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Abstract: Microgrids are small power systems and can operate in two modes: island mode and grid-

connected.  Switching between these two modes may cause a change in the load, which causes 

disturbances that affect the operation of the microgrid (MG), as the load change leads to a change in 

the voltage and frequency of the system so the operating control problem main issue for the microgrids 

that is need addressed during operation. A control system is required for accurate synchronization, 

system protection, and load reduction in an imbalance scenario, as well as to achieve system stability 

while supplying robust and efficient electricity to the microgrids. Droop control is one of the common 

methods used in the microgrid (MG) to adjust the real power and reactive power and control the 

system voltage and frequency. However, the traditional droop control suffers from problems in the 

accuracy of load distribution, line impedance mismatch, and slow dynamic response, as a result, 

parameter values must be carefully chosen. To address these issues, many techniques have been used, 

one of which is the optimization techniques. This paper reviews five different optimization techniques 

based on metaheuristic optimization algorithms applied to microgrids that address some of the 

drawbacks of droop control by optimizing droop control parameters for optimal flexible microgrid 

(MG) operation.   These techniques include Particle Swarm Optimization (PSO), Genetic Algorithm 

(GA), Grey Wolf Optimization (GWO), Grasshopper Optimization Algorithm (GOA), and Salp Swarm 

Algorithm (SSA). 

Keywords:  Microgrid; Droop Control; Optimization Algorithms; Load Change; Voltage and 

Frequency Stability.  
 
1. Introduction 
   A microgrid (MG) is a small-scale distribution network that is low voltage consisting of various 

distributed generation (DG) units whether it is renewable (wind turbines, microturbines, fuel 

cells, photovoltaic, etc.) conventional (gas microturbines, biomass boilers, etc.), or a combination of the 

two, and electrical loads that are either connected to the utility grid at the point of common coupling 

(PCC) or separated so Interconnecting power systems is important for maintaining an efficient 

power flow supply and improving the system's reliability. where renewable energy has become a 

significant source of power systems replacing conventional sources[1][2][3]. In recent decades, the use of 

distributed generation (DG) has increased dramatically, and the demand for electrical energy has risen as 

it has become a profitable supplementary service in our lifestyle[4]. DG units provide the following 

advantages over conventional centralized power generation: higher energy efficiency, less pollution, 

lower power transmission losses, and a more flexible installation site[5]. A microgrid can operate in two 

modes grid-connected mode and islanded mode. In the grid-connected mode, a controller's primary 

function is to manage energy. The microgrid connects to the utility grid via a bus bar known as the Point 
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Common Coupling (PCC). In this mode of operation, the utility grid provides stability to the microgrid. 

In islanded mode, the controller maintains voltage and frequency stability while fulfilling local energy 

demands. The microgrid regulates this stability via the instrumentation of the electronic converters that 

connect the parallel generators[6][7]. One of the most distinguishing advantages of microgrids is their 

capability to operate in a decentralized way without the supervision of the utility main grid. Microgrids 

are essential for deploying renewable energy resources due to their distinct features[1]. To get high-

quality voltage and power output from a parallel inverter, a control technique aimed at reducing certain 

performance parameters is required. To ensure microgrid stability, all DGs must share reactive and active 

power from the load at the same time. Electrical variables such as frequency and voltage will need to be 

regulated to safeguard the stability of the microgrid[8]. So there are several methods for controlling 

micro-grid contain; the master-slave technique, the current power-sharing technique, and the droop 

control[9]. Droop control is one of the common inverter control techniques in which the alteration in 

real and reactive power is tackled by changing the magnitude of supply voltage and supply frequency, 

identical to that of the governor running the alternator[10]. Droop control is typically employed in 

microgrid island operations. The two primary control objectives are proper load sharing and reliable 

power supply. To accomplish these, droop control, which simulates the behavior of a synchronous 

generator in the system of power by decreasing the voltage and frequency magnitude, is extensively 

employed for coordinating parallel inverters[11][12]. The main benefit of the droop control method is no 

communication lines between parallel-connected inverters. The non-existence of communication links 

between parallel-connected inverters offers substantial flexibility and good reliability. In previous 

literature, many methods have been presented to optimize droop control such as, In[13], the Aquila 

Optimizer Algorithm is used to improve the capability of droop control on a DC microgrid. In[14], the 

author combined droop control with ant colony optimization (ACO).Based on a real-time self-tuning 

mechanism to conventional PI regulators for accurate power sharing across parallel linked inverters in an 

AC MG standalone mode. In[15], Harris Hawks Optimization (HHO) was used on a microgrid to 

calculate droop control scheme coefficients and PI controller gains. In [16], using a new optimization 

technique called sine-cosine based monarch butterfly (SCMBO), an optimal energy management solution 

is found, and droop control. In[17], a new evolutionary technique named cuckoo search is used to 

coordinate the power management of distributed generators in an online droop tuning system. In[18], 

used (DE-NGM) is a new variant of Differential Evolution (DE) to compute islanded MGs' power 

flow solution. This paper presents a review of five different optimization techniques to optimize droop 

control coefficients, four of which are swarm intelligence behavior tracking (Particle swarm optimization, 

Grey wolf optimizer, Grasshopper optimization algorithm, Salp swarm algorithm) and one is 

evolutionary behavior tracking( Genetic algorithm), which aims to improve droop control when the droop 

control isn’t optimal, in case the deviations that occur as a result of switching between grid-connected 

mode and island mode for microgrids are not minimized.  

     The paper is arranged as follows: Section 2 presents the concept of droop control, Section 3 presents 

the concept of optimization in general, followed by the presentation of the classification of optimization 

algorithms, Section 4 presents the optimization in droop control and presentation of the methods that 

used in optimize the droop control, While Section 5 discussed the optimization algorithms in detail and 

explain the scientific literature review for droop control when the authors used these algorithms 

and Finally, Section 5 indicates the conclusion of this paper. 

 

2.  Concept of Droop Control 
   The basic droop control is the initial stage of the inverter control approach. Droop control 

utilizes inverse droop control or conventional by utilizing a relationship between the grid's frequency and 

voltage and the power generated by the inverters with no need for communication among inverters The 

droop controller regulates frequency and voltage according to the current loading conditions. To create 

voltage and frequency, it mainly relies on computing the active and reactive power and inserts the 

coefficient of droop can be expressed as the equations below, and Fig.1 shows droop characteristics. In a 

microgrid, power generation is indicated by the voltage and frequency levels. The droop uses this 

information to adjust the power that the inverters deliver by adjusting the reactive and active power set 
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points. This method allows for grid expansion to handle additional distributed loads and DERs. It is also 

permitted for DERs and loads to be disconnected. Furthermore, droop control doesn't require high-speed 

communication, which results in significant cost savings and exceptional dependability[19]. Fig.2 Shows 

the droop line for the VF and PQ control. 

                                𝑓 = 𝑓𝑛 −𝑚(𝑃 − 𝑃
∗)                                (1)  

                                𝑣 = 𝑣𝑛 − n(Q − Q
∗)                                (2) 

 
Where f: is the reference frequency, V: is the reference voltage, fn: refers to the frequency characteristics' 

constant coefficients, Vn: refers to the voltage characteristics' constant, and n and m: denote the droop 

coefficients. 

 

Fig. 1. The droop characteristic of conventional [20]. 

 

 

 

Fig. 2. Line of droop for the( VF and PQ ) control strategy [21]. 

 

3. Concept of optimization  
   Optimization in general is determining the best values for a given problem's variables to minimize or 

maximize an objective function. Optimization challenges exist in a variety of domains of study. To 

address an optimization problem, several steps are required. First, the problem of the parameters must be 

determined. The Problems can be classed as continuous or discrete depending on their parameters. 
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Second, the constraints applied to the parameters must be identified, Constraints divide optimization 

issues into two categories: constrained and unconstrained. Based on the parameters' nature, an FF or 

objective function (OF) is produced, which must be maximized or minimized to obtain the optimal set of 

parameters. Third, investigate and consider the problem's objectives. In this scenario, optimization issues 

are divided into single-objective problems and multi-objective problems, and finally, according to the 

specified categories of parameters, restrictions, and number of targets, an appropriate optimizer must be 

selected and used to address the problem[22][23]. So any mathematical optimization problem, either 

minimizing or maximizing a certain objective function, typically contains four major components: 

objective functions, decision variables, equality and non-equality constraints, and the optimization 

algorithm used[1]. A metaheuristic optimization algorithm could demonstrate very promising results 

when addressing a specific type of optimization issue, yet the same algorithm may demonstrate poor 

performance on other optimization problems [24]. Mathematical optimization mostly depends on the 

gradient-based construction of the associated function to get the optimum solution. Mathematical 

optimization has some drawbacks such as: Mathematical optimization methods ridden from local optima 

trap. This means an algorithm that assumes the local solution to be the global solution. This fails to 

achieve the global optima. They are frequently useless for issues with expensive computational 

derivations that the unknown[22]. 

 

 

3.1. Classification of optimization algorithms 
   The range of computing problems that exist and the quantity of algorithms that have been devised to 

tackle them are tough to imagine[25]. So, the algorithm can be classified into many types as the Fig.3 

The majority of real-world optimization problems face various challenges, including, non-linear 

constraints, high computational cost, dynamic/noisy objective functions, non-convex search landscape, 

and huge solution space. These issues are the primary criteria for selecting whether to use an accurate or 

approximation algorithm to address complex problems[26]. Metaheuristic optimization algorithms (MAs) 

have gained popularity in recent decades due to their reduced requirements computation capacity, 

simplicity, high performance, derivation-free mechanism, flexibility, and local optima avoidance 

compared to deterministic algorithms for optimization issues[27][28]. 
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Fig. 3. Classification of Optimization Algorithms. 

 

3.1.1. Swarm intelligence (SI) 

   Swarm intelligence (SI) refers to the collective behavior of decentralized, self-regulating systems. 

Typically, SI systems are composed of a population of simple factors that interact individually with 

their environment and one another Additionally, the SI can be characterized as a branch of artificial 

intelligence that is employed to mimic the collective behavior of natural social swarms, such as ant 

colonies, animal herding, fish schooling, bacterial growth, animal herding, and bird flocking[29][23]. to 

create swarm intelligent life systems having cooperative behavior using computers. There are five 

fundamental principles of swarm intelligence [30][31]. proximity principle: The swarm must be capable 

of performing the basic space and time calculations, Quality principle: The swarm must have the ability 

to respond to environmental quality factors, Stability principle: The swarm should maintain the same 

behavior mode regardless of environmental changes, Diverse response: The swarm should not confine its 

resources to a narrow scope, Adaptability: The swarm should change its behavior mode when it is 

appropriate.  

 

4. Optimization in droop control 
 

   The traditional droop method has several disadvantages, such as an inherent trade-off between load 

sharing and voltage regulation, slow transient response, line impedance mismatch among parallel-

connected inverters that affects reactive and active power sharing, weak harmonic load sharing among 

parallel-connected inverters in situations with non-linear loads, and poor performance via renewable 

energy resources. Therefore, the values of the droop control coefficients must be chosen carefully[32]. 

Significant attempts were made to improve the droop control strategy and droop gain optimization[33]. 

Optimization techniques are an important topic for researchers to improve droop control parameters. 

where various computational and optimization algorithm techniques are to address the problem in 
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microgrid and optimization droop control such as in In[13], the Aquila Optimizer Algorithm is used to 

improve the capability of droop control on a DC microgrid. In[14], the author combined droop control 

with ant colony optimization (ACO).Based on a real-time self-tuning mechanism to conventional PI 

regulators for accurate power sharing across parallel linked inverters in an AC MG standalone mode. 

In[15], Harris Hawks Optimization (HHO) was used on a microgrid to calculate droop control scheme 

coefficients and PI controller gains. The authors in[34] used a new optimization technique called Moth-

Flame Optimized(MFO) adaptive droop control to optimize power and current sharing while minimizing 

voltage variance between the DC-DC converters in microgrids the suggested technique adjusts droop 

gains in response to changes in dynamic voltage and load current, outperforming traditional droop 

control techniques which struggle for robustness under such situations.  In [16]An optimal energy 

management solution and droop control are found using a new optimization technique called sine-cosine-

based monarch butterfly (SCMBO).  

    In[35][36], the Hybrid Big Bang-Big Crunch (BB-BC) algorithms regulate frequency and voltage 

and enhance power control by optimizing the PI controller gains in real-time. In[17]A new evolutionary 

technique, cuckoo search, coordinates the power management of distributed generators in an online 

droop tuning system. In[37], Turbulent Flow Water-Based Optimization (TFWO) to determine the ideal 

size for a hybrid standalone microgrid generation. In [38], This work offers an optimal droop control 

approach for the distributed inverters in a microgrid in standalone mode using real-coded differential 

evolution (DE). In[18], used (DE-NGM) is a new variant of Differential Evolution (DE) to compute 

islanded MGs' power flow solution. Also the researchers in[39] This study uses an adaptable Differential 

Evolution (ADE) method to improve the droop control virtual resistances for dispatchable units' grid-

connected converters, allowing power flow to be managed and minimize costs connected with utility 

networks, renewable energy sources (RES), fuel cells, energy storage systems (ESS), and distribution 

power losses and reduce the operational costs of DC microgrids using real-time pricing. In [40] a new 

optimized droop control method is proposed that employs a metaheuristic multi-objectives evolution 

algorithm known as the Centering Force-Gravity Search Algorithm (CF-GSA) to enhance frequency and 

voltage stability, power sharing, and power quality in microgrid systems.[41] This work presents a new 

optimization algorithm a Modified Osprey Optimization Algorithm (MOOA) to improve the droop 

control method in DC microgrids that combines the L'evy flying method and the Osprey Optimization 

Algorithm (OOA).  

  In addition, many algorithms rely on swarm intelligence that has been used to solve many problems 

small networks suffer from. The droop controller was developed using Henry Gas Solubility 

Optimization (HGSO) to optimally select PI controller gains and droop control parameters to achieve a 

better microgrid output responsiveness during islanding[42]. This study provides a new methodology for 

improving the control of islanded microgrids (MGs) with the Coot Bird Metaheuristic Optimization 

(CBMO). The study's goal is to determine the optimum gains for a PI inside a multi-

objective optimization structure[43]. In[44]This paper proposed developing an optimal droop controller 

for microgrids during islanding utilizing the artificial fish swarm algorithm (AFSA) to reduce the 

frequency deviation that happens when the microgrid transits islanded mode or when the loads fluctuate 

or vary. In addition, many algorithms rely on swarm intelligence that has been used to solve many 

problems small networks suffer from. Fig. 4 illustrates a flowchart of the optimization process when 

using algorithms to improve droop control for microgrid systems. 
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End
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Test MG performance and optimization droop 

controller by any algorithm chosen 

No

 

Fig. 4. Flowchart used in the optimization of the droop control for microgrid. 

