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Using two-dimensional Bernstein polynomials to simulate two-dimensional linear
stochastic fredholm integral equations with multiple noise source

Murtadha Ali Shabeeb, Mohsen Fallahpour, Reza Ezzati and Mohammad Navaz Rasoulizadeh

abstract: This paper presents a numerical method based on two-dimensional Bernstein polynomials
(2DBPs) for the efficient solution of systems of two-dimensional linear multi-noise stochastic Fredholm in-
tegral equations (2D-LMN-SFIEs). The proposed approach is theoretically supported by a set of convergence
theorems that also underline its distinctive advantages. Its effectiveness is demonstrated through two illustra-
tive examples, which showcase the method’s high accuracy and practical applicability. The obtained results
demonstrate the robustness of the proposed approach in addressing complex stochastic integral equations,
thereby affirming its significance for both theoretical investigations and practical problem-solving in applied
mathematics.
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1. Introduction

The study of integral equations constitutes a cornerstone of applied mathematics, with a broad spectrum
of applications spanning physics, engineering, and economics. Among the different classes of integral
equations, the Fredholm type occupies a prominent role owing to its capability to model systems with
fixed integration limits [1,2,3,4,5]. The complexity of such equations increases substantially when ex-
tended to higher-dimensional domains and when stochastic components are incorporated. Moreover,
integral equations are indispensable in the formulation, theoretical analysis, and numerical solution of
fractional differential equations, as numerous fractional operators can be equivalently represented through
integrals with memory-dependent kernels [6,7,8,9,10]. This representation effectively captures the inher-
ent nonlocality of fractional models and underpins their widespread applicability in modeling complex
dynamical systems [11,12,13,14,15].
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In this paper, we examine a two-dimensional linear multi-noise stochastic Fredholm integral equation
(2D-LMN-SFIE) of the second kind:

h(u, v) = q(u, v) +

∫ 1

0

∫ 1

0

K1(u, v, η, µ)h(η, µ) dη dµ+

N∑
j=1

∫ 1

0

∫ 1

0

K2(u, v, η, µ)h(η, µ) dBj(η) dBj(µ),

(1.1)

where (u, v) ∈ [0, 1]2 and (u, v, η, µ) ∈ [0, 1]4 with the condition η ⩽ u < µ ⩽ v. The functions q(u, v),
K1(u, v, η, µ), and K2(u, v, η, µ) in the 2D-LMN-SFIE (1.1) are known, while h(u, v) is the unknown
function. Additionally, B(u) = (B1(u),B2(u), . . . ,Bm(u)) represents a multidimensional Brownian motion

process, and the term
∫ 1

0

∫ 1

0
K2(u, v, η, µ)h(η, µ) dBj(η) dBj(µ) for j = 1, 2, . . . , N demonstrates the double

Wiener-Itô integral.
In recent years, various numerical methods have been developed for solving stochastic integral equa-

tions. Fallahpour and his co-workers [16,17,18] employed techniques based on block-pulse functions
(BPFs) and Haar wavelet functions (HWFs) for approximating two-dimensional linear stochastic inte-
gral problems. Mirzaee et al. [19] introduced a straightforward numerical approach combining two-
dimensional moving least squares (2D-MLS) with the spectral-collocation technique for approximating
two-dimensional stochastic Itô–Volterra integral equations. Singh and Saha Ray [20] presented a depend-
able numerical method for solving n-dimensional stochastic Itô–Volterra integral equations by applying
the properties of Genocchi polynomials and introducing an operational matrix to transform the integral
equation into an algebraic equation. Boukhelkhal and Zeghdane [21] proposed a robust computational
method based on the Lagrange basis and Jacobi–Gauss collocation for approximating a class of nonlinear
stochastic Itô–Volterra integral equations. Amin et al. [22] applied the shifted Jacobi–Gauss colloca-
tion technique to simulate mixed Volterra–Fredholm integral equations by reducing them to a system
of algebraic equations that are easily solvable. Mi and Huang [23] introduced a technique for solv-
ing two-dimensional nonlinear Volterra–Fredholm integral equations with Lagrange interpolation and
Legendre–Gauss quadrature.

Given the complexity of the 2D-LMN-SFIE, it is crucial to develop efficient efficient and accurate
numerical methods. These methods aim to provide approximate solutions that are computationally fea-
sible while maintaining a high degree of accuracy. The challenge lies in handling the dual aspects of
the problem: the two-dimensional nature of the equation and the presence of multiple stochastic noise
components. Traditional methods often fall short in addressing these challenges simultaneously, necessi-
tating the development of more sophisticated approaches. Bernstein polynomials (BPs) hold significant
importance in various mathematical fields and have been extensively applied to solve integral equations
and in approximation theory [26,29]. Shekarabi et al. [29] introduced operational matrices for 2DBPs
to address 2D ordinary Volterra-Fredholm integral problems.

