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A B S T R A C T

This study presents an investigation into the vibration resonance of Mindlin piezoelectric polymeric nanoplates
under electromechanical loading, particularly in the presence of a rotating nanoparticle. The novelty of this
research lies in the application of non-local piezoelasticity, which effectively incorporates the influence of small-
scale factors on the resonance behavior of the nanoplate. By employing a variational approach to derive the
governing equations, this work advances the understanding of how various parameters such as the non-local
parameter, dimensions of the nanoplate, excitation voltage, and mass of the nanoparticle affect resonance fre-
quencies. The Galerkin method is utilized to solve the partial differential equations governing the dynamics of
the piezoelectric polymeric nanoplate, marking a significant methodological contribution to the field. The in-
cremental harmonic balance approach is then applied to estimate the system’s resonance frequencies, with
numerical simulations confirming their existence. This research not only elucidates the complex interactions
affecting resonance behavior but also highlights the potential for optimizing the design of nanostructures in
various applications, including sensors and energy-harvesting devices. The findings suggest that increasing the
non-local parameter softens the nanoplate’s rigidity, leading to decreased resonance frequencies, while modi-
fications in dimensions and applied voltages can enhance these frequencies. Overall, this study lays the
groundwork for future explorations into the dynamic behavior of piezoelectric materials, emphasizing the
importance of small-scale effects in nanotechnology applications.

1. Introduction

Due to their distinctive property of converting mechanical and
electrical energy, piezoelectric materials find extensive application in
actuators and sensors that regulate a variety of engineering systems.
Consequently, contemporary research is extremely interested in the
investigation of the behavior of these materials. In recent years, there
has been significant interest in the utilization of piezoelectric materials

within nanostructures, including nanoplates, nanowires, and nanotubes,
due to the widespread trend toward compact devices across industries.
Among these nanostructures, nanoplates are utilized extensively in
numerous fields of mechanical engineering [1,2]. Capacitors, power
relays, thin films, molecular sensors, and nano- and micro-
electromechanical systems all make use of nanoplates [3]. When dy-
namic loads are applied to nanoplates, resonance may occur, leading to
their eventual failure. Consequently, the determination of the factors
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that influence the resonance frequencies of nanoplates, in addition to
their calculation and evaluation, are important topics in the scientific
literature. In the investigation of elastic nanoplates, numerous hypoth-
eses have been proposed thus far. In general, investigations are carried
out utilizing two-dimensional elasticity theories or alternative
three-dimensional elasticity theories. Although investigations conduct-
ed utilizing the theory of three-dimensional elasticity are fundamental
and accurate, the application of this approach presents several com-
plexities and obstacles. To address these difficulties, a multitude of
theories have been proposed; nevertheless, the precision of these the-
ories is contingent upon the number of terms integrated into the
displacement field expansion [4]. Kirchhoff’s plate theory fails to ac-
count for the influence of shear strains, rendering it insufficiently precise
when applied to thick nanoplates [5,6]. The purpose of developing
Mindlin’s plate theory was to rectify this inadequacy and enhance pre-
cision [7,8]. A theory that incorporates the consequences of shear
deformation serves as a supplementary framework to Kirchhoff’s theory.
Researchers frequently employ experiments and molecular dynamics
(MD) simulations to analyze the behavior of nanostructures. The exor-
bitant computational expense and intricacy of MD simulations limit
their application to systems comprising a scarce number of atoms and
molecules. Furthermore, nanoscale investigations are challenging and
expensive. As a result, theoretical frameworks are commonly utilized to
achieve this objective. Efficient methods for examining the mechanical
behavior of nanostructures, such as bending, buckling, and free and
forced vibrations, are proposed by the theory of continuum mechanics.
The ability of classical continuum mechanics to forecast mechanical
behavior that is dependent on scale is limited. As a consequence of this
constraint, scholars have put forth revised frameworks, including the
modified couple stress theory [9,10], the non-local elasticity theory
[11], and the non-local strain gradient theory [12]. These revised the-
ories account for size-dependent effects. The conventional theory of
continuum elasticity posits that tension and strain at every point are
directly proportional. Researchers have conducted considerable
research and investigations on nanoplates, nanoshells, nanorods, and
nanobeams based on this foundation. The investigation of the
thermo-mechanical deformation of nanoplates in hygro-thermal envi-
ronments was conducted by Alzahrani et al. [13]. Simsek and Yurtcu
[14] resolved the issue of buckling and bending behavior in functionally
graded Timoshenko nanobeams. Hosseini-Hashemi et al. [15] examined
the spontaneous vibration of rectangular nanoplates in a separate
investigation. Sobhy [16] utilized the two-variable plate theory to
analyze multilayer graphene sheets. Chen et al. [17] investigated wave
propagation in periodic layered nanostructures. Liu et al. [18] examined
the post-buckling and nonlinear vibration of piezoelectric nanobeams
subjected to thermo-electro-mechanical loading by employing the
non-local theory. Sayyad and Ghugal [19] investigated the free vibra-
tions and bidirectional deformation of thick plates. In their study of the
vibration and flexural deformation of non-local piezoelectric nano-
beams, Eltaher et al. [20] looked into surface effects. Zarepour et al. [21]
investigated nanobeam post-buckling and nonlinear vibration. Liu et al.
[22] utilized the non-local Mindlin plate theory to examine the
nonlinear vibrations of piezoelectric nanoplates subjected to thermo-
electric loading. A new study by Ebrahimi et al. [23] used the non-local
theory to look into how magneto-electro-piezo nanobeams on the
Winkler-Pasternak foundation bend when they are put under
hygro-thermal loads. Using non-local theory, Mazur and Awrejcewicz
[24] looked into how orthotropic nanoplates move when they are hit by
an in-plane magnetic field. Pirmoradian et al. [25,26] investigated the
non-local parametric resonance of carbon nanotubes and graphene
sheets that were excited by moving nanoparticles. Smart polymeric
materials consisting of polyvinylidene fluorides (PVDF) also exhibit
ferroelectric, piezoelectric, and pyroelectric characteristics. Further-
more, this semi-crystalline polymer possesses numerous advantageous
qualities, such as exceptional flexibility, minimal weight, thermal sta-
bility, resistance to chemicals, and the capability to be produced in