 

    Because it is difficult to cover all of the optimization methods utilized in droop control for MG 

applications, this article is limited to ''swarm intelligence'' based optimization strategies for four 

algorithms (PSO, GWO, GOA, SSA) and one of the evolutionary algorithms (GA). These algorithms are 

the most common in the subject of droop control. The following is a review of these algorithms along 

with a previous review of studies that have used these techniques to optimize droop control parameters in 

microgrids.  
 

5. Optimization techniques 

 

5.1. Particle Swarm Optimization Algorithm (PSO)  
    Particle swarm optimization (PSO) is a population-based stochastic optimization method that mimics 

the intelligent social behavior of animals including schools of fish, flocks of birds, and herds, which was 

proposed by[45]. These swarms follow a cooperative food-finding strategy, with each member modifying 

the search behavior depending on themselves and other members' experiences of learning. PSO allows 



Misan Journal of Engineering Sciences                                          ISSN: 2957-4242 

Vol. 3, No. 2, Dec 2024                                                             ISSN-E: 2957-4250     

 

55 

 

particles to adjust their velocities and location in response to environmental changes, meeting quality and 

proximity requirements. Particles in PSO keep stable mobility in the seeking space while adapting to 

environmental changes[30]. The PSO algorithm design is based on two research studies: One is an 

evolutionary algorithm, similar to an evolutionary algorithm; PSO also employs a swarm mode, allowing 

it to simultaneously search a vast region in the solution space of the optimized objective function, The 

other is artificial life, which is the study of artificial systems that exhibit lifelike features[30]. Particle 

swarm optimization (PSO) may address numerous problems, such as the problem of constructing 

reliability-specified optimum microgrid structures[46].  

 

5.1.1. mathematical model of the particle swarm optimization (PSO) 

 

5.1.1.1. Parameter of PSO 

There are various significant parameters in the PSO algorithm. They are as follows: 

 Inertia weight: Inertia weight balances local and global searches. A larger inertia weight 

tends toward global searches, while a lower inertia weight tends toward local searches. As a 

result, the value of inertia weight decreases over time. 

 Learning factors c1 and c2: The learning factors c1 and c2 denote the weights of the 

stochastic accelerating terms that pull each particle into the gBest (or nBest) and pBest. In many 

situations, c1 and c2 are set to 2.0, causing the search to include the region centered on gBest 

and pBest. Another popular value is 1.49445, which ensures the convergence of the PSO 

algorithm. 

 Speed limits Vmax:  The particles' speed was restricted by a maximum speed Vmax, which 

can be utilized as a restraint to control the particle swarm's global search capability. 

 Position limits Xmax: The particle locations may be restricted by a maximum location 

Xmax to prevent particles from flying outside of the actual solution space. 

 Population size: The population size selection is associated with the issues to be addressed, 

although it isn’t susceptible. 

 Initialization of the population: Initialization of the population is also a critical problem 

Generally; the starting population is produced at random. 

 

 

 

 

 

 

5.1.1.2. Basic of PSO 
The original particle operated according to the mathematical model of velocity and position  

 

                 𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑔best − 𝑥𝑖
𝑘)                       (3)                             

 

                    𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                              (4)            

 

where: k: number of iterations, i: particle index, 𝑣𝑖
𝑘: the velocity of particle i at iteration k, 𝑝𝑖

𝑘: local 

best position, 𝑔best  : global best position, 𝑥𝑖
𝑘: location of particle i at iteration k, 𝑐1 and 𝑐2: 

coefficients which are usually between [0 2], 𝑟1  and 𝑟2 : Random values are created for each 

velocity update. 

                    𝑣𝑖
𝑘+1 = 𝑤(𝑡) ∗ 𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑔best − 𝑥𝑖
𝑘)                (5)           

                    𝑤(𝑡) = 𝑤max − ((𝑤max −𝑤min ) ∗ 1/𝑘)                            (6)                  
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Where, 𝑤(𝑡) : inertia constant it is often in the range [0 1] 

 

5.1.1.3. PSO with inertia 
 

The velocity update is as follows: 

 

               𝑣𝑖
𝑘+1 = 𝜒 (𝑣𝑖

𝑘 + 𝜙1 ∗ 𝑟1 ∗ (𝑝𝑖
𝑘 − 𝑥𝑖

𝑘)+𝜙2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑘))            (7) 

 

   Regarding the bird’s analogy, Birds fly to find food. The position of food is equivalent to the best 

solution to the problem. The birds' goal is to converge or narrow down the position of the food. The final 

site where the birds settle is the optimum option discovered by the solution process, three elements 

determine particle motion. They are as follows [46]. 

 

 Inertia: particles tend to travel in the same direction that they were initially moving. 

 Personal Best: Every particle recalls particularly the site that provided the best estimate of the 

objective function. This position (or solution) is referred to as the particle's personal best. 

 Group Best: every particle gravitates toward the group that performs best. The group's best 

position is the swarm's best solution at any given time step. Fig.5 explains the steps of 

optimization of PSO to optimize the droop control.   
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Fig. 5. Flowchart using particle swarm optimization to optimize droop control.  

 
    The following is a review of literature using the PSO to optimize droop control  

   The authors in [47], have been improving particle swarm optimization algorithms in standalone 

microgrids (MG) with several distributed generations (DG) paralleled to get optimal conventional droop 

control in real-time and analyze for small signal stability. Proposed the method by utilizing the basic 

particle swarm optimization (PSO) algorithm. First, an analysis is conducted of the microgrid structure 

and the impact of line characteristics on the conventional droop control approach. Then the fuzzy 

inference system is proposed to dynamically modify the particle swarm optimization parameters as well. 

The precision and convergence speed are improved and effectively improve the ability to search locally 

and globally of the original algorithm by using the fitness function in the equation (8). The research 

author used this method, to study the microgrid with several DGs where used only the case of two 

equivalent DGs in parallel, taking into account the output characteristics of different DGs and improving 

the algorithm to better the effectiveness of the suggested control approach in more intricate experimental 

scenarios, where the capacity ratio between DG1 and DG2 is 2:1 and the thresholds for setting the 

voltage deviation ∆𝑈(%) are 10% and the frequency deviation f (Hz) is 0.3 Hz. This way many 

scenarios such as unbalanced conditions with constant power load in scenario show the case at t = 1.3 s, 

reactive load rises by 2 kvar, and the active load increases by 5 kW. At t = 1.6 s, the reactive load is 
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decreased by 2 kvar, and the active load is decreased by 2 kW. And shows the highest frequency variation 

is 0.2 Hz, which stabilizes after 0.2 s of oscillation. the voltage drop reaches up to 3 V but may be 

recovered after 0.05 s to the rated voltage, it can reduce voltage variation and enhance power allocation 

accuracy. unbalanced condition with the motor, in this scenario, uses the motor load to show the 

highest frequency variation is 0.25 Hz, which stabilizes after 0.2 s of oscillation The voltage drop is up to 

7 V, and the value can be recovered to 220 V after 0.1 s. subsequently, improves system stability 

compared with the conventional methods. Mutation of line parameters, this case shows the situation in 

which the system line parameters change suddenly. Under the conventional droop control, the deviation 

in reactive and active power between two DGs is more noticeable when the system parameters of the line 

change abruptly. plug-and-play functionality in this scenario, When DG2 switching occurs, the control 

approach can more correctly allocate system power than conventional droop control. The suggested 

control system ensures accurate allocation of reactive and active power based on DG-rated power, even 

in the event of a failure. In the last scenario communication link failure, the show although the power 

allocation precision is reduced Despite the communication system collapse, the error is still significantly 

lower than conventional droop control. As a result, the suggested algorithm can effectively respond to a 

momentary disruption of the communication system. Finally, Simulation and experimental results prove 

that the control technique can significantly enhance reactive power allocation accuracy while keeping 

system frequency stability and bus voltage, as well as achieve undeferential adjustment of power and 

voltage under different operating conditions, thereby improving the system's dynamic performance and 

transient stability. 

                                  𝐹𝑖 = Δ𝑃𝑖 + Δ𝑄𝑖 + Δ𝑈𝑖 + Δ𝑓𝑖                         (8) 

Where: Δ𝑃𝑖  represent the active power deviation, Δ𝑄𝑖 : represent the active power deviation, Δ𝑈𝑖 : 

represents the voltage deviation, Δ𝑓𝑖 : represent the frequency deviation 

 

 

 
 

Fig. 6.  Topological schematic of a multi-source microgrid [47]. 

 

  In reference [48], the author uses the particle swarm optimization algorithm as an optimization 

technique to Optimize the Microgrid controller's parameters in standalone mode for controlling 

distributed generation. This is done by minimizing the errors in the voltage and current controllers. The 

research author used this method, to study the microgrid with two DG under the maximum voltage 

deviation (∆V) is set to 5% and maximum frequency deviation (∆f) is set to 0.5 Hz. The findings from 

the simulation demonstrate the efficient operation of the suggested optimal approach. Where these results 

showed the frequency deviation is within the limit permissible range, The DGs are shown to follow 
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rapidly to changes in load and to reduce overshoot, Power sharing is correctly distributed between DG 

units and It is evident that the system responds appropriately to transient responses.  This paper sets the 

minimal limits for all coefficients to zero. the optimization problem can be expressed as equation (9). 

Finally, the microgrid has well responds and performs well when using the improved controller. 

                                Min(Error)                                 (9)                                                

  The authors Yavuz et al. 2023,[49] present a novel method for solving the problem of optimal droop 

coefficient selection by incorporating a Newton-Raphson (NR) algorithm into a sequential sampling-

based particle swarm optimization (PSO). The NR algorithm's adaptability and rapid quadratic 

convergence make it excellent for addressing power flow equations in standalone microgrids. PSO's 

capability to operate without making assumptions about the form of objective function or restrictions 

makes it a flexible choice for carrying out the process of optimization. The research describes a 

sequential sampling-based stochastic optimization approach for optimizing design variables inside a 

droop control mechanism to ensure the stability of a standalone microgrid while addressing system-level 

objectives in a stochastic setting. Also introduces the JA-MNR method to improve the MNR's 

convergence capabilities and incorporates the restricted PSO methodology into the proposed simulation 

optimization scheme. To validate the efficacy of the suggested strategy, two structurally distinct test 

cases were developed. Case 1:  is a single microgrid, in this situation first tested the suggested technique 

in a 6-bus system to see how utilizing improved droop coefficients affected distribution losses and 

microgrid stability across the network. The technique is proven utilizing and 33-bus test and IEEE-30 

networks, situation 2 consists of two interconnected six-bus systems. It is also established to validate the 

collaborative operations of two associated microgrids that can interchange conduct cooperative and 

electricity operations. In both instances 1 and 2, it is assumed that a failure occurs in the main grid, 

rendering it unable to supply electricity to the adjoining microgrid. Thus, the only electricity-

generating sources in microgrids are RES with droop-controlled DGs and maximum power point tracking 

(MPPT). Simulation results demonstrate that the suggested strategy improves a microgrid's stability 

while decreasing active and reactive distribution losses across the network. The results also show 

substantial enhancement in the voltage bus profiles while keeping a steady frequency throughout the 

standalone mode of operation within the investigated microgrids as compared to their traditional 

equivalents. Finally, the results demonstrate that the suggested approach can improve the coefficients of 

droop of the dispatchable droop-controlled DGs while capturing the randomness in the system with great 

accuracy. 

 

  In this research[50], Particle swarm optimization is used to find the ideal values for the optimized 

parameters in each microgrid operator mode. In addition, nonlinear time-domain-based and eigenvalue-

based objective functions are developed to reduce measurement error and improve damping 

characteristics. Many issues were presented in the research as optimization problems, such as Microgrid 

models that operate in various modes, both linear and nonlinear, controller parameters and Power-sharing 

factors optimized in islanded mode, the optimal design of an LC filter and in the grid-connected mode 

dampening resistance is carried out. Linear and nonlinear models were created using MATLAB code to 

investigate the stability of an inverter-based microgrid operating in both stand-alone and grid-connected 

modes. In the case of grid-connected mode, the DG unit is made up of a DC voltage source, coupling 

inductance Lc, a series LC filter, and a VSI. The test inverter-based DG has a rating of 10 kVA. The 

inverter is controlled to inject the actual and reactive power needed by the utility. To assess the 

performance of the proposed controller in this mode, a nonlinear time-domain simulation was performed. 

To show how effective the suggested controllers and design strategy are, an eigenvalue analysis has been 

done. This method proposed PSO-based design approach has been implemented and is used to shift the 

eigenvalues to the left in the s plane to maintain the stability of the system. In the standalone mode, three 

inverter-based DGs (10 kVA) are coupled to two loads via a series LC filter, lines, and coupling 

inductance Lc.in these modes nonlinear time-domain simulations were performed at two 

various disturbances to investigate the effectiveness of the most optimal settings of the proposed 

controllers and power-sharing coefficients. Finally, the findings indicate significant improvement in 
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damping characteristics and system performance, including reduced overshoots and settling time. 

 

   M. A. Ebrahim et al.in 2018,[51], use the particle swarm optimization algorithm to optimize the 

secondary control level by compensating for any voltage and frequency variations produced by 

the primary level To obtain a steady state and good dynamic performance for microgrid frequency and 

voltage. The modeling, analysis, and control techniques for a VSI-based standalone microgrid are created. 
An integrative control system for a standalone microgrid is carried out, with two levels of control, the 

primary control, and the secondary control. The primary control level includes the voltage and current 

inner control loops, droop control loops, and virtual inductor loops. This control level is required to 

adjust frequency and voltage, as well as to ensure accurate power sharing across paralleled distributed 

generators (DGs). The secondary control level is used to remove the angular frequency and voltage 

magnitude variations caused by the primary control level. Tests have been conducted on two microgrid 

structures that are modeled and simulated in MATLAB The first scheme contains only one DG unit. The 

second structure consists of four DG units. All structure is evaluated without and with a secondary level 

of control under changes in load to demonstrate the control system's robustness. When a microgrid 

consists of only one DG unit, in the case without secondary control can be observed there are numerous 

variations from the set-points of voltage and frequency magnitude. And in the case of existence the of 

secondary control, the output reactive and real powers are noticeably higher than in the case without 

secondary control. The transient oscillations in frequency and voltage magnitude are highly damped 

compared to the conventional controller. Furthermore, this method reduces steady-state time for 

frequency and voltage responsiveness compared to the conventional controller. moreover, the responses 

of reactive and real powers for conventional and optimized secondary controllers are nearly identical. 