In this study, we develop an efficient and conceptually straightforward computational framework
for the numerical approximation of solutions to the two-dimensional linear multi-noise stochastic Fred-
holm integral equation (2D-LMN-SFIE) (1.1). The proposed approach is founded on the construction of
two-dimensional Bernstein polynomials (2DBPs) over the unit square [0, 1]2, leveraging their favorable
approximation properties to attain high numerical accuracy. By expanding both the unknown solution
and the associated integral operators in terms of Bernstein polynomial functions (BPFs), the original
stochastic integral equation is systematically transformed into a finite system of algebraic equations. This
reduction substantially alleviates the inherent analytical complexity of the problem, rendering it more
tractable for computational implementation. A rigorous error analysis for the BPF-based approximation
is provided to establish the theoretical reliability and convergence characteristics of the method. More-
over, a comparative performance evaluation with several conventional numerical schemes is conducted,
illustrating the superior efficiency, stability, and robustness of the proposed formulation in solving the
2D-LMN-SFIE (1.1).

The remainder of this paper is organized as follows: Section 2 introduces the fundamental concepts
and properties of the 2DBPs. Section 3 details the application of the proposed method to approximate
the 2D-LMN-SFIE (1.1). Section 4 is devoted to a rigorous error analysis of the method. Section 5
presents a set of numerical experiments to demonstrate the convergence, accuracy, and effectiveness of
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the approach, together with a comparative analysis against alternative numerical techniques. In this
section, 95% confidence intervals are also constructed for each computed solution. Finally, Section 6
summarizes the main findings and outlines concluding remarks.

2. Basic concepts of the multivariate BPs

First, regarding the stochastic Fredholm double Wiener-Itô integral, we introduce the following theorem.

Theorem 1 Consider ψ(µ, η) ∈ L2([α, β]2). Then, we have∫ β

α

∫ β

α

ψ(µ, η)dB(µ)dB(η) = 2

∫ β

α

[∫ µ

α

ψ̂(µ, η)dB(η)
]
dB(µ),

where ψ̂ is the symmetrized version of ψ, defined as follows:

ψ̂(µ, η) =
1

2
(ψ(µ, η) + ψ(η, µ))

.

Consider q as a real-valued, bounded function defined over the closed m-dimensional space [0, 1]n. Let
us define V = (v1, v2, . . . , vm), where V ∈ [0, 1]n. The multivariate Bernstein polynomials Brm(q;V ) for
the function q are defined as in [25].

Brm(q;V ) =

m1∑
α1=0

· · ·
mm∑

αm=0

q


n−1
1 α1

n−1
2 α2

...
n−1
m αm


×
(
m1

α1

)
. . .

(
mm

αm

)
vα1
1 (1− v1)

m1−α1 . . . vαm
m (1− vm)mm−αm . (2.1)

Here, mj , j = 1, 2, . . . , n represent positive integers. The nodal points v1, v2, . . . , vm in (2.1) represent
probabilities for a multivariate binomial distribution, which is formed based on the product of m indepen-

dent binomial distributions. The multivariate BPs Brm(q;V ) associated with Pm, in which m =
n∑

j=1

mj

represents the total degree of Brm(q;V ), and Pm represents the space of polynomials P (V ) of degree at
most n, for every V ∈ [0, 1]n.

In view of (2.1), we examine the BPs of degree (m1 +m2) on the interval [0, 1]2 as follows:

Br(α,m1)(β,m2)(η, µ) =

(
m1

α

)(
m2

β

)
ηα(1− η)m1−αµβ(1− µ)m2−β ,

where α = 0, 1, . . . ,m1 and β = 0, 1, . . . ,m2 such that m1 and m2 represent arbitrary positive integers,
the set of 2DBPs can be represented as a (m1 + 1)(m2 + 1)-vector Γ(η, µ) for (η, µ) ∈ [0, 1]2.

Γ(η, µ) = [Br(0,m1)(0,m2)(η, µ), . . . ,Br(0,m1)(m2,m2)(η, µ), . . . ]. (2.2)

Γ(η, µ) = [Br(0,m1)(0,m2)(η, µ), . . . ,Br(0,m1)(m2,m2)(η, µ), . . . ,Br(m1,m1)(0,m2)(η, µ), . . . ,Br(m1,m1)(m2,m2)(η, µ)]
T .

The Bernstein polynomial (BP) for a function h(η, µ), defined on the interval [0, 1] × [0, 1], can be
expressed as follows:

(Br(m1,m2)h)(η, µ) =

m1∑
α=0

m2∑
β=0

h

(
α

m1
,
β

m2

)
Br(α,m1)(β,m2)(η, µ) = HTΓ(η, µ). (2.3)

In (2.2), using the properties of the 2DBPs as discussed in [29], we obtain:

Br(α,m1)(β,m2)(η, µ) = Wα,βΩm1,m2
(η, µ),
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for α = 0, 1, . . . ,m1, β = 0, 1, . . . ,m2, where

Ωm1,m2
(η, µ) = [1, µ, µ2, . . . , µm2 , η, ηµ, ηµ2, . . . , ηµm2 , . . . , ηm1 , ηm1µ, ηm1µ2, . . . , ηm1µm2 ]T ,

and Wα,β is described in [29]. Consequently, the 2DBPs vector Γ(η, µ) defined in Eq. (2.2) can be
expressed as:

Γ(η, µ) = WΩm1,m2
(η, µ), (2.4)

where W is a (m1 + 1)(m2 + 1)× (m1 + 1)(m2 + 1) matrix such that

W =


W0,0

W0,1

...
Wm1,m2

 . (2.5)

Similarly four-variables function q(u, v, η, µ), on [0, 1]× [0, 1]× [0, 1]× [0, 1] may be simulated with respect
to 2DBPs such as:

q(u, v, η, µ) ≃ Γ(u, v)TΛΓ′(η, µ),

where Γ(u, v) and Γ′(η, µ) are 2DBPs vectors of dimension (m1+1)(m2+1), and Λ is the (m1+1)(m2+
1)× (m1 + 1)(m2 + 1) 2DBPs coefficients matrix.
By considering arbitrary (m1 + 1)(m2 + 1) vector C, we have

Γ(u, v)ΓT (u, v)C ≃ C̃TΓ(u, v). (2.6)

Here C̃ is defined as
C̃ = C̆WT ,

in which C̆ and W are described in [29] and in equation (2.5), respectively.

2.1. Ordinary operational matrix of integration with 1d-BPs

The collection of 1D-BPs can be represented as a (m1 + 1)-dimensional vector Γ(η):

Γ(η) = [Br(0,m1)(η),Br(1,m1)(η), . . . ,Br(m1,m1)(η)]
T , (2.7)

so we can write
Γ(η) = AΩm1

(η),

where Ωm1
(η) = [1, η, . . . , ηm1 ]T and A is an (m1 + 1)× (m1 + 1) upper triangular matrix with

Aα+1

 α times︷ ︸︸ ︷
0, 0, . . . , 0, (−1)0

(
m1

α

)(
m1 − α

0

)
, . . . , (−1)m1−α

(
m1

α

)(
m1 − α
m1 − α

) . (2.8)

Let ∫ 1

0

Γ(η)dη =

∫ 1

0

AΩ(η)dη = A
[∫ 1

0

dη,

∫ 1

0

ηdη, . . . ,

∫ 1

0

ηm1dη

]T
.

Therefore, we get ∫ 1

0

Γ(η)dη = DoΓ(u),

with
Do,(m1+1)×(m1+1) = AA′A′′, (2.9)

where

A′ =


1 0 . . . 0

0
1

2
. . . 0

...
...

. . .
...

0 0 · · · 1

m1 + 1

 ,

such that the matrix A′′ represents a (m1 + 1)× (m1 + 1) matrix where all the elements are equal to 1.
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2.2. Ordinary operational matrix of integration with 2D-BPs

To compute the ordinary double Fredholm integral of Γ(η, µ) as defined in (2.2), we express it as follows:∫ 1

0

∫ 1

0

Γ(η, µ)dηdµ ≃ QoΓ(u, v) = [Do ⊗Do]Γ(u, v), (2.10)

where u, v ∈ [0, 1], and Qo is the (m1 + 1)(m2 + 1) × (m1 + 1)(m2 + 1) ordinary operational matrix of
integration for 2DBPs. The matrix Do is defined in Eq. (2.7), and ⊗ represents the Kronecker product,
meaning:

R⊗M = (rijM).

2.3. Stochastic operational matrix based on 1D-BPs

Similarly, for the 1D stochastic case, we have:∫ 1

0

Γ(η)dB(η) =
∫ 1

0

AΩ(η)dB(η) = A
[∫ 1

0

dB(η),
∫ 1

0

ηdB(η), . . . ,
∫ 1

0

ηm1dB(η)
]T

, (2.11)

where Ω(η) and A are defined in Eqs. (2.7) and (2.8), respectively. We can write

∫ 1

0
dB(η)∫ 1

0
ηdB(η)

...∫ 1

0
ηm1dB(η)


=



B(1)

B(1)−
∫ 1

0
B(η)dη

...

B(1)−m1

∫ 1

0
ηm1−1B(η)dη


= S = (sα)(m1+1)×1,

where sα = B(1)− α
∫ 1

0
ηα−1B(η) dη for α = 0, 1, . . . ,m1. By applying the composite trapezium rule, we

obtain:

sα = B(1)− α

4

(
2(

1

2
)α−1B(1

2
) + B(1)

)
= (1− α

4
)B(1)− α

2α
B(1

2
).

By substituting these approximations into Eq. (2.9), we obtain the following:∫ 1

0

Γ(η)dB(η) = DsΓ(u),

with
Ds,(m1+1)×(m1+1) = AJA′′, (2.12)

where

J =


B(1) 0 . . . 0

0
3

4
B(1)− 1

2
B(0.5) . . . 0

...
...

. . .
...

0 0 . . . (1− m1

4
)B(1)− m1

2m1
B(0.5)

 .