significant volumes. As a result, they are highly compatible with sensors
spanning a range of scales. To ascertain the integrity of PVDF
nanoplate-based nanoelectromechanical sensors, an analysis of the
nanoplates’ vibration in response to various excitations, including
nanoparticles and external mechanical stresses, is imperative. Investi-
gating the dynamic characteristics of these materials at the nanoscale
has emerged as a highly captivating field of study among scholars in
recent times. The study conducted by Arani Ghorbanopour et al. [27]
examined the dynamic behavior of PVDF nanoplates that were excited
by a nanoparticle in motion on a Pasternak substrate. Haghshenas and
Ghorbanpour Arani [28] investigated the effect of stationary nano-
particles on the non-local vibration of PVDF nanoplates. Ebrahimi and
Barati [29] also looked into how smart piezoelectric polymeric nano-
plates that are supported only on a viscoelastic substrate can dampen
oscillations. They analyzed the effects of applied voltage, foundation
viscoelasticity, length scale, nonlocal parameters, and
Winkler-Pasternak parameters. Despite the existence of several in-
vestigations about the estimation of the natural frequencies of PVDF
nanoplates [29] and their dynamic response to nanoparticles [27,28],
the aforementioned studies remain insufficient. Thus, it is necessary to
conduct an inquiry into the resonance states exhibited by PVDF nano-
plates and devise methods to control their undesired vibrations. This
study presents the initial investigation of the resonance frequencies
exhibited by a piezoelectric polymeric nanoplate made of PVDFmaterial
situated on an elastic medium. The nanoplate is subjected to biaxial
stress, electrical voltage, and the motion of nanoparticles. In the model
presented in this study, a biomolecule, buckyball, or virus traverses a
piezoelectric nanoplate, serving as an illustration of a mass sensor. The
nanoplate is represented through the integration of Eringen’s non-local
elasticity theory and Mindlin plate theory. Following the construction of
the motion equations using Hamilton’s principle, the time-varying
matrices of mass, stiffness, and damping are acquired. By employing
the incremental harmonic balance (IHB) method, the resonance fre-
quencies are computed. An exhaustive investigation is conducted into
the effects of numerous variables on resonance frequencies, such as
nanoplate size, non-local parameters, external voltage, nanoparticle
mass, biaxial stress, vibrational mode number, and foundation rigidity.
In addition, numerical simulations validate the resonance frequencies.
The results of this study can be utilized in the development of NEMS and
MEMS, which play a vital role in numerous sectors, such as telecom-
munications, automotive, and biomedical devices. By optimizing the
resonance characteristics of nanoplates, the performance of these sys-
tems can be enhanced.

2. Numerical modeling of the problem

The object of study in this research (Fig. 1) is a rectangular nanoplate
made of a piezoelectric polymer. The rectangular nanoplate made of a
piezoelectric polymer has specific dimensions for its length a, width b,
and thickness h, and is positioned on the Pasternak foundation. All
boundary conditions are assumed to be supported simply. In addition,
the nanoplate experiences biaxial forces, a nanoparticle moving in a
circular trajectory, and an electric field Φ̂(x,y, z, t).

2.1. Non-local constitutive relations of piezoelectric materials

Smart materials are an innovative class of materials recently intro-
duced to the industrial sector. The application of electrical excitation
can induce deformation in intelligent materials. In the realm of intelli-
gent materials, piezoelectric materials predominate. Piezoelectric ma-
terials undergo electrical polarization and generate an electrical
potential in response to mechanical loading; conversely, they exhibit
mechanical strains when exposed to an electric field. Literature ac-
knowledges the widespread application of these materials as sensors and
actuators in the automotive, aerospace, computer, medical, and home
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appliance industries [30]. The intelligent polyvinylidene fluoride poly-
mer possesses piezoelectric properties. It is non-combustible and pos-
sesses distinctive characteristics, including chemical, thermal, and
electrical stability, as well as low dielectric constants [31]. The con-
stituent relationships of PVDFmaterials for strain and mechanical stress,
in addition to field strength and electrostatic flux density, are delineated
as follows [32,33]:
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where Cij, ∈ij, and eij represent the elastic, dielectric, and piezoelectric
coefficients, respectively. Also, the electric fields Ei(i= x, y, z) can be
obtained as functions of electric potential Φ̂(x, y, z, t) as follows [34]:

E= − ∇Φ̂(x, y, z, t). (3)

where ∇ is the gradient operator. The representation of the electric
potential distribution along the thickness direction can be expressed as
follows [35] using the Maxwell equation:

Φ̂(x, y, z, t)= − cos
(πz
h

)
Φ(x, y, t) +

2zV0
h

, (4)

where Φ(x, y, t) denotes the electric potential distribution caused by
bending in the mid-surface of the PVDF nanoplate and V0 stands for the
external electric voltage.
Eringen’s non-local theory [36,37] can also be utilized for

piezoelectric materials. The non-local constitutive relations for piezo-
electric polymeric materials are formulated by utilizing the differential
version of this theory and Eqs. (1) and (2) as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σxx
σyy
τyz
τzx
τxy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

− μ∇2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σxx
σyy
τyz
τzx
τxy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎣

C11 C12 0 0 0
C21 C22 0 0 0
0 0 C44 0 0
0 0 0 C55 0
0 0 0 0 C66

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εxx
εyy
γyz
γzx
γxy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

−

⎡

⎢
⎢
⎢
⎢
⎣

0 0 e31
0 0 e32
0 e24 0
e15 0 0
0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎨

⎩

Exx
Eyy
Ezz

⎫
⎬

⎭
, (5)

⎧
⎨

⎩

Dxx
Dyy
Dzz

⎫
⎬

⎭
− μ∇2

⎧
⎨

⎩

Dxx
Dyy
Dzz

⎫
⎬

⎭
=

⎡

⎣
0 0 0 e15 0
0 0 e24 0 0
e31 e32 0 0 0

⎤

⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εxx
εyy
γyz
γzx
γxy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

⎡

⎣
∈11 0 0
0 ∈22 0
0 0 ∈33

⎤

⎦

⎧
⎨

⎩

Exx
Eyy
Ezz

⎫
⎬

⎭
, (6)

where ∇2 is the Laplacian operator, and μ = (e0a)2 is the non-local
parameter. Setting μ = 0 reduces the non-local stress and flux density
in Eqs. (5) and (6) to local ones.

