28)

since ∫ ∞
−∞f

2ðτÞdτ ≠ 0, (represents the energy of laser pulse),
we obtain the following equation:�
azðzÞ 0
aðzÞ −

g

2

�
−
1

2

uzðzÞ 0
uðzÞ ¼ 0: (29)

Using Eqs. (26) and (29), we get a simple differential
equation

azðzÞ 0
aðzÞ ¼ g: (30)

Equation (30) can be easily integrated to obtain

GðzÞ ¼ aðzÞ
a°

¼ egz; (31)

where GðzÞ is the net gain of the pulse, and z is the length of
the fiber laser.

Equation (31) provides the gain coefficients representing
the local gain seen by the pulse.

From Eqs. (25) and (31), the uðzÞ is given by

uðzÞ ¼ a°

ffiffiffiffiffiffiffiffi
γ

2B2

r
eðgzÞ: (32)

Substituting Eq. (32) into Eqs. (7) and (24), we get the
following equations:

τ ¼ a°

ffiffiffiffiffiffiffiffi
γ

2B2

r
eðgzÞðT − B2ωzÞ; (33)

dκ
dz

¼ 1

2

�
B2ω

2 −
1

2
γa2° e

ð2gzÞ
�
: (34)

Equation (34) can be easily integrated over the length of
fiber to obtain:

κðzÞ ¼ B2

2
ω2zþ γa2°

16g
ð1 − e4ðgzÞÞ: (35)

Substituting Eqs. (33) and (35) into Eq. (6), the phase
equation of the laser pulse generated through a core of
fiber laser is

φðτ; zÞ ¼ a°

ffiffiffiffiffiffiffiffi
γ

2B2

r
eðgzÞωT −

1

2

�
1þ 2a°

ffiffiffiffiffiffiffiffi
γ

2B2

r
eðgzÞ

�
B2ω

2z

−
γa2°
16g

ð1 − e4ðgzÞÞ: (36)

Equation (36) shows that the phase of the laser pulse
consists of summing three parts, first a nonlinear phase
shift ðγa2° ∕16gÞ½1 − expð4gzÞ�, second a dispersion shift
1∕2ðB2ω

2zÞ½1þ 2a°
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ∕2B2

p
expðgzÞ�, and third the carrier

frequency shift a°
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ∕2B2

p
expðgzÞωT , and noting the

a° expðgzÞ plays a dominant role to change the pulse
phase.

2.2 Pulse Amplitude Function Aðz;T Þ
To get the amplitude function, we must investigate Eq. (20)

Substituting Eq. (23) into Eq. (20), we have that

½f 0ðτÞ�2 − 1

2
fðτÞ2 þ 1

2
fðτÞ4 ¼ 0: (37)

Hence Eq. (37) becomesZ
df

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð1 − f2Þ

q ¼ �
Z

dτ: (38)

If we assume a solution of the form fðτÞ ¼ sec hðθÞ, the
angle θ can now be obtained by substituting it in Eq. (38).
The result is found to be θ ¼ τ∕

ffiffiffi
2

p
the amplitude function

becomes

fðτÞ ¼ sec h

�
τffiffiffi
2

p
�
: (39)

According to Eq. (33), the parabolic (sech) solution is

fðτÞ ¼ sec h

�
a°
2

ffiffiffiffiffiffi
γ

B2

r
eðgzÞðT − B2ωzÞ

�
: (40)

The general solution can be obtained by substituting
Eqs. (31), (36), and (40) into Eq. (5), and taking real part
for eiϕ yields

Aðz; TÞ ¼ a° sec h

�
a°
2

ffiffiffiffiffiffi
γ

B2

r
eðgzÞðT − B2ωzÞ

�

× cos

�
a°

ffiffiffiffiffiffiffiffi
γ

2B2

r
eðgzÞωT −

1

2

�
1þ 2a°

ffiffiffiffiffiffiffiffi
γ

2B2

r
eðgzÞ

�

× B2ω
2z −

γa2°
16g

�
1 − e4ðgzÞ

��
eðgzÞ: (41)

3 Results and Discussion
To illustrate pulse dynamics, using Eq. (41) which describes
pulse laser propagation through Erþ3 ring cavity length 8 m,
we assume a (sech) input pulse has power a20 ¼ 1 W and its
initial pulse width at full width at half maximum (FWHM) is
T ¼ 133 ps ≫ T2 ¼ 0.1 ps. Ring cavity can be designed to
reflect the laser light but to transmit pump radiation and to
realize unidirectional operation of a laser.38 Six 180 W 980-
nm diodes fiber were chosen for their compatibility with
the input legs of available high power–tapered fiber bundle
coupler technology Fig. 1 and the length of a standard single-
mode fiber (SMF) was changed, therefore, the total cavity
dispersion and Kerr effect were varied.39,40