2.4. Stochastic operational matrix with 2DBPs

In a similar manner, the stochastic double Fredholm integral of Γ(η, µ) can be approximated as follows:∫ 1

0

∫ µ

0

Γ(η, µ)dB(η)dB(µ) ≃ QsΓ(u, v) = [Ds ⊗ Ps]Γ(u, v), (2.13)

where u, v ∈ [0, 1] and Qs is the stochastic operational matrix of integration for 2DBPs, with dimensions
(m1 + 1)(m2 + 1) × (m1 + 1)(m2 + 1). In this context, Ds and Ps denote the stochastic operational
matrices for 1D-BPs, as specified in Eq. (2.10) and discussed in [26].
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3. Numerical implementation

This section uses the 2DBPs to approximate Eq. (1.1). Initially, applying Theorem 1, we consider the
following steps:

K̇2(u, v, η, µ)h(η, µ) =
1

2
{K2(u, v, µ, η)h(µ, η) +K2(u, v, η, µ)h(η, µ)} . (3.1)

Then, we can write
q(u, v) = ΓT (u, v)Q, (3.2)

K1(u, v, η, µ) = ΓT (u, v)ΛΓ(η, µ), (3.3)

K̇2(u, v, η, µ) = ΓT (u, v)Λ̇Γ(η, µ), (3.4)

and
h(u, v) = ΓT (u, v)H, (3.5)

In Eq. (2.13), Q denotes a vector with dimension (m1 +1)(m2 +1)× 1, corresponding to the established
vector of BP coefficients. Similarly, in Eq. (3.1) and Eq. (3.2), Λ and Λ̇ are (m1 + 1)(m2 + 1) × (m1 +
1)(m2 + 1) matrices that are also known BP coefficient matrices. Additionally, H in Eq. (3.5) is the
unknown vector of BP coefficients given as:

H = [h0,0(u, v), . . . , h0,m2
(u, v), . . . , h1,m2

(u, v), . . . , hm1,m2
(u, v)]T .

By using relations (2.4), (2.8), (3.1) and (3.3), we have∫ 1

0

∫ 1

0

K1(u, v, η, µ)h(η, µ) dη dµ ≃
∫ 1

0

∫ 1

0

ΓT (u, v)ΛΓ(η, µ)ΓT (η, µ)Gdη dµ

= ΓT (u, v)Λ

(∫ 1

0

∫ 1

0

Γ(η, µ)ΓT (η, µ)Gdη dµ

)
≃ ΓT (u, v)ΛC̃1

T
(∫ 1

0

∫ 1

0

Γ(η, µ) dη dµ

)
= ΓT (u, v)ΛC̃1

T
QoΓ(u, v). (3.6)

Likewise, by applying Theorem 1, the stochastic double integral in the problem (1.1) is discretized,
yielding the following expression:

N∑
j=1

∫ 1

0

∫ 1

0

K2(u, v, η, µ)h(η, µ)dBj(η)dBj(µ)

=

N∑
j=1

2

∫ 1

0

[∫ µ

0

K̇2(u, v, η, µ)h(η, µ)dBj(η)

]
dBj(µ),

Using Eqs. (3.2) and (3.3), we obtain the following results:

N∑
j=1

∫ 1

0

∫ 1

0

K2(u, v, η, µ)h(η, µ)dBj(η)dBj(µ) = 2

N∑
j=1

∫ 1

0

[∫ µ

0

ΓT (u, v)Λ̇Γ(η, µ)ΓT (η, µ)QdBj(η)

]
dBj(µ)

N∑
j=1

∫ 1

0

∫ 1

0

K2(u, v, η, µ)h(η, µ)dBj(η)dBj(µ) = 2ΓT (u, v)Λ̇

N∑
j=1

[∫ 1

0

∫ µ

0

Γ(η, µ)ΓT (η, µ)QdBj(η)dBj(µ)

]
.

The operational matrices C̃2 from (2.4) and Qs from (2.11) lead to the following conclusion:

N∑
j=1

∫ 1

0

∫ 1

0

K2(u, v, η, µ)h(η, µ)dBj(η)dBj(µ) = 2ΓT (u, v)Λ̇C̃2
T

N∑
j=1

Qj
sΓ(u, v). (3.7)
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We then substitute Eqs. (2.13), (3.3), (3.4), and (3.5) into Eq. (1.1), resulting in the following expression.

ΓT (u, v)Q ≃ ΓT (u, v)Q+ ΓT (u, v)ΛC̃1
T
QoΓ(u, v) + 2ΓT (u, v)Λ̇C̃2

T
N∑
j=1

Qj
sΓ(u, v). (3.8)

By replacing ≃ with = in (3.6), we obtain the following equation:

Q ≃ Q+

ΛC̃1
T
Qo + 2Λ̇C̃2

T
N∑
j=1

Qj
s

Γ(u, v). (3.9)

By applying Eq. (3.7) at the Newton-Cotes points, we derive the following:

uα =
2α− 1

2(m1 + 1)
, vβ =

2β − 1

2(m2 + 1)
,

where α = 1, 2, . . . , (m1 + 1) and β = 1, 2, . . . , (m2 + 1), a system of (m1 + 1)(m2 + 1) linear equations
with (m1 + 1)(m2 + 1) unknowns is generated. This system can be solved using established techniques,
such as direct or iterative methods.

4. Error analysis

This section studies the error analysis for the method introduced earlier. The 2-norm is used throughout,
defined for any continuous function ψ ∈ C[α, β]n as follows:

∥ψ∥2 =

∫ β

α

∫ β

α

· · ·
∫ β

α︸ ︷︷ ︸
m times

|ψ(u1, u2, . . . , um)|2 du1 du2 · · · dum


1/2

.

