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Human activity recognition (HAR) is a critical task in various applications such as 
healthcare, smart homes, and security systems. The high dimensionality of the input 
data and the challenge of optimizing model parameters can hinder the development of 
accurate and efficient HAR systems. This research presents a novel method that 
combines Principal Component Analysis (PCA) for dimensionality reduction with Long 
Short-Term Memory (LSTM) networks. The LSTM network is optimized using the Grey 
Wolf Optimization (GWO) algorithm to enhance classification performance. Initially, 
PCA is employed to reduce the dimensionality of the input feature space, significantly 
reducing the number of features from 561 to 196 while preserving more than 99% of 
the original data variance. This step improves computational efficiency and reduces the 
risk of overfitting. The GWO algorithm is then used to fine-tune the LSTM network's 
hyperparameters, including the number of hidden units, learning rate, drop frequency, 
and batch size. This optimization ensures that the LSTM network effectively captures 
complex temporal dependencies in the activity data. The proposed method was 
rigorously tested and achieved a remarkable accuracy of 98.95%, demonstrating its 
robustness and efficacy in human activity recognition tasks. The integration of PCA and 
GWO improves the model’s performance and enhances its generalization capability to 
new, unseen data. This approach offers a powerful and efficient solution for HAR, 
addressing fundamental challenges and paving the way for future advancements in the 
field. 
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1. Introduction 
 

Human activity recognition (HAR) is a vital research area with applications in healthcare, smart 
environments, sports analytics and security systems. The ability to automatically identify and classify 
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human activities from sensor data enables a wide range of applications, including remote patient 
monitoring, behaviour analysis and activity-aware assistance. Despite significant advancements in 
sensor technology and machine learning algorithms, HAR remains a challenging task due to the 
complexity of human behaviour, variability in sensor data and the need for robust and accurate 
classification methods [1-3]. 

One of the primary challenges in HAR is the high dimensionality of the input data, often resulting 
from numerous sensors capturing multiple features. The significant feature space poses 
computational challenges and increases the risk of overfitting, leading the model to learn to 
memorize training data rather than generalize to new instances. Additionally, the variability and 
noise present in sensor data further complicate the recognition process, requiring sophisticated 
techniques to extract meaningful patterns and discriminate between different activities. These 
challenges underscore the need for advanced methods to handle high-dimensional data while 
maintaining high classification accuracy efficiently [4,5]. 

Furthermore, the optimization of model hyperparameters presents another significant challenge 
in HAR. Hyperparameters such as the number of hidden units in neural networks, learning rates and 
batch sizes play a crucial role in determining the performance and generalization capability of HAR 
models. However, finding the optimal combination of hyperparameters is a non-trivial task, often 
requiring extensive experimentation and computational resources. Inefficient hyperparameter 
tuning can lead to suboptimal model performance, slower convergence or even failure to learn 
meaningful patterns from the data. Addressing these challenges is essential for developing robust 
and accurate HAR systems that can effectively recognize human activities in real-world scenarios 
[6,7]. 

According to Wan et al., [8], a smartphone inertial accelerometer-based architecture for Human 
Activity Recognition (HAR) is devised. The data undergo preprocessing steps including denoising, 
normalization and segmentation to extract valuable feature vectors. Finally, Convolutional Neural 
Network (CNN), Long Short-Term Memory (LSTM), BLSTM, MLP and SVM models are applied to the 
UCI and Pamap2 datasets. A holistic deep learning-based architecture for activity recognition is 
proposed by Mutegeki et al., [9]. The CNN-LSTM network used in this study is deep both spatially and 
temporally. Deep spatially refers to the convolutional layers in the CNN, which capture spatial 
features from the input data, such as sensor readings at different time intervals. Deep temporally 
refers to the LSTM layers, which are responsible for modelling the temporal dependencies and 
sequential nature of the data. This combination allows the network to learn both local and long-term 
patterns, which significantly contributes to the high performance of the model. As a result, a 99% 
accuracy is achieved on the iSPL dataset, an internal dataset and a 92% accuracy on the UCI HAR 
public dataset. According to Zhou et al., [10], the focus is on improving HAR within the Internet of 
Health Things (IoHT) settings using deep learning methods. A deep Q-network (DQN) is introduced 
with a novel distance-based reward rule to boost learning efficiency in IoT environments. The DQN 
contributes by handling the challenge of weakly labelled sensor data through an intelligent auto-
labelling scheme. This scheme utilizes the distance-based reward rule to improve the model's ability 
to label the data autonomously, thereby enhancing the training process. This improvement in 
labelling efficiency helps the system make better use of available data, leading to more accurate 
human activity recognition in IoHT settings. Furthermore, a classification approach utilizing LSTM is 
suggested to discern intricate patterns by extracting high-level features contextually from sequential 
motion data. The LSTM's role is crucial in capturing temporal dependencies in the sequential data, 
allowing the model to detect fine-grained activity patterns over time. This deep learning architecture, 
combining DQN and LSTM, ensures both efficient data labelling and precise activity recognition, 
significantly improving HAR performance in IoHT environments. 
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The transformer model originally designed for natural language processing and vision tasks, was 
modified by Dirgová et al., [11] for analysing motion signals in time-series data. The self-attention 
mechanism within the transformer captures dependencies between signal values within a time 
series, allowing it to achieve performance comparable to state-of-the-art convolutional neural 
networks with long short-term memory. A hybrid feature selection process has been proposed by 
Ahmed et al., [12], comprising both filter and wrapper methods. The process employs a sequential 
floating forward search (SFFS) to extract desired features, enhancing activity recognition. 
Subsequently, the features are utilized for training and testing a multiclass support vector machine 
(SVM) to construct nonlinear classifiers, employing the kernel trick. A HAR framework utilizing 
smartphone sensor data is presented by Mekruksavanich et al., [13], primarily based on LSTM 
networks suitable for time-series analysis. A hybrid LSTM network, named 4-layer CNN-LSTM, is 
introduced to improve recognition accuracy. The 4-layer CNN-LSTM architecture has several 
advantages: the CNN layers perform direct mapping in the spatial representation of raw sensor data 
for effective feature extraction, while the LSTM layers leverage temporal dependencies, enhancing 
the extraction of features related to human activities. This combination allows the model to capture 
both spatial and temporal patterns more effectively than standard LSTM networks. The achieved 
accuracy on the UCI-HAR dataset with this architecture is 99.39%, which represents an improvement 
of up to 2.24% compared to prior state-of-the-art approaches. Bayesian optimization techniques are 
utilized for hyperparameter tuning of the LSTM networks. Evaluation of the HAR method is 
performed on the UCI-HAR dataset. Dahou et al., [14] presents a novel HAR system that optimizes 
Convolutional Neural Network and Arithmetic Optimization Algorithm (AOA) to improve HAR 
performance while minimizing resource usage. The CNN extracts feature from input data and a 
modified version of AOA, Binary AOA (BAOA), selects optimal features. These features are then 
classified using a Support Vector Machine (SVM) for different activities. The proposed HAR model is 
evaluated on three public datasets: UCI-HAR, WISDM-HAR and KU-HAR datasets. According to Helmi 
et al., [15], Deep Learning (DL) and Swarm Intelligence (SI) are combined to create a robust HAR 
system using wearable sensor data. The system employs a lightweight feature extraction approach, 
which integrates a residual convolutional network and a recurrent neural network (RCNN-BiGRU). 
The combination of DL and SI contributes to creating a robust HAR system by leveraging the strengths 
of both methodologies. DL methods, particularly through the use of residual convolutional networks 
and recurrent neural networks, excel at automatically extracting complex patterns and features from 
the raw sensor data. This reduces the need for manual feature engineering and enhances the model’s 
ability to recognize nuanced human activities. Meanwhile, SI techniques, such as the marine predator 
algorithm (MPA), optimize the feature selection process by identifying the most relevant features, 
which can lead to improved model performance and reduced computational complexity. This synergy 
ensures that the HAR system not only effectively captures significant data patterns but also operates 
efficiently, making it suitable for real-time applications in various smart environments. Additionally, 
novel feature selection methods based on the marine predator algorithm (MPA) are developed to 
identify the optimal feature set. A federated learning system for Human Activity Recognition 
(HARFLS) is developed by Xiao et al., [16]. A perceptive extraction network (PEN) is designed as the 
feature extractor for each user. The feature network, utilizing a convolutional block, is tasked with 
identifying local features within the HAR data, while the relation network, comprising a combination 
of LSTM and attention mechanism, focuses on uncovering global relationships inherent in the data. 
The performance of the system is evaluated using four widely used datasets: WISDM, UCI_HAR 2012, 
OPPORTUNITY and PAMAP2. According to Gil-Martín et al., [17], wearable sensor data is used to 
analyse the primary motion characteristics of different types of movement. The study employs 
Convolutional and Recurrent Neural Networks for feature learning and classification. Evaluation is 
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conducted using recordings from the Pamap2 and Opportunity datasets with subject-wise cross-
validation. A model named the Gated Recurrent Unit-Inception (GRU-INC) model is proposed by Mim 
et al., [18], which utilizes an Inception-Attention-based approach incorporating the Gated Recurrent 
Unit (GRU).The temporal aspect of the model employs GRU along with Attention Mechanism (AM), 
while the spatial aspect utilizes the Inception module along with the Convolutional Block Attention 
Module (CBAM). According to Priyadarshini et al., [19], various machine learning and deep learning 
algorithms are explored for HAR, including Random Forest (RF), Decision Trees (DT), K-Nearest 
Neighbors (k-NN), CNN, LSTM and Gated Recurrent Units (GRU). Optimization techniques are 
introduced to enhance the performance of CNN, LSTM and GRU models, utilizing Stochastic Gradient 
Descent (SGD) along with optimizers such as Adam and RMSProp. Evaluation metrics include 
Accuracy and F-1 score. According to Abdel-Basset et al., [20], a novel framework for human activity 
recognition is introduced, leveraging raw readings from a blend of smartphone sensors, including 
accelerometer, gyroscope, magnetometer and Google Fit activity tracking module. The framework 
employs a deep recurrent neural network (DRNN) trained on an extensive dataset containing five 
activity classes from 12 individuals. The study by Iloga et al., [21] presents a Hidden Markov Model 
(HMM)-based approach for Human Activity Recognition. Meta-data extracted from these models are 
incorporated as components of the feature vectors. Classification experiments 2living and 8 types of 
falls. According to Bijalwan et al., [22], data collection involves various activities utilizing an IMU 
sensor equipped with a three-axis accelerometer, three-axis gyroscopes and a 3° magnetometer. The 
gathered data undergo preprocessing using various filters and cubic spline techniques. Following 
preprocessing, the data is categorized into seven activities. Subsequently, the data is classified using 
four deep learning models: deep neural network, bidirectional-long short-term memory (BLSTM), 
CNN and CNN-LSTM. 