3.1 Output and Input Pulse Shapes

Figure 2 shows the evolution toward a parabolic shape when
a “sech” input pulse is amplified over the 8-m length of
the fiber laser (a) at z ¼ 0 m (b) z ¼ 8 m comparison
between the input and output pulse, we see the pulse com-
pression where a pulse width 133 ps (FWHM) input pulse is
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compressed to 2.6 ps. The reason can be understood by not-
ing that a pulse of most fiber lasers exhibits sidebands on
both sides of the pulse and a red shift resulting from a change
in the group velocity as shown Fig. 2(b). Sidebands are
amplified through the gain provided by modulation instabil-
ity. Modulation-instability sidebands will overlap with the
origin pulse in addition, the input pulse compressed through
an interplay between SPM and GVD.

3.2 SPM Effects

To study how SPM affects the laser pulse whose propagation
in fiber laser using the parameters with the values γ ¼ 0.014,
0.024, 0.032, and 0.056 ðW · mÞ−1,B2 ¼ −0.044 ps2∕m,
g ¼ 0.46m−1, and ω ¼ 1 THz, take advantage of the values
in Refs. 5, 41, and 42. Figures 3(a), 4(a), 5(a), and 6(a) show
the soliton propagation in fiber laser from z ¼ 0 to 4 m and
the soliton amplitude increases exponentially and its width
decreases exponentially in the case of T ≫ T2. From

Figs. 3(b), 4(b), 5(b), and 6(b) one can conclude that the
maximum power at z ¼ 8 m has the same value 600 W,
and produces a laser capable of generating a periodic
pulse train. An interesting approach based on the
concept of optical solutions pulses is that the pulse maintains
its shape during propagation in gain fiber and the nonlinear
effects in gain fiber are considered very important, because
the system produces high power.

3.3 Frequency Effects

In this case, we discuss the variables on the behavior of
the laser pulse as a result of increasing frequency as
ω ¼ 0.5, 1, 2, and 3 THz for a fixed values of γ ¼
0.056 ðW · mÞ−1, B2 ¼ −0.044 ps2∕m, and g ¼ 0.46 m−1.
Figures 7(a), 8(a), 9(a), and 10(a) show that the laser
power grows exponentially with z and the optical pulses
maintain their shape during propagation for z ¼ 0 to 4 m,
modulation instability can convert a soliton into a train of

SMF

Laser output

Er+3 doped fiber
8m

(6+1)to 1 Combiner  

Fiber coupled
pump modules Pump laser
980nm

Input pulse laser
1550nm 1 W                

Saturable  absorber

Mirror

Fig. 1 Cavity arrangement for pulse generate through an erbium fiber ring laser.

Fig. 2 The profiles of the parabolic pulse at (a) z ¼ 0m (b) z ¼ 8m.
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short pulses, the maximum power is at z ¼ 8 m with a
value ∼600 W, the pulse width begins to broaden and
chaotic behavior appears with increasing the frequency.
Several mechanisms have been invoked to explain
such behavior, the frequency ω dependence of the group
velocity leads to pulse broadening simply because
different spectral components of the pulse disperse during

propagation large rapid variations in the phase and the
width of the pulse can destroy a soliton if its width changes
rapidly through emission of dispersive waves. Dispersive
waves and solitons are resonantly amplified when
ω ¼ 2 and 3 THz, and such a resonance can lead to unstable
and chaotic behavior as shown in Figs. 7(b), 8(b), 9(b),
and 10(b).43

Fig. 4 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.024 ðW · mÞ−1,
B2 ¼ −0.044 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 1 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.

Fig. 5 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.032 ðW · mÞ−1,
B2 ¼ −0.044 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 1 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.

Fig. 3 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.014 ðW · mÞ−1,
B2 ¼ −0.044 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 1 THz (a) z ¼ 0 to 4 m (b)z ¼ 0 to 8 m.
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3.4 Anomalous Group Velocity GVD Effects

An important question that we can answer with our model is
how the anomalous GVD affects the behavior of the pulse
propagation in fiber laser. When values of B2 varies (−0.012,
−0.023, and −0.035) Ps2∕m and, γ ¼ 0.056 ðW · mÞ−1,

g ¼ 0.46 m−1, and ω ¼ 1 THz. The results show solitons
can still form if the SPM effects are balanced by the average
dispersion and become stable during the first 4 m as shown in
Figs. 11(a), 12(a), and 13(a). It is found that the dispersion
induced broadening of the laser pulse and this leads to

Fig. 6 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.056 ðW · mÞ−1,
B2 ¼ −0.044 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 1 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.

Fig. 7 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.056 ðW · mÞ−1,
B2 ¼ −0.044 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 0.5 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.

