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ABSTRACT

In the present study, finite element technique is adopted to study the
response of single pile and pile group with circular section embedded in

homogeneous clay soil under the excitation of dynamic loads.

The pile is modeled by discreting it into a series of interconnected beam
segment elements. The pile — soil interaction is modeled by Winker type
model as a series of springs having normal and tangential stiffness. The
properties of these springs are calculated based on the "p-y","t-z" and "g-
z" curves methods recommended by the American Petroleum Institute
recommendations. These curves had been modified in the case of pile
group in order to take into account the elastic effect between piles in the
group. The dynamic equilibrium equations of the system are solved to
calculate the forced  vibration.

Fortran power station software is used to calculate "p-y","t-z" and “q-z"
curves as well as (ANSYS 5.4) computer software which is used to model

and analyze the problems which are considered in this study.

Two examples are considered as an application on modeling and
analysis procedure . The first example deals with the dynamic response of
a single pile with different stiffness factors, dynamic load types and pile
head condition . The second example deals with the dynamic response of
pile group with different groups sizes , pile group spacing, and dynamic

load type.

Clearly it has been found that the amplitude of pile head under
harmonic load is 0.61 of that under transient load with the same head
condition and the type of dynamic load applied has reliable effect not

only on pile head amplitude but also on pile response.
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The response of single pile with horizontal and vertical modes of
vibration to the dynamic load is markedly different when the pile is stiff
and indicating clearly the effect of pile spacing and group size on group

deformation and response.
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CHAPTER ONE
INTRODUCTION

1-1 General:

Most of marine structures, offshore structures, towers,...ctc. are
resting on piles. These piles in general taken on the ground. In some cases
these piles carry sever dynamic loads generated from the effect of wind,
waves, impacts, machine loads, earthquake ...etc. in which case static
analysis is not sufficient, and dynamic analysis become a requirement to
calculate the effect of the loads on the structure, foundation, and
supporting soil [1].

This study considers large diameters circular piles which are able to
withstand high axial and lateral dynamic loads. The response of the pile
foundation in many cases covers the response of the supported structures
and their integrity. The analysis and interaction within structure-soil
system is often simplified if the soil and the structure are treated
separately [2]; therefore, modeling of problems considered in this
research depend on separating of pile and analysis it as a structural
element. In general the method followed in the analysis of pile foundation
depends on the type of piles used and the type of loading. Different
procedures have been used for the dynamic analysis of piles; the
differences are because of the differences in the treatment of the soil

medium in the analysis [3].
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1-2 Dynamic Analysis:

Dynamic analysis is a technique used to determine the dynamic
response of a structure under the action of any general time-dependent
loads. To achieve a completed dynamic analysis, both free vibration and
forced vibration analysis should be achieved to determine the vibration
characteristics (natural frequencies and mode shapes) of a structure while
it is being designed and to determine the time-varying displacements,
strains, stresses and forces in the structure as it responded to dynamic
loading conditions [4]. In general, the dynamic analysis of structural
systems is a direct extension of static analysis. The elastic stiffness

matrices are the same for both dynamic and static analysis [5].

1-3 Applications of Circular Pipe Piles Foundations:

Steel pipe piles are commonly used in bridge foundations. The
foundations of large bridges are provided as dolphins with piles
positioned diagonally at different angles and in different directions.
Because steel pipe piles are concreted to function as a composite structure
have high resistance to bending and buckling, the pile footings can be
built in water. The use of caisson techniques allows all concreting down
to the lowest pile tip to be carried out in dry conditions. This facilitates
inspection and there by ensures proper quality control. Most bridges, such
as small cross-water bridges, over-and under passes, flay over, etc, can be
built on foundations consisting of a single steel pipe pile which in most
cases can be connected to the deck directly without bearings. This
contributes to safe, economical and rapid construction. For example the
pipe pile foundations of railway bridges can be built during short traffic
interruptions. With the largest (D=1220 mm) steel pipe pile, when
properly installed, an allowable bearing capacity of 9 MN can be
achieved enough even for heavy bridges [6].
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In offshore structures, circular pipe piles foundations which are usually
contain groups of pipes of large diameter are commonly used. The pile
heads are connected rigidly to the structure so that only horizontal and
vertical movements with negligible rotation of piles heads are permitted
at mud line where the pile head taken on the ground[7]. Because of the
large horizontal and axial loads developed by the wave action on the piles
and the high flexibility of the steel tubes the deflections of the piles and
deformations of the surrounding soil are relatively large. For this reason
the analysis of offshore pile foundations should be performed with
methods which consider non-linear soil behavior [8], on the other hand
the design of offshore piles requires consideration of the effects of cyclic

loading on the axial permanent deformations of the pile head.

