Republic of Iraq Ministry Of Higher Education & Scientific Research University Of Technology Department of Machines and Equipment

STUDY OF FLOW SEPARATION BETWEEN TWO AXIAL COMPRESSOR BLADES

A THESIS SUBMITTED TO THE DEPARTMENT OF MACHINES AND EQUIPMENTS UNIVERSITY OF TECHNOLOGY IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF MASTER OF SCIENCE

IN MECHANICAL ENGINEERING (POWER GENERATION)

BY ENGINEER:

SABAH F. H. H ALHAMDI

(B.Sc. in MECHANICAL ENGINEERING, 2004)

Supervisor:

Asst. Prof. Dr. Arkan Kh. Al-Taie

February 2008

Suffer 1429

Recommended Citation

Alhamdi, Sabah F. H., "STUDY OF FLOW SEPERATION BETWEEN TWO AXIAL COMPRESSOR BLADES" (2008). M.Sc. Thesis, Department of Machines and Equipment, University of Technology.

جمهورية العراق وزارة التعليم العالي والبحث العلمي الجامعة التكنولوجية قسم هندسة المكائن والمعدات

دراسة أنفصال الجريان بين ريشتي الضاغطة المحورية

رسالة مقدمة الى قسم هندسة المكائن والمعدات الجامعة التكنولوجية كجزء من متطلبات نيل درجة الماجستير في علوم الهندسة الميكانيكية اختصاص (توليد طاقة)

تقدم بها المهندس

صباح فالح حبيب الدحدي

بإشراف أ.م. د. أركان خلخال حسين الطائى

صدق الله العظيم

سورة النساء (۱۱۳)

Dedication:

To:

The candle lightening my way, the most merciful heart, who inspirited my thinking, the person who deserves to be perfect my mother.

> SABAH February-2008

ACKNOWLEDGMENTS

I would like to express my deepest thanks and sincere gratitude to my supervisor **Dr. Arkan Khilkhal Husain Al-Taie**, who guided, with friendly patience, the development of this work. His advice and valuable criticism had helped in the investigation and writing up of this thesis. His excellent approach in supervision created the self-reliance and selfassurance in my personality and helped me greatly to be an independent researcher.

My sincere thanks and great appreciation are expressed to Dr. Waheed Shati, department of Machines and equipment engineering \ University of technology, for his assistance in completing my work.

Sincere thanks and great appreciation are expressed to Engineers Salam and Thamar, for their assistance in completing my work.

Sincere thanks are also expressed to the staff of machines and equipment department \University of Technology, for the facilities they provided during this work.

I record my sincere gratitude to my family for their love, patience and support during the period of preparing this work.

Finally, I am grateful to all those who have helped me in carrying out this work.

SABAH February-2008

ABSTRACT

The effect of two-dimensional, steady, incompressible and isothermal flow separation on the performance of a cascade (blade-to-blade configuration) of NACA 65_(12)10 blade base profile was studied with 30° camber angle. The effect of stagger angle on the flow separation was considered.

An experimental and theoretical investigation for the flow between two axial compressor blades has been carried out in this work.

The experimental work includes the fabrication of three blades from wood, each having a chord (100mm) but one of these blades having a span of (90mm) for smoke tunnel testing and the other two blades having a span of (380mm) for wind tunnel testing. The two blades were connected by suitable mechanism in order to be fixed in the wind tunnel protractor and rotated in the required stagger angle.

The blade to blade configuration was tested in an open type low-speed subsonic wind tunnel of maximum velocity (35 m/s) and for Reynolds number (Re =239605) based on maximum velocity and airfoil chord length. The total and static pressures are measured at selected points between the two blades for a stagger angle of (4° , 0° , -4° , -8° , and -12°) by using multi-tube manometer and a pitot static tube. The small blade (90mm span) is tested in the smoke tunnel to visualize the real behavior of flow separation clearly.

The theoretical work includes using the computer program **FLUENT** (V6.2) to simulate the flow between the two blades

This study shows that the flow separation begins when the blade-toblade configuration is inclined by a stagger angle of (-4°) on the suction side of the lower blade at a position (96%chord experimentally and 98%chord theoretically). Then, the separation zone increases with increased stagger angle (in clockwise direction) and reach to the position (61% chord experimentally and 63% chord theoretically) at a stagger angle (-12°) . These results are validated by a smoke tunnel tests.