2.2. Governing equations of motion

The displacements in the x, y, and z directions, as per Mindlin’s plate
theory, are denoted as follows, respectively [38,39]:

u1(x, y, z, t) = zψx(x, y, t),
u2(x, y, z, t) = zψy(x, y, t),
u3(x, y, z, t) = w(x, y, t),

(7)

where w(x, y, t) is the nanoplate mid-surface transverse displace-
ment, and ψx and ψy are the rotation functions of straight lines
perpendicular to the nanoplate mid-surface. The normal strains

(
εxx, εyy,

εzz
)
and shear strains

(
γxy, γxz, γyz

)
are determined as follows by taking

into account strain-displacement relations associated with small defor-
mation of the nanoplate [40,41]:

Fig. 1. Geometric configuration of the PVDF nanoplate carrying an orbiting nanoparticle.

N.S. Sawaran Singh et al.



Case Studies in Chemical and Environmental Engineering 11 (2025) 101125

4

εxx = z
∂ψx

∂x , εyy = z
∂ψy

∂y , εzz = 0,

γxy = z
(

∂ψx

∂y +
∂ψy

∂x

)

, γxz =ψx +
∂w
∂x , γyz =ψy +

∂w
∂y . (8)

The PVDF nanoplate’s strain energy is written as [42]:

U=
1
2

∫

V

(
σxxεxx+σyyεyy+τyzγyz+τzxγzx+τxyγxy − DxxExx − DyyEyy − DzzEzz

)
dV.

(9)

By inserting Eq. (8) into Eq. (9) and performing integration
throughout the thickness of the PVDF nanoplate, the resultant equation
is derived:

in which

{
Mxx,Myy,Mxy

}
=

∫h/2

− h/2

{
σxx,σyy,σxy

}
z dz,

{
Qxz,Qyz

}
=κ

∫h/2

− h/2

{
τxz,τyz

}
dz,

(11)

where Mxx, Myy, and Mxy are bending moments, Qxz and Qyz represent
resultant shear forces, and κ is the shear correction factor. The mathe-
matical representation of the work performed by the electrical voltage,
biaxial loading, elastic foundation, and moving nanoparticle is as fol-
lows [43,44]:

where Nx and Ny are in-plane applied loads along x and y directions,
respectively, and kg and kw are Pasternak and Winkler foundation
modules. Furthermore, q(x, y, t) implies the transverse force due to the
nanoparticle movement over the PVDF nanoplate. By considering iner-
tial effects of the nanoparticle, q(x, y, t) can be stated as follows [45,46]:

where g and δ(.) denote the gravity acceleration and delta-Dirac
function, respectively. The expression for the position of the nano-
particle, which is orbiting the center of the PVDF nanoplate along a
circular path of radius r and angular velocity ω, is as follows:

xM(t)=
a
2
+ r cos(ω t), yM(t) =

b
2
+ r sin(ω t). (14)

The kinetic energy of the PVDF nanoplate is expressed as follows
[47]:

K=
ρ
2

∫

V

((
∂u1
∂t

)2

+

(
∂u2
∂t

)2

+

(
∂u3
∂t

)2)

dV, (15)

where ρ denotes the density of PVDF nanoplate. By substituting
displacements u1, u2, and u3 from Eq. (7) into Eq. (15), the kinetic energy

can be determined using the subsequent formula:

K=
ρh
2
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((
∂w
∂t

)2

−
h2

12

{(
∂ψx

∂t

)2
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∂t

)2}
)

dA. (16)

The following is how Hamilton’s principle is applied to derive the
motion equations [48,49]:

∫t

0

δ( U+V − K) dt=0, (17)

where δ implies the variational operator. By substituting Eqs. (10), (12)
and (16) into Eq. (17), we can get the local equations that govern the
PVDF nanoplate under biaxial loading, when it is activated by a moving

nanoparticle and electric field.
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∂Mxx

∂x +
∂Mxy

∂y − Qxz −
ρh3
12

∂2ψx

∂t2 = 0, (19)

U=
1
2

∫

A

⎡

⎣Mxx
∂ψx

∂x +Myy
∂ψy

∂y +Mxy

(
∂ψx

∂y +
∂ψy

∂x

)

+Qxz

(
∂w
∂x +ψx

)

+Qyz

(
∂w
∂y +ψy

)
⎤

⎦ dA −
1
2

∫

V

⎡

⎣Dx

(

cos
(πz
h

) ∂Φ
∂x

)

+Dy

(

cos
(πz
h

) ∂Φ
∂y

)

− Dz

(
π
h
sin
(πz
h

)
Φ+

2V0
h

)]

dV,

(10)

V=
1
2

∫

A

[

(Nx +2e31V0)
(

∂w
∂x

)2

+
(
Ny +2e32V0

)
(

∂w
∂y

)2

−
(
kww − kg∇2w

)
w+ q(x, y, t)w

]

dA, (12)

q(x, y, t)= − M
(

− g+ ẅ+
∂2w
∂x2 ẋ

2
+
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2
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∂Myy
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12
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∂t2 = 0, (20)
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By using Eqs. (5), (6) and (11), and (18–21), the governing non-local
equations for the transverse vibration of the PVDF nanoplate can be
obtained in terms of w, ψx, ψy, and Φ as follows:
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3. Solution procedure

The assumptions regarding the displacement components are as
follows [50,51]:
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ψx(x, y, t)
ψy(x, y, t)
Φ(x, y, t)

⎫
⎪⎪⎬

⎪⎪⎭

=
∑∞

m=1

∑∞

n=1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wmn(t)sin
(mπx

a

)
sin
(nπy

b

)

ψxmn(t)cos
(mπx

a

)
sin
(nπy

b

)

ψymn(t)sin
(mπx

a

)
cos
(nπy

b

)

Φmn(t)sin
(mπx

a

)
sin
(nπy

b

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (26)

where Wmn(t), ψxmn(t), ψymn(t), and Φmn(t) are unknown coefficients,

and m and n indicate mode numbers along x and y directions, respec-
tively. By substituting Eq. (26) into Eqs. 22–25 and using the Galerkin
procedure, the following coupled time-varying ODEs are obtained for (m,

n) = (1,1):

The components of the above matrices are presented in Appendix A.
To enhance readability, Equation (27) is converted to its dimensionless
counterpart in Appendix B.