When a microgrid contains four DGs, it can be seen that the frequencies of DG units increment at the 

time 1 second by activating the conventional secondary control from 49.78 Hz to 50 Hz. Furthermore, it 

can be seen the increase in the voltage and real output power under the load variation The voltage 

amplitude under the load fluctuation at the time of 3 s remains constant at 311.2 V for DG1, climbed 

from 306.8 V to 309.5 V for DG2, increased from 309.6 V to 311.2 V for DG3, and increased from 308 V 

to 310 V for DG4 and the power at 3 s, the power of DG1 and DG3 increases from 16.1 KW to 18.3 KW, 

and DG2 and DG4 increase from 12.2 KW to 13.7 KW. The results demonstrate the efficiency 

performance of the suggested optimal strategy. From these results can be concluded: that (i) the droop 

control enabled optimum power sharing among the independent paralleled DGs. (ii) the intended values 

of voltage and frequency magnitude were recovered without any variations under load change by 

activating the secondary control. (iii) In addition, the PSO technique was used to choose an accurate 

secondary controller parameter. Finally, the use of optimized secondary controllers improves the voltage 

and frequency responses of all DGs. 

 

 

Fig. 7. The basic structure of microgrids used in this paper [51]. 
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   This work,[52] provides a method for determining the optimum droop parameters of dispatchable 

distributed generation (DG) units in autonomous droop-controlled DC microgrids. The main objectives 

for this work are to reduce fuel costs, improve small signal system stability, increase system damping, 

and shift the dominating eigenvalue off the imaginary axis to the left of the s-plane. The author used a 

particle swarm optimization algorithm (PSO), and using a fuzzy max-min method to solve the bi-

objective optimization problem. To validate the proposed method simulations, a bus droop-controlled DC 

microgrid test system is used. This method studied many scenarios such as: (i) Optimizing droop 

constants for minimum fuel cost by using equation (10) (ii) Optimizing droop constants for maximum 

small signal stability by using equation (11) (iii) Optimizing droop constants for minimum maximum 

small signal stability and minimum fuel cost. The dominant eigenvalues are nearer to the imaginary axis 

for scenario (i). So, for scenario (ii), the dominating Eigenvalues are located on the left side of the s-

plane, the furthest from the imaginary axis. for scenario (iii), the dominant Eigenvalues are located in 

between those for scenarios (i) and (ii). It is noted that the system stays stable under varying loads in all 

three scenarios (S1, S2, and S3). On the other hand, scenario (ii) has the maximum degree of small signal 

stability, whereas scenario (i) has the lowest. The level of stability for scenario (iii) lies halfway between 

scenario (i) and (ii) scenarios. when the scenario loads at buses 2 and 3 don't change. In this situation as 

well, scenario (ii) produces the highest level of stability, whereas scenario (iii) produces the lowest level 

of stability. Scenario (i) level of stability falls between that of scenario (ii) and (iii). Moreover, time-

domain simulations were run to verify the outcomes. Additionally, a controlled elitist genetic algorithm to 

optimize the droop value for the simultaneous saving of fuel costs and improvement of small signal 

stability. Finally, the proposed method's outcome has been verified through comparison with the 

controlled elitist genetic algorithm's outcome. 

                 Minimize: 𝑂𝐹1 = (𝑚𝑎𝑥
∀𝑘∈𝐾

 (Real{𝜆𝑘})) + ∑  𝑘∈𝐾 (1 − 𝜉𝑘)                  (10)                                 

                   Minimize : 𝑂𝐹2 = ∑  𝑁𝐷𝐺
𝑖=1 (𝑎𝑖 + 𝑏𝑖𝑃𝑔𝑖 + 𝑐𝑖𝑃𝑔𝑖

2)                      (11)   

Where: 𝜉𝑘: represents the damping ratio for the kth eigenvalue, k: represents the set of each eigenvalue, 

𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖:represents the fuel cost coefficients, NDG represents the number of DG units dispatchable 

in the DCMG, and 𝑃𝑔𝑖 : represents the power generation DG unit dispatchable. 

 

   In this paper [53], proposes a method to optimize droop-controlled islanded microgrids (DCIMG). 

The main objectives of this work are (i) to reduce the emissions in a droop-controlled islanded microgrid 

yet achieve all operational requirements. (ii) Reduce the operational cost. The problem of multi-objective 

optimization is tackled by utilizing fuzzified particle swarm optimization (PSO). The suggested 

formulation considers electricity demand, renewable power uncertainties, load uncertainties, and heat 

demand in the microgrid.  A set of operational constraints of a DCIMG were used such as:(i) All the line 

currents were within limits (ii) all node voltages were within the permitted limits. (iv) DGs outputs of 

reactive and active power within their rated capacity. To verify the suggested method for the problem of 

total operation cost (TOC) and emission minimization by using equations (12,13). The suggested 

algorithm's performance was evaluated using a 33-bus DCIMG test system without regard for BESS. The 

system has a peak reactive power load of 2.290 MVAr and a peak active power load of 3.715 MW with A 

nominal voltage level is 12.66 kV. To test the system are considered two case studies tacked into account 

as (i) 33 Bus DCIMG system with no batteries, in case 1, when DG units had capacity-based droop 

settings, in this case, the result shows the natural gas turbine (NGT) is the biggest dispatchable DG unit 

and droop constants are the lowest also show Biomass and natural gas fuel cell (NGFC) DG units 

have identical ratings. In case 2, when only total operation cost (TOC) minimization in this case, the 

result shows, that the Biomass DG unit operates in droop mode, and NGFC and NGT DG units operate in 

PQ mode. NGFC and NGT units have higher power efficiency than biomass DG units, and their fuel 

costs (natural gas) are substantially lower than those of biomass units. To minimize TOC, natural gas-

based DG units (NGT and NGFC) provide as much inexpensive power as feasible, whereas biomass DG 

units generate only enough power to meet the balance power need. In case 3, only emission reduction in 
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this situation, the biomass DG unit operation in PQ mode, NGFC and NGT and NGFC operation in 

droop mode, to reduce emissions, it generates as much clean power as possible and NGT units produce 

greater power than NGFC units. In case 4, when Bi-objective optimization, in this scenario, the aim is to 

reduce both TOC and total emissions concurrently. Test system 2, 33-bus DCIMG battery-operated 

system, in this case, it is presumed that a 500 kWh and 150 kW battery is linked to bus number 6. 

The minimum and maximum energy permitted in the battery are 500 kWh and 100 kWh (equivalent to a 

State of Charge (SOC) of 0.2). Finally, the suggested algorithm for tackling the multi-objective 

optimization issue is significantly easier to code than prior GA-based multi-objective solutions. 

                              min 𝑓1 = ∑  𝑁𝑆
𝑠=1 𝜋𝑠

𝑛𝑜𝑟𝑚 ⋅ 𝑓1𝑠                             (12)  

                              𝑚𝑖𝑛𝑓2 = ∑  𝑁𝑠
𝑠=1 𝜋𝑠

norm ⋅ 𝑓2𝑠                              (13) 

 
   In this work,[54], The nonlinear model's optimal controller design for a standalone inverter-based 

microgrid has been utilized. An individual inverter's nonlinear model consists of the controllers, coupling 

inductors, and output filter. Particle swarm optimization (PSO) was used to obtain the optimal controller 

parameters for the proposed method and to optimize the proposed nonlinear current and voltage 

controllers. The main objective of this work is to investigate the stability of the system for the selected 

values of droop gains. The test system comprises of three inverter-based microgrids that link with two 

loads via coupling inductances and series LC filter. The system was tested under two types of disturbance 

(i)The first disturbance: fault occurs at the first load. (ii) The second disturbance is a step change in the 

real power of 3.8-Kw. In the first disturbance, It can be noted that DG1 took the majority of the transient 

response, whilst DG2 and DG3 responded more slowly based on the effective impedance visible from the 

load point because DG1 is closer to the altered load and the system is steady after a perturbation. In the 

second disturbance, to investigate the low-frequency mode response under severe test load conditions, a 

test involving a step change of load 1 was conducted. In this test, there was first no load connected to the 

system, but later a load of 3.8 kW at bus 1 was switched on. the test Shows the reactive and active power 

responses of the inverters during such a load transient. It is also possible to conclude that reactive power 

sharing is unsatisfactory in this scenario. Increasing reactive power droop increases can boost 

performance, but may result in poor bus voltage regulation. Finally, based on the results, we can conclude 

that the PSO technique is highly effective for managing the PI controllers to obtain sufficient system 

stability following disturbances.  

 

   Chung et al. in 2010,[55], suggests using particle swarm optimization (PSO) to optimize inverter-

output controllers and droop controllers for inverter-interfaced distributed generators. To address 

persistent frequency and voltage fluctuations in a microgrid, an L1 resilient control theory based on the 

double-layer PSO algorithm was suggested. The double-layer PSO method determines the narrowest 

bound of the L1 system operator norm, ensuring that the closed-loop system is resistant to external 

disturbances like frequency and bus-voltage fluctuations and the system's nonlinearity is accommodated 

by taking into account different power system conditions of operation. The microgrid system model 

includes three-level PWM voltage source inverters and two inverter-interfaced DGs. Two solutions can 

be used to achieve good performance under a variety of operating circumstances, one method is to 

adaptively adjust the control gains. and the other method is to discover optimal gains to ensure that the 

controller is robust to changes in operating conditions. This work depends on the second solution, which 

is to identify a reliable set of control parameters that are adjusted for various operating situations. The 

microgrid's optimal control parameters are verified through simulation. The simulation time is set from 0 

to 1.2s, it is divided into periods: (0 - 0.3s) simulation initialization,0.3s the DG1 and DG2 power 

inverters begin producing reactive and actual powers of up to 1.0 MVar and1.5 MW, respectively ( in 

grid-connected),0.6s The intertie breaker separates the microgrid from the grid, causing it to operate in 

island mode,0.9s The load reference signals are provided to the DGs' droop controllers to restore nominal 

frequency and voltage and 1.2s The local loads abruptly drop (load fluctuation in island mode). Finally, 

in the grid-connected mode, the system frequency and bus voltage remain close to their nominal levels of 

60HZ and 1.0 p.u, respectively. In the standalone mode, they change based on power mismatch and 

droop control features. The simulation results show the effective performance of the proposed optimal 
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approach. 

 

Fig. 8. Concept controlling several DGs with droop controllers in a microgrid, using in this paper [55]. 

 

   This work [56], provides an effective optimal control parameter-tuning methodology based on the 

particle swarm optimization (PSO) algorithm. And describes control strategies for coordinating multiple 

microgrid generators, particularly using a voltage source inverter type interface, in both grid-connected 

and standalone modes. In this work, the author relied on the following ideas to simulate the model and 

PSO algorithm. first, six control parameters are specified as (6) for optimization, presuming that the 

configuration of three DGs has the same configuration, ratings, and PI controllers and that they can all 

function with identical PI gains (Kpi, Tii, Kpp, and Tip) for simplicity and used PSCAD/EMTDC to create a 

microgrid power system model with three-level voltage source inverter models, and they integrated the 

optimization algorithm into the model utilizing c-interface functions. the cost function (J) in the form of 

the integral of time-weighted absolute error (ITAE) can be defined as equation (14). The simulation 

results show: (i) the cost has been reduced to 19.54 in 600 iterations. (ii) The three DGs, the outputs of 

which are determined by the droop controllers, can securely sustain power. (iii) maintained of voltage 

and frequency value (±0.1p.u. and ±0.016 p.u (1.0Hz) from the nominal values. Finally, the optimization 

solution presented in this study is more precise and practical than that of small-signal models that have 

been simplified and linearized around a particular operating state. 

                     𝐽 = ∑  
𝑇𝑐
𝑘=𝑘𝑠

(𝑘 − 𝑘o) ⋅ 𝑊 ⋅ 𝐸𝑎𝑏𝑠(𝑘) + ∑  𝑖=1,2 𝑐𝑖 ⋅ 𝛾𝑖                     (14)  

Where: k: represents the current sample time, ko: represents the starting time of load change in 

autonomous operation, Tc represents the ending time of load change in autonomous operation, 

                             

   As mentioned earlier in this article, the particle algorithm can be combined with search techniques to 

improve local search ability and solve many problems: In a study presented by (Liang and Zou 

2022),[57], The adaptive particle swarm optimization (ASAPSO) algorithm based on simulated 

annealing is utilized in this work this enhances the particle swarm's convergence accuracy and speed to 

improve droop control, increase system stability, and improve power quality. This method is considered 

an enhanced droop control approach according to the optimal compensation technique.  The author is 

validating the effectiveness of the technique to enhance the droop control by creating a simulation model 

of the microgrid in Matlab 2018b. The simulation model is made up of two DGs that run in parallel to the 

power of supply to linear loads. The microgrid simulation process is as follows: (i) ST1 and ST2 are 

closed at 0.00-0.15 s (through simulation initialization); (ii) the frequency and voltage control modules 

are engaged; and (iii) 0.3 s to shut the circuit breaker and connect the load2. The results show: (i) at 0-

0.3s, the improved droop control can prevent substantial changes in reactive and active power by 

adaptively modifying particle swarm (PSO) velocity. (ii) The load power is evenly split among two 

inverters connected in parallel. (iii) The system's oscillation is minimized, while its steadiness and speed 

are improved. Finally, from these results may be inferred the algorithm-optimized droop control may 
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achieve the coordination of numerous DGs in the microgrid system, it improves the precision of reactive 

and active power distribution, and the accuracy of this power is higher than that of the conventional 

resistive droop control, allowing the microgrid to be stabilized quickly and the power supply system is 

stable under various operating conditions, and the power quality is increased. Furthermore, the improved 

control technique decreases system power loss and the difference in power between the two inverters.  

 

5.2. Genetic algorithm optimization (GA) 
  The GA is a population-based stochastic algorithm inspired by the Darwinian theory of evolution 

proposed by [58], as a heuristic method. based on the principle of genetic selection. It is similar to 

biology for chromosomal formation, with factors such as selection, crossover, and mutation representing 

genetic processes that would be applied to a random population at the beginning[59].GA uses a fitness 

objective function to assess each individual of the population's level of fitness. The best solutions are 

selected at random using a selection mechanism (such as a roulette wheel) to improve poor solutions. 