This separation effects on the performance of a blade-to-blade configuration and then affects the compressor performance where the pressure ratio (P_{s_e}/P_{s_m}) decreases when the separation zone increases. By using curve fitting method for polynomial distribution between the pressure ratio and stagger angles, the concluded mathematical relationship after then the range of stagger angle is calculated where this range (from -18[°] to 36[°]). The flow behavior between two blades shows that the blade-to-blade configuration works as a nozzle-diffuser.

The experimental results were compared with the theoretical results and good agreement was obtained.

The results of the present study are compared with previous published results and good agreement was obtained.

الخيلاصيه

تم في هذا البحث دراسة تاثير انفصال الجريان على اداء الريشتين المتعاقبتين للضاغطة المحورية عند الأنحراف بزاوية معينة مع الوتر, الريشتين من نوع [10(12)_NACA 65] مع تحدب دائري, زاوية التحدب 30°.

في هذا البحث تم دراسة عملية ونظرية للجريان المضطرب بين ريشتي الضاغطة المحورية. الدراسة العملية تتضمن تصنيع ثلاثة نماذج من ريش الضاغطة المحورية من نوع [NACA 65_(12)10] من مادة الخشب, وتر كل ريشة (100 ملم)لكن احدى الريش ذو باع (90 ملم) لاختبارات النفق الدخاني والريش المتبقيتين ذات باع (380 ملم) لاختبارات النفق الهوائي تربط الريشتين المستخدمتين لاختبارات النفق الهوائي بالية مناسبة لكي تثبت بمنقلة النفق وبالتالي يمكن الحصول على الزاوية المراد دراسة الجريان عندها.

تم اختبار متعاقبة الريشتين في نفق هوائي تحت صوتي واطى السرعة ذو سرعة قصوى (35 م /ثا) وهي السرعة التي تم عندها اجراء التجارب وللعدد رينولد(Re=239605) المحسوب على اساس السرعة القصوى للنفق الهوائي وطول وتر الريشة حيث تم قياس الضغط الكلي والضغط الاستاتيكي للنقاط المختاره بين ريشتي الضاغطة لخمس زوايا أنحراف (4,0,4-,8-والضغط الاستاتي. وكذلك تم أختبار الريشة الثالثة (ذو عرض90 ملم) بأستخدام النفق الدخاني لرؤية السلوك الحقيقي لأنفصال الجريان بوضوح.

Mesh الدراسة النظرية تتضمن أستخدام برنامج (GAMBIT) لتوليد الشبكة (GamBIT) الدراسة النظرية تتضمن أستخدام برنامج (Generation) بين الريشتين حيث أن نوع التقسيم هو (Pave) وتم تتعيم التقسيم بأستخدام طريقة (L-W Laplacian).

تم أعتبار الجريان بين الريشتين مستقر 'لا أنضغاطي 'وبثبوت درجة الحرارة وتمت محاكاته بأستخدام برنامج (FLUENT V6.2) حيث أن طريقة الحل العددي العامة المستخدمة في هذا البرنامج هي طريقة الحجوم المحدده (control volume method)ونموذج أضطراب الجريان المستخدم بموديل ال $(\varepsilon - \varepsilon)(K - \varepsilon)$ (Turbulence Model $K - \varepsilon$). خوارزمي (SIMPLE algorithm) في دمج معادلة الأستمرارية ومعادلات الزخم في هذا البرنامج.