4. Incremental harmonic balance method

The incremental harmonic balance method is a semi-analytical
technique that can be implemented on a computer. By substituting
finite Fourier series for the periodic response of a dynamic equation, this
approach converts the equations into a system of incremental linear
algebraic equations. Following the application of the Galerkin technique
to these algebraic equations, the periodic response of the system is
determined iteratively. The approach demonstrates the ability to effi-
ciently resolve both weak and strong nonlinear systems in addition to
linear ones. The IHB method offers more precise solutions across a
significantly broader range of parameters in comparison to numerical
approaches like the energy-rate method and Floquet theory, due to its
ability to account for multiple harmonics. A detailed explanation of how
to calculate resonance frequencies using this method is provided below.
The governing Eq. (B.2) includes terms such as sin(πζ cos(τ)),
sin(πη sin(τ)), cos(πη sin(τ)), and cos(πζ cos(τ)). To avoid certain diffi-
culties in the IHB procedure, the following terms have been replaced by

κh
(

C55
∂ψx

∂x + C55
∂2w
∂x2 + C44

∂ψy

∂y + C44
∂2w
∂y2

)

−
2κ
β

(

e15
∂2Φ
∂x2 + e24

∂2Φ
∂y2

)

−
(
1 − μ∇2

)
[

kww − kg∇2w − (Nx + 2e31V0)
∂2w
∂x2 −

(
Ny + 2e32V0

) ∂2w
∂y2 + ρh ∂2w

∂t2

+M
(

− g + ẅ+
∂2w
∂x2 ẋ

2
+

∂2w
∂y2 ẏ

2
+ 2

∂2w
∂x∂yẋẏ+ 2

∂2w
∂x∂tẋ+ 2

∂2w
∂y∂tẏ+

∂w
∂xẍ+

∂w
∂yÿ
)

δ(x − xM(t))δ(y − yM(t))
]

= 0,

(22)

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

M11 0 0 0
0 M22 0 0
0 0 M33 0
0 0 0 0

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

M11(t) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ẅ11
ψ̈x11
ψ̈y11

Φ̈11

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+

⎡

⎢
⎢
⎣

C11(t) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

Ẇ11
ψ̇x11
ψ̇y11

Φ̇11

⎫
⎪⎪⎬

⎪⎪⎭

+

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

K11(t) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

⎧
⎪⎪⎨

⎪⎪⎩

W11
ψx11
ψy11
Φ11

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

F1(t)
0
0
0

⎫
⎪⎪⎬

⎪⎪⎭

, (27)
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their Fourier series [52]:

cos(πζ cos(τ)) = J0(πζ) + 2
∑∞

i=1
(− 1)iJ2i(πζ)cos(2iτ),

cos(πη sin(τ)) = J0(πη) + 2
∑∞

i=1
J2i(πη)cos(2iτ),

sin(πζ cos(τ)) = 2
∑∞

i=0
(− 1)iJ2i+1(πζ)cos((2i+ 1)τ),

sin(πη sin(τ)) = 2
∑∞

i=0
J2i+1(πη)sin((2i+ 1)τ),

(28)

where Js(x) s = 1,2,… is the Bessel function of the first kind. If

Q*(τ) =
{
W̃
*
11, ψ̃*x11, ψ̃

*
y11, Φ̃

*
11

}T
represents the current vibrational state

for the excitation parameters α* and Ω*, then the following equations
can be used to derive the neighboring state:

Q(τ)=Q*(τ) + ΔQ(τ), α = α* + Δα,Ω = Ω* + ΔΩ, (29)

where ΔQ(τ), Δα, and ΔΩ stand for small increments. By inserting
Equation (29) into the homogeneous version of Equation (B.2) and
disregarding the negligible incremental nonlinear terms, we obtain:

Ω*
2
(M1+ α* M2(τ))ΔQʹ́ + α*Ω*2C1(τ) ΔQʹ+

(
K1 +α*Ω*2K2(τ)

)
ΔQ

= R −
{

Ω*
2
(M2(τ)Q*

ʹ́
+C1(τ)Q*

ʹ
+K2(τ)Q*)

}
Δα

− {2Ω*((M1 +α* M2(τ))Q*
ʹ́
+α* C1(τ) Q*

ʹ
+α* K2(τ) Q*)}ΔΩ,

(30)

where

R= − Ω*
2
(M1+ α* M2(τ))Q*

ʹ́
− α*Ω*2C1(τ)Q*

ʹ
−
(
K1 +α*Ω*2K2(τ)

)
Q*.