The issue of classifying motion signals produced by multiple wearable sensors for human activity 
recognition and sensor localization is tackled by Lawal et al., [23]. Frequency images are utilized as 
the input for the proposed two-stream CNN to predict both the human activity and the location of 
the sensor generating the activity signal. A study by Chen et al., [24] introduces a two-stage genetic 
algorithm-based feature selection algorithm known as GFSFAN. The study evaluates the performance 
of Human Activity Recognition using six classifiers to assess the impact of selected feature subsets 
from different feature selection algorithms. The Contrastive Predictive Coding (CPC) framework is 
introduced by Haresamudram et al., [25] to human activity recognition, capturing the temporal 
structure of sensor data streams. Its effectiveness for enhanced HAR is demonstrated through 
various experimental evaluations on real-life recognition tasks. The pre-training based on CPC is self-
supervised and the learned representations derived from it can be incorporated into conventional 
activity chains. In a study by Zhu et al., [26], a hybrid classifier is introduced, that integrates CNNs 
and recurrent neural networks (RNNs) to extract spatial-temporal patterns. The performance of the 
classifier is assessed through validation using K-fold cross-validation (CV) and leave-one-person-out 
(L1PO) methods. According to Tong et al., [27], a novel deep learning model for HAR utilizing inertial 
sensors is proposed. A deep learning model called Bidirectional-Gated Recurrent Unit-Inception (Bi-
GRU-I) is devised to enhance accuracy and reduce parameter count. Finally, comparative 
experiments are conducted with other methods on three datasets: the self-collected CATP dataset, 
the widely used Wireless Sensor Data Mining (WISDM) dataset and the University of California, Irvine 
(UCI-HAR) dataset. In a study by Shavit et al., [28], an activity recognition model based on 
Transformers is introduced, providing an enhanced and comprehensive framework for learning 
activity recognition tasks. For evaluation, multiple datasets comprising over 27 hours of inertial data 
recordings from 91 users are utilized. While Li et al., [29] introduces Meta-HAR, a federated 
representation learning framework. Within this framework, a signal embedding network is meta-
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learned in a federated manner and the resulting signal representations are subsequently utilized by 
personalized classification networks at individual users for activity prediction. The shared embedding 
network undergoes training using a Model-Agnostic Meta-learning framework. The objective of 
Ferrari et al., [30] is to assess whether incorporating personalization into both traditional and deep 
learning methods yields superior performance compared to classical approaches lacking 
personalization. AdaBoost was selected as the traditional machine learning technique, while CNN 
was chosen for deep learning, given their demonstrated effectiveness. This implies that traditional 
deep learning may prove more effective when working with a sizable and diverse dataset. In a study 
by Ihianle et al., [31], a deep learning multi-channel architecture is introduced, comprising a 
combination of CNN and Bidirectional long short-term memory (BLSTM). The model benefits from 
the direct mapping and abstract representation of raw sensor inputs by the CNN layers, facilitating 
feature extraction at various resolutions. According to Park et al., [32], a deep learning-based HAR 
model named MultiCNN-FilterLSTM is introduced to support resource-efficient IoT systems. This 
model combines a multihead CNN with a LSTM through a residual connection, enabling efficient 
processing of feature vectors in hierarchical order.  