This operator is more probable to select the best solutions because the probability is proportional to 

fitness (objective value). Avoiding local optima increases the likelihood of selecting suboptimal 

solutions[60]. Genetic algorithms (GAs) have emerged as a strong tool for handling search and 

optimization problems. Also, GA is a prominent optimization approach for solving nonlinear microgrid 

system equations and identifying control parameters through the natural selection process[61]. Genetic 

algorithms have been used to solve many engineering problems and have also been used in microgrids 

to perform some tasks. 

 

5.2.1. Operation performed in GA 
   GA, like other evolutionary algorithms, relies on selection, crossover, and mutation as its core 

operators[60]. 

 Selection: A chromosome contains information specific to the solution it represents. Every 

chromosome can be represented by a binary string. Each bit in the string is accountable for 

containing specific aspects or standards of the solution[59]. 

 Crossover: After choosing individuals utilizing a selection operator, they have to be utilized to 

produce the new generation. In nature, the chromosomes of a male and female are united to form 

a new one. This is emulated by integrating two solutions (parent solutions) chosen by the roulette 

wheel to create two new solutions (children's solutions) using the GA algorithm[60]. 

 Mutation: mutation involves modifying one or more genes after creating children's 

solutions.  In GA, a low mutation rate is used due to the high mutation rates convert GA to 

random search The mutation operator keeps population variety by introducing an additional level 

of randomization. This operator prevents solutions from becoming too like and increases the 

likelihood of preventing local solutions in the GA algorithm[60]. Fig.9 illustrates the cycle of GA 

and Fig.10 explains the steps of optimization of GA to optimize the droop control. 
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Fig. 9. GA cycle [62]. 

 

 

Fig. 10. Flowchart using Genetic optimization algorithm to optimize droop control. 
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The following is a review of literature using the GA to optimize droop control  

   In this work [63], the genetic algorithm is employed to optimize the microgrid droop controller, and 

the drooping parameters can be collected over time based on the load feedback scenario.  This strategy 

employs a new control mechanism that runs in parallel mode with inverters that don't need bus 

connections, and voltage and frequency control can be performed without any common communication 

or control circuit between the inverters. The author is validating the effectiveness of the strategy to 

improve the droop control by creating a simulation model of the microgrid in Matlab using the model 

containing three distributed generations (DGs) and three loads P1 = 60 kW, Q1 = 10 kVAR, P2 = 70 kW, 

Q2 = 5 kVAR, P3 = 80 kW, Q3 = 0 kVAR. From the simulation result When the load is uneven, the 

optimal droop control parameter can be achieved by adjusting itself. at the time 0–0.5 s The system runs 

normally, with a frequency of 50 Hz and a voltage of 311 V. Various DG active powers are distributed in 

an 8:7:6 ratio, while reactive power is allocated equally. After 0.5 seconds, separates from load 2, under 

the assumption that the droop controller is optimized, and the frequency and voltage fluctuate but keep 

stability. Finally, the optimization utilizing the genetic algorithm has resulted in stable reactive and active 

power control performance. It can also ensure that the power supply system operates normally in the 

event of a sudden load change and improves the system's anti-interference capacity. 

 

Fig. 11. Block schematic of the GA droop control system [63]. 

 
   Goodarzi and Kazemi in 2017 [64], introduces a novel hybrid algorithm, Imperialist Competitive 

Algorithm-Genetic Algorithm (ICA-GA), to address the multi-objective optimization problem such as 

finding and selecting the optimum operation mode and DG site of an islanded MG. The operation is 

optimized by identifying and utilizing the optimal DG droop gain parameters. A multi-objective 

optimization problem is used to formulate three key factors and use membership functions as equation 

(15). These factors include improving voltage variations and stability, and decreasing fuel consumption 

costs while taking into account operational and security constraints. For the operation of the suggested 

method, a novel load flow formulation based on droop control is used, with the system's steady state 

frequency, frequency reference, reference voltage, and DG droop parameters as optimization variables. 

The proposed method provides the Pareto front of non-dominated results, followed by the best result of 

non-dominated outcomes by utilizing a fuzzy approach. To solve the multi-objective problem: firstly, The 

ICA algorithm is operated to determine the optimal droop parameters, location, and production of DGs 

by calculating the cost of colonies and imperialists in each empire. Secondly, The GA method is utilized 
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to produce a new set of colonies in all search spaces at a better cost than the imperialist by employing 

operators such as mutation and crossover. To demonstrate the usefulness of the suggested technology, it is 

implemented on 33 buses in Matlab a test system of 2.30 Mvar and 3.715 MW total load is examined for 

two scenarios. In the first scenario, four DGs were placed on buses 9, 22, 25, and 26. It is assumed that 

the positions of DG units are predetermined, and only the optimal droop parameters of DG units are 

obtained. from the result of this scenario can be seen that (i) the suggested approach delivers the best 

values for objective functions, while PD provides the worst values. (ii) The suggested technique produces 

the lowest reactive and active energy losses. (iii) The voltage profile is enhanced compared to 

predetermine optimization at all nodes in every approach. additionally, demonstrates that the best VSI is 

attained by ICA-GA and the worst by PD. In the second scenario, the optimum production and droop 

parameters placed for three DGs were obtained. Finally, the proposed ICA-GA algorithm improves 

power system optimization by combining the benefits of ICA and GA approaches, resulting in better 

results than other commonly used methods.  It can be concluded that the suggested technique algorithm 

is an effective tool for discovering the optimal place and operating a standalone MG at the same time. 

 

                    𝜇𝑓𝑖 =

{
 

 
1, 𝑓𝑖 ≤ 𝑓𝑖

min 

𝑓𝑖
max −𝑓𝑖

𝑓𝑖
max −𝑓𝑖

min , 𝑓𝑖
min ≤ 𝑓𝑖 ≤ 𝑓𝑖

max 𝑖 = 1,2,3

0, 𝑓𝑖 ≥ 𝑓𝑖
max 

                    (15) 

Where: 𝜇𝑓𝑖: represents the fuzzy subordination of the optimal objective.  

 

  The author in 2013,[61], to reduce voltage and frequency disturbances in island microgrid mode, a new 

control approach is developed that employs two optimization algorithms genetic algorithm (GA) and 

imperialist competitive algorithm (ICA). The purpose of using two algorithms is to compare and debate 

based on the outputs of the applied methods and select the most fitness analysis. In addition, a new idea 

of traditional droop control in the form of a fast droop controller (FDC) is developed to ensure the 

reliability of the microgrid system in conjunction with a modern frequency controller this approach is a 

flexible control system with adjustable parameters allows for faster injection of required power. The 

microgrid system is simulated utilizing MATLAB's control block diagram and power electronic 

equipment and has two DGs capable of meeting the local demand. The objective of this study examine 

the controllability and dependability of microgrid systems in various modes. The entire system is placed 

in island mode, and there are 8 operating modes with load changes for determining the performance of 

control parameters. In the first standalone mode, the local load is steady at 0 - 0.2, and the control 

parameters can regulate the system frequency to 50 HZ. In the 0.2, the local load abruptly increases, 

causing frequency to drop. This disruption is quickly eliminated, and frequency returns to its nominal 

value. The frequency variations based on ICA are a significant symptom of an unstable system. In 

scenario voltage regulation the overload reduces the voltage, and as the load drops, the bus voltage rises, 

all of which are validated by losses. The resulting bus voltage from ICA demonstrates the incorrect 

performance of control parameters. Results showed: (i) The ICA algorithm optimizes control parameters 

equally with the GA algorithm. Countries in ICA share the same role of chromosomes in GA. (ii) The 

minimum cost of ICA is higher than that of GA. The value for ICA is 4.38. ICA performs well when two 

values are near in primitive iterations. (iii) The ICA method failed to achieve the control target within the 

simulation time limit. (iv) The results revealed that the GA algorithm had better performance. Finally, the 

main constraint with this concept is the range of droop-rated powers. To address this problem, an 

additional frequency controller is added to the inverter control circuit to quickly set the system frequency 

to the nominal value. Furthermore, the main concern with this design is the coordination of controllers. 
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Fig. 12. Diagram of a controllable microgrid network [61]. 

 

   In this work,[65], a new hybrid optimization approach for solving the power flow problem in an 

islanded MG is developed based on an imperialist competitive algorithm (ICA) and genetic algorithm 

(GA). is represented without a slack bus by including the steady-state frequency as a power flow issue 

variable. The main objective of this method is to model various control modes of DGs, such as droop, PV, 

PQ, and droop in an islanded MG, to reduce total reactive and active power mismatch in a 

standalone MG. The power flow issue requires redefined without slack bus consideration. To achieve this, 

a new droop controller, called droop bus, must be introduced to power flow equations alongside PQ and 

PV buses. In this proposed method, First, the ICA method is utilized to obtain the system's local voltage 

and frequency at every bus of the DG unit by the droop controller by computing the cost value of 

colonies and imperialists in every Empire. Then, the GA approach uses crossover and mutation operators 

to generate a new set of colonies in the total search spaces that an objective function values toward the 

imperialist. ICGA Algorithm: The suggested ICGA methodology contains excellent features of both ICA 

and GA techniques, such as comprehensive searching of solution space, Lack of rapid convergence in a 

local minimum, better outcomes in phase errors and magnitude average compared to ICA and Newton-

trust approaches, as well as the conversion of the receiving end bus from droop control mode to PQ mode. 

To address the power flow issue, an algorithm is constructed in two loops: the main loop and the inner 

loop. The main loop determines the optimal solution for the objective function. the inner loop is for 

determines the load flow. The suggested algorithm's performance was evaluated using 6-bus and 33-bus 

MG systems and three case studies (test systems) were used to validate the suggested power flow 

approach. In the first case, the first system consists of a 6-bus system with a rated voltage of 127. This 

system operates in an autonomous mode and it contains three comparable droop control DGs installed on 

busses 4, 5, and 6. The result in this case shows ICGA has lower phase and magnitude errors compared to 

ICA, which has the highest, The ICGA has an average phase error of 0.115% and magnitude error of 

0.039% when compared to time domain simulations, These findings show that the suggested load flow 

algorithm for MG operating in the islanded mode using droop control performs well, The proposed 

approach produced a steady-state frequency of 0.9992 p.u. A slight frequency deviation is caused by 

active power sharing across different DGs. In the second case, the second system is an MG with 33 buses 

and a rated voltage of 12.66 KV. Four DGs were installed on busses 26, 22, 25, and 9. The proposed 

approach yields a steady-state frequency of 0.998846 p.u. In the third case, the third system consists of a 

69-bus distribution system with a combined reactive and active load of 3.772 MW and 2.694 Mvar, 

respectively. On buses, the following five DGs were set: 50, 27, 35, 46, and 65. Two scenarios were 

studied to evaluate the influence of the PV bus voltage on reactive power sharing. In the first scenario, 

the voltage on bus 26 was assumed to be 1 p.u. In the second scenario, the voltage was totaled to be 1.02 

p.u. In both situations, the reactive power outputs of droop control DGs remained within their permissible 
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ranges. The results found that during 1 p.u, other DGs go from droop to PQ mode, achieve their 

permissible ranges, and function within those ranges for 1.02 p.u. When the PV bus voltage was 

lower than 1 p.u, under-voltage was noted at most network buses. These findings demonstrate that a 

proper PV bus voltage setting promotes effective reactive power sharing across drooping distributed 

generators and mandates maintaining PV bus voltage within specified bounds. Although the ICA method 

solutions converge faster than the ICGA method, they aren’t truly global solutions. Due to the minor 

local voltage and frequency interval fluctuation of droop DG units. When compared to ICA, the 

suggested method has a lower objective function value. Finally, the suggested algorithm performs well, 

according to the results. Additionally, the GA, Newton-trust, and time domain approaches were used to 

compare the corresponding findings of the 6-bus MG system. This suggests that ICGA can produce 

convergence outcomes that are more uniform while requiring less computation time. 

 

   This work [66], introduces a novel hybrid algorithm (HS-GA) based on genetic algorithm (GA) and 

harmony search(HS) to solve multi-objective optimization problems such as: Solving the reliability and 

technical issues of microgrids (MGs) by building several self-sufficient standalone sub-MGs using MG 

clustering thinking, reliability enhancement, and voltage profile enhancement are regarded as 

objective functions and power losses reduction. The proposed approach is regarded as the 

optimal method for finding cut set lines to convert an MG to several sub-MGs to safeguard the MG from 

any failure, hence increasing the robustness of the MG. Two case studies 69-bus and 33-bus according to 

islands MG and three scenarios were evaluated to demonstrate the effectiveness of the suggested strategy 

and test system. In the first case, it was used 69-bus. The system consists of 68 lines with maximum 

reactive and active loads of 2.69 MVar and 3.8 MW, respectively, and a nominal voltage of 12.66 kV. 

And This case considers three scenarios. In the first scenario, MGs use only droop controllers and, in this 

situation, 7 DGs operate using a droop controller. Compared with a predetermine method when droop 

parameters are constant (without tuning) The scenario shows the power determined by the suggested 

technique is lower than that of the PD method. In the second scenario when using MGs with PQ Buses 

and droop controllers, in this scenario used five DGs that utilize a droop controller, and three DGs 

according to PQ operation are tested to show the scenario raising the number of sub-MGs, the values of 

the objective function rise and when a fault occurs in the MG, systems created using Scenario 2 are more 

reliable than those planned using Scenario 1. In the third scenario, when using MGs equipped with droop 

controllers, capacitance, and PQ buses, in this scenario, The MG arrangement is similar to Scenario 2, 

with the exception that three capacitances that total 120 kVar are added to the system this shows that 

using capacitances in sub-MGs improves the operation of MGs. In the second case, the system 

Includes 32 lines, four DGs with 3 capacitances with 80kVar used, a maximum reactive and active 

load of 2.30 MVar and 3.715 MW, and the MG nominal voltage of 12.66 kV. The findings demonstrate 

that HS-GA may successfully handle relations interconnected among decision variables. The results also 

suggest that using DGs based on droop controllers and PQ, as well as capacitances, increases the 

performance of MGs. 