In the given equation, R denotes the residual, which attains a value of
zero when Ω* is a precise solution. Resonance occurs in linear time-
varying systems when the excitation frequency on the right-hand side
of the governing equation matches the periodic response frequency.
Hence, the residual term is employed to control the precision of the
solution. By substituting Equation (28) into Equation (B.2), it becomes
evident that the right-hand side of Equation (B.2) consists of cosine
terms with frequencies that are even. Thus, the harmonic response
mentioned in the equation is considered while calculating the resonance
frequencies for the homogeneous equation [47]:

Q*(τ) =
∑N

i=2,4,6,…
bi cos(iτ) = Taj,i, j = 1, 2,3, 4,

ΔQ*(τ) =
∑N

i=2,4,6,…
Δbi cos(iτ) = TΔaj,i, j = 1,2, 3,4,

(32)

where

T={cos(2τ), cos(4τ), cos(6τ),…},aj,i =
{
aj2, aj4, aj6,…

}T
,

Δaj,i =
{

Δaj2,Δaj4,Δaj6,…
}T

.
(33)

Therefore Q*, and ΔQ can be written as:

Q*=Y A,ΔQ = Y ΔA, (34)

where

Y=

⎡

⎢
⎢
⎣

T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T

⎤

⎥
⎥
⎦,A=

⎧
⎪⎪⎨

⎪⎪⎩

a1
a2
a3
a4

⎫
⎪⎪⎬

⎪⎪⎭

,ΔA=

⎧
⎪⎪⎨

⎪⎪⎩

Δa1
Δa2
Δa3
Δa4

⎫
⎪⎪⎬

⎪⎪⎭

. (35)

M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M̃11 0 0 0

0 M̃22 0 0

0 0 M̃33 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,M2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M
⌢

11(τ) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,C1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C
⌢

11(τ) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

K1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

K̃11 K̃12 K̃13 K̃14
K̃21 K̃22 K̃23 K̃24
K̃31 K̃32 K̃33 K̃34
K̃41 K̃42 K̃43 K̃44

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,K2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

K
⌢

11(τ) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(31)
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Applying the Galerkin method to Eq. (30) over a specific time in-
terval yields the subsequent equation:

Then, substituting Eq. (34) into Eq. (36) leads to a set of algebraic linear
equations with parameters ΔA, Δα, and ΔΩ as follows:

SΔA ΔA+ SΔα Δα + SΔβ ΔΩ = R, (37)

where

Equation (37) is utilized to compute resonance frequencies based on
the provided parameters A, α*, and Ω*. Due to the nonlinearity of this
equation for these quantities, it is not directly solvable. Instead, a linear
equation involving ΔA, Δα, and ΔΩ is solved using a recursive algo-
rithm, resulting in the calculation of dimensionless resonance fre-
quencies. The recursive algorithm is further elucidated in Ref. [47].

5. Results and discussion

By considering solely the initial summation component of the har-
monic response, as specified in Eq. (22), the resonance curve associated
with the initial excitation frequency can be obtained. For the values on
this curve, the amplitude of the vibrations of the PVDF nanoplate will
increase with time. By including additional harmonic elements of
summation, distinct resonance curves can be generated. The resonance
curves of the initial four excitation frequencies in the α− Ω plane for a
square PVDF nanoplate of uniform thickness h = 2nm, length a =

40nm, and width b = 40 nm, as well as the mechanical parameters
specified in Table 1, are illustrated in Fig. 2. Validating the resonance
curves requires the application of the fourth-order Runge-Kutta method
to solve the governing equations. Fig. S1 in the supplementary infor-
mation (SI) illustrates the frequency spectrum and time history of the
system for parameters selected from the initial, secondary, and tertiary
resonance curves. Evidently, at these values, the amplitude of the

oscillations within the system continues to increase, potentially leading
to the failure of the nanostructure. In addition, the concurrence of

response and excitation frequencies as depicted in the frequency spec-
trum diagrams provides additional evidence for the system’s resonance.
A comparative analysis is conducted to examine the precision of the

methodology implemented (see Fig. S2 in SI). To accomplish this, the
piezoelectric coefficients, non-local effect, biaxial forces, and elastic
medium are disregarded, while Rofooei and Nikkhoo’s research [53] is
utilized to modify the mechanical properties and geometric dimensions.

Following this, the second resonance curve linked to the macroscopic
plate housing the orbiting mass is presented, in conjunction with the
results reported in Ref. [53], which utilizes the eigenfunction expansion
method. The congruence between the present findings and the results
reported in the literature serves to underscore the soundness of the
present analysis.
This study investigates the impact of different variables on the

resonance frequencies that are linked to the initial excitation frequency.

Table 1
Piezoelectric, elastic, and dielectric coefficients of PVDF material [54].

e31 = − 0.13 C/m2

e32 = − 0.145 C/m2

e24 = − 0.276 C/m2

e15 = − 0.009 C/m2

e32 = − 0.135 C/m2

C11 = 238.24 GPa
C22 = 23.60 GPa
C12 = 3.98 GPa
C44 = 2.15 GPa
C55 = 4.40 GPa
C66 = 6.43 GPa
∈11/∈0

= 12.5

∈22/∈0
= 11.98

∈33/∈0
= 11.98

∈0 = 8.854185× 10− 12 F/m

∫π

0

δ(ΔQ)T
[
Ω*

2
(M1 + α* M2(τ))ΔQʹ́ + α*Ω*2C1(τ) ΔQʹ +

(
K1 + α*Ω*2K2(τ)

)
ΔQ
]
dτ

=

∫π

0

δ(ΔQ)T
⎡

⎣R −
{

Ω*
2
(M2(τ)Q*

ʹ́
+ C1(τ) Q*

ʹ
+ K2(τ) Q*)

}
Δα

− {2Ω*((M1 + α*M2(τ))Q*
ʹ́
+ α*C1(τ) Q*

ʹ
+ α* K2(τ)Q*)}ΔΩ]dτ,

(36)

SΔA =

∫π

0

YT
[
Ω*

2
(M1 + α*M2(τ))Yʹ́ + α*Ω*2C1(τ) Yʹ +

(
K1 + α*Ω*2K2(τ)

)
Y
]
dτ,

SΔα =

∫π

0

YT
[
Ω*

2
(M2(τ) Yʹ́ + C1 Yʹ + 2 K2(τ) Y)

]
A dτ,

SΔβ =

∫π

0

YT [2Ω*((M1 + α*M2(τ))Yʹ́ + α*C1(τ) Yʹ + α*K2(τ) Y)]A dτ,

R = −

∫π

0

YT
[
Ω*

2
(M1 + α*M2(τ))Yʹ́ + α*Ω*2C1(τ) Yʹ +

(
K1 + α*Ω*2K2(τ)

)
Y
]
A dτ.