Now, we list the following theorems to determine the standard convergence rate of the proposed method.

Theorem 2 ( [27]) Consider ψ : [0, 1]n → R as a continuous function. The multivariate Bernstein
polynomials (Brm1,m2,...,mmψ) will uniformly converge to ψ as m1,m2, . . . ,mm approach infinity. Con-
sequently, we have:

(Brm1,m2,...,mm
ψ)(v1, v2, . . . , vm) =

∑
0≤ωα≤mα, α=1,2,...,m

ψ

(
ω1

m1
, . . . ,

ωm

mm

)

×
n∏

α=1

(
mα

ωα

)
vωα
α (1− vα)

mα−ωα . (4.1)

Theorem 3 ( [27]) Let ψ : [0, 1]n → R be a continuous function. If

∥ψ(U)− ψ(V )∥2 ≤M∥U − V ∥2,

on [0, 1]n, then the inequality

∥(Brm1,m2,...,mmψ)(U)− ψ(U)∥2 <
n

2

(
n∑

α=1

1

mα

)2

, (4.2)

holds.

Theorem 4 ( [25,31]) For any continuous function ψ(v) with modulus of continuity Θ(ψ,ϖ), the Bern-
stein polynomials (Brmψ) satisfy

|(Brmψ)(v)− ψ(v)| ≤ 5

4
Θ(ψ;n−1/2), (4.3)

where

Θ(ψ;ϖ) = sup
|v1−v2|≤ϖ

|ψ(v1)− ψ(v2)|, v1, v2 ∈ [0, 1]. (4.4)
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Theorem 5 ( [28]) Consider H(V ) as a continuous function including a modulus of continuity Θ(H,ϖ),
where V belongs to the interval [0, 1]n. Additionally, we have:

Θ(H;ϖ) = sup
∥V1−V2∥2≤ϖ

|H(V1)−H(V2)|, V1, V2 ∈ [0, 1]n. (4.5)

Then, we obtain

|(BrmH)(V )−H(V )| ≤ 5

4
Θ(H;n−1/2), (4.6)

where m =
n∑

α=1
mα.

Theorem 6 Assume that h(u, v) is the exact solution of Eq. (1.1) and ĥm(u, v) is its approximation
using Bernstein polynomials (BPs). Let q̂m(u, v), K̂1m(u, v, η, µ), and K̂2m(u, v, η, µ) represent the BP
approximations of the functions q(u, v), K1(u, v, η, µ), and K2(u, v, η, µ), respectively. Additionally, as-
sume that:

1. ∥h∥2 ≤ ∆, (u, v) ∈ [0, 1]2,

2. ∥K1∥2 ≤ ∇1, (u, v, η, µ) ∈ [0, 1]4,

3. ∥K2∥2 ≤ ∇2, (u, v, η, µ) ∈ [0, 1]4,

4. q, K1, and K2 are continuous functions that satisfy the Lipschitz condition,

5. m1 = m2 = m,

6.

[
∇1 +O

(
1
m

)
+

N∑
j=1

B2
j (1)

(
∇2 +O

(
1
m

))]
< 1,

Then, for every (u, v) ∈ [0, 1]2, we have

∥h− ĥm∥2 = O
(

1

m

)
. (4.7)

Proof: We can write

h(u, v)− ĥm(u, v) = q(u, v)− q̂m(u, v)

+

∫ 1

0

∫ 1

0

(
K1(u, v, η, µ)h(η, µ)− K̂1m(u, v, η, µ)ĥm(η, µ)

)
dη dµ

+

n∑
j=1

∫ 1

0

∫ 1

0

(
K2(u, v, η, µ)h(η, µ)− K̂2m(u, v, η, µ)ĥm(η, µ)

)
dBj(η) dBj(µ).

Applying the mean value theorem for 2D integrals, for every (u, v) ∈ [0, 1]2 and (u, v, η, µ) ∈ [0, 1]4, it
follows that:

∥h− ĥm∥2 ≤ ∥q − q̂m∥2 + ∥K1h− K̂1mĥm∥2 +
N∑
j=1

B2
j (1)∥K2h− K̂2mĥm∥2. (4.8)

Based on the Hypotheses 1 and 2 along with Theorem 3, yields

∥K1h− K̂1mĥm∥2 ≤ ∥K1∥2∥h− ĥm∥2 + ∥K1 − K̂1m∥2
(
∥h− ĥm∥2 +∆

)
≤ ∇1∥h− ĥm∥2 +O

(
1

m

)(
∥h− ĥm∥2 +∆

)
=

(
∇1 +O

(
1

m

))
∥h− ĥm∥2 +O

(
1

m

)
∆.
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Similarly, by using Hypotheses 1 and 3 along with Theorem 3, we can write

∥K2h− K̂2mĥm∥2 ≤
(
∇2 +O

(
1

m

))
∥h− ĥm∥2 +O

(
1

m

)
∆. (4.9)

By substituting (3.9) and (4.1) in (3.8) and Theorem 3, we get

∥h− ĥm∥2 ≤ O

(
1

m

)
+

[(
∇1 +O

(
1

m

))
∥h− ĥm∥2 +O

(
1

m

)
∆

]
+

N∑
j=1

B2
j (1)

[(
∇2 +O

(
1

m

))
∥h− ĥm∥2 +O

(
1

m

)
∆

]
.