The current research landscape in human activity recognition has seen significant advancements, 
with numerous studies focusing on developing novel algorithms and techniques to improve 
classification accuracy and robustness. However, a notable gap exists in the literature regarding the 
integration of dimensionality reduction and hyperparameter optimization techniques within a 
unified framework for HAR. While individual methods of dimensionality reduction and optimization 
algorithms for tuning hyperparameters have been explored independently, there is limited research 
on their combined application in the context of HAR. This study seeks to bridge this gap by proposing 
a novel method that integrates PCA for dimensionality reduction with LSTM networks optimized 
using GWO, aiming to enhance classification performance while addressing the challenges of high 
dimensionality and hyperparameter tuning. 

The proposed methodology builds upon powerful algorithms in dimensionality reduction and 
hyperparameter optimization, leveraging the strengths of PCA and GWO to address key challenges 
in HAR. PCA serves as an effective technique for reducing the dimensionality of the input feature 
space, allowing for more efficient processing and improved generalization capability of the model. 
By retaining the most informative features while discarding redundant ones, PCA facilitates better 
model interpretation and performance. Meanwhile, GWO offers a robust optimization framework 
for fine-tuning the hyperparameters of LSTM networks, ensuring that the model is effectively trained 
to capture complex temporal dependencies in the activity data. Through the integration of these 
techniques, the proposed method aims to provide a comprehensive solution for enhancing the 
accuracy and efficiency of HAR systems. 

In the subsequent sections of this research, we will present a detailed description of the proposed 
methodology, including the basic concepts and implementation steps. We will first introduce the 
PCA-based dimensionality reduction technique and its application to preprocess the input data. Next, 
we will discuss the LSTM network, GWO algorithm and its utilization for optimizing the 
hyperparameters of LSTM networks. After that, the dataset used for simulation and the evaluation 
metrics employed for assessment are explained. Following that, we will provide experimental results 
demonstrating the effectiveness of the proposed method in improving classification performance on 
benchmark UCI HAR datasets. Next, the comparison of the proposed method with some other 
methods of the literature is presented. Finally, we will conclude with the implications of our findings 
of our proposed method.  
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2. Methodology  
2.1 Principal Component Analysis 

 
PCA is a flexible statistical technique used to distil a data table, consisting of cases and variables, 

down to its fundamental elements, known as principal components. Several multivariate methods 
are simple variations of PCA. One way to modify PCA is by changing the distance function, which 
alters the measure of total variance. Another variation involves assigning different weights to the 
cases so that some cases have more influence on the PCA solution than others. In PCA, the distances 
between the projected points approximate the Euclidean distances between the points in the original 
space. The Euclidean distance between points 𝑖 and 𝑖ʹ is defined as: 
 

d(i, i!) = (∑ (y"# − y"! #	)
$

#             (1) 

 
where 𝑦𝑖𝑗 and 𝑦𝑖ʹ𝑗 refer to the standardized data. If the original data are denoted by 𝑥𝑖𝑗 and 
standardization is performed by subtracting the mean 𝑥𝑗 and dividing by the standard deviation 𝑠𝑗, 
then: 
 
y"# =

%"#&%"
'#

              (2) 

 
and the distance formula becomes: 
 

d(i, i!) = (∑ (
%"#&%"!#

'#
)$#             (3) 

 
This is called the standardized Euclidean distance, in this distance the inverses of the variances 

w# =
(
'#
$ can be considered as weights on the variables. 

A variant of PCA is correspondence analysis, which is generally applied to two-way cross-
tabulations, general frequency data or data in the form of percentages. In correspondence analysis, 
the relative values of the data are of interest, such as rows divided by their row totals, called profiles. 
The distances between profiles, the chi-square distances, have a form similar to the standardized 
Euclidean distance. Specifically, both distance measures quantify the difference between two points 
in a multi-dimensional space. The standardized Euclidean distance adjusts the raw differences by the 
standard deviation of each dimension, effectively normalizing the scale of the data. In contrast, the 
chi-square distance measures the divergence between two probability distributions, focusing on the 
ratio of the differences relative to the total counts. Despite their different applications, both 
distances aim to assess similarity or dissimilarity between datasets and share a foundational 
mathematical structure that enables the comparison of multivariate data. This distance enoting the 
(row) profiles by 𝑟𝑖𝑗: 
 

d(i, i!) = (∑ (
)"#&%"!#
*#

)$#             (4) 

 
where 𝑐𝑗 is the jth element of the average profile. Therefore, for relative frequency data, the mean 
profile elementcj replaces the variance 𝑠2

j in the equation. This implies that the weights for the 
variables are the inverses 1/𝑐𝑗. The reason the mean profile element replaces the variance in this case 
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is that, in correspondence analysis, we are primarily interested in relative values (i.e., proportions) 
rather than absolute deviations. The mean profile element represents the average distribution of 
each variable, so replacing the variance with 𝑐𝑗 emphasizes the relative importance of deviations 
from this average. This affects the interpretation of the weights by shifting the focus from variability 
within each variable (as measured by the variance) to the contribution of each variable relative to 
the overall data structure. Consequently, variables with larger mean profile elements contribute less 
to the distance calculation, since their relative deviations are smaller, aligning with the principle of 
correspondence analysis where we are more concerned with proportional differences. 
Correspondence analysis focuses on the relative values of the data, such as row profiles, which are 
calculated by dividing rows by their row totals. 

Eigenvalues and eigenvectors play a crucial role in PCA. Eigenvalues represent the amount of 
variance captured by each principal component and eigenvectors indicate the direction of these 
components. When the covariance matrix of the standardized data is computed, the eigenvalues and 
corresponding eigenvectors are derived from this matrix. The principal components are then 
identified as the eigenvectors with the largest eigenvalues, capturing the most significant patterns in 
the data illustrated in Figure 1: 

 
i. The rows of data, which can be optionally standardized, along with their mean or centroid 

(C), define points in a multidimensional space. Standardization is optional because it 
depends on whether the scales of the variables are comparable. If the variables are 
measured on different scales, standardization is necessary to ensure that no single 
variable dominates the analysis due to its scale. In contrast, if all variables are already on 
the same scale, standardization may not be required. The implication of not standardizing 
the data when needed is that variables with larger magnitudes could disproportionately 
influence the principal components, leading to skewed results. Conversely, unnecessary 
standardization may dilute meaningful variability between variables that are naturally 
measured on the same scale. 

ii. The first two dimensions from the singular value decomposition identify the optimal two-
dimensional plane that fits the data points in terms of least-squared distances between 
the plane and the points. This plane includes the centroid (C), which becomes the origin 
of the PCA display and represents the averages of the variables. 

iii. Each multidimensional data point forms a right-angled triangle with its projection onto 
the plane and the centroid. The total variance is fixed and equals the average sum of 
squared distances of the points to the centroid. Maximizing the average squared distances 
in the plane (maximizing variance) is equivalent to minimizing the average squared 
distances from the points to the plane (minimizing fit) [33]. In the context of PCA, 
maximizing the variance ensures that the principal components capture the most 
significant patterns or directions of data spread. The goal of PCA is to project the data into 
a lower-dimensional space while retaining as much variability (or information) as possible. 
When the variance is maximized, the points are spread out as much as possible along the 
principal components, meaning the most important features of the data are preserved. 
This is equivalent to minimizing the fit because, in PCA, "fit" refers to how closely the 
points adhere to their projections onto the lower-dimensional plane. By minimizing the 
average squared distances from the points to the plane, we ensure that the plane fits the 
data well and that the components provide the best possible representation of the data's 
structure. This dual objective aligns with PCA's goal of finding the projection that best 
summarizes the data with minimal loss of information. 
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Fig. 1. Diagrammatic representation of dimensionality reduction in PCA [33] 