(38)
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The objective is to improve the resonance frequencies and provide an
appropriate and precise blueprint for intelligent nanostructures.
Consequently, Fig. 3 illustrates three-dimensional diagrams that depict
the relationship between the dimensionless resonance frequency and the
width and length of the nanoplate. The non-local parameter is repre-
sented by a variety of values. The dimensionless resonance frequencies
increase as the width and length of the nanoplate decrease, as illustrated
in Fig. 3. This can be attributed to the stiffer nanoplate. The non-local
parameter is a measure of the influence of small-scale effects on the
behavior of material. As the non-local parameter increases, the inter-
action forces between the atoms of the nanoplate diminish. This
reduction in atomic interaction leads to a softening effect on the mate-
rial, which is reflected in the decrease of resonance frequencies. Essen-
tially, a higher non-local parameter indicates that the material behaves
more like a continuum rather than a discrete structure, which can reduce
its stiffness. On the other hand, a decrease in stiffness typically results in
lower resonance frequencies.
Fig. 4 illustrates the effect of PVDF nanoplate thickness on dimen-

sionless resonance frequencies for a range of non-local parameter values.
It is indisputable that an augmentation in the thickness of the nanoplate
will result in a substantial amplification of the resonance frequencies,
owing to the nanoplate’s rigidity.
The impact of excitation voltage on dimensionless resonance fre-

quencies for different values of nanoplate thickness is illustrated in
Fig. 5. An increase in voltage results in an enhancement of resonance
frequencies. Additionally, the resonance frequencies of the PVDF
nanoplate are greater when a negative voltage is applied than when a
positive voltage is applied. This is because tensile and compressive
tensions are induced in PVDF nanoplates, respectively, when positive
and negative voltages are applied. Moreover, since the excitation
voltage is applied in the direction of nanoplate thickness, as the nano-
plate thickness increases, the resonance frequencies will be less affected.
To gain a more comprehensive understanding of the impact of electrical
voltage on resonance frequencies, the temporal response of the nano-
plate at a dimensionless frequency of Ω = 0.177 is illustrated in Fig. S3
in SI. An undesirable outcome can be avoided by stabilizing the dynamic
response of the nanostructure through a small adjustment in the applied
voltage, it has been discovered.
The relationship between the mass of the orbiting nanoparticle and

the dimensionless resonance frequencies for different values of the
nanoplate’s length and width is illustrated in Fig. 6. It is possible to
deduce that as the mass of the nanoparticle increases, the resonance
frequencies decrease. The variations of dimensionless resonance fre-
quencies about the radius of nanoparticle motion for different values of
non-local parameters are depicted in Fig. 7. The resonance frequencies
increase in displacement from the center of the PVDF nanoplate as the
nanoparticle progresses away from it.
For various values of non-local parameters, Fig. 8 illustrates three-

dimensional graphs of dimensionless resonance frequencies with ten-
sile axial force. The resonance frequencies of the system are positively
influenced by the biaxial tensile forces; as the tensile force increases, the
resonance frequencies ascend in value. This is because tensile stress
induces stiffening in nanostructures.
The fluctuations in dimensionless resonance frequencies about non-

local parameters are illustrated in Fig. 9(a) and (b), respectively, for
various values of the Winkler constant kw and the shear modulus kg of
the Pasternak foundation. The findings show that as the elastic constants
of the substrate increase, the resonance frequencies rise. The parameter
kg is set to zero in Fig. 9(a). As a result, the elastic medium served as a
Winkler foundation. The elastic environment is represented as a Pas-
ternak foundation in Fig. 9(b) through the use of non-zero values for kg
and kw. Upon comparing these figures, it becomes evident that the
Winkler foundation exhibits lower resonance frequencies (refer to Fig. 9
(a)) in comparison to the Pasternak foundation (see Fig. 9(b)). In
contrast to the Winkler foundation, which solely accounts for normal
stresses, the Pasternak foundation incorporates transverse and normal
shear stresses. Therefore, the resonance conditions of the nanoplate are
significantly impacted by the rigidity of its surrounding environment.
The results of biaxial stress and the stiffness of the elastic foundation on
resonance behavior may assist the development of actuators. Through
the control of these parameters, actuators can be designed for fine me-
chanical or oscillatory activities. For example, in constructing robots,
piezoelectric actuators help in creating micro-movements in motors in
the robotic arms.
The relationship between the resonance frequencies and the non-

local parameter for various vibrational modes of the PVDF nanoplate
is illustrated in Fig. 10. For a given value of the non-local parameter, the
resonance frequency of the upper modes is smaller, as indicated by the

Fig. 2. Variation of dimensionless resonance frequency with dimensionless mass ratio; a = b = 40 nm, h = 2 nm, μ = 1 nm2, κ = 5 /6, r = 10 nm, V0 = 1 volt,
Nx = Ny = 0, kw = 0, kg = 0.
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Fig. 3. Variation of dimensionless resonance frequency with width and length of the nanoplate for (a) μ = 0 nm2, (b) μ = 1 nm2, (c) μ = 2 nm2, (d) μ = 3 nm2;
h = 2 nm, κ = 5 /6, r = 10 nm, M = 10− 19 gr, V0 = 1 volt, Nx = Ny = 0, kw = 0, kg = 0.

Fig. 4. Variation of dimensionless resonance frequency with nanoplate thickness for different values of non-local parameter; a = b = 40 nm, κ = 5 /6, r = 10 nm,
M = 10− 19 gr, V0 = 1 volt, Nx = Ny = 0, kw = 0, kg = 0.
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Fig. 5. Variation of dimensionless resonance frequency with electrical voltage for different values of nanoplate thickness; a = b = 40 nm, κ = 5 /6, r = 10 nm,M =

10− 19 gr, Nx = Ny = 0, kw = 0, kg = 0.

Fig. 6. Variation of dimensionless resonance frequency with mass of nanoparticle for different values of nanoplate width and length; h = 2 nm, κ = 5 /6, r = 10 nm,
μ = 1 nm2, V0 = 1 volt, Nx = Ny = 0, kw = 0, kg = 0.
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Fig. 7. Variation of dimensionless resonance frequency with the radius of the path for different values of the non-local parameter; a = b = 20 nm, h = 2 nm, κ =
5 /6, M = 10− 19 gr, V0 = 1 volt, Nx = Ny = 0, kw = 0, kg = 0.