أظهرت النتائج بأن الأنفصال يبدأ عندما تكون زاوية الأنحراف (4-) حيث يحدث على سطح العلوي للريشة السفلى وبمسافة (96% من الوتر عمليا" و 98% من الوتر نظريا") من الدخول الى الخروج للمتعاقبة وبعد ذلك تزداد منطقة الأنفصال بأزدياد زاوية الأنحراف (stagger) ومعد ذلك تزداد منطقة الأنفصال بأزدياد زاوية الأنحراف (stagger) ومعد فلك تزداد منطقة الأنفصال بأزدياد زاوية الأنحراف (angle) (بأتجاه عقرب الساعة) حتى تصل الى (61% من الوتر عمليا" و 63% من الوتر نظريا") من الدخول angle (بأتجاه عقرب الساعة) حتى تصل الى (61% من الوتر عمليا" و 63% من الوتر نظريا") من الدخول الى الخروج عند زاوية أنحراف (12-) وهذا ما يوضحه أختبار النفق الدخاني. يؤثر الأنفصال على أداء الريشتين المتعاقبتين وبالتالي على أداء الصاغطة المحورية حيث تقل نسبة الضعط (الضعط الس تاتيكي الخارج الـى الخروج مند زاوية أنحراف (21-) وهذا ما يوضحه أختبار النفق الدخاني. يؤثر الأنفصال على أداء الريشتين المتعاقبتين وبالتالي على أداء الصاغطة المحورية حيث تقل نسبة الضعط (الضعط الس تاتيكي الخارج الـى الخروج مند زاوية أنحراف (21-) وهذا ما يوضحه أختبار النفق الدخاني. يؤثر والانفصال على أداء الريشتين المتعاقبتين وبالتالي على أداء الصاغطة المحورية حيث تقل نسبة الضعط الاستاتيكي الخارف (الافت على أداء الضاغطة المحورية حيث نقل نسبة وزاوية الأنفصال على أداء الريشتين المتعاقبتين وبالتالي على أداء الصاغطة المحورية حيث يقل نسبة وزاوية الأنفصال .بأستخدام طريقة تطابق المنحنيات لتوزيع متعددة الحدود بين نسبة الضغط الاستاتيكي وزاوية الأنحراف الريشتين المتعاقبتين أستتجت علاقة رياضية بين نسبة الضغط الأستاتيكي وزاوية الأنحراف وبعد ذلك يتم حصاب مدى زاويا الأنحراف التي تصمم على أساسها تلك الريشة .

تمت مقارنة النتائج العملية مع النتائج النظرية ' وجد تقارب جيد بينهما شم تمت مقارنة النتائج العملبة والنظرية في هذا البحث مع نتائج عملية ونظرية لبحوث سابقه وجد أيضا" تقارب جيد بين تلك النتائج.

Nomenclature

English Symbols

Symbol	Description	Units
A	Test section area	m ²
В	Relative velocity	m/s
b	Model span	m
С	Blade chord line	m
C_1, C_2, C_μ	Constants in turbulence model	-
C_{3}, C_{4}, C_{8}	Constants used in equations (3-9h), (3-9i)	-
C _D	Drag coefficient (from wind tunnel calculation)	-
C_{L0}	Design lift coefficient	-
с	Velocity	m/s
D	Blade linear velocity	m/s
d, nd, zd	Dimension of pitot static tube	m
E	Constant used in the low of the wall	-
e	Correction coefficient	-
e ₀	Action of static pressure holes distance	-
F	Force	N
G_k	Production term of kinetic energy	kJ
g	Acceleration due to gravity	m/s ²
h,	Test section height	m
K	Kinetic energy of turbulence	m^2/s^2
K _b	Body shape factor	-
k	von Kármán constant	_
L_c	The characteristic length	m
mv	Model volume	m ³
n	Local coordinate normal to the wall	m
Р	Pressure	Pascal
R	Gas constant	J/kg.K
Re	Reynolds number	-
R _t	The turbulent Reynolds number	-
S	Space between two blades	mm
$S_{P,k}$, $S_{U,k}$	Source terms	m^2/s^2
Т	Air temperature	K
T _u	The turbulence intensity	-
t	Time coordinates, Model thickness	S

t _m	Model thickness	mm
U ₁	Velocity component parallel to the wall at first	m/s
	node	
U_*	Shear velocity	m/s
u, v, w	Velocity components in x, y and z directions	m/s
u _{<i>x</i>}	Friction or shear velocity	m/s
$Y_{M.k}$	Discretized <i>k</i> -equation	kg/m ³
X, y, z	Coordinates in X, Y and Z- directions	m