 
2.2 Long Short-Term Memory (LSTM) 

 
Recurrent Neural Networks (RNNs) frequently have trouble retaining data over extended 

intervals of time. This problem is solved in LSTM models by including memory cells with gated 
mechanisms. With the help of these gates, the model can decide which information is relevant to 
keep or discard. 

 
i. Forget Gate: This gate decides which information to discard from the LSTM memory. It 

uses a sigmoid function to compute a value, 𝑓𝑡, ranging between 0 and 1. This value 
determines how much of the previous information ℎ𝑡−1 and the current input 𝑥𝑡 should be 
kept or discarded. Mathematically, this is represented as Eq. (5): 

 
f+ = 	σ	(W,-[h+&(] + W,%[x+], b,)           (5) 
 

ii. Input Gate: The input gate decides whether new information should be added to the LSTM 
memory. It comprises two layers: a sigmoid layer and a hyperbolic tangent (tanh) layer. 
The sigmoid layer determines the update signal 𝑖𝑡, indicating which parts of the memory 
to update. The tanh layer generates a vector c@+ of candidate values to be added to the 
memory. The combination of these layers determines the memory update, computed as: 

 
i+ = 	σ	(W"-[h+&(] + W"%[x+], b")           (6) 
 
c@+ = tanh(W*-[h+&(] + W*%[x+], b*)           (7) 

 
The updated memory 𝑐𝑡 (Eq. (8)) is calculated by combining the old memory𝑐𝑡−1 with the 
new candidate value i+c@+: 

 
c+ =	 f+c+&( + i+c@+             (8) 
 

iii. Output Gate: The output gate determines which part of the LSTM memory contributes to 
the output. It starts with a sigmoid layer to compute the output gate signal 𝑜𝑡 indicating 
the relevance of the memory. The sigmoid function produces a value between 0 and 1, 
which determines the proportion of the current cell state that should influence the final 
output. The tanh function then maps the memory cell value (𝑐𝑡) to a range between -1 
and 1. The output gate signal 𝑜𝑡 (from the sigmoid layer) is multiplied with the tanh-scaled 
cell state. This combination ensures that only the relevant portion of the current memory 
cell, as determined by the output gate, is passed to the final output ℎ𝑡. This is followed by 
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a tanh function that maps the values between -1 and 1 and then multiplies with the output 
of another sigmoid layer to produce the final output ℎ𝑡: 

 
o+ = 	σ	(W.-[h+&(] + W.%[x+], b.)           (9) 
 
h+ =	o+	tanh	(c+)                                    (10)
  

The forget gate, input gate and output gate are shown from left to right in Figure 2, which 
depicts the internal architecture of an LSTM unit [34].  

 

 
Fig. 2. The internal architecture of the basic 
LSTM network unit [35] 

 
2.3 Gray Wolf Optimization Algorithm 

 
Gray Wolf Optimization, which is inspired by the social structure and hunting behaviour of gray 

wolves in nature. The algorithm is based on the social hierarchy of gray wolves, with four types: alpha, 
beta, delta and omega, each representing a different leadership role within the pack. The GWO 
algorithm comprises three main steps: encircling, searching and attacking prey. 

At the top of the hierarchy is the alpha wolf, who leads and coordinates the pack's hunting efforts. 
Beta wolves, in the second tier, relay feedback and information to the alpha from other wolves. Delta 
wolves, in the next level, control the omega wolves, which are at the lowest rank. 

Eq. (11) calculates the distance of each wolf from the alpha, beta and delta wolves based on their 
positions (denoted as 𝑋) in the search space: 
 
𝐷/012/ = I𝐶(. 𝑋/012/ − 𝑋I,                       (11) 
𝐷345/ = |𝐶$. 𝑋345/ − 𝑋|, 
𝐷6405/ = |𝐶7. 𝑋6405/ − 𝑋| 

 
To determine the next position of the current wolf, the values of 𝑋1, 𝑋2 and 𝑋3 are computed 

using Eq. (12): 
 
𝑋( = 𝑋/012/ − 𝐴(. 𝐷/012/,                       (12) 
𝑋$ = 𝑋345/ − 𝐴$. 𝐷345/, 
𝑋7 = 𝑋6405/ − 𝐴7. 𝐷6405/ 
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The parameters 𝐴, 𝑎 and 𝐶, which govern the algorithm's behaviour, are determined using Eq. 
(13). The variables 𝑟1 and 𝑟2 are randomly generated values within the range of 0 to 1. 𝐶 is a 
parameter that enhances the GWO algorithm's exploration capability: 
 
𝐴 = 2𝑎. 𝑟( − 𝑎,                        (13) 
𝐶 = 2. 𝑟$ 

 
The next position of every wolf in the population is adjusted according to Eq. (14): 

 
𝑋(𝑡 + 1) = (𝑋( + 𝑋$ + 𝑋7)/3                      (14) 

 
When ∣𝐴∣ is less than 1, it indicates that the wolf is attached to the prey. Conversely, if ∣𝐴∣ exceeds 

1, the wolf distances itself from the prey and seeks out more suitable targets. The search behaviour 
of gray wolves is influenced by the positions of the alpha (α), beta (β) and delta (δ) wolves. The 𝐴 and 
𝐶 vectors play a crucial role in balancing exploitation and exploration. A is a control parameter that 
modulates the degree of exploration and exploitation in the search process. The magnitude of A 
indicates the strength of attraction or repulsion from the prey: a value less than 1 suggests the wolf 
is following the prey closely, while a value greater than 1 implies the wolf is moving away from it to 
explore other areas. The purpose of the random values of A is to introduce variability in the wolves' 
movements, helping to distinguish between their roles as followers (staying close to the prey) and 
explorers (searching for new targets). This randomness allows the algorithm to avoid premature 
convergence on local optima and encourages a more thorough search of the solution space. Random 
values of 𝐶, ranging from 0 to 2, prevent the algorithm from getting stuck in local optima. A higher 
value of 𝐶 increases the search process's randomness, making it harder for wolves to stay close to 
their prey [36]. Figure 3 illustrates the algorithm's behaviour. 

 

 
Fig. 3. The diagram of the GWO algorithm [37] 

 
The main focus throughout the process is on adjusting the 𝐴 and 𝐶 vectors, with most parameters 

emphasizing either exploitation or exploration. The GWO algorithm concludes once the specified 
benchmark is achieved, yielding the best location for the alpha wolf. 

Figure 4 illustrates the flowchart of the Gray Wolf Optimization algorithm. 
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Fig. 4. The flowchart of the GWO algorithm [38,39] 

 
2.4 Stages of the Proposed Method  

 
In this section, we detail the methodology employed to develop a robust human activity 

recognition system. The proposed method integrates Principal Component Analysis (PCA) for 
dimensionality reduction and Long Short-Term Memory (LSTM) networks optimized using the Grey 
Wolf Optimization (GWO) algorithm. This hybrid approach is designed to enhance classification 
performance by focusing on the most informative features and fine-tuning the model's 
hyperparameters. 