1-4 Object and Scope of the Study:

The main objective of this research is to present a procedure for
dynamic analysis of large diameter steel piles with circular section under
the excitation of dynamic loads by finite element method. Piles are

represented by frame elements supported by elastic spring, "p-y "(load-

deflection) approach is used to model the soil in the action of horizontal
loads and "t-z" and "q-z" approaches is used to model the soil in the
action of vertical loads. Computer software (ANSYS 5.4) program had
been used for modeling the problems and for complementing dynamic
analysis of these problems under consideration.

The study is divided into six chapters. The current chapter is the first.
Chapter two briefly reviews the available literature concerned with the
problem. Chapter three presents the finite element modeling and the
dynamic analysis formulations used for these types of problems. The
effect of pile - soil interaction and its mathematical representation are

dealt with in chapter four. Different applications of the present study
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which concerned to indicate the evaluation of the dynamic effect on a
single pile with (free head and fixed head) and pile group are presented in
chapter five. In chapter six the overall conclusions from the present study

and recommendations for future works.
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CHAPTER TWO
LITERATURE REVIEW

2-1 Introduction:

The response of piles and pile groups to dynamic excitation had been the
subject of many investigations over the past decade. A review of the research
indicate that although some outstanding efforts exist in the published
literature the scope of some of the solution procedures developed are restricted
and cannot always be extended to the generalized analysis of pile and pile
groups subjected to axial and lateral loading.

This chapter deals with the available literature concerned with the single
pile and pile groups under cyclic axial and lateral load. Finite element
methods which used for this subject are also reviewed in this chapter. And

finally a review for soil- structure interaction is presented.

2-2 General Dynamic Response of Pile Foundation:

Novak, in 1977 [9], presented an approximate analytical solution for the
vertical dynamic stiffness and damping of the soil-pile system. The theoretical
response is compared with experimental results. He had been found that the
motion of pile tip cannot be neglected unless the pile is extremely long or the
tip rests on a very rigid layer, lack of fixity of the tip reduces the stiffness and
significantly increases the damping, with increasing length, the stiffness of a
floating pile increases while stiffness of an end bearing pile decreases, the
damping of floating piles is larger than that for end bearing piles, the vertical

dynamic response of a structure supported by piles can be much smaller with
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floating piles than with and bearing piles and the relaxation of pile improves
the agreement between the theory and experiments.

Meith, in 1980 [10], presented a method of force-coupling the nonlinear
response of a pile foundation to the linear response of a structure, the method
successively corrects the three boundary forces and three boundary moments
for each pile at the pile-structure interface by comparing the nonlinear
response of the pile —soil system to linear quasi-tangent modulus response,
convergence is assumed when all six values per pile are within a stated
tolerance. This technique had been employed in the analysis of approximately
40 major and a number of smaller offshore structures in the Gulf of Mexico
and has been found to be an efficient and accurate way of coupling a structure
to its foundation. It is shown that this method accounts for certain lateral
nonlinearity that are inherent in most pile-soil system response and why these
can produce large errors using other modeling techniques.

Harry, in 1981 [11], performed an extension of an elastic-based analysis
of a statically loaded pile which uses a total stress approach to incorporate the
effects of cyclic loading, and which involved an interaction analysis to
determine the ultimate load capacity and the cyclic, stiffness of the pile after a
given number of load cycles of a given manipulated. He clearly shown that the
ultimate load capacity and cyclic stiffness decrease with increasing number of
cycles N and increasing cyclic load level. The effect of N becomes more
significant when the cyclic load Pc (half peak to peak) approaches 50% of the
static ultimate load, cyclic degradation begins at the top of the pile and
progress downward as P, or N increases, resulting in gradual transfer of load to
lower parts of the pile, the crucial factor in determining the mount of cyclic
degradation is the critical shear strain for skin friction, the static distribution of
soil modulus and skin friction have a marked effect on the cyclic degradation

and the relative loss in ultimate load capacity and cyclic stiffness is more sever
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if soil modulus and skin friction are uniform with depth than if they increase
with depth .