N.S. Sawaran Singh et al.



Case Studies in Chemical and Environmental Engineering 11 (2025) 101125

12

Fig. 8. Variation of dimensionless resonance frequency with tensile axial load for (a) μ = 0 nm2, (b) μ = 1 nm2, (c) μ = 2 nm2, (d) μ = 3 nm2; a = b = 15 nm,
h = 2 nm, κ = 5 /6, r = 5 nm, M = 10− 19 gr, V0 = 1 volt, kw = 0, kg = 0.
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Fig. 9. Variation of dimensionless resonance frequency with the non-local parameter for different values of (a) Winkler modulus and (b) Pasternak shear modulus;
a = b = 40 nm, h = 2 nm, κ = 5 /6, r = 10 nm, M = 10− 19 gr, V0 = 1 volt, Nx = Ny = 2 Pa.
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plot. Moreover, an increase in the non-local parameter results in a
decrease in the resonance frequencies of all modes. Moreover, non-local
parameter changes can have a greater impact on the resonance fre-
quencies of higher modes.

6. Conclusion

This study calculated the resonance frequencies of a piezoelectric
polymeric nanoplate placed on an elastic substrate and exposed to
electro-mechanical forces. The nanoplate was modeled using the
Mindlin plate theory and the non-local piezoelasticity theory. The mo-
tion equations were obtained using the variational approach.
An investigation was conducted to examine the impact of several

factors, such as the non-local parameter, dimensions of the nanoplates,
the mass of the nanoparticles, excitation voltage, radius of the nano-
particle path, biaxial tensile force, stiffness of the Pasternak foundation,
and mode number, on the curves depicting resonance frequency. The
results revealed that increasing the non-local parameter led to a
decrease in the resonance frequencies. Modifying the dimensions of the
nanoplate, either by reducing its length and width or by increasing its
thickness, led to an increase in the resonance frequencies. In addition,
reducing the electrical voltage resulted in higher resonance frequencies,
whereas providing a negative electrical voltage enhanced the rigidity of
the nanostructure. Furthermore, it was inferred that the resonance fre-
quencies of the nanostructure increased when the mass of the nano-
particle dropped or when its motion path approached the margins of the
PVDF nanoplate. Furthermore, augmenting the biaxial tensile force and

stiffness of the elastic substrate resulted in a delay of the nanostructure
resonance. Finally, it was noted that when the PVDF nanoplate’s higher
vibrational modes were stimulated, the resonance of the nanostructure’s
vibration started to happen at lower frequencies of the orbiting nano-
particle motion.
These findings can inform scientists about how small-scale attributes

affect resonance characteristics to help design better nanostructures.
This could result in developments in nanotechnology devices for
instance sensors, actuators and energy harvesting devices to which
resonance behaviors require stringent control.
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Fig. 10. Variation of dimensionless resonance frequency with the non-local parameter for different vibrational modes; a = b = 40 nm, h = 2 nm, κ = 5 /6, r =

5 nm, M = 10− 19 gr, V0 = 1 volt, Nx = Ny = 0, kw = 0, kg = 0.
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Appendix A

Components of Eq. (27) are as follows:

M11 = 1+ π2μ
(
a2 + b2

a2b2

)

,M22 = 1+ π2μ
(
a2 + b2

a2b2

)

,M33 = 1+ π2μ
(
a2 + b2

a2b2

)

,

M11 = 4
M

ρhabcos
2
(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)

+4
M

ρhabπ2μ cos2
(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)
(
a2 + b2

a2b2

)

,

C11 = 8
M πr
ρha2bω sin(ωt)cos

(πr
a
cos(ω t)

)
sin
(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)

+8
M π3μr
ρha2b ω sin(ωt)cos

(πr
a
cos(ω t)

)
sin
(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)
(
a2 + b2

a2b2

)

− 8
M πr
ρhab2 ω cos(ωt)cos2

(πr
a
cos(ω t)

)
cos
(πr
b
sin(ω t)

)
sin
(πr
b
sin(ω t)

)

− 8
M π3μr
ρhab2 ω cos(ωt)cos2

(πr
a
cos(ω t)

)
cos
(πr
b
sin(ω t)

)
sin
(πr
b
sin(ω t)

)
(
a2 + b2

a2b2

)

,

K11 =
π2κ
ρ

(
C44a2 + C55b2

a2b2

)

+
kw
ρh+

kwπ2μ
ρh

(
a2 + b2

a2b2

)

+
kgπ2
ρh

(
a2 + b2

a2b2

)

+
kgπ4μ

ρh

(
a2 + b2

a2b2

)2

+
π2Nx

ρha2 +
π4μNx

ρha2

(
a2 + b2

a2b2

)

+
π2Ny

ρhb2 +
π4μNy

ρhb2

(
a2 + b2

a2b2

)

+
2π2V0e31

ρha2

+
2π4μV0e31

ρha2

(
a2 + b2

a2b2

)

+
2π2V0e32

ρhb2 +
2π4μV0e32

ρhb2

(
a2 + b2

a2b2

)

,

K12 =
πκC55

ρa ,K13 =
πκC44

ρb ,K14 = −

[
2πκe15

ρa2 +
2πκe24

ρb2

]

,

K21 =
12π κC55

ρh2a ,K22 =
π2C11
ρa2 +

π2C66
ρb2 +

12κC55
ρh2 ,K23 =

π2C12
ρab +

π2C66
ρab ,

K24 = −

[
24e31
ρh2a +

24κe15
ρh2a

]

,K31 =
12π κC44

ρh2b ,K32 =
π2C12
ρab +

π2C66
ρab ,

K33 =
π2C11
ρb2 +

π2C66
ρa2 +

12κC44
ρh2 ,K34 = −

[
24e32
ρh2b +

24κe24
ρh2b

]