The initial phase of our method involves reducing the dimensionality of the input feature space 
using PCA. The original dataset has a large number of features, which can lead to overfitting and 
increased computational complexity. PCA is utilized to transform the feature space, concentrating 
the data's variance in the first few principal components. This transformation effectively reduces the 
dimensionality while preserving the most informative original content. 

To achieve this, we calculate the eigenvalues of the covariance matrix of the transformed features 
and normalize them to form a vector indicating each feature's contribution to the data variance. The 
covariance matrix is a square matrix that describes the variance and covariance between different 
features in the dataset. Each element of the matrix represents the covariance between a pair of 
features, indicating how much two variables change together. The eigenvalues of the covariance 
matrix are crucial for PCA because they represent the amount of variance captured by each principal 
component. A higher eigenvalue indicates that the corresponding principal component accounts for 
a larger portion of the variance in the data, allowing us to identify the most significant features for 
dimensionality reduction. This is essential in PCA, as it helps in selecting the components that 
contribute most to the variability in the dataset. By selecting the top principal components that 
account for more than 99% of the total variance, these findings reduce the feature set from 561 to 
196 features. This reduction not only streamlines the dataset but also ensures that the most 
significant features are retained for the subsequent modelling phase.  
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The application of PCA offers several advantages, such as reduced overfitting and enhanced 
accuracy and generalization. Moreover, it enhances computational efficiency by reducing the 
number of features the model needs to process, which accelerates the training phase and reduces 
the risk of overfitting. Additionally, by focusing on the most informative features, PCA helps improve 
the model's accuracy and generalization capability. The transformed features form a new, more 
compact representation of the data, which is then used as input for the LSTM network. This step is 
crucial in addressing the high dimensionality of the data, a common challenge in human activity 
recognition, by ensuring that the model focuses on the most relevant features while discarding 
redundant or irrelevant ones. 

Following dimensionality reduction, we focus on optimizing the LSTM network's hyperparameters 
to improve its performance. The hyperparameters tuned include the number of hidden units, 
learning rate, learning rate drop frequency and batch size. Properly setting these parameters is 
crucial as they significantly influence the network's ability to learn and generalize from the data. 

We employ the Grey Wolf Optimization algorithm to determine the optimal hyperparameter 
settings. GWO mimics the leadership hierarchy and hunting mechanism of grey wolves in nature, 
making it an effective approach for solving complex optimization problems. The optimization process 
involves setting appropriate ranges for each hyperparameter to ensure a thorough and efficient 
search. 

The GWO algorithm iteratively searches within these ranges to identify the combination that 
minimizes the error on the validation set. The process balances the thoroughness of the search with 
computational efficiency. During the optimization phase, the LSTM network is trained for a limited 
number of epochs per iteration to expedite the process. Once the optimal hyperparameters are 
identified, the final model is trained using these settings over an extended period to ensure thorough 
learning and convergence. 

Optimizing the LSTM network's hyperparameters addresses several critical challenges in human 
activity recognition, including mitigating overfitting, ensuring proper model convergence, enhancing 
the model’s ability to generalize to unseen data and efficiently learning from temporal patterns 
without being hindered by noisy or redundant information. Poorly chosen hyperparameters can lead 
to suboptimal performance, slow convergence or even failure to learn meaningful patterns. The use 
of GWO for hyperparameter optimization ensures that the LSTM network is finely tuned to capture 
the complex temporal dependencies in the data, enhancing its predictive accuracy and robustness. 

Furthermore, human activity recognition systems must generalize well to new, unseen data to be 
practically useful. The combination of PCA and GWO not only improves the model’s training 
performance but also enhances its generalization capability. This is critical for real-world applications 
where the model will encounter a wide variety of activities and conditions. The robustness of the 
proposed method is also reflected in its ability to handle noisy and incomplete data. The PCA step 
helps in filtering out noise by focusing on the principal components, while the optimized LSTM 
architecture, determined by GWO, is adept at learning from the data despite imperfections. Figure 5 
illustrates the flowchart of the proposed method based on the mentioned stages. 

 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 54, Issue 2 (2025) 317-343 

329 
 

 
Fig. 5. Flowchart of the proposed method 

 
3. Dataset 

 
In this study, we utilize the UCI HAR dataset for the evaluation of the proposed method. The 

Human Activity Recognition dataset (UCI HAR) was constructed from recordings of 30 individuals 
performing daily activities while carrying a smartphone equipped with inertial sensors on their waist. 
The participants, aged between 19 and 48 years, engaged in six activities: walking, walking upstairs, 
walking downstairs, sitting, standing and lying. A Samsung Galaxy S II smartphone, worn at the waist, 
recorded 3-axis linear acceleration and 3-axis angular velocity at a consistent rate of 50Hz. The data 
collection was video-recorded to facilitate manual labelling. 

The dataset was divided into training and test sets, with 7352 subjects' data allocated for training 
and 2947 samples for testing. Sensor data from the accelerometer and gyroscope underwent noise 
filtering and were sampled using fixed-width sliding windows of 2.56 seconds with a 50% overlap, 
resulting in 128 readings per window. This overlap allows for a more granular representation of the 
data, ensuring that critical transitional states between activities are not lost. By using overlapping 
windows, we can maintain continuity in the data, providing the model with more samples that 
contain variations and nuances inherent in the activities being performed. Additionally, the overlap 
enhances the ability of the model to learn and generalize by exposing it to multiple views of the same 
activity, thus improving the robustness of the feature extraction process and leading to better 
performance in recognizing distinct activities. The accelerometer's signals, which include both 
gravitational and body motion components, were decomposed using a Butterworth low-pass filter 
into body acceleration and gravity components. A cutoff frequency of 0.3 Hz was applied to isolate 
the gravitational force, presumed to consist solely of low-frequency components. 

The features selected for this dataset come from the accelerometer and gyroscope 3-axial raw 
signals (time-domain signals) tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote 
time) were captured at a constant rate of 50 Hz. They were then filtered using a median filter and a 
3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Specifically, 
"tAcc-XYZ" refers to the time-domain accelerometer data for the three spatial axes (X, Y and Z), while 
"tGyro-XYZ" represents the time-domain gyroscope data for the same axes. Similarly, the 
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acceleration signal was separated into body and gravity acceleration signals (tBodyAcc-XYZ and 
tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz. 

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain 
Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). The magnitude of these three-dimensional 
signals was calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, 
tBodyGyroMag, tBodyGyroJerkMag). 

A Fast Fourier Transform (FFT) was then applied to some of these signals, producing fBodyAcc-
XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag and fBodyGyroJerkMag ( 
'f' indicates frequency domain signals). 

From each window, features were extracted by computing various time and frequency domain 
variables, producing a 561-feature vector for each record. The dataset includes the triaxial 
acceleration (total and body), triaxial angular velocity, activity labels and an identifier for the subject. 
Additionally, it provides labels for postural transitions and the complete raw inertial signals prior to 
preprocessing. 