 

    In this work [67], an optimal droop control strategy for a DC/DC Boost power converter is utilized 

to control a standalone operation of a test microgrid developed based on the Genetic Algorithm (GA). 
The main objects of this work are (i) voltage bus regulation and equal power sharing in the shortest 

amount of time when the load changes abruptly. (ii) Used GA, to identify the optimal parameters for PI 

controllers to reduce the related cost function.  The advantages of this proposed method are: The 

suggested technique only requires local output information; therefore, the advantages of conventional 

droop control are preserved, and it is less dependent on the network's mathematical model. The suggested 

controller's benefits are demonstrated by modeling a 600 V and 100 kW (±5%) DC microgrid in 

MATLAB software and the system consists of a Battery Energy Storage System (BESS) block and three 

DG units with 3 μ-sources and maximum power generation, 30 kW, 30 kW, and 40 kW, 

respectively. when the loads are changed among the maximum and minimum values abruptly by 

contemplating the worst–case scenario in changing load values which is the step changing that is utilized 



Misan Journal of Engineering Sciences                                          ISSN: 2957-4242 

Vol. 3, No. 2, Dec 2024                                                             ISSN-E: 2957-4250     

 

70 

 

in this situation. In this scenario for stability study analyzed the Microgrid performance in two crucial 

worst cases, first the maximum in the period [0.6 - 1.2] and the second the lowest in the time interval [1.9 

- 2.5] load levels. In these cases, if a system is BIBO stable If a system is BIBO stable, the output will be 

bounded for all bounded input values. DC bus voltage errors are a reliable measure of microgrid stability, 

falling within the 600 ±5% range and the voltage errors are outside the range at 𝑡=0.6 s and 𝑡=1.2 

s.  voltage error can be obtained in range and access to equal power sharing among the DGs less than 0.5 

s when the disturbance is injected into the Microgrid within the time range [0.6 - 1.2] the simulation 

results demonstrated the effectiveness of the proposed methodology when compared to other 

conventional methods in various scenarios. Finally, from this result, It has been verified that the proposed 

controller performs well when the load varies between minimum and maximum levels. 

 

 

Fig. 13. Source structure (BESS) used in this paper. 

 

   Where Yu et al. in 2016[68] provided a detailed and precise small-signal state-space model of a 

microgrid based on a droop control technique, which consisted of load, network, and inverter dynamics, 

and then integrated it with a common reference frame to create the final model. Then used genetic 

algorithm to optimize the microgrid's operational characteristics under time-domain simulation in 

MATLAB/Simulink. To test the performance of the suggested control optimization strategy the microgrid 

model is used for both rapid load changes and mode transitions in many cases: (i) at 0-0.8 s, the system 

works in grid-connected mode. (ii) at 0.8–1.5 s breaking the PCC causes the microgrid to go into 

standalone mode. (iii) at 1.5–2 s abruptly shuts off the public load, with the maximum generation is 100, 

the initial crossover chance is 0.7, the initial population size is 40, and the mutation probability is 0.01. 

Simulation results show that when the system changes to autonomous mode after t=0.8, the DG's output 

power increases and then decreases once the load is turned off. the system frequency variations after 

optimization which are well maintained around the nominal values. This Simulation validates 

demonstrated the usefulness of the proposed small-signal dynamic model and optimization algorithm the 

genetic algorithm (GA), as well as improved the microgrid's dynamic performance, making it a useful 

reference for parameter design of droop control in low-voltage microgrids.  The results also verify four 

parameters (integral current parameter Kic voltage parameter Kpu and power droop gain mp, nq) from 

small-signal analysis have a significant impact on microgrid dynamic and stability performance during 

load disturbances. and validate the effectiveness of the suggested GA technique in improving the 

dynamic performance of microgrids. Consequently, the suggested control optimization plan makes a 

substantial contribution to maintaining microgrid stability and low-voltage network parameter selection. 

Finally, according to the results, the minimum power damping through the switch between different 

operator’s modes and the minimal oscillation during steady-state operation has been accomplished, 

implying that the suggested control optimization approach nearly matches the small-signal analysis while 

improving system dynamic and stability performance. 
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   As presented by M.Abedini in 2016[69], a new algorithm for load flow analysis in an 

Autonomous microgrid is presented. The load flow problem was modeled without any slack bus by 

including the steady state frequency as a load flow variable. A novel formula for load flow equations is 

provided to simulate several DG control modes, like droop, PQ, and PV, in an autonomous microgrid. 

Based on a hybrid optimization algorithm (ICGA), genetic algorithm (GA), and imperialist competitive 

algorithm (ICA). the main idea of this approach was to address the issue of traditional load flow analysis, 

which isn’t able to deal with isolated microgrid situations. To address the proposed load flow problem 

formulation, an optimization problem is established. The aim is to reduce the absolute mismatch between 

reactive and active power by using equation (9). For this objective, a droop control mode for DG 

operation is initially considered. Then, different DG operation modes are used. The local voltage and 

system frequency for every bus of DGs are then determined using a droop controller. This is followed by 

estimating the reactive and active power produced by DGs to match the reality of decentralized droop 

control using an Autonomous microgrid. At last, the angles and voltages of the other buses in the 

Autonomous microgrid are determined using an iterative approach to reduce the total reactive and active 

power mismatch. The suggested algorithm's performance was evaluated using 6-bus and 33-bus MG 

systems and two case studies (test systems) were used to validate the suggested load flow approach. In 

the first study, the system has 6- buses with a rated voltage of 127V. This system runs in 

Autonomous mode and consists of 3- similar droop control DGs located on busses 4, 5, and 6. From the 

result this case demonstrates that ICGA has the smallest phase and magnitude errors, while ICA has the 

highest and lowest errors compared with GA and Newton-trust and the steady state frequency was 0.9992 

p.u. A small fluctuation in frequency is caused by active power sharing among various. In the second 

study, the system has a 33-bus microgrid with a rated voltage of 12.66 KV. Four DGs were installed on 

buses 26, 22, 25, and 9. From the result, this case demonstrates the sensitivity of power flow to voltage 

settings on a PV bus. The voltage of a PV bus was considered in 3-values: lower than 1 p.u., 1 p.u., and 

1.02 p.u. when the voltage of the PV bus is lower than 1 p.u., Under-voltage occurs at the majority 

of buses of the network. Furthermore, the results demonstrate that for 1 p.u., other DGs convert from 

droop mode to PQ mode while reaching their permissible ranges for 1 p.u. and operating in the allowed 

ranges for 1.02 p.u. Finally, ICGA was capable of minimizing the mismatch between total reactive and 

active power. 

 

5.3. Gray wolf optimizer (GWO) 
   The gray wolf is a new type of swarm intelligence (SI) metaheuristic algorithm proposed by [28]and 

is inspired by mimics of the social leadership hierarchy and hunting behavior of (GWO) in nature. Grey 

wolves, often known as timber or western wolves, typically dwell in packs of 5-12 individuals of a wolf. 

To hunt the prey while maintaining discipline the gray wolf algorithm (GWO) has a very rigid social 

dominant hierarchy that is divided into four categories called (alpha (𝛼 ), beta (𝛽), delta (𝛿), and omega 

(𝜔) ) as shown in Fig.14. The first group (𝛼),the leaders are female and male. The alpha is responsible 

for the pack's key choices. Alpha is also known as dominant. The second type of wolf called beta is the 

submissive wolf, who relays the alpha wolf's messages to other wolves and assists the leader wolf in 

making decisions such as hunting and location selection also, a beta can be male or female. the last 

category of the pack is omega these wolves who have authorization to eat food are included in the end. 

These wolves are an important part of the pack because, without them, the pack may experience internal 

conflict issues. If the wolves aren’t an 𝛼, 𝛽, 𝜔) are categorized as subordinate or delta wolves. sentinels 

Scouts, hunters, elders, and caretakers fall under this category. Sentinels protect and ensure the security 

of the pack. Scouts are liable for observing the boundaries of the area and informing the pack in the event 

of any threat. Hunters assist the alphas and betas by pursuing prey and providing food for the pack. 

Elders are skilled wolves who serve as alpha or beta. In addition to the leadership hierarchy, there is 

another behavior of gray wolves called hunting, Group hunting is an important part of the pack. Their 

hunting process includes three steps. main phases of the grey wolf hunting process involve three steps: -  

 Monitoring, chasing, and approaching prey. 

 Follow, encircle, and harass the prey. 
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 Attack the prey 

   The gray wolf optimization algorithm is used by many researchers to solve different problems in 

engineering. 

 

Fig. 14. Hierarchy of (GWO) [28]. 

 

 

5.3.1. Mathematical model of (GWO) 

 Social hierarchy: - Analyzing social behavior in wolf packs identifies the fittest candidate as 

the alpha wolf (α) or solution. consequently, with second and third-best fitness are referred to 

as "Beta wolves (β) ", "delta wolves (δ) ", and "Omega wolves (⍵)". 

 Encircling prey: - The mathematical model for wolves' encircling approach around prey is 

proposed as follows the equations: 

 

                             𝐷⃗⃗ = |𝐶 ⋅ 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|                        (16) 

                             𝑋⃗⃗ ⃗⃗  (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 ⋅ 𝐷⃗⃗                       (17) 

 

Where: the t is the current iteration, 𝑋 𝑝 is the position vector of prey, 𝑋 (𝑡) is the position 

vector of the wolf   𝑋 (𝑡 + 1) is the position of the wolf at (t+1)th, 𝐴  & 𝐶  are coefficient 

vectors can calculated as the following: 

 

                                𝐴 = 2𝑎 ⋅ 𝑟 1 − 𝑎                             (18) 

                                𝐶⃗⃗ ⃗⃗ = 2 ⋅ 𝑟 2                                 (19)   

                                         

 Hunting: - Grey wolves recognize the position of prey and encircle them. To mathematically 

recreate grey wolf hunt behavior, consider the alpha (optimal candidate solution), beta, and 

delta to better understand possible prey locations. Consequently, keep the first three best 

solutions acquired thus far, and require the remaining search agents (including the omegas) to 

update their positions based on the positions of the best search agents. By using this 

approximation, each wolf can update its position by: 

 

           𝐷𝑎⃗⃗ ⃗⃗  = |𝐶1⃗⃗⃗⃗ ⋅ 𝑋𝑎⃗⃗ ⃗⃗ − 𝑋 | , 𝐷⃗⃗ 𝛽 = |𝐶2⃗⃗⃗⃗ ⋅ 𝑋𝛽⃗⃗ ⃗⃗ − 𝑋 | , 𝐷𝑔⃗⃗ ⃗⃗  = |𝐶3⃗⃗⃗⃗ ⋅ 𝑋𝛿⃗⃗ ⃗⃗ − 𝑋 |          (20) 

 

        Where 𝑋𝑎⃗⃗ ⃗⃗  , 𝑋𝛽⃗⃗ ⃗⃗  and 𝑋𝛿⃗⃗ ⃗⃗  are position vectors (α, β, δ), The final location vectors of the           

    present individuals are determined as follows: 

 

              𝑋1⃗⃗⃗⃗ = 𝑋𝑎⃗⃗ ⃗⃗ − 𝐴1⃗⃗ ⃗⃗ ⋅ (𝐷𝑎⃗⃗ ⃗⃗  ) , 𝑋2⃗⃗⃗⃗ = 𝑋𝛽⃗⃗ ⃗⃗ − 𝐴2⃗⃗ ⃗⃗  ⋅ (𝐷𝛽⃗⃗⃗⃗  ⃗) , 𝑋3⃗⃗⃗⃗ = 𝑋6⃗⃗⃗⃗ − 𝐴3⃗⃗ ⃗⃗  ⋅ (𝐷𝑠⃗⃗⃗⃗ )       (21)  

                              𝑋 (𝑡 + 1) =
𝑋⃗ 1+𝑋⃗ 2+𝑋⃗ 3

3
                              (22) 

α

β

δ

ω
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              A1, A2, A3 the random vector  

 

 exploitation (attacking prey): - when the prey stops moving, the grey wolves end 

their hunt by attacking them, to represent approaching the prey, they reduce the value of 𝑎 . 

The fluctuation ranges of 𝐴  decrease by 𝑎 , 𝐴  is a random value in the interval [-2a, 2a], 

where a decreases from 2 to 0 over repetitions. When random values of 𝐴  are in [1, 1], the 

search agent's position in the future can be anywhere between its current location and the prey's 

position. The exploration happens when 𝐴   is either larger than or less than -1. When C 

exceeds 1, it fosters exploration. 

 exploitation (search for prey): - Grey wolves search mostly based on the alpha, beta, and 

delta positions. They split in search of prey and then unite to attack it. To mathematically 

describe divergence, we use 𝐴  with random values higher than 1 or less than -1 to force the 

search agent to diverge from its prey. in addition, exploitation is greater when |A| < 1 and C < 1. 

During optimization, 𝐴  decreases linearly to highlight exploitation as the iteration counter 

climbs. C is created randomly during optimization to encourage exploration and exploitation at 

all stages, which helps resolve local optima entrapment[70]. Fig.15 explains the steps of 

optimization of GWO to optimize the droop control. 
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Fig. 15. Flowchart using Grey Wolf Algorithm to optimize droop control. 

 

   

The following is a review of the literature using the GWA to optimize droop control. 

   The Yuan and Li in 2023,[71], use the gray wolf algorithm to optimize the microgrid parameters, such 

as the Droop control parameters that enable switching of the microgrid from grid-connected mode to 

islanded mode, due to the switching process and Load changes affecting both dynamic and grid behavior. 

Also, this study created an accurate small signal space state model of a microgrid using a droop 

management technique, which included inverter dynamics, grid dynamics, and load. Finally, the findings 

indicate that the optimal control can protect the microgrid against frequency variations induced by load 

changes and fluctuations. The findings suggest that the optimal control strategy described in this article 

may protect the microgrid against frequency changes induced by load changes and fluctuations of up to 

10 Amp for load current. The parameters and coefficients of the controllers for the intended control 

method in this article have been tuned to maximize performance. Furthermore, by utilizing this control 

technique, undesired harmonics were greatly decreased. Furthermore, the suggested control system's 
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design assures that DG units operate properly microgrids. 

 

  Then J. Zhang, Wang, and Ma in 2019, [72], due to the power management approaches that take into 

account economic concerns, they are limited by the fixed structure of microgrid (MG) and mathematical 

model. In this article the researcher presented the Gray Wolf optimizer, taking into account the economic 

dispatching problem, and an additional secondary controller known as virtual rated power (VRP) is built 

this increases MG control flexibility and reliability. In this manner, we gain active and reactive power 

sharing, real-time online cost coefficient adjustment is done by using the nature of multi-agent consensus 

theory. the study two cases to verify the effectiveness of the proposed control when load3 disconnected 

and connected under (i) fixed communication topology and (ii) switch topology fixed topology The cost 

of the load 3 disconnected case is reduced by 14.5%, while the cost of the load 3 connected case is 

reduced by 9.2% under GWO. When the switch topology GWO reduces costs by 2.5% for load 3 

unconnected cases and 8.9% for load 3 connected cases   Finally, the findings from the simulation 

demonstrate the efficient operation of the suggested optimal approach which can achieve the active and 

reactive power sharing. The researcher couldn't able to confirm the effectiveness of the method through 

the experiments because of the constraints in conditions. 