By taking the supremum, we obtain the following inequality:

∥h− ĥm∥2 ≤ O

(
1

m

)
+

[(
∇1 +O

(
1

m

))
sup

η≤u,µ≤v
∥h(η, µ)− ĥm(η, µ)∥2 +O

(
1

m

)
∆

]

+

N∑
j=1

B2
j (1)

[(
∇2 +O

(
1

m

))
sup

η≤u,µ≤v
∥h(η, µ)− ĥm(η, µ)∥2 +O

(
1

m

)
∆

]
.

This implies that

∥h− ĥm∥2 ≤
O
(

1
m

) [
1 + ∆+

N∑
j=1

B2
j (1)∆

]

1−

[
∇1 +O

(
1
m

)
+

N∑
j=1

B2
j (1)

(
∇2 +O

(
1
m

))] ,
and finally, applying Hypothesis 6, we obtain:

∥h− ĥm∥2 = O
(

1

m

)
.

2

Theorem 7 Let us assume that h(u, v) denotes the exact solution to Eq. (1.1) and that ĥm(u, v)
represents the BP approximation derived from Eq. (3.7). Additionally, let q̂m(u, v), K̂1m(u, v, η, µ),
and K̂2m(u, v, η, µ) be the Bernstein polynomial approximations of the functions q(u, v), K1(u, v, η, µ),
and K2(u, v, η, µ), respectively. Moreover, consider Θ(K,ϖ) as the modulus of continuity for a given
continuous function K(V ), where V ∈ [0, 1]n. Finally, consider the following conditions:

1. ∥h∥2 ≤ ∆, (u, v) ∈ [0, 1]2,

2. ∥K1∥2 ≤ ∇1, (u, v, η, µ) ∈ [0, 1]4,

3. ∥K2∥2 ≤ ∇2, (u, v, η, µ) ∈ [0, 1]4,

4. m1 = m2 = m,

5.

[
∇1 +

5
4Θ
(
K1; (4n)

−1/2
)
+

N∑
j=1

B2
j (1)

(
∇2 +

5
4Θ
(
K2; (4n)

−1/2
))]

< 1,

Then for every (u, v) ∈ [0, 1]2, we have

∥h− ĥm∥2 ≤ 5C0
4

Θ(q; (2n)−1/2
)
+Θ

(
K1; (4n)

−1/2
)
∆+Θ

(
K2; (4n)

−1/2
)
∆

N∑
j=1

B2
j (1)

 , (4.10)
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where C0 represents a real constant.

Proof: Considering inequality (3.8) in conjunction with Hypotheses 1 and 2, as well as Theorems 4 and
5, we can write as follows:

∥K1h− K̂1mĥm∥2 ≤ ∥K1∥2∥h− ĥm∥2 + ∥K1 − K̂1m∥2
(
∥h− ĥm∥2 +∆

)
≤ ∇1∥h− ĥm∥2 +

5

4
Θ
(
K1; (4n)

−1/2
)(

∥h− ĥm∥2 +∆
)

≤
(
∇1 +

5

4
Θ
(
K1; (4n)

−1/2
))

∥h− ĥm∥2 +
5

4
Θ
(
K1; (4n)

−1/2
)
∆.

In a similar manner, utilizing Hypotheses 1 and 3, along with Theorems 4 and 5, we obtain

∥K2h− K̂2mĥm∥2 ≤ ∥K2∥2∥h− ĥm∥2 + ∥K2 − K̂2m∥2
(
∥h− ĥm∥2 +∆

)
≤
(
∇2 +

5

4
Θ
(
K2; (4n)

−1/2
))

∥h− ĥm∥2 +
5

4
Θ
(
K2; (4n)

−1/2
)
∆. (4.11)

Then, substituting (4.2) and (4.3) into (3.8) and using Theorem 5, we have

∥h− ĥm∥2 ≤ 5

4
Θ
(
q; (2n)−1/2

)
+

[(
∇1 +

5

4
Θ
(
K1; (4n)

−1/2
))

∥h− ĥm∥2 +
5

4
Θ
(
K1; (4n)

−1/2
)
∆

]
+

N∑
j=1

B2
j (1)

[(
∇2 +

5

4
Θ
(
K2; (4n)

−1/2
))

∥h− ĥm∥2 +
5

4
Θ
(
K2; (4n)

−1/2
)
∆

]
.

Taking the supremum results in the following inequality:

∥h− ĥm∥2 ≤ 5

4
Θ
(
q; (2n)−1/2

)
+

[(
∇1 +

5

4
Θ
(
K1; (4n)

−1/2
))

sup
η≤u,µ≤v

∥h(η, µ)− ĥm(η, µ)∥2 +
5

4
Θ
(
K1; (4n)

−1/2
)
∆

]

+

N∑
j=1

B2
j (1)

[(
∇2 +

5

4
Θ
(
K2; (4n)

−1/2
))

sup
η≤u,µ≤v

∥h(η, µ)− ĥm(η, µ)∥2 +
5

4
Θ
(
K2; (4n)

−1/2
)
∆

]
.