The signals used to estimate variables of the feature vector include tBodyAcc-XYZ, tGravityAcc-
XYZ, tBodyAccJerk-XYZ, tBodyGyro-XYZ, tBodyGyroJerk-XYZ, tBodyAccMag, tGravityAccMag, 
tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag, fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-
XYZ, fBodyAccMag, fBodyAccJerkMag, fBodyGyroMag and fBodyGyroJerkMag. 

The set of variables estimated from these signals includes several statistical measures. First, 
mean() calculates the mean value of the signal. The std() function computes the standard deviation, 
while mad() assesses the median absolute deviation. Additionally, max() identifies the largest value 
in the array and min() finds the smallest value. The sma() function measures the signal magnitude 
area. 

Furthermore, energy() calculates the energy measure, defined as the sum of the squares divided 
by the number of values. The iqr() function provides the interquartile range and entropy() measures 
signal entropy. For autoregressive modeling, arCoeff() computes autoregression coefficients with a 
Burg order equal to 4. 

The correlation() function finds the correlation coefficient between two signals. In the frequency 
domain, maxInds() identifies the index of the frequency component with the largest magnitude. The 
meanFreq() function determines the weighted average of the frequency components, yielding a 
mean frequency. Finally, skewness() and kurtosis() calculate the skewness and kurtosis of the 
frequency domain signal, respectively. 

Additional functions include bandsEnergy(), which measures the energy of a frequency interval 
within the 64 bins of the FFT of each window and angle(), which calculates the angle between two 
vectors. 

Additional vectors obtained by averaging the signals in a signal window sample are used in the 
angle() variable, including gravityMean, tBodyAccMean, tBodyAccJerkMean, tBodyGyroMean and 
tBodyGyroJerkMean [40]. 

 
3.1 Evaluation Metrics 

 
In the context of Human Activity Recognition (HAR), evaluating the performance of classification 

models is crucial to understanding how well the model can predict different activities. Common 
evaluation metrics include accuracy, precision, recall and the F1 score. Here’s how these metrics 
apply to HAR: 
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i. Accuracy: Accuracy is the ratio of correctly predicted activities to the total number of 
predictions. It gives a general idea of the overall performance of the model. However, 
accuracy can be misleading in cases of imbalanced datasets where some activities are 
more frequent than others. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 89:8;
89:8;:<9:<;

                      (15) 
 

ii. Precision: Precision measures the proportion of true positive predictions among all 
positive predictions (true positives and false positives). In HAR, precision for an activity 
(e.g., walking) indicates how many of the predicted instances of walking were actually 
walking. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 89

89:<9
                        (16) 

 
iii. Recall: Recall, also known as sensitivity or true positive rate, measures the proportion of 

true positives among all actual positives (true positives and false negatives). In HAR, recall 
for an activity (e.g., walking) indicates how many of the actual instances of walking were 
correctly identified by the model. For instance, if there are 100 actual instances of walking 
(true positives + false negatives) and the model correctly identifies 80 of them as walking 
(true positives), while it fails to identify 20 (false negatives), the recall would be calculated 
as follows: 
Recall = True Positives / (True Positives + False Negatives) = 80 / (80 + 20) = 80 / 100 = 0.8 
or 80%. This means that the model correctly identifies 80% of the actual walking instances. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 	 89

89:<;
                        (17) 

 
iv. F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a single 

metric that balances both concerns, especially useful when the dataset has imbalanced 
classes. In HAR, the F1 score for an activity (e.g., walking) provides a balance between the 
precision and recall of predicting that activity. The F1 score is particularly useful in cases 
of imbalanced datasets because traditional accuracy metrics can be misleading. For 
example, if a model predicts the majority class correctly most of the time, it can achieve 
high accuracy without effectively recognizing the minority class. The F1 score, by 
considering both precision and recall, ensures that the model is not only identifying the 
majority class but also performing well on the minority class, thereby providing a more 
comprehensive evaluation of its performance. 

 
𝐹(𝑆𝑐𝑜𝑟𝑒 =

$×(9?4@ABACD×E4@/00)
9?4@ABACD:E4@/00

                     (18) 
 
In a HAR system trained to recognize walking, walking upstairs and walking downstairs, a high F1 

score for 'walking upstairs' would indicate that the model is reliably able to distinguish between 
walking upstairs and other activities. A high accuracy suggests overall good performance, while high 
precision and recall for individual activities indicate the model’s reliability in predicting those specific 
activities. The F1 score is particularly useful when the goal is to find a balance between precision and 
recall, ensuring that the model performs well in identifying true activities without being misled by 
false positives or false negatives. 
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4. Results  
4.1 Simulation Results 

 
This section provides in-depth findings derived from evaluating the proposed approach for 

human activity recognition. The proposed methodology was simulated using MATLAB 2023b on a 
system featuring the following specifications: an Intel Core i7 13650HX CPU running at 2.6 GHz with 
24M Cache, 16 GB of RAM and graphical memory provided by an NVIDIA RTX 4050 with 6GB capacity. 

 
4.1.1 Dimensionality reduction results 

 
The initial step in implementing the proposed method, following pre-processing, involves 

reducing the dimensionality of the input data using Principal Component Analysis (PCA). The input 
dataset originally comprises 561 features—a substantial number that can lead to overfitting and 
complicate the training process. Therefore, dimensionality reduction is essential to enhance 
computational efficiency and model performance. PCA transforms the coordinate axes of the input 
space, mapping the data to a new space where most of the initial information is concentrated in the 
first few features.  

By applying PCA, the variance in the data is reallocated such that the first principal components 
capture the most significant aspects of the data variability. This transformation not only reduces the 
complexity but also mitigates the risk of overfitting by focusing on the most informative features. 
Figure 6 demonstrates the class discrimination using the first three features of the data, both before 
and after applying PCA. As illustrated, the data's discrimination improves significantly post-PCA 
application, indicating a more distinct separation among different classes. 
 

 
Fig. 6. The discrimination of different classes, 
before and after applying the PCA 

 
The proposed method, however, is not limited to these three features. To determine the specific 

number of features to retain from the transformed dataset, we closely examine the amount of 
information captured in the new space. Our objective is to retain more than 99% of the original 
information to ensure that the most critical aspects of the data are preserved. We achieve this by 
calculating the eigenvalues for each new feature and normalizing them by dividing by the total sum 
of eigenvalues. This normalization process results in a vector where the sum of values equals 1, 
indicating the proportion of information each feature contributes to the total data variance. 
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Next, we sort this vector in descending order and compute its cumulative sum. The feature 
corresponding to the first element of this sorted vector has the highest eigenvalue, contributing the 
most to the data's information content. The cumulative sum of these values allows us to identify the 
point at which we capture the desired amount of information. To select an appropriate number of 
features, we retain features up to the point where the cumulative sum reaches 0.995, representing 
99.5% of the original information. This systematic approach ensures which the current study is 
included the most relevant features while excluding less informative ones. 

By selecting these features and removing the others, we effectively reduced the dataset to 196 
features out of the original 561. This reduced feature set is then used to train the LSTM model, 
ensuring that the model is trained on the most informative and significant aspects of the data. This 
reduction not only speeds up the training process but also enhances the model's ability to generalize 
to new data by focusing on the most critical features. Figure 7 illustrates this feature selection process 
using the sorted cumulative eigenvalues. 