 

   As presented Saeed et al. in 2023[73], To address the drawbacks of the voltage droop control 

technique this study introduces an adaptive control technique that can simultaneously share current and 

adjust the voltage by load conditions.  When the load in the microgrid is low, the output current is less 

than the maximum limit, making it easy to share the current. When the load rises and the output current 

oversteps the maximum limit, current sharing becomes critical. This solution addresses the problem by 

incrementing the total droop gains. In other words, the total droop gains are adjusted depending on the 

load current by using a gray-wolf algorithm (GWO) to optimize the droop gains. The objective of this 

work is to reduce the cost function. By reducing the cost function, the system responds swiftly to changes 

in nominal power, and this power is stabilized without any overshoot during switching moments by using 

the objective function as follows in equation (23). To evaluate the efficacy of the proposed adaptive 

control system, a DC microgrid with three distributed generation units was simulated using the MATLAB 

Simulink software. Each distributed generation source has a separate nominal current of 10, 10, and 5 

amps Each of these sources contains a DC-to-DC buck converter with an external voltage 

controller internal and current controller. of these sources contains a DC-to-DC buck converter with an 

external voltage controller internal and current controller. A 4 Ω resistor is utilized to provide a light load 

for the system. To imitate larger loads, another size 4 resistor is added to the load after 0.25 s. To 

demonstrate the efficaciousness of the adaptive approach in comparison to the primary way, droop gains 

sets of 2, 2, and 4 were taken into consideration for greater gains. From the result finding the issue is that 

the dispersed production units' current exceeds its maximum value and reaches the entire load current due 

to an error in dividing the output-current. Distributed generation sources' output voltage nevertheless 

exceeded its normal range. Furthermore, the suggested adaptive technique features an acceptable voltage 

regulation. Simulation results demonstrate that, for low load currents, distributed generation units' output 

currents differ from the maximum standard value. Thus, sharing the current is not a difficult problem. 

When the load increments, the output currents in distributed generating sources tend to peak within the 

standard range. As a result, in loads with huge currents, high-precision current sharing becomes critical. 

Finally, the suggested adaptive approach increases overall gain adaptively in response to rising load, 

enabling more accurate current sharing. 

              𝑖𝑛𝐽 = ∑  𝑀
𝑖=1 {∫  

𝑡𝑓
𝑖

𝑡=𝑡0
𝑖 (𝑡 − 𝑡0

𝑖 )[𝑃(𝑡)𝑃∗(𝑡))2+(𝑄(𝑡) − 𝑄∗(𝑡))2]𝑑𝑡              (23)  

 

  This paper [74], offers to develop local control levels for the DC MG using the hybrid particle swarm 

optimization/grey wolf optimizer (HPSO-GWO) algorithm. To solve DC issues MG's local control layer 

is under numerous power-production variations and load interruptions, including incorrect power-sharing 

between sources and uncontrolled DC-bus voltage of the microgrids, together with a significant ripple of 

battery current. The basic objective of this hybridization is to improve the ability of exploitation in PSO 
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with the power of exploration in GWO and it is distinguished by its simplicity and ease of utilization as a 

tool to be employed in effective execution, and competitive performance, in comparison to those other 

optimization algorithms. The main objective of this work is to solve the problem: of proper power 

sharing, proper voltage regulation, low settling time, fewer power losses, regular and transmission 

maintenance expenditures, and power outage grid shutdowns.  To test the performance of the suggested 

control optimization strategy the microgrid model is used, a typical MG contains many types of 

distributed energy resources, like wind turbine generators (WTG), fuel cells, and photovoltaics (PV), 

accompanied by ESSs to deal with the intermittent nature of such sources and the droop control strategy 

is used to maintain the stability of the DC-bus voltage and the battery's automatic charge and discharge 

operation.  to optimize the PI controllers' parameters that are used at the local control level of the 

examined MG based on the objective function in Equation (24). As a result, accurate power transfer and 

appropriate voltage control are achievable, potentially improving the simulated MG's performance. This 

approach was evaluated under different load and PV-generation situations. To test the efficiency of the 

proposed technique in increasing the performance of the local control layer different situations were 

applied consisting of PV-generation variations and load changes and the suggested method's durability 

was assessed utilizing the rate of overshooting and undershooting in MG voltage, battery current 

tracking, power sharing, and system responsiveness. In this scenario, load changes by 50%, 38%, and 

32%, with solar irradiance fluctuations occurring at 2 s, 3.5 s, and 4 s, respectively. The quantity of PV-

generated power stays at 470 W until 2 s, therefore there is no surplus power that may be used to charge 

the battery during that time interval (1 s-2 s), due to the demand of the load rising to 500 W. Thus, the 

DC-link voltage drops dramatically at 1 s, it may also be observed that PV generation increases to 580 W 

at 2 s, resulting in an increase in DC-connected voltage up to 50.25 V. Load demand rises at different 

rates at 1 s, 3 s, and 4 s, causing the bus voltage to deviate significantly from the statutory limit of 5% at 

certain times. From this result can be observed this method is ineffective when dealing with crucial 

operating situations like load-generation uncertainty. It is also worth mentioning that, while the battery 

current is strictly monitored in its reference value, certain undesired ripples remain. By using GWO, the 

voltage of the simulation MG increases from 43.66 V to 47.016 V, with a 50% increase in load demand at 

1 s as well as a voltage-overshoot drop from 50.25 V to 48.7 V at 2 s, the simulation results show keeping 

the bus voltage at the suitable level (1.67%), optimal battery current tracking and optimal power sharing 

with its reference value are accomplished, In compared to the conventional control strategy utilized in 

the DC microgrid's local control layer, the suggested control method produces less overshoots and 

undershoots in the DC bus voltage, less current and voltage ripples, and a shorter settling time, increasing 

the microgrid's reliability. Finally, the System response is effectively improved to withstand any 

disturbance that may occur without producing any power dissipation. The suggested method enables fast 

voltage restore with low settling time, rising time, and undershoot/overshoot, making system operation 

more dependable and stable under critical operating situations, ensuring the robustness of this control 

technique. 

                                   ITAE =
∑  𝑁

Er ∫  
∞
0 t|Er (t)|dt

𝑁
                            (24) 

Where: N:  represents the number of errors acquired from PI controllers and Er (t) : represents the 

disparity between the beginning point and the variable to be controlled. 

  

  Moazami and Kazemi in 2018[75], identify the optimal clustering of standalone microgrids by 

considering variables like distributed generation (DG) droop characteristics, renewable energy sources, 

the position and capacity of DG units, capacitors, and power line transmission and increased planning 

accuracy. This study presents a novel multi-objective optimization strategy called the chaotic grey wolf 

optimizer (CGWO) algorithm. CGWO was utilized to increase converging and improve optimal solutions. 

The approach's effectiveness is examined across three different scenarios using a 69-bus MG. In scenario 

one when using DG units with a droop controller, can be seen that optimized droop parameters 

significantly reduce active and reactive power losses in MGs. In scenario 2 when DG units are based on a 

droop controller and PQ, can be seen PQ concurrently increases the robustness of MGs against 

unexpected interruptions or failures, and in scenario 3 when using DG units with droop controllers, PQ, 
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and capacitors it can be shown that employing capacitors in MGs reduces the values of the objective 

functions. Furthermore, the reactive power imbalance in MGs is mitigated when compared to the other 

situations. Finally, the findings showed that using distributed generation (DG) units based on droop 

controllers, capacitors and variable power increased the performance of MGs when compared to using 

just droop controller DGs. 

 

  From the results of the previous studies discussed, it can be said that the Gray Wolf Algorithm (GWO) 

outperformed the Particle's Swarm Algorithm (PSO)in improving the droop control parameters and 

reducing the deviations that occur in the system during the transition to the isolated mode or during the 

sudden change in the load. 

 

5.4. Grasshopper Optimization Algorithm (GOA) 
  The Grasshopper Optimization Technique (GOA) is considered a nature-inspired optimization 

methodology that mimics inspiration from the swarming behaviors and social interaction observed 

among grasshoppers (Abdulwahab et al., 2021) [9] The life cycle of (GOA) consists of three stages: egg, 

nymph, and adult, as shown in Fig.16. This algorithm has many advantages such as the grasshoppers' 

slow motion and short steps are the swarm's distinguishing feature during the larval phase. In contrast, 

long-range and sudden movement is the swarm's distinguishing attribute in adulthood. Another 

significant characteristic of grasshopper swarming is their search for food sources [76][22]. the proposed 

(GOA) has been used and compared to traditional methods for solving engineering challenges[77], 

Nature-inspired algorithms have been widely used in science and industry because of their simplicity, 

gradient-free mechanism, high local optima avoidance, and consideration of issues as black boxes. 

 

 

Fig. 16. Life cycle of GOA [22]. 

 

5.4.1. Mathematical model of GOA 

  The performance (GOA) is divided into two tendencies: exploration and exploitation process during 

the searching process like all nature-inspired algorithms [77]. The mathematical model employed in 

(GOA) is the equation (25) 

 

                                   𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖                              (25) 

Where: Xi & Si & Gi & Ai represent the position of the ith grasshopper, the social interaction of the 

grasshopper, the gravitational force on the ith grasshopper, and the wind advection. to create some 

randomness in the behavior of (GOA)and modify, the equation (25) becomes as follows: 

 

                                 𝑋𝑖 = 𝑟1𝑆𝑖 + 𝑟2𝐺𝑖 + 𝑟3𝐴𝑖                            (26)  

 

      Where r1, r2, and r3 are defined as random in the domain [0,1]  

Adult

EggNympb
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                                𝑠𝑖 = ∑  𝑁
𝑗=1
𝑗≠𝑖

𝑠(𝑑𝑖𝑗)𝑑𝑖𝑗̂                               (27) 

      Where dij represents the distance between the ith and the jth grasshopper 

 

                                       𝑑𝑖𝑗 = |𝑥𝑗 − 𝑥𝑖|                                  (28) 

 

      Where: N: represents the total number of grasshoppers, dij is a unit vector from the ith grasshopper to the      

      jth grasshopper and S: is a function that defines the strength of social forces and is determined using an  

      equation (29) 

                                      𝑆(𝑟) = 𝑓𝑒−
𝑟

𝑙 − 𝑒−𝑟                                (29)   

                             

      Where: 𝑙 represents the attractive length scale, and f is the strength of attraction, The Gi component in  

      equation (30) 

                                       𝐺𝑖 = −𝑔𝑒̂𝑔                                     (30) 

where g represents the gravitational constant and ˆ eg denotes a unit vector, the component A is calculated 

as in equation (31)  

                                  𝐴𝑖 = 𝑢𝑒𝑤̂                                      (31)    

      By substituting the value of Si, Gi and Ai in Equation (1), a new equation is given; 

 

                          𝑋𝑖 = ∑  𝑁
𝑗=1
𝑗≠𝑖

𝑆(|𝑋𝑗 − 𝑋𝑖|)
𝑋𝑗−𝑋𝑖

𝑑𝑖𝑗
− 𝑔𝑒̂𝑔 + 𝑢𝑒̂𝑤                          (32) 

 

      This mathematical model cannot be utilized to address optimization problems directly, mostly because  

      the grasshoppers quickly reach their comfort zone and the swarm does not converge to a specific point. 

      A modified version of this equation is proposed below to tackle optimization problems [22]. 

 

                        𝑋𝑖 = 𝑐 (∑  𝑁
𝑗=1
𝑗≠𝑖

𝑐
𝑢1𝑏𝑑−𝑙𝑏𝑑

2
𝑠(|𝑥𝑗

𝑑 − 𝑥𝑖
𝑑|)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
) + 𝑇𝑑̂                    (33) 

 

      where lbd is the lower bound, and is the upper bound in the Dth dimension, k: is the value of particles for  

      the current iteration, ˆTd: represents the value of the Dth dimension in the target. To balance exploitation  

      and exploration properties, lower the coefficient c proportionally to the number of iterations. As the  

      number of iterations increases, the coefficient c decreases the comfort zone correspondingly, as  

      calculated below[77]. 

                                  𝑐 = 𝑐𝑚𝑎𝑥 − 𝑘
𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛

𝐾𝑚𝑎𝑥
                                 (34) 

 

      Where: cmin : is the minimum value, cmax : is the maximum value,k: represents the current iteration, and  

      Kmax: represents a maximum number of iterations. 

 

The following is a review of the literature using the GOA to optimize droop control. 

        Where (Abdulwahab et al. 2021),[9] presented this method to improve the droop controller parameters 

(kp, kpv, kiv, kpi, and kii) , and ensure equal power sharing between the DGS, when the switch is done 

between mode microgrid (islanded mode and grid–connected) the frequency and voltage deviate from 

their nominal values, this method is included so that deviations during islanding and load changes are as 

low as possible. To optimize the droop controller, a grasshopper optimization algorithm is embedded in 

the controller parameters to maintain stability during disturbances (islanding and rapid increases in load), 

This study's system includes DGs, a voltage-source inverter (VSI), a power controller, coupling inductors, 

and LC filters. Simulations results obtained from the developed scheme when the load equal 6kw it is 

observed the largest frequency deviation after islanding was 0.0018 Hz, Moreover, it was found that the 
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frequency deviation registered when the load was increasing from 6 kW to 10 kW resulted in 0.0004 Hz. 

A comparison was made between the results obtained from the devised scheme and those acquired when 

the Genetic Algorithm (GA) was utilized to optimize the controller. The aforementioned comparison 

showed that the grasshopper Optimization Algorithm (GOA) outperformed the Genetic Algorithm (GA) 

by 0.2104% and 0.0092% in terms of the recorded frequencies immediately after islanding and during the 

load increase, respectively. Ultimately, it can be determined that the GOA-optimized droop controller 

effectively minimized the deviation experienced when the micro-grid transitioned into Island mode and 

when a rapid change in load occurred. 

 

 

 

Fig. 17. Structure of MGs. 