Fig. 8 Optical pulse propagation through a ring fiber laser with parameters γ ¼ 0.056 ðW · mÞ−1,
B2 ¼ −0.044 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 1 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.
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a reduction in the power with increasing the dispersion.
The dispersion effect is small on the shape of the pulse
because the cavity length is short, 8 m. The SPM
ðγa2° ∕16gÞ½1 − expð4gzÞ� became quite significant at
higher power levels, therefore solitons result from a balance
between anomalous GVD and SPM. Figures 11(b), 12(b),

and 13(b) show the solitons can become unstable in the pres-
ence of GVD and break up into a train of short pulses at
a width (FWHM) 2.6 ps.

Our analytical solution shows that the phase of the laser
pulse depends on a nonlinear phase shift ðγa2° ∕16gÞ×
½1−expð4gzÞ�, dispersion shift a°

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ∕2B2

p
expðgzÞωT and the

Fig. 9 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.056 ðW · mÞ−1,
B2 ¼ −0.044 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 2 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.

Fig. 10 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.056 ðW · mÞ−1,
B2 ¼ −0.044 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 3 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.

Fig. 11 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.056 ðW · mÞ−1,
B2 ¼ −0.012 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 1 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.
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carrier frequency shift 1∕2ðB2ω
2zÞ½1þ2a°

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ∕2B2

p
expðgzÞ�.

As a result, the gain coefficients play a dominant role to
change the pulse phase.

3.5 Gain Effects

A new feature is that the parameter g plays an important
role in determining the properties of the pulse.
Figure 14(a) shows the behavior of the pulse for net gain
g ¼ 0.1 m−1 with the parameters γ ¼ 0.056 ðW · mÞ−1,
B2 ¼ −0.044 ps2∕m and ω ¼ 1 THz. An important prop-
erty of optical solitons is that they are remarkably stable
against small perturbations aðzÞ and uðzÞ. Physically,
this behavior can be understood by noting that a soliton
results from a balance between GVD and SPM. In this
case, the net gain is small compared with the other
cases. Therefore, the perturbations are weak,
aðzÞ ¼ a°egz and uðzÞ ¼ a°

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ∕2B2

p
eðgzÞ,and the power of

soliton exponentially increased with increasing the length
of fiber laser beginning from 1 to 6.3 W at z ¼ 8 m.

Input pulse width 133 ps (FWHM) compressed to 66.8 ps
because of the combination of anomalous GVD and SPM
that leads to soliton-effect compression and nonlinear effects

(anomalous GVD and SPM) play an important role in this
case as shown in Figs. 14(b) and 14(c).

3.6 Comparing the Analytical Results with
Numerical Methods

Our results in regards to the parabolic shape of pulse Fig. (2)
and the behavior of the laser pulse have good agreement with
the results in Refs. 42 to 46. Comparing our analytical
method with a numerical method as split-step Fourier
method SSFM, it is important to understand the accuracy
and stability of the SSFM algorithm. Indeed, the step
sizes in z and t must be selected carefully to maintain the
required accuracy of calculation, depending on the order
of the method used. There are many approximations in
split-step Fourier method SSFM. As an example, when
using the Baker–Hausdorff formula, the third order in h is
neglected. The loss operator is left out for simplicity.
Ignoring the third order terms and higher when using
Taylor expansion, the solution of Modified NLS and
Maxwell–Bloch equation (which describes the dynamic
response of a two-level system of optical amplifier and
fiber laser) is more accurate, however, we should bear in
mind that it is only applicable to the lower gain regime

Fig. 12 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.056 ðW · mÞ−1,
B2 ¼ −0.023 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 1 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.

Fig. 13 Optical pulse propagation through a ring fiber laser with parameters, γ ¼ 0.056 ðW · mÞ−1,
B2 ¼ −0.035 ps2∕m, g ¼ 0.46 m−1, and ω ¼ 1 THz (a) z ¼ 0 to 4 m (b) z ¼ 0 to 8 m.
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G ¼ 20 dB. In addition, this equation must be solved for
pulses whose width is shorter or comparable
with the dipole relaxation time (T2 < 0.1 ps). The solution
becomes invalid under the condition T ≫ T2.

4 Conclusions
By applying our technique to the NLS equation included
nonlinear optics as gain dispersion, anomalous GVD,
SPM, and gain, we have derived two differential equations
for the shape of the pulse and the phase. At high-level net
gain, solution of the equation plays the role to generate
a train pulse with (sech) shape through the fiber laser. We
have two periods to solution; the first z ¼ 0 to 4 m, the
pulse shape does not change and the second z ¼ 4 to
8 m, the modulation instability can convert a pulse into
a train of short pulses. It is evident that GVD and SPM
play a major role in establishing pulse train at a high-
power level. In our model, at T ≫ T2, the power was
large enough to lead to considerable pulse narrowing during
the amplification process, and it provides an important refer-
ence for experimental research on optical pulse in fiber
lasers.
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