Feng and Megerhof, in 1987 [12], used a numerical technique to solve
nonlinear simultaneous equations. A new method of analysis is developed for
design of eccentric and / or inclined loaded rigid pile in clay. The method
takes account of the non-linear strain-stress characteristics of the soil around
the piles and can be used for round, rectangular and other symmetric rigid
piles. The computed results using this method were found to be in good
agreement with the measured values of same field stats and laboratory model
tests.

Harry, in 1989 [13], developed an analysis for the behavior of a single pile
or symmetrical pile group in sandy soil under cyclic axial loading. The
analysis allows consideration of the effect of degradation of skin friction, base
resistance and soil modulus, the influence of load rate, and the accumulation of
permanent displacements. Laboratory data for skin friction degradation are
presented and it is shown that the amount of degradation due to cyclic loading
depends on the cyclic displacement. The number of cyclic loading depends on
the cyclic displacement, number of cycles, soil type , and type of pile.
Theoretical solutions for a hypothetical pile and a previous field test
emphasize the importance of determining whether the degradation of skin
friction depends on the absolute cyclic displacement or the cyclic displacement

related to the diameter.
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2-3 Finite Element Analysis Review:

Kuhlemeyer, in 1979 [14] formulated approximation to obtain an efficient
modeling to the dynamic transversely loaded piles. Dynamic solution was
obtained for the case of transversely loaded piles embedded into homogenous,
isotropic, and elastic half space. The fundamental solution was presented in
the from of flexibility coefficients equal to the static case values multiplied by
frequency-dependent complex numbers, which were approximated by
polynomial expression, such that closed form solution was obtained valid for
the practical range of the pile to soil elastic modulus ratio.

Krishnan, Gazetas and Veles, in 1983 [15], did a systematic parameter
investigation for the static and dynamic response of a single free head pile
embedded in soil stratum, the modulus of which increases linearly with depth.
The study was conducted by means of a dynamic finite-element formulation
which accounts for the three-dimensionality of soil deformation while properly
reproducing the radiation damping characteristics of the system. The soil is
modeled as a linear hysteretic continuum and the excitation consists of a
sinusoidally time-varying horizontal force or moment applied at the pile head.
It has been shown that the ratio of pile Young's modulus to soil modulus at a
one-diameter depth is the most significant parameter which controls the
response. The slenderness ratio is of secondary importance.

Essa & Al-Janabi, in 1992 [16], studied the dynamic behavior of plane
frames resting on or partially embedded in winkler elastic foundation to obtain
the dynamic response frame, considering the foundation-structure interaction.
A beam element is used with axial force supported by elastic foundation of
winkler type having normal and tangential modulus of subgrade reaction
linearly varying with the length of the element. The end bearing resistance of
the elastic foundation is also included in the analysis. This problem was solved
using the mode super position and the newmark-f method. They concluded

that the accuracy of newmark integration scheme depends on the size of time
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step. In general, the scheme gives an accurate solution for multi-degree of
freedom system when the time step to smallest period is less than (0.1)
otherwise the method exhibit an amplitude decay period elongation.

Sa’eed, in 2002 [17], studied the dynamic behavior of foundations
supporting vibrating machinery. The finite element procedure was used in
simulation of the machine foundation which is discretized using plate elements
having the capability of undergoing the forces in three dimensions as well as
the bending ability. The piles are discretized using space frame elements. The
soil structure interaction was modeling using Winkler type foundation which
have coefficients in three dimensions.

Barros, in 2003 [18] studied the response of piles with circular section
embedded in transversely isotropic half spaces loaded by time harmonic axial
loads. The pile was modeled as a series of bar elements. The soil is modeled
by an indirect formulation of boundary elements. The boundary element
formulation uses influence functions which are displacements and stresses due
to loads distributed along circular and cylindrical surfaces inside a transversely
isotropic elastic half space. He found that this method is effective when
dealing with the problem of vertical pile embedded in transversely isotropic
soil. The numerical results show that the isotropic soil has a marked influence
on the pile response.