,

K41 =
4πhe15
a2

+
4πhe24
b2

,K42 =
4he15
a

+
4he31
a

,K43 =
4he24
b

+
4he32
b

,
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K44 =
π2∈33
h

+
π2h∈22
b2

+
π2h∈11
a2

,

K11 = − 4
Mπ2r2
ρha3bω2 sin2(ωt)cos2

(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)

− 4
Mπ4μr2
ρha3b ω2 sin2(ωt)cos2

(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)
(
a2 + b2

a2b2

)

− 4
mπ2r2
ρhab3ω2 cos2(ωt)cos2

(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)

− 4
Mπ4μr2
ρhab3 ω2 cos2(ωt)cos2

(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)
(
a2 + b2

a2b2

)

− 8
Mπ2r2
ρha2b2ω

2 sin(ωt) cos(ωt)sin
(πr
a
cos(ω t)

)
sin
(πr
b
sin(ω t)

)

cos
(πr
a
cos(ω t)

)
cos
(πr
b
sin(ω t)

)
− 8

Mπ4μr2
ρha2b2ω2 sin(ωt) cos(ωt)sin

(πr
a
cos(ω t)

)

sin
(πr
b
sin(ω t)

)
cos
(πr
a
cos(ω t)

)
cos
(πr
b
sin(ω t)

)
(
a2 + b2

a2b2

)

+4
Mπr

ρha2bω2 cos(ωt)cos
(πr
a
cos(ω t)

)
sin
(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)

+4
Mπ3μr
ρha2bω2 cos(ωt)cos

(πr
a
cos(ω t)

)
sin
(πr
a
cos(ω t)

)
cos2

(πr
b
sin(ω t)

)
(
a2 + b2

a2b2

)

+4
Mπr

ρhab2ω
2 sin(ωt)cos2

(πr
a
cos(ω t)

)
cos
(πr
b
sin(ω t)

)
sin
(πr
b
sin(ω t)

)

+4
Mπ3μr
ρhab2ω2 sin(ωt)cos2

(πr
a
cos(ω t)

)
cos
(πr
b
sin(ω t)

)
sin
(πr
b
sin(ω t)

)
(
a2 + b2

a2b2

)

,

F1 =
4M g
ρhab cos

(πr
a
cos(ω t)

)
cos
(πr
b
sin(ω t)

)
.

(A.1)
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Appendix B

The dimensionless quantities are introduced as follows:

k*w =
kwa2b2

π2κh
(
a2C44 + b2C55

), k*g =
kg
(
a2 + b2

)

κh
(
a2C44 + b2C55

) ,

N*x =
Nxb2

κh
(
a2C44 + b2C55

),N*y =
Nya2

κh
(
a2C44 + b2C55

) ,

Q1 =
e31V0b2

κh
(
a2C44 + b2C55

),Q2 =
e32V0a2

κh
(
a2C44 + b2C55

) ,

T1 =
C55ab2

π
̅̅̅̅̅
ab

√ (
a2C44 + b2C55

),T2 =
C44a2b

π
̅̅̅̅̅
ab

√ (
a2C44 + b2C55

) ,

T3 =
C11b2

κ
(
a2C44 + b2C55

),T4 =
C66a2

κ
(
a2C44 + b2C55

) ,

T5 =
C55a2b2

πh2
(
a2C44 + b2C55

),T6 =
C12ab

κ
(
a2C44 + b2C55

) ,

T7 =
C66ab

κ
(
a2C44 + b2C55

),T8 =
C55ab2

̅̅̅̅̅
ab

√

πh2
(
a2C44 + b2C55

) ,

T9 =
C11a2

κ
(
a2C44 + b2C55

),T10 =
C66b2

πh2
(
a2C44 + b2C55

) ,

T11 =
C44a2b2

πh2
(
a2C44 + b2C55

),T12 =
C44a2b

̅̅̅̅̅
ab

√

πh2
(
a2C44 + b2C55

) ,

A1 =

̅̅̅̅̅̅̅

C44
C11

√

,A2 =

̅̅̅̅̅̅̅

C55
C11

√

,E1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C44∈11

√

e15
,E2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C55∈11

√

e15
,

E3 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C44∈11

√

e24
,E4 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C55∈11

√

e24
, E5 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C44∈11

√

e31
,E6 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C55∈11

√

e31
,

E7 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C44∈11

√

e32
,E8 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C55∈11

√

e32
, E9 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C11∈33

√

e24
,E10 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C11∈33

√

e15
,

(B.1)

E11 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C11∈33

√

e31
, E12 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C11∈33

√

e32
,Ξ1 =

̅̅̅̅̅̅̅
∈33

∈11

√

,Ξ2 =
̅̅̅̅̅̅̅
∈22

∈33

√

,Ξ3 =
̅̅̅̅̅̅̅
∈11

∈33

√

,

g* =
g

π2κ
̅̅̅̅̅
ab

√

ρ

(
C55
a2

+
C44
b2

), α =
M

ρhab, μ* = μ
ab

, ar =
a
b
,

τ = ωt, W̃11 =
W11
̅̅̅̅̅
ab

√ , ψ̃x11 = ψx11, ψ̃y11 = ψy11, Φ̃11 =
Φ11
̅̅̅̅̅̅̅̅̅̅̅̅̅
C11
∈11

ab
√ ,

ζ =
r
a
, η =

r
b
, ra =

h
a
, rb =

h
b
,Ω =

ω

π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ
ρ

(
C55
a2

+
C44
b2

)√ .
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The dimensionless form of Eq. (27) is:

⎛

⎜
⎜
⎜
⎜
⎝

Ω2

⎡

⎢
⎢
⎢
⎣

M̃11 0 0 0
0 M̃22 0 0
0 0 M̃33 0
0 0 0 0

⎤

⎥
⎥
⎥
⎦
+ α Ω2

⎡

⎢
⎢
⎢
⎢
⎣

M
⌢

11(τ) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

W̃
ʹ́
11

ψ̃ʹ́
x11

ψ̃ʹ́
y11

Φ̃
ʹ́
11

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+α Ω2

⎡

⎢
⎢
⎢
⎢
⎣

C