 

 

   As presented by Jumani et al. 2018,[77] proposed a Grasshopper Optimization Algorithm (GOA) )-

based controller to improve PI controller parameters by minimizing the error associated with integrating 

the (FF) for optimal dynamic response of an islanded MG. And to create an optimal control technique for 

frequency and voltage regulation of PV-based MG systems in autonomous mode. The GOA uses its 

intelligence to optimize PI controller parameters. This improves the power quality and dynamic response 

of the tested MG system under load change and DG insertion situations. In addition to voltage and 

current control loops, the control architecture includes a droop control for power-sharing purposes. The 

system contains two DGs each on connected point common coupling, a DC-DC boost converter, two 

solar PV, three-phase VSI, RLC filter, the Droop controller produces reference voltage and frequency 

signals for the voltage controller, which then generates reference current signals for the current controller. 

To evaluate the proposed controller's efficacy, its performance in reaching the rated frequency and 

voltage values, thereby ensuring high-power quality, is compared to that of Particle Swarm Optimization 

(PSO) and Whale Optimization Algorithm (WOA) based controllers under the same controller 

configurations and operating conditions. Simulation results show that GOA outperforms PSO and WOA, 

resulting in lower voltage and frequency overshoot, output current, settling time for both DG insertion 

and load change conditions, Total Harmonic Distortion, minimal settling time and overshoot during DG 

insertion and load shift situations. The GOA-based controller demonstrates 23.81% and 33.33% faster 

convergence than previous WOA and PSO controllers, respectively. The FF demonstrates a higher 

minimum final optimized value (0.496) than WOA (0.87) and PSO (1.00), resulting in a high-quality 

solution to the optimization problem. The power quality analysis shows that the GOA-based controller 

has the lowest THD (0.08%) compared to WOA (0.15%) and PSO (0.18%). The main objective was to 

reduce the FF. 

                       𝐹. 𝐹 = Min {∫  
∞

0
𝑡 ∗ |𝑒𝑝|𝑑𝑡 + ∫  

∞

0
𝑡 ∗ |𝑒𝑞|𝑑𝑡}                       (35) 
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   Then Swastika Tarafdar in 2019[78], a method is proposed for optimizing the droop constants of an 

islanded DC microgrid while also taking into account fuel efficiency and tiny signal stability. System 

Eigenvalues are computed to determine the initial objective function for tiny signal stability. The second 

objective function, which represents fuel cost, is determined using unit cost constants and power 

generation. This optimization problem is then solved using the Multi-Objective Grasshopper optimization 

algorithm, which takes into account these two objectives. The results achieved are compared to those of 

the multiobjective genetic algorithm. A time domain voltage response is also recorded to demonstrate the 

stability.  in the research, the author used two objective functions for improving small signal stability and 

reducing fuel costs:      

   

                     𝑂𝑏1 = 𝑤1 ×𝑚𝑎𝑥
∀𝑘∈𝐾

 (Real{𝜆𝑘}) + 𝑤2 × ∑  𝑘∈𝐾 (1 − 𝜀𝑘)                 (36) 

                         𝑂𝑏2 = &∑  
𝑁𝑔
𝑖=1 (𝑎𝑖 + 𝑏𝑖𝑃𝑔𝑖 + 𝑐𝑖𝑃𝑔𝑖

2 )                           (37) 

 

  In This study [24], the proposed algorithm is employed in an independent microgrid system to 

ascertain the optimal configuration of the system that will efficiently meet the energy demand, taking into 

consideration the probability of power supply deficiency (DPSP) and the cost of energy (COE) duo to the 

algorithm GOA optimizes faster, reducing computing time and resource utilization while producing better 

results than its equivalent. . propose a rule-based energy management scheme (EMS) to coordinate power 

flow among microgrid components. The proposed microgrid consists of photovoltaic modules, a wind 

turbine, battery storage, and a diesel generator. The suggested GOA is compared to particle swarm 

optimization (PSO) and cuckoo search (CS) algorithms to evaluate its effectiveness in optimizing the 

problem. This method has proven its effectiveness through simulation results these results show that 

GOA outperforms CS and PSO in terms of optimal system sizing. This results in a 14% and 19.3% 

reduction in system capital costs. The GOA approach can produce global optimums with a low 

processing requirement and fast computational convergence. 

 

  Jumani, Mustafa, Rasid, Mirjat, et al. introduce a study in 2019[79], The objective of this study is to 

create an intelligent and robust optimal power flow controller that uses a grasshopper optimization 

algorithm (GOA) to maximize the grid-connected MG's power quality and dynamic response while 

distributing the desired quantity of power to the grid. The main objective of this investigation was to 

exchange reactive and active power between MG and the utility grid at the increased DG penetration 

level (100 kW, 70 kVAR) with the least amount of settling time, overshoot, and overall harmonic 

distortion by reducing the error associated with the fitness function (FF) It guarantees the optimum set of 

optimized PI parameters and, as a result, produces the optimized transient response of the grid-connected 

MG studied. Additionally, the fast Fourier transform (FFT) is used to analyze the harmonics of the 

system's output current waveform to assess the power quality analysis of the power system studied. The 

research author used this method, to study the microgrid with, the DC-DC boost converter circuit, two 

solar PV modules, the coupling inductor, the six-pulse, three-phase VSI, the RLC low pass filter, and the 

three-phase delta linked load make up the power circuit The following three scenarios have been used to 

assess the efficacy of the suggested GOA-based controller: Reactive and Active Power Control for MG 

Injection and Rapid Load Change, in this scenario, results show a better dynamic response when 

adjusting DG's reactive and active power than the previously employed PSO where the percentage 

overrun in DG's active power produced by the DG injection is 180%, which is accomplished as 94.40% 

and The percentage overrun for a step load shift and the active load power curve through MG 

injection is  2.63%, and 12.96%  respectively this is also considerably better for PSO-based controllers, 

where the values are 108.50% and 81.81%, respectively in this study. Case when Power Quality Analysis, 

in this situation, the FFT analysis of the inverter output current waveform has been done. According to 

the FFT analysis, the current harmonic contents after MG insertion (0.07%) and load change (0.09%) are 

much below 5% and%, respectively. THD was measured at 1.06% and 3.93%, better than PSO-based 

MG controllers. When comparing of Proposed GOA with the PSO-Based Controller in this scenario, FF 

reduction is necessary to obtain the optimal dynamic response of the analyzed system. To demonstrate 
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the effectiveness of the suggested GOA-based controller, its performance in obtaining the desired power-

sharing ratio while maintaining optimum power quality and dynamic response is compared to that of its 

predecessor particle swarm optimization (PSO), which is based on the most optimum choice of PI 

parameters that gives the optimum transient response of the examined grid-connected MG system and -

based controller under MG injection and sudden load change conditions. in comparison to the PSO-based 

controller, the proposed controller obtains a better transient response in terms of settling time and 

overshoot since The GOA achieves a greater rate of convergence and enhanced quality for the 

minimizing of a similar fitness function. Finally, The findings demonstrate that under various operating 

scenarios, such as MG injection and sudden load fluctuations, the suggested controller outperforms the 

alternative in terms of extracting and retaining the predetermined ratio of power from the MG and 

provides better transient response over PSO-based power flow controllers previously used, the suggested 

controller offers exceptional dynamic response for the system while minimizing current harmonic 

distortion, even at higher degrees of DG penetration. the main objective was to reduce the FF. 

                       𝐹. 𝐹 = Min {∫  
∞

0
𝑡 ∗ |𝑒𝑝|𝑑𝑡 + ∫  

∞

0
𝑡 ∗ |𝑒𝑞|𝑑𝑡}                      (38) 

  From the results of the previous studies discussed, it can be said that the Grasshopper Optimization 

Algorithm (GOA) outperformed the Particle's Swarm Algorithm (PSO) and Genetic Algorithm (GA) in 

improving the droop control parameters and reducing the deviations that occur in the system during the 

transition to the islanded mode for microgrid system or during the sudden change in the load. 
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Fig. 18. Flowchart using GOA optimization to optimize droop control. 

 

             

 
5.5. Salp swarm-inspired algorithm (SSIA)    

 

 The Salp swarm algorithm (SSA) is a new swarm intelligence technique recently proposed by a meta-

heuristic algorithm optimizer by Mirjalili et al., 2017 [80] to efficiently solve optimization issues. Salps 

belong to the Salpidae family. Salps have a barrel-shaped, translucent body. Salps are quite jellyfish-like. 

The salp ecosystem is difficult to access and maintain in the laboratory, making preservation 

challenging[81]. SSA mimics the swarming behavior of salps foraging in the oceans. Salps typically 

form a swarm in the heavy ocean known as a salp chain [82]. The Salp chain is divided into two group 

leaders and followers. The SSA is triggered by the swarming activity of salp fishes in oceans, which build 

salp chains. Salpfish is transparent and move by pumping water through their body[82]. The SSA 

algorithm has been used in many types of research in the field of microgrids[83] The salp swarm 
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algorithm can be utilized to solve numerous. 

 

5.5.1. a mathematical model for moving the salp chain 
  To mathematically model the salp chain divided into two groups leaders and followers as shown the 

Figure. 13 the leader is the salp at the front of the chain, while the following is referred to as the 

remainder of the salp. Similarly, to other swarm-based strategies, salps' positions are specified in an n-

dimensional search space, where n represents the number of variables in a particular problem. As a result, 

the positions of all salps are kept in a two-dimensional matrix denoted x. It is also assumed that a food 

source known as F exists in the search space and serves as the swarm's target.[80] So, to update the 

location of the leader can use the equation: 

 

                      𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐3 ≥ 0

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐3 < 0
                        (39) 

 

Where; x1
j: first Salp (leader) position in the jth dimension, Fj: food source position of the jth dimension, 

ubj: upper bound of jth dimension, lbj: lower bound of jth dimension,l: current iteration, L: maximum number 

of iterations, c1, c2, and c3: random numbers uniformly generated in the interval of [0,1]. 

 

   Salp chains can help SSA reduce inertia towards local optima, However, SSA may struggle to strike 

an appropriate balance between exploration and exploitation[84]. So, to make a balance between 

exploration and exploitation use the parameter c1 the following equation is used to determine the c1 

 

                        𝑐1 = 2𝑒
−(

4𝑙

𝐿
)
2

                                              (40) 

 

      The followers' positions will be updated using Newton's law of motion, as seen below: 

 

                              𝑥𝑗
𝑙 =

1

2
𝑐𝑡2 + 𝑣0𝑡                                           (41) 

 

      were i ≥ 2, xi
j shows the position of ith follower salp in jth dimension, t: is time, v0 : is the initial speed, 

      and 𝑎 =
𝜈final 

𝑣0
 , 𝑣 =

𝑥−𝑥0

𝑡
 

      In iterative optimization, the difference among iterations is equal to 1, and considering vo = 0, the 

      equation as follows: This equation considers the modification of the above equation. 

 

                              𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1)                                        (42)  

 

The following is a review of the literature using the GWA to optimize droop control.  

        The A. Ebrahim et al. in 2022, [81], Optimal Droop Control Design based Salp Swarm Optimization 

with Self-Adaptive Mechanism. The work aimed to develop an optimized controller to enable parallel-

connected inverters to share microgrid load. SSIA-enabled controllers on microgrid test equipment 

ensure power-sharing between several sources and regulate voltage and frequency. Optimize the 

controller that will be utilized to determine the PI controller gains and the droop control system 

coefficients. The cost function takes four forms: IAE, ISE, ITAE, and ITSE. The ideal way is to 

implement ITAE as an objective function. To check the performance of the proposed method takes into 

account two types of loads: constant and continuous change, as well as RER variability (changing 

irradiance, temperature). when fixed cyclic load variations the SSIA-based droop control technique 

effectively addressed RER variability, as evidenced by the findings. When continuous cyclic load 

variations, SSA results demonstrate that the frequency response significantly impacts the rate of power 

change, whereas the voltage is very marginally affected. So, the simulation findings demonstrate the 
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efficient operation of the suggested optimal approach. The frequency variation is acceptable, and the DGs 

respond well to load changes. 

 

 

   In 2020 [85], this work developed a real-time implementation and optimum design of the microgrid 

droop controller-based self-adaptive salp swarm optimization with updated particle swarm optimization 

(PSO) characteristics. The main aim of the work was to address real-world microgrid droop control 

uncertainties such as controller gain inaccuracy, system parameter deterioration, multi-source energy 

sharing difficulty, and system dynamics. The hybrid SSIA-PSO also includes a self-adaptive mechanism, 

which eliminates the need to refine the algorithm parameters for each optimization problem. This method 

was used because the hybrid approach has the advantage of combining the best aspects of both PSO and 

SSIA to determine the ideal global efficiency for solving intricate optimization issues, including the 

microgrid's optimum operation as well as the hybrid SSIA-PSO improves the ease of exploitation in PSO 

with the ability to explore in SSIA. The proposed optimal method-based control approach is empirically 

validated in a real-time setting where the simulation results show that the hybrid SSIA-PSO algorithms 

outperform the other strategies provided. It was done in this way to handle one of the most common 

microgrid technical difficulties presented in the optimal design for the parameters of the PI controller and 

the parameters of the droop control to maintain fair power sharing between diverse sources. Despite the 

benefits of the suggested method, it requires more experiments on large-scale systems with several 

parameters that must be optimized under various uncertainties. In this regard, the authors propose using 

the provided approach to solve various multi-objective engineering challenges. 

 

 

 

Fig. 19. Test system diagram [85]. 