 

 
Fig. 7. The feature selection procedure using 
the sorted cumulative eigenvalues (the red 
line is the considered threshold) 

 
4.1.2 LSTM optimization results  

 
Following the reducing dimensionality of the initial dataset, we proceed to optimize the 

hyperparameters of the Long Short-Term Memory (LSTM) network, specifically the number of hidden 
units, learning rate, learning rate drop frequency and batch size. This optimization is carried out using 
the Grey Wolf Optimization (GWO) algorithm. Proper tuning of these parameters is crucial as they 
significantly impact the performance of the network. 

The first step involves configuring the settings for the GWO algorithm, including the upper and 
lower limits for the decision variables, the number of population members and the maximum number 
of iterations. Given the specific ranges for each decision variable (LSTM hyperparameters), these 
values are selected to ensure a comprehensive search space. The range for the number of hidden 
units is set between (2, 150), the learning rate between (0.0001, 0.01), the learning rate drop 
frequency between (2, 80) and the batch size between (2, 120). 

Adjustable parameters such as the number of population members and the maximum number of 
iterations play a pivotal role in the optimization process. Larger values allow for a more thorough 
exploration of the search space, whereas smaller values expedite the process. Considering that each 
iteration involves training the LSTM network and evaluating its error, a balance is needed to prevent 
excessively long optimization times. Given the relatively small search space defined by our parameter 
ranges, we set the maximum number of iterations to 9 and the number of population members to 3. 
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To optimize the speed of this process without sacrificing accuracy, we limit the number of training 
epochs for the LSTM network to 5 during the hyperparameter optimization phase. Although fewer 
epochs accelerate the process, this may risk the network not converging to the global optimum, 
potentially impacting accuracy. It is important to note that this phase focuses solely on comparing 
different hyperparameter settings and final training is conducted with the optimal hyperparameters 
identified. 

An additional parameter to facilitate fast network convergence is the choice of the optimization 
algorithm. For this study, we utilize the well-regarded RMSPROP algorithm, known for its rapid 
convergence. Figure 8 illustrates the convergence curve of the LSTM hyperparameter optimization 
process using the GWO algorithm.  
 

 
Fig. 8. The convergence curve of the GWO 
algorithm in optimizing LSTM hyperparameters 

 
Table 1 presents the optimal values obtained through this process. 

 
Table 1 
The optimized hyperparameters of 
LSTM 
Parameter Value 
The number of hidden units 135 
Learning rate 0.0035 
Learning rate drop frequency 40 
Batch size 100 

 
Finally, the network is trained using the identified optimal parameters over 80 epochs. Figure 9 

depicts the convergence curve of the final training session. The subsequent section evaluates the 
performance of the trained network using the proposed approach. 
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Fig. 9. The convergence curve of training LSTM using 
RMSPROP algorithms 

 
4.1.3 Classification performance 

 
In this section, we present and analyse the performance of the proposed method using various 

evaluation metrics. The classification performance is illustrated through confusion matrices, ROC 
curves and bar charts of evaluation metrics for both training and testing datasets. 

A confusion matrix provides a comprehensive way to visualize the performance of a classification 
model. It displays the true positive, false positive, true negative and false negative counts, allowing 
for a detailed assessment of the model's accuracy. The matrix is particularly useful for understanding 
the types of errors the model is making. 

Figure 10 and Figure 11 display the confusion matrices for the training and testing datasets. The 
rows represent the actual classes, while the columns represent the predicted classes. High values 
along the diagonal indicate correct predictions, whereas off-diagonal values represent 
misclassifications. 

The confusion matrix for the training dataset (Figure 10) shows that all of the instances are 
correctly classified. This suggests that the model has effectively learned the patterns in the training 
data.  
 

 
Fig. 10. Evaluating the proposed method using 
the confusion matrix for the training dataset 
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The confusion matrix for the testing dataset (Figure 11) indicates the model's performance on 
unseen data, with only 31 misclassified samples. This is expected due to the model's exposure to new 
data during testing, yet the overall high values along the diagonal indicate good generalization 
capability. 
 

 
Fig. 11. Evaluating the proposed method 
using the confusion matrix for the testing 
dataset 

 
The Receiver Operating Characteristic (ROC) curve is a graphical representation of a classifier's 

ability to distinguish between classes. It plots the True Positive Rate (TPR) against the False Positive 
Rate (FPR) at various threshold settings. The Area Under the ROC Curve (AUC) is a single scalar value 
that summarizes the overall performance of the model; a higher AUC indicates better performance. 

Figure 12 and Figure 13 show the ROC curves for the training and testing datasets. Each curve 
illustrates the trade-off between sensitivity and specificity across different thresholds. 

For the training dataset (Figure 12), the ROC curve is positioned at the top-left corner, indicating 
a high true positive rate and a zero false positive rate. The AUC for the training set is 1, demonstrating 
perfect model performance on the training data.  
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Fig. 12. Evaluating the proposed method using 
the ROC curve for the training dataset 

 
Similarly, the ROC curve for the testing dataset (Figure 13) maintains a favourable position, 

though slightly less optimal than the training curve. The AUC for the testing set is 0.99989, reflecting 
the model's excellent performance on unseen data, which is typical and indicates good 
generalization. 
 

 
Fig. 13. Evaluating the proposed method using 
the ROC curve for the testing dataset 

 
To quantitatively evaluate the model's performance, we use several metrics of accuracy, 

precision, recall and F1 score, as mentioned in Section IV. These metrics provide a comprehensive 
understanding of the model's effectiveness from different perspectives. Accuracy measures the 
overall correctness, precision indicates the correctness of positive predictions, recall measures the 
ability to identify all positive instances and the F1 score balances precision and recall. 

Figure 14 and Figure 15 present bar charts illustrating these metrics for the training and testing 
datasets. 

The bar chart for the training dataset (Figure 14) shows 100% values across all metrics, indicating 
that the model performs perfectly in correctly predicting the classes.  
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Fig. 14. Evaluating the proposed method using 
the evaluation metrics for the training dataset 

 
For the testing dataset (Figure 15), the metrics are slightly lower than those of the training set 

but still demonstrate strong performance, with all values above 98.9%. This slight decrease is normal 
and suggests that the model maintains good predictive power when applied to new data. 

 

 
Fig. 15. Evaluating the proposed method 
using the evaluation metrics for the testing 
dataset 

 
4.2 Comparison 

 
This section presents an extensive comparison between the proposed method and other 

approaches found in the literature First, each of these methods will be described, followed by a 
concise tabular overview for easy comparison. 

A deep neural network that combines convolutional layers with LSTM was proposed by Xia et al.,  
[41], enabling the automatic extraction of activity features and classification with few model 
parameters. The specific contribution of this method lies in its ability to process temporal sequences 
effectively, utilizing a combination of LSTM for capturing time-dependent patterns and convolutional 
layers for spatial feature extraction. This architecture allows the model to achieve high accuracy with 
reduced complexity, making it suitable for real-time applications. LSTM, a variant of the recurrent 
neural network Evaluation of model performance was conducted on three public datasets (UCI, 
WISDM and OPPORTUNITY). In comparison to the proposed method, which may incorporate 
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different techniques or architectures, the advantages of this LSTM-CNN approach include automatic 
feature extraction and fewer model parameters. However, potential disadvantages could include a 
reliance on large datasets for training and a possible limitation in generalization to unseen data types. 
Finally, the overall accuracy of the model was assessed, yielding 95.78% in the UCI-HAR dataset, 
95.85% in the WISDM dataset and 92.63% in the OPPORTUNITY dataset. 

