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ABSTRACT

The effect of two-dimensional, steady, incompressible and isothermal
flow separation on the performance of a cascade (blade-to-blade
configuration) of NACA 65_(12)10 blade base profile was studied with 30°
camber angle. The effect of stagger angle on the flow separation was
considered.

An experimental and theoretical investigation for the flow between two
axial compressor blades has been carried out in this work.

The experimental work includes the fabrication of three blades from
wood, each having a chord (100mm) but one of these blades having a span
of (90mm) for smoke tunnel testing and the other two blades having a span
of (380mm) for wind tunnel testing. The two blades were connected by
suitable mechanism in order to be fixed in the wind tunnel protractor and
rotated in the required stagger angle.

The blade to blade configuration was tested in an open type low-speed
subsonic wind tunnel of maximum velocity (35 m/s) and for Reynolds
number (Re =239605) based on maximum velocity and airfoil chord length.
The total and static pressures are measured at selected points between the
two blades for a stagger angle of (4°, 0°, -4°, -8°, and -12°) by using
multi-tube manometer and a pitot static tube. The small blade (90mm span)
is tested in the smoke tunnel to visualize the real behavior of flow
separation clearly.

The theoretical work includes using the computer program FLUENT
(V6.2) to simulate the flow between the two blades

This study shows that the flow separation begins when the blade-to-
blade configuration is inclined by a stagger angle of (-4°) on the suction
side of the lower blade at a position (96%chord experimentally and
98%chord theoretically). Then, the separation zone increases with
increased stagger angle (in clockwise direction) and reach to the position
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(61%chord experimentally and 63%chord theoretically) at a stagger angle
(-12°).These results are validated by a smoke tunnel tests.

This separation effects on the performance of a blade-to-blade
configuration and then affects the compressor performance where the

pressure ratio (P, /P, ) decreases when the separation zone increases. By

using curve fitting method for polynomial distribution between the pressure
ratio and stagger angles, the concluded mathematical relationship after then
the range of stagger angle is calculated where this range (from -18° to 36°).
The flow behavior between two blades shows that the blade-to-blade
configuration works as a nozzle-diffuser.

The experimental results were compared with the theoretical results
and good agreement was obtained.

The results of the present study are compared with previous published

results and good agreement was obtained.
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Nomenclature

English Symbols

Symbol Description Units
A Test section area m?
B Relative velocity m/s
b Model span m
C Blade chord line m
C,,C,,C, | Constants in turbulence model -
C.,C,.Cs |Constants used in equations (3-9h), (3-9i) -
C, Drag coefficient (from wind tunnel calculation) -
CoL Design lift coefficient -
c Velocity m/s
D Blade linear velocity m/s
d, nd, zd | Dimension of pitot static tube m
E Constant used in the low of the wall -
e Correction coefficient -
e, Action of static pressure holes distance -
F Force N
Gy Production term of kinetic energy kJ
g Acceleration due to gravity m/s?
h, Test section height m
K Kinetic energy of turbulence m?/s’
K, Body shape factor -
k von K&rmén constant -
L. The characteristic length m
mv Model volume m?
n Local coordinate normal to the wall m
P Pressure Pascal
R Gas constant J/kg.K
Re Reynolds number -
R, The turbulent Reynolds number -
S Space between two blades mm
Sex, Suk | Source terms m?/s?
T Air temperature K
T, The turbulence intensity -
t Time coordinates, Model thickness S
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t, Model thickness mm
U, Velocity component parallel to the wall at first m/s
node
U. Shear velocity m/s
u, v, w | Velocity components in X, y and z directions m/s
u, Friction or shear velocity m/s
' Discretized k-equation kg/m?
X, Y, Z Coordinates in X, Y and Z- directions m
Greek Symbol
Symbol Description Units
a Flow angle degree
B Blade angle degree
/4 Specific heat ratio -
AH Water head in manometer o, cmH
AV Elementary Area of control volume m?
£ Dissipation rate of turbulent kinetic energy m?/s?
g, Overall Correction Coefficient -
Eq Closed Coefficient for Solid-Blockage -
Eub Wake Blockage Coefficient -
0 Stagger angle degree
H Laminar viscosity kg/m.s
n Turbulence viscosity kg/m.s
v Kinematic viscosity m?/s
P Density kg/m?®
o o, | Effective Prandtl numbers -
T Shear stress N/m?
¢ Dependent variable -
Q Distance action from tube to wall
o Viscosity coefficients value -
Superscripts
Symbol Description

Fluctuation quantity

Vector

+

Indicates normalization that used in the law of the wall function

Fluctuating quantity of the last iteration, guessed values
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Subscripts

Symbol Description
a Axial
cali Calibrated
cell Cell
d Dynamic
e Effective
mean Mean value
p Values at center of the control volume
S Static
t Total
un Uncorrected
unca Uncalibrated
w Wall
water | Water
X,Y,z | The quantity corresponding to X, y, z direction
T Shear
1 Inlet condition
2 Outlet condition
Abbreviations
Symbol Description
A.C motor | Alternating Current Motor
CFD Computational Fluid Dynamics
CPM Central Processor Unit
LDV Laser-Doppler Velocimetry
MSH Mesh.
NACA | National Advisory Committee for Aeronautics
NASA | National Aeronautics and Space Administration
PIV Particle Image Velocimetry
RNG Renormalization group ofK —¢
SIMPLE | Simi — implicit method for pressure linked equations
SIMPLEST | SIMPLE — Specially Treated (Newly developed)
2D Two dimensional
2ddp Two-dimensional double precision
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