Greek Symbol

Symbol	Description	Units
α	Flow angle	degree
β	Blade angle	degree
γ	Specific heat ratio	-
ΔH	Water head in manometer	o ₂ cmH
ΔV	Elementary Area of control volume	m ²
ε	Dissipation rate of turbulent kinetic energy	m^{2}/s^{2}
\mathcal{E}_{o}	Overall Correction Coefficient	-
\mathcal{E}_{sb}	Closed Coefficient for Solid-Blockage	-
\mathcal{E}_{wb}	Wake Blockage Coefficient	-
θ	Stagger angle	degree
μ	Laminar viscosity	kg/m.s
μ_{t}	Turbulence viscosity	kg/m.s
υ	Kinematic viscosity	m^2/s
ρ	Density	kg/m ³
$\sigma_{k,} \sigma_{\varepsilon}$	Effective Prandtl numbers	-
τ	Shear stress	N/m ²
ϕ	Dependent variable	-
Ω	Distance action from tube to wall	
ω	Viscosity coefficients value	-

Superscripts

Symbol	Description
'	Fluctuation quantity
\rightarrow	Vector
+	Indicates normalization that used in the law of the wall function
*	Fluctuating quantity of the last iteration, guessed values

Symbol	Description
a	Axial
cali	Calibrated
cell	Cell
d	Dynamic
e	Effective
mean	Mean value
р	Values at center of the control volume
S	Static
t	Total
un	Uncorrected
unca	Uncalibrated
W	Wall
water	Water
x, y, z	The quantity corresponding to x, y, z direction
τ	Shear
1	Inlet condition
2	Outlet condition

Subscripts

Abbreviations

Symbol	Description
A.C motor	Alternating Current Motor
CFD	Computational Fluid Dynamics
CPM	Central Processor Unit
LDV	Laser-Doppler Velocimetry
MSH	Mesh.
NACA	National Advisory Committee for Aeronautics
NASA	National Aeronautics and Space Administration
PIV	Particle Image Velocimetry
RNG	Renormalization group of $K - \varepsilon$
SIMPLE	Simi – implicit method for pressure linked equations
SIMPLEST	SIMPLE – Specially Treated (Newly developed)
2D	Two dimensional
2ddp	Two-dimensional double precision

List of Figures

Figures	Description	Page NO.
1-1	Axial Flow Compressor Stators located in the casing	5
1-2	Vector analysis of airflow through an axial flow	
	compressor	6
3-1a	Compressor Cascade Geometry	25
3-1b	General View of the Cascade	26
3-2	Axial compressor Blade by Points	38
3-3	Axial Compressor Blade by Edges	38-39
3-4	Axial Compressor Blade as a face	39
3-5	Axial Compressor Cascade by Edges	40
3-6	Axial Compressor Cascade as a face	40
3-7	Grid (Mesh) generation of axial compressor vanes	
	passage for (stagger angle $=4^{\circ}$)	41
3-8	Grid (Mesh) generation of axial compressor vanes	
	passage for (stagger angle= 0^{0})	42
3-9	Grid (Mesh) generation of axial compressor vanes	
	passage for (stagger angle $=-4^{\circ}$)	43
3-10	Grid (Mesh) generation of axial compressor vanes	
	passage for (stagger angle $=-8^{\circ}$)	44
3-11	Grid (Mesh) generation of axial compressor vanes	
	passage for (stagger angle $=$ -12°).	45
4-1	Axial Compressor Blades NACA 65_(12)10	47
4-2	Blade to Blade Configuration	47
4-3a	Wind Tunnel Dimension (all dimensions in	
	mm)	49
4-3b	Wind Tunnel Device (Open Circuit) and Multi Tube	49
	Manometer	