According to Challa et al., [42], a robust classification model for Human Activity Recognition using 
wearable sensor data is designed by employing a hybrid approach combining CNN and BiLSTM. The 
proposed multibranch CNN-BiLSTM network conducts automatic feature extraction from raw sensor 
data with minimal preprocessing. The specific contribution of this method lies in its ability to learn 
both local features through the convolutional layers and long-term dependencies through the BiLSTM 
layers, making it well-suited for time-series data inherent in HAR tasks. Utilizing CNN and BiLSTM 
enables the model to learn both local features and long-term dependencies in sequential data. This 
approach relates to the proposed method by demonstrating a different architecture that combines 
both CNN and BiLSTM, potentially offering complementary strengths to the proposed technique. The 
model's performance is evaluated using three benchmark datasets: WISDM, UCI-HAR and PAMAP2, 
resulting in accuracies of 96.05%, 96.37% and 94.29% respectively. Advantages of this hybrid method 
include enhanced feature extraction capabilities and improved performance on diverse activities, 
while potential disadvantages might involve increased model complexity and computational 
requirements compared to simpler models. 

A model based on a Deep Neural Network, incorporating a Convolutional Neural Network and a 
Gated Recurrent Unit, is proposed by Dua et al., [43] for end-to-end activity classification with 
automatic feature extraction. The specific contribution of this method is its ability to perform both 
feature extraction and classification within a single model architecture, minimizing the need for 
manual feature engineering, which is often time-consuming and requires domain expertise. 
Experiments in this study utilize raw data from wearable sensors with minimal preprocessing, 
omitting handcrafted feature extraction techniques. This approach relates to the proposed method 
by demonstrating an alternative deep learning architecture that emphasizes end-to-end learning and 
the automation of feature extraction, potentially enhancing generalization and performance. 
Accuracy rates achieved on the UCI-HAR, WISDM and PAMAP2 datasets are 96.20%, 97.21% and 
95.27% respectively. The advantages of this method include the elimination of manual feature 
extraction, improved classification performance on diverse datasets and the ability to capture both 
local and long-term dependencies through the combined use of CNN and GRU layers. However, 
potential disadvantages may involve increased model complexity and computational demands 
compared to more straightforward architectures. 

In a study by Mekruksavanich et al., [44], a novel framework is introduced for multi-class 
wearable user identification, focusing on the recognition of human behaviour using deep learning 
models. The specific contribution of this method lies in its approach to utilizing deep learning for 
biometric user identification through the analysis of human activity, leveraging sensory data from tri-
axial gyroscopes and accelerometers of wearable devices. Sensory data from tri-axial gyroscopes and 
accelerometers of wearable devices are utilized to gather comprehensive user information during 
various activities. This method relates to the proposed method by demonstrating an effective way to 
harness deep learning for user identification, which could complement existing activity recognition 
systems. Additionally, a series of experiments were conducted to validate this work, demonstrating 
the effectiveness of the proposed framework. Results from the two fundamental models, CNN and 
LSTM deep learning revealed that the highest accuracy achieved for all users was 91.77% and 92.43%, 
respectively, on UCI HAR and USC HAD datasets. The advantages of this method include its ability to 
automatically extract relevant features from wearable sensor data, thus minimizing the need for 
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manual feature engineering and potentially enhancing user identification accuracy. However, 
disadvantages may involve limitations in generalization to other contexts or datasets and reliance on 
specific sensor configurations that may not be universally available across all wearable devices. 

All mentioned methods obtain appropriate performance for intrusion detection. However, the 
proposed method with a great ability for avoiding overfitting, outperforms all of them. Table 2 
reports the summary of the comparative study. 
 

Table 2 
The comparison of the proposed method with other SDN intrusion detection methods 
Reference Method Dataset Accuracy 
[41] Deep neural network with LSTM and convolutional layers UCI-HAR 95.78% 
[42] Hybrid CNN-BiLSTM UCI-HAR 96.37% 
[43] Deep Neural Network with CNN and Gated Recurrent Unit (GRU) UCI-HAR 96.20% 
[44] Convolutional Neural Network 

Long Short-Term Memory 
UCI HAR 91.77% 

The proposed method PCA dimensionality reduction and LSTM optimized with GWO UCI HAR 98.95 
 
As recommended for future studies, machine learning methods and some algorithms, such as the 

GA-PRM algorithm's adaptability and potential for efficient navigation in healthcare and automation 
[45,46].  

 
5. Conclusions 

 
This study introduced an innovative human activity recognition (HAR) method that combines 

Principal Component Analysis (PCA) for dimensionality reduction with Long Short-Term Memory 
(LSTM) networks optimized using the Grey Wolf Optimization (GWO) algorithm. The integration of 
these advanced techniques aimed to tackle significant challenges in HAR, such as high dimensionality 
and the complexity of hyperparameter optimization, which are crucial for developing robust and 
efficient recognition systems. 

The initial phase of our method employed PCA to reduce the input feature space from 561 to 196 
features. This reduction preserved more than 99% of the original data variance, ensuring that the 
most informative aspects of the data were retained while discarding redundant or irrelevant 
features. By doing so, we enhanced computational efficiency and mitigated the risk of overfitting, 
which is a common issue when dealing with high-dimensional datasets. The PCA step effectively 
transformed the feature space, making the subsequent modelling process more manageable and 
focused. 

Following dimensionality reduction, the LSTM network's hyperparameters were optimized using 
the GWO algorithm. This optimization process was critical in fine-tuning the network to capture the 
complex temporal dependencies present in human activity data. The hyperparameters tuned 
included the number of hidden units, learning rate, learning rate drop frequency and batch size. By 
leveraging GWO's ability to search for optimal hyperparameters, we ensured that the LSTM network 
was not only effectively trained but also capable of achieving high performance. 

The proposed method was rigorously tested and demonstrated a remarkable accuracy of 98.95%. 
This outstanding performance underscores the robustness and efficacy of our approach in human 
activity recognition tasks. The combination of PCA and GWO proved to be a powerful strategy, 
enhancing both the efficiency and accuracy of the LSTM network. The success of our method 
highlights its potential for real-world applications, where accurate and efficient HAR is essential. 
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Moreover, the study addresses several critical challenges in the HAR domain. The use of PCA 
significantly reduced the feature space, addressing the issue of high dimensionality that often leads 
to overfitting and increased computational burden. The GWO optimization of LSTM hyperparameters 
tackled the challenge of model tuning, ensuring that the network parameters were set to values that 
maximize learning efficiency and accuracy. 

The integration of PCA and GWO not only improved the model's performance during training but 
also enhanced its generalization capability. This is particularly important for real-world applications, 
where the model needs to perform reliably on new, unseen data. 
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