This implies that

∥h− ĥm∥2 ≤

5
4Θ
(
q; (2n)−1/2

)
+ 5

4Θ
(
K1; (4n)

−1/2
)
∆+ 5

4

N∑
j=1

B2
j (1)Θ

(
K2; (4n)

−1/2
)
∆

1−

[
∇1 +

5
4Θ
(
K1; (4n)−1/2

)
+

N∑
j=1

B2
j (1)

(
∇2 +

5
4Θ
(
K2; (4n)−1/2

))] .

Therefore, by Hypothesis 5, we can obtain

∥h− ĥm∥2 ≤ 5C0
4

Θ(q; (2n)−1/2
)
+Θ

(
K1; (4n)

−1/2
)
∆+Θ

(
K2; (4n)

−1/2
)
∆

N∑
j=1

B2
j (1)

 ,
where C0 represents a real constant. 2
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5. Numerical examples

This section presents two numerical examples to demonstrate the effectiveness of the proposed method.
For these examples, the error average, the solution average, 95% confidence interval, and confidence
interval length at selected points (u, v) for various values of n are denoted by ē(u, v), h̄(u, v), CI, and
CLI, respectively, in the following tables. The results obtained using this method are compared with
those from HWFs [16] and BPFs [17,18] and are presented in Tables 2 and 4. For simplicity, we set
m1 = m2 = m. All computations were carried out using Maple 15 on a Pentium IV processor (2.80 GHz)
with 4 GB of RAM.

Example 1 Consider the following 2D linear stochastic Fredholm integral equation with multiple noise
of the second kind:

h(u, v) = q(u, v) +

∫ 1

0

∫ 1

0

µ
√
uv sin(η)h(η, µ) dη dµ+

3∑
j=1

∫ 1

0

∫ 1

0

ηµ cos(uv)h(η, µ) dBj(η) dBj(µ),

where

q(u, v) = (uv)e

3∑
j=1

Bj(u)+Bj(v)

−
∫ 1

0

∫ 1

0

µ2η
√
uv sin(η)e

3∑
j=1

Bj(η)+Bj(µ)

dη dµ

− cos(uv)

e 3∑
j=1

Bj(1)

−
∫ 1

0

e

3∑
j=1

Bj(µ)
(
2µ+

µ2

2

)
dµ

2

.

The exact solution to the above example can be determined as

h(u, v) = (uv)e

3∑
j=1

Bj(u)+Bj(v)

.

Example 2 Consider the following 2D-linear stochastic Fredholm integral equation with multiple noise
of the second kind:

h(u, v) = q(u, v) +

∫ 1

0

∫ 1

0

(uvηµ)h(η, µ) dη dµ+

3∑
j=1

∫ 1

0

∫ 1

0

(u+ v + η + µ)h(η, µ) dBj(η) dBj(µ),

where

q(u, v) = u+ v − uv

3
− 2(u+ v)

3∑
j=1

Bj(1)

(
Bj(1)−

∫ 1

0

Bj(η) dη

)

− 2
3∑

j=1

Bj(1)

(
Bj(1)− 2

∫ 1

0

Bj(η) dη

)
− 2

(
Bj(1)−

∫ 1

0

Bj(η) dη

)2

.

The exact solution for the above example is given by

h(u, v) = u+ v.
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Table 1: The mean solution h̄(u, v), error mean ē(u, v), 95% confidence interval (CI), and the confidence
interval length (CLI) for Example 1.

(u, v) m ḡ(u, v) ē(u, v) CI LCI
(0.1, 0.3) 2 −0.374176 0.381898 (−0.8356, 0.08725) 0.92285

4 −0.149460 0.032923 (−0.3068, 0.20796) 0.51476
6 −0.122804 0.002616 (−0.1371,−0.0004) 0.13639

(0.4, 0.4) 2 −0.009997 0.294952 (−0.3566, 0.03366) 0.69326
4 −0.202087 0.010516 (−0.3860,−0.0181) 0.36787
6 −0.161661 0.007575 (−0.1717, 0.00039) 0.17209

(0.8, 0.6) 2 −0.109514 0.197593 (−0.3054, 0.08642) 0.39188
4 0.0075860 0.090158 (−0.0196, 0.23480) 0.25440
6 0.0714780 0.005641 (−0.0622, 0.10518) 0.16738

Table 2: A comparative analysis of 95% confidence interval (CI), the error mean ē(u, v), and the confidence
interval length (CLI) for the BPs method versus the HWFs and BPFs methods, for Example 2.