 

 

 

 In this article [86], developed Power Quality and Dynamic Response Enhancement of an Islanded 

Microgrid based Slap Swarm Optimization Algorithm. The main aim of the work was to (i) optimize MG 

control parameters (ii) improve transient response under different operation conditions for islanded MG 

(iii)voltage and frequency regulation.  to achieve these control objectives efficiently, and choose the 

optimal combination of the PI gains (kp and ki) as well as DC side capacitance (C) the suggested 

controller uses droop control and back-to-back proportional plus integral (PI) regulator-based voltage and 

current controllers. To assess the effectiveness of the proposed control technique its outcomes are 

compared with the partical swarm optimization(PSO) , grasshopper optimization algorithm (GOA) and 
The model is then assessed for all three case,  in first case when study frequency and voltage regulation 
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during Load Change and DG Insertion that achieving a steady rated frequency and voltage during DG 

introduction and sudden load changes with little overshoot and settling time necessitates fine-tuning of 

system parameters, to reduce overshoot and settle time after a disruption in the MGs system The SSA 

searched for the best combination of PI gains and capacitance to minimize FF and obtain excellent 

dynamic responsiveness with minimal overshoot and settling time At the end of the simulation, optimum 

values for four PI gains as well as the capacitance value were acquired, resulting in the least error while 

integrating the FF value, ensuring the optimum dynamic behavior of the constructed MG model To 

ensure a fair comparison of the three optimum parameter selection methods, namely GOA, PSO, and 

SSA, the DG rating and other system characteristics were kept constant for each three scenarios. During 

the simulation, a load of 40 kW and 20 kVAR was applied at 0.25 s, causing a dip in system voltage. In 

the case two analysis the Performance Evaluation of Studied Optimization Algorithms in this case GOA, 

PSO, and SSA were tested to reduce the fitness function under similar operating conditions and system 

characteristics. by using an identical number of iterations (50 iterations) In the 17th iteration, the SSA 

had the lowest fitness function value (0.5840618), while the PSO and GOA had the lowest magnitudes at 

0.9211586 and 0.8748774 in the 21st and 25th iterations, respectively. As a result, the SSA converges 

faster and produces higher-quality solutions than its competitors. In the third case study power quality 

analysis When analyzing the harmonic contents contained in the acquired current waveform, the Fast 

Fourier Transform (FFT) analysis It is obvious from the FFT analysis of the examined power system that 

the SSA-based controller suitably meets the power quality and the suggested controller converts the solar 

PV dc output current to a nearly pure sine wave with minimal distortion. Finally, the results show The 

SSA optimization method outperforms GOA and PSO in terms of overshoot and settling time for all three 

tested circumstances. 

 

 

Fig. 20. Structure of islanded microgrid with droop control [86]. 

 

 

 

     Ferahtia et al.in 2022[87], The purpose of this paper is to introduce an optimized load-sharing 

approach based on a droop control strategy for parallel batteries operating in a DC microgrid and control 

algorithm utilization to prevent non-matching conditions when including the real battery capacity which 

its lifecycle can influence, Consequently, power-sharing will be proportionate to the real capacity. so the 

lifecycle of the batteries will be extended and power-sharing will be optimized. The actual battery 

capacity is identified using a metaheuristic optimization algorithm known as the Salp Swarm Algorithm 

(SSA) to achieve this. The operating principle and limitations are elucidated and examined. In numerous 

operating scenarios, including batteries with similar and dissimilar capacities, as well as a sudden 
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disconnection of a battery, all battery's output is regulated by bidirectional DC/DC converters to ensure 

the charging and discharging process. The simulation demonstrates the capability of the proposed control 

strategy to effectively manage these situations.  Fig.21 explains the steps of optimization of SSA to 

optimize the droop control. 

   From the results of the previous studies discussed, it can be said that the Salp Swarm optimization 

(SSA) outperformed the Particle's Swarm Algorithm (PSO) Grasshopper Optimization Algorithm (GOA) 

in improving the droop control parameters and reducing the deviations that occur in the system during the 

transition to the islanded mode for microgrid system or during the sudden change in the load. 

 

 

Fig. 21. Flowchart using Salp swarm Algorithm to optimize droop control. 

 

 

Table 1. Summary of Advantages and Disadvantages of the optimization methods in droop control. 

NO Methods Advantages  Disadvantages 

   The algorithm is easy and simple to 

implement using programming with 

fewer parameters for tuning, It doesn't 

 Standard PSO suffers from a 

significant increase in search 

difficulty as the dimension of the 
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1 

 

 

 

Particle Swarm 

Optimization (PSO) 

need optimized functions such as 

derivative, differentia, and continuous 

[30] 

 The PSO is an intelligent method that 

gives the optimal control parameters to 

release qualifying reference current 

vectors [88]. and has a quick 

convergence rate [23]. PSO offers the 

capacity to reposition particles in a 

multi-dimensional search space[85] 

 The PSO method is based on artificial 

intelligence, hence it may be employed 

in both engineering applications and 

scientific research[89] 

 It is more robust and flexible than 

traditional approaches (traditional droop 

control) because it employs probabilistic 

transition principles and the quality of 

the proposed approach's solutions is 

independent of the starting 

population[50] 

search space increases[89] 

 PSO requires additional time to 

obtain the global optimal value in 

the search space[88]. 

 The PSO algorithm fails to 

deliver satisfying results due to an 

absence of collaboration from 

effective search strategies. The 

cause for this is that the PSO 

method does not fully utilize the 

information gathered during the 

computing stage. Instead, 

throughout each iteration, only 

the individual and swarm 

optimization information is used, 

Although the PSO algorithm 

permits global seek, it does not 

guarantee convergence with the 

global optimum [30]. 

 

 

 

 

2 

 

 

Genetic Algorithm 

Optimization (GA) 

 A decent answer can be found quickly. 

 Genetic algorithms constantly consider a 

population of solutions. Keeping many 

solutions in memory at each iteration has 

numerous benefits. 

 The algorithm may integrate multiple 

answers to create better ones, allowing it 

to take advantage of an assortment. 

 The convergence advances 

towards the local answer rather 

than the global solution since 

only excellent genetic 

information may be transferred. 

 In particular optimization issues 

and computation time, simple 

optimization methods may offer 

better results than GA, it is hard 

to operate with sets of dynamic 

data. 

 

 

 

 

3 

 

 

 

Grey Wolf 

Optimization (GWO) 

 Simplicity, ability to find local 

optimum, high search precision, fast 

seeking speed, easy to realize, a highly 

effective algorithm. 

 limited population variety. 

 Imbalanced exploitation and 

exploration and premature 

convergence 

 The GWO's position update 

equation is useful for 

exploitation but does not 

sufficiently an acceptable solution 

to find the droop control 

coefficients 

Table 2. Summary of Advantages and Disadvantages of the optimization methods in droop control (Cont). 

NO Methods Advantages Disadvantages 

   long-range and sudden movement is the  The performance of GOA is 
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4 

Grasshopper 

Optimization Algorithm 

(GOA) 

swarm's distinguishing attribute to 

capture the optimal solution for the 

droop control coefficient's 

dependent on the careful 

adjustment of its parameters. SO 

finding the optimal set of droop 

control coefficients can be 

difficult and may necessitate 

significant experimentation. 

 

5 

 

 

Salp Swarm Algorithm 

(SSA) 

 SSIA offers several benefits, including 

accelerated convergence, an expedited 

approach to providing superior 

solutions Looking for a globally 

effective method, Compatibility with a 

variety of optimization issues, A few 

settings for adjustment, simplicity of 

implementation, low parameters, and 

high performance. 

 the negatives stem from the 

potential of being caught in local 

minima, early convergence, and 

delayed searching. 

 

Table 3. Comparative Literature Survey. 

Ref.No Optimizer Controller Control Area Source Comparative Study 

[13] AOA Droop control, PI DC microgrids PV, Battery 
PSO, conventional 

methods 

[14] ACA Droop control, PI 
AC microgrid islanded 

mode 
DG (VSI) 

real-time self-tuning 

method 

[15] HHO Doop control, PI Microgrid  

 (SPVA), (SC), 

two battery 

stations (BSs), fuel 

cell system (FC) 

SSA, PSO, ABC 

[16] SC-MBO Droop control 
Stand-alone DC 

microgrid 

PV, BSS, Diesel 

generator  
MBO, PSO 

[17] CS Droop control Microgrid Multi -DG EA 

[18] DE-NGM Droop control Islanded DC microgrid PV ICGA, GPSO-GM 

[34] MFO Droop control DC microgrid PV 
Traditional droop 

control 

[35]  HBB-BC Droop control, PI Autonomous microgrids DG PSO, BB-BC 

[36] 
MOHBB-

BC 
Droop control, PI Microgrid PV, FC MOPSO 

[37] TFWO Droop control 
Hybrid isolated 

microgrid 
PV, WT, BES HHO, WOA, JSO 

[38] DE Droop control Microgrid DG GA, PSO 

Table 4. Comparative Literature Survey (Cont). 

Ref.No Optimizer Controller Control Area Source Comparative Study 
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[39] ADE Droop control DC microgrids RES, ESS GA 

[40] CF-GSA Droop control AC microgrid DG 
Traditional droop 

control 

[41] OOA Droop control, PI DC Microgrids PV, DCG 
AO, WOA, MPA, 

GJO, RSA 

[42] HGSO Droop control, PI Microgrid 
PV,Battery, 

supercapacitor 
PSO, ALO 

[43] CBA Droop control, PI Islanded microgrids Multi-DG 
PSO, SFO, Ziegler-

Nichols 

[44] AFSA Droop control, PI Microgrid DG 
Traditional droop 

control 

[47] PSO Droop control Islanded microgrid  DG 
Traditional droop 

control 

[48] PSO Droop control, PI Islanded microgrid  CDG 
Traditional droop 

control 

[49] PSO-NR Droop control Microgrid  RES 
ABC, PSO-EA PSO-

OCBA 

[51] PSO Droop control, PI 
Hybrid Microgrids 

(TWO MG) 
PV, WT, Battery 

 Traditional and 

optimized secondary 

controllers 

[52] PSO Droop control DC Microgrid DG 
controlled elitist 

genetic algorithm. 

[53] 
Fuzzified-

PSO 
Droop control DC Islanded Microgrid BES, WT --- 

[55] 

[56] 

[57] 

PSO Droop control, PI Microgrid  RES --- 

[63] GA Droop control Microgrid PV, WT, Battery --- 

[64] ICA-GA 
Droop control, 

PD 
Autonomous Microgrid DG GA, ICA, PSO, HTS 

[61] 

[65] 

[69] 

GA&ICA Droop control, PI Islanded Microgrid 
DERs 

PV 

--- 

GA, Newton-trust, 

and time domain 

method 

[66] HS-GA Droop control Microgrid DG --- 

[67] GA Droop control,PI DC Microgrids BESS 
Traditional droop 

method 

Table 5. Comparative Literature Survey (Cont). 

Ref.No Optimizer Controller Control Area Source Comparative Study 
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[68] GA Droop control,PI 

Microgrid Based on 

Small-Signal Dynamic 

Model 

DG --- 

[71] 

[73] 
GWO Droop control,PI Microgrid DG --- 

[75] CGWO Droop control Microgrid DG 
Traditional droop 

control 

[9] GOA Droop control Microgrid DG GA 

[77] GOA Droop control, PI Islanded Microgrid DG PSO, WOA 

[81] SSA Droop control, PI Microgrid 
PV, Battery, 

supercapacitor 
--- 

[85] SSA-PSO Droop control, PI Microgrid 
PV, Battery, 

supercapacitor 

PSO, SCA, ALO, 

DA, ABC, GWO-

PSO 

 

6. Conclusion 

   This paper discussed the review of five techniques of optimization algorithms including the swarm 

intelligence algorithm, Particle Swarm Optimization algorithm (PSO), Grey Wolf Optimization 

Algorithm (GWO), Grasshopper Optimization Algorithm (GOA), Salp Swarm Algorithm (SSA), and one 

evolutionary algorithm Genetic Algorithm (GA). This review included a literature review on these 

techniques by a group of researchers to improve droop control for microgrids to solve some of the 

problems that the droop control parameters suffer from, to reduce the variation that occurs in frequency 

and voltage, or the problem of power-sharing.  At the beginning of this paper, a review of the algorithms 

were reviewed to understand their nature of work, and then some of the research that used these methods 

was summarized to know their effect on the droop control coefficients. Therefore, the ultimate objective 

of these algorithms is to improve the droop parameters, as was done they are used in PI gain voltage, 

current, and frequency controllers to ensure optimal operation of microgrids as well as improve controller 

behavior. Finally, From the reviewed literature review, it was found that these algorithms have some 

advantages and disadvantages when used to optimize the droop control parameters, based on these 

studies, it can be said that the Salp Swarm Algorithm (SSA) and Grasshopper Optimization Algorithm 

(GOA) were the best. 
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List of Abbreviations used in this paper. 

Abbreviation Full From Abbreviation Full From 

MGs Microgrid System AFSA Artificial Fish Swarm Algorithm 

DG Distributed Generation PSO Particle Swarm Optimization 

PCC Point Common Coupling GWO Grey Wolf Optimizer 
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AO Aquila Optimizer GOA Grasshopper Optimization Algorithm 

HHO Harris Hawks Optimization SSA Salp Swarm Algorithm 

SCMBO 
Sine-Cosine- Monarch butterfly 
optimization 

GA Genetic Algorithm 

HBB-BC Hybrid Big Bang-Big Crunch OF Objective Function 

TFWO 
Turbulent Flow Water-Based 
Optimization 

SI Swarm intelligence 

DE Differential Evolution MO-OPF Multi-Objective Optimal Power flow 

HGSO Henry Gas Solubility Optimization NR Newton-Raphson 

CBA Coot Bird Algorithms RES Renewable Energy Source 

DER Distributed Energy Resources  MPPT Maximum Power Point Tracking 

TOC Total Operation Cost BESS Battery Energy Storage System  

PV Photovoltaic SOC State of Charge 

ITAE Integral Time Absolute Error APSO Adaptive Particle swarm optimization 

ICA Imperialist Competitive Algorithm FDC Fast Droop Controller 

BIBO Bounded-Input, Bounded-Output  VRP Virtual Rated Power 

WTG Wind Turbine Generators  CGWO Chaotic Grey Wolf Optimizer 

WOA Whale Optimization Algorithm HS Harmony Search 

CS Cuckoo Search DPSP Deficiency Power Supply Probability  

EMS Energy Management Scheme COE Cost Of Energy 

FFT Fast Fourier Transform AVR Automatic Voltage Regulator 

DR Demand Response RTP Real-Time Price 

IAE Integral Absolute Error ISE Integral Square Error 

ITSE Integral Time Square Error MFO Mothe Flame Optimization 

OOA Osprey Optimization Algorithm GSA Gravity Search Algorithm 

ABC Ant Bee Colony MBO Monarch Butterfly optimization 

EA Evolutionary Algorithms ICGA 
Imperialist comparative algorithm 
genetic algorithm 

NGM Newton-Gauss- based mutation  GPSO-GM 
Guaranteed convergence Particle Swarm 
Optimization with Gaussian Mutation 

JSO Jellyfish Search Optimizer MPA Marine Predator Algorithm 

GJO Golden Jackal Optimization RSA Reptile Search Algorithm 

ALO Ant Lion Optimizer SFO Sun Flower Optimization  

OCBA 
Optimal Computing Budget 
Algorithm 

HTS Heat Transfer Search 

SPVA Solar PV Array System SC Supercapacitor 
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