4-3c	Protractor of Subsonic Low Speed Wind Tunnel	50	
4-4	Multi Tube Manometer	51	
4-5	Correction of Pitot - Static Tube Distance	52	
4-6	Smoke Tunnel	53	
5-1	Blade to blade configuration with taken three sections	-	
	in wind tunnel testing results	58	
5-2	Velocity distribution for (0.125S, 0.5S and 0.875S)	62-64	
5-3	Static pressure distribution for (0.125S, 0.5S and	64-66	
	0.875S)		
5-4	Total pressure distribution for (0.125S, 0.5S and	67-69	
	0.875S)		
5-5	Correlation of static pressure ratio with stagger angles	69	
5_7	for NACA 65_ (12)10 axial compressor cascades Streamline distribution on surface of axial compressor	70_71	
5-1	blade section NACA $65_{(12)10}$	70-71	
	Contours of velocity for (stagger angle $=4^0, 0^0, -4^0, -4^0$)		
5-8	8° , and -12°) and (inlet flow velocity=35m/s)	74-75	
	Vectors of velocity for (stagger angle $=4^0, 0^0, -4^0, -8^0$,		
5-9	and -12°) and (inlet flow velocity=35m/s)	76-77	
	Contours of static pressure for (stagger angle $=4^0, 0^0,$		
5-10	-4° , -8° , and -12°) and (inlet flow velocity=35m/s)	77-79	
	Contours of total pressure for (stagger angle $=4^0, 0^0, -$		
5-11	4° , -8° , and -12°) and (inlet flow velocity=35m/s)	79-80	
	Distribution of number of Iterations to convergence		
5-12	and Residuals for stagger angle $(4^0 \text{ and } -8^0)$	81	
82	The Comparison of velocity distribution between the	5-13	
	experimental results and theoretical results Velocity contour of flow between two axial		
	compressor blades $[NACA 65]$ (18)101 for stagger		
83	(0) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10)	5-14	
	angle (0 [°]) and inlet flow velocity (80 m/s)		

Table of Contents

	Page	
<u>Subject</u>		
Acknowledgement	Ι	
Abstract	II	
Nomenclature	VI	
List of Figures	IXI	
Table of Contents	XI	
Chapter One	I	
Introduction		
1.1 Background	1	
1.2 Turbomachinery	1	
1.3Axial Flow Compressor	2	
1.4Separation Phenomenon	3	
1.5Research plan	4	
1.6 Aim of Work	5	
Chapter Two		
Literature Review		
2.1 Introduction	7	
2.2 Experimental Work	7	
2.3 Theoretical Work	10	
2.4 Experimental and theoretical work	18	
2.5 Summary	19	
Chapter Three		
Theoretical Part		
3.1 Introduction	21	
3.2 Assumptions	21	
3.3 The Mathematical Model	22	
3.4 Boundary Conditions	26	

3.4.1 Inlet Boundary Conditions	26	
3.4.1.1 Velocity Inlet Boundary Condition	26	
3.4.1.2 Inlet Pressure Boundary Condition	27	
3.4.2Pressure Outlet Boundary Condition	28	
3.4.3Solid Surfaces Boundary Condition	28	
3.4.3.1 Near-Wall Treatments for Momentum Equation	29	
3.4.3.2 Near-Wall Treatments for transport equation (κ - ϵ	20	
equation)	30	
3.4.4 Cyclic (Periodic) Boundary Condition	32	
3.5The Computer Program	33	
3.5.1 FLUENT Code	33	
3.5.2 Analysis Steps for FLUENT Software Package	33	
3.5.2. A.1 Modeling of Geometry (Operation – Geometry)	33	
3.5.2. A.2 Mesh Generation (Operation – Mesh)	34	
3.5.2. A.3 Boundary Conditions	36	
3.5.2. B.1 Solution of the Problem	36	
Chapter Four		
Experimental Part		
4.1 Introduction	46	
4-2Blade to Blade Configuration	46	
4-3 Apparatus	48	
4-3-1 Subsonic Wind Tunnel	48	
4-3-2 Multi Tube Manometer	50	
4-3-3 Pitot – Static Tube	50	
4-3-4 Smoke Tunnel	52	
4.4 Wind Tunnel Coefficients Correction	54	
4-4-1 Closed Coefficient for Solid-Blockage	54	
4-4-2 Wake Blockage Coefficient	55	

4-4-3	Overall Correction Coefficients	55
4-5	Procedure of Experiments	56
	Chapter Five	
	Results and Discussion	
5.1	Introduction	57
5.2	Experimental Results	58
5.2.1	Results and Discussion of Two Dimensions Flow	
	between Two Axial Compressor blades	58
5.2.2	Testing Results in Smoke Tunnel	70
5.3	Theoretical Results	72
5.3.1	Results and Discussion of Two Dimensional Flow	
	between Two Axial Compressor Blades	72
5.3.2	Accuracy of Solution	81
5.4	The comparison between the experimental and	
	theoretical results	82
5.5	Comparison with Others Workers	82
Chapter Six		
Conclusions and Recommendation		
6.1	Conclusions	84
6.2	Recommendations	85
Reference	S	86
Appendix		
AERFOIL DESIGN.		