(u, v) m Method ē(u, v) CI LCI
(0.125, 0.625) 2 HWFs 0.644204 (−0.3354, 1.20925) 1.54469

BPFs 0.430623 (−0.3471, 0.81229) 1.15940
BPs 0.083247 (−0.2655, 0.11632) 0.38190

(0.625, 0.375) 2 HWFs 0.836627 (−0.2597, 1.63020) 1.96564
BPFs 0.406720 (−0.3471, 0.81229) 1.15940
BPs 0.004444 (−0.1952, 0.20255) 0.39783

(0.187, 0.687) 4 HWFs 0.204906 (0.24458, 0.65826) 0.41368
BPFs 0.573738 (−0.8666, 0.72258) 1.58918
BPs 0.007350 (−0.0168, 0.13136) 0.14816

(0.562, 0.562) 4 HWFs 0.609751 (0.14182, 1.50142) 1.35960
BPFs 0.530567 (−0.6820, 0.62439) 1.30639
BPs 0.043660 (−0.0107, 0.24812) 0.25882

Table 3: The mean solution h̄(u, v), error mean ē(u, v), 95% confidence interval (CI), and the confidence
interval length (LCI) for Example 2.

(u, v) m ḡ(u, v) ē(u, v) CI LCI
(0.1, 0.3) 2 1.088080 0.276765 (0.29598, 1.18017) 0.88419

4 0.863974 0.063974 (0.53232, 1.19563) 0.66330
6 0.515669 0.015669 (0.43306, 0.76440) 0.33134

(0.4, 0.4) 2 0.396699 0.187558 (0.26779, 0.86118) 0.59339
4 0.540188 0.032910 (0.30865, 0.88902) 0.58037
6 0.564434 0.005566 (0.30330, 0.52556) 0.22226

(0.9, 0.2) 2 0.399475 0.148783 (0.18052, 0.77947) 0.59895
4 0.465394 0.034606 (0.33004, 0.76083) 0.43079
6 0.809044 0.001126 (0.38310, 0.50119) 0.11809
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Table 4: A comparative analysis of 95% confidence interval, the error mean ē(u, v), and confidence interval
length for the BPs method versus the HWFs and BPFs methods, for Example 2.

(u, v) m Method ē(u, v) CI LCI
(0.125, 0.625) 2 HWFs 0.809726 (−1.0731, 0.95370) 2.02686

BPFs 0.437228 (0.09462, 1.27983) 1.18520
BPs 0.008105 (0.71651, 0.74727) 0.03075

(0.375, 0.375) 2 HWFs 0.520358 (−0.2003, 1.10245) 1.30277
BPFs 0.010698 (−0.8132, 0.69183) 1.50506
BPs 0.008634 (0.69593, 0.72680) 0.03086

(0.187, 0.687) 4 HWFs 0.527728 (−0.3117, 1.00630) 1.31806
BPFs 0.580585 (−0.1626, 0.75148) 0.91412
BPs 0.098661 (0.50983, 0.54064) 0.03081

(0.937, 0.312) 4 HWFs 0.809701 (−0.3169, 1.50530) 1.82224
BPFs 0.771418 (−0.3123, 1.26947) 1.58177
BPs 0.048950 (0.18460, 0.48050) 0.29590

Figure 1: Exact and numerical solution for Example 1 (n = 5)

Figure 2: Exact and numerical solutions for Example 2 (n = 5)

Tables 1 and 3 demonstrate that, in the proposed method, both the confidence interval length and the
error mean decrease as n increases. This trend clearly reflects the convergence behavior of the algorithm,
indicating that larger values of n enhance the approximation accuracy and lead to more reliable statistical
estimates. In addition, the reduction in confidence interval length with increasing n implies higher
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precision in the computed results, which is a desirable feature in numerical simulations of stochastic
models. Moreover, Tables 2 and 4 show that the BPs method consistently yields a shorter confidence
interval and a lower error mean compared to other competing methods considered in this study. This
superiority is observed across different problem settings, confirming the robustness and efficiency of the
BPs approach in handling multi-noise stochastic Fredholm integral equations. To further illustrate the
performance of the proposed method, three-dimensional plots of the exact and approximate solutions for
Examples 1 and 2, corresponding to the arbitrary positive integer n = 5, are presented in Figures 1 and
2. In these plots, the approximate surfaces generated by the proposed scheme exhibit an excellent visual
agreement with the exact solutions, thereby reinforcing the quantitative results summarized in the tables.
The smoothness and closeness of the approximate surfaces to the exact ones also highlight the capability
of the method to capture the underlying behavior of the solutions with high fidelity.

6. Conclusion

This paper implemented a novel approach based on two-dimensional Bernstein polynomials (2DBPs) and
their operational integration matrices for approximating the solution of the 2D-LMN-SFIE (1.1). Error
analysis and numerical experiments demonstrated the accuracy of the proposed method. A key advantage
of this approach was its lower computational cost in setting up the system of equations, as it eliminated
the need for integration. Numerical results indicated that the Bernstein approximation method was highly
effective, straightforward, and reliable for solving two-dimensional linear multi-noise stochastic Fredholm
integral equations of the second kind with high accuracy. The numerical experiments confirmed that the
typical convergence rate of the method was O

(
1
m

)
. Furthermore, the method could be iteratively refined

by increasing n until the desired level of accuracy was achieved. Finally, this method could be extended
and applied to two-dimensional linear multi-noise stochastic Volterra–Fredholm integral equations of both
the first and second kinds.
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