2-4 Soil-Structure Interaction review:

Nogami and Konagai, in 1987 [19], considered nonlinear conditions in
the time domain formulation for the dynamic response of pile foundation. Both
single piles and group of piles subjected to vertical dynamic load are
considered in their study. The nonlinear effects in the vertical response are
assumed to result from slippage of the pile from the soil. In order to
demonstrate the capacity of the formulation and to see the effect of
nonlinearity on the dynamic response of pile foundations, the response of pile

foundations are computed for both harmonic and transient loads.



Appendix A p-y, t-z and q-z approach

Other pile diameters [43].

In place of yso, use ye.

=25¢, —— 75=89¢..d" (Inches
Y. 015 75 50 ( )

A-1-2 “p-y” Curves for Stiff Clay

A-1-2-1-In presence of Free Water

Derivation of curves is depended on works of Reese et al. (1975) which is

base on 6 inch and 24 inch diameter piles in stiff clay[42].

General shape of curve:

A

p (Ib/inch)

\4

y (inch)

Fig. (A-3): Characteristic shape of p-y curve for stiff clay.

1. Slope of 0-1 = E
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Appendix A

Table (A-2) : Recommended values of k for stiff clay.

p-y, t-z and q-z approach

cy (tsf)
<0.25 0.25-0.5 0.5-1 1-2 2-4
k (static) — pci 30 100 500 1000 2000
k (cyclic) - pci - - 200 400 800

where:
cy is average value from z =0 to 5d

2. Evaluate ultimate soil resistance at depth x, py

Puy =2¢,,d+ydz +2.83¢,, 2 (near ground surface, based on

wedge theory) .

p,, =1c.d (at depth, based on theory of soil

flow around pile) .

Theoretical ultimate resistance, pum, is taken as the smaller of p,; and py.».

Actual p, values are found from experiments to be smaller than py .

A — (pu ).vtanc B — (pu )Cyclic

pu,[h pz/,th
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Appendix A p-y, t-z and q-z approach

0 0.2 0.4 0.6 0.8
0 | | | |
_—
-
3
4 Ac As
cyclic static
5
6 —
7
8

Fig. (A-4): Values of constants A.and As .

3. Parabolic section 1-2

Y50=€50 D yp=4.1ACY5()

L _o5] L for static loading
Do Yso
p = Acpe (1-] (y-0.45y,)/0.45y,| >° for cyclic loading

€50 from triaxial laboratory test, or: table (A-3)
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p-y, t-z and q-z approach

Table (A-3): Values €59 of for stiff clay.

co (KN/m2) | 24-48 48-96

96-190

€50 0.007 0.005

0.004

Point 1 on the curve is defined by intersection of the parabola with the

Point 2 at y = Asyso for static load

y = 0.6y, for cycle load

. Parabolic section 2-3

Offset applied to parabola from (3):

1.25
p 0.5 /L —0.055 y_—AySO
Pum YVso Ays,

Point 3 y = 6Ays

P =0.936 Acp.— (0.085/y50) pe (y-0.6y,)
Point 3 y = 1.8y,

. Straight line section 3-4

0.0625pu’lh
Yso

Slope E,, =-

Point 4 y = 18Ays

3 0.085p,
Yso

Slope E, =

Point 4 y = 1.8y,

91

straight line segment, if no intersection, extend the parabola to origin.

for static loading

for cyclic loading

for static loading

for cyclic loading



Appendix A p-y, t-z and q-z approach

6. Horizontal line at y > 18Ays for static loading

y > 1.8y, for cyclic loading

A-1-2-2- Without Free Water

Derivation of curves is depended on works of Reese et al. and Welch

(1972) [42].

Py

p (Ib/inch)

N
>

y (inch)
Fig. (A-5): “p-y” for Stiff Clay (without free water).

£=0.54/L v <16ys9
pu ySO
P = Pu y>16ys9

A-1-3p-y” Curves for Sand

Derivation of curves is depended on works of Reese et al. (1974) which is
base on field testing of two 24 inch diameter piles in soils ranging from

clean fine sand to silty fine sand [42].
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General shape of curve:

p (Ib/inch)

y (inch)

p-y, t-z and q-z approach

Fig. (A-6): General shape of p-y curve for sand

Table (A-4): The initial slope "Eg".

Esi=kz Loose Medium Dense
k (Ib/in®) 20 60 125 < submerged
k (Ib/in?) 25 90 225 & above gwt

1. Ultimate resistance, py

Values apply for static + cyclic

(a) Near ground surface, derive from strain wedge theory

Using the following geometry and Mohr-Coulomb theory,
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Appendix A p-y, t-z and q-z approach

\

Direction of
pile movement

Fig. (A-7): Wedge type failure of surface soil.

K, ztangsin g tan 3 - )
tan(ﬂ—gﬁ)cosa+tan(ﬁ_¢)(d+“anma““)+KoZtanﬁ(tancifSSlnﬁ tanar)- K, d

pu,l = 72

in equation, best to use Ky = 0.4 (this was used for interpretation of field

data)[45].

K, =tan’(45+¢/2)
(b) Atdepth z..

Soil assumed to flow laterally around pile
Pus = z;fd[Ka (tan8 i 1)+ K, tangtan* [3]
Take pum as the smaller of py; and py.a.
Actual p, values are found from experiment to be smaller than py .

A= (pu )stan'c B= (p“ )cyclic

pu,th pu,th
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Appendix A p-y, t-z and q-z approach

S0 £ >80, ar 008 =

8=

3.0

B0 50 i

I
[
. E -g-:rﬂ.u. 8 =55
1
]

&.o ! !

Fig (A-8): Nondimentional coefficients (A and B) for sand.

95



Appendix A p-y, t-z and q-z approach

2. Deflection at Points m and u

ym = d/60 yu = 3d/80

3. Evaluate p at Point m
pm = (A" or B")pu

4. Fit parabola between Points k and m

p:Cyl/n
slope @ m, s, = Lo Ln
yU _ym
n: pI'n
S"’lym
Pm
C = 1/n
C’ %—1

displacement atk, y, = —
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Appendix A p-y, t-z and q-z approach

A-2: Response of Piles to Vertical Loads: “t-z”’ and “q-z”

Approaches :

A-2-1: “t-z” And “q-z” Curves for Clay:

The evaluation of “t-z” and “q-z” curves for clay required the following
steps [8]:
1- The unit ultimate of skin friction f;, and bearing q, for the soil are
evaluated by:
fui=0C
qu=Nc C

a and N, are dimensionless coefficient given in table (A-5)

Table (A-5) typical (a and N.) values

C in KPa o N,
0<c<24 1.0
24<c<72 1.25-0.01c
For all clays N =9
c>72 0.5

2- The depth Z is determined by:
i- for end bearing Z.~= 0.04D to 0.06D, depending on the soil strength.

b- for skin resistance Z.= 1.75mm.

3- The first portion (ab) of the “q-z” curve can be determined from

q =(i)%
qu ZC
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Appendix A p-y, t-z and q-z approach

A-2-2 “t-z” and “q-z” Curves for Sand

“t-z” and “q-z” curves for sand can be derived using the following steps [8]:

1-the unit ultimate skin friction and q, for the soil is evaluated as follows:
f., =kyxtand
q, =N, L

the values of 8 (angel of friction between pile and soil), k and Ny depend

on the values of ¢ (angel of internal friction for sand ). Table (A-7) gives the
values of ¢, 8, Nq and k for different soil types.

Table (A-7) gives the values of ¢, 3, Ng and k

Soil type (0] o Ng k
Clean sand 35 30 40 0.5-0.1
Silty sand 30 25 20
Sand silt 25 20 12 usually taken 0.7
Silt 20 15 8

The depth Z, is calculated as:

ii- a- for skin friction Z.-2.5

b- for end bearing Z.~0.05

iii- the curves may then be constructed as shown in figure (A-10-a)

b- the first portion of “t-z” curve (ab) may be determined from table (A-6)

Table (A-6): Values of points on “t-z” curve for clay.

/mm

0.25

0.5

0.75

1

1.25

1.5

1.75

/1,

0.2

0.4

0.6.

0.75

0.9

0.97

0.1
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Appendix A p-y, t-z and q-z approach

iv- the portion (bc) for both curves can then be constructed (a horizontal
straight line).

Figure (10-9): shows a typical “t-z” and “q-z” curves for clay.

(b) ()
Jmax [~~~ > !
(a) - .
t/tmax
(@ ]
Zc

Fig. (A-9): Typical "g-z" and "t-z" curves for clay.
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Appendix A p-y, t-z and q-z approach

A
Zc=0.05D
Jmax [~~~ > T
i
:
V4 Z
t/tmax
A
1.0
1
:
i
Ze Z

Fig. (A-10): Typical "g-z" and "t-z" curves for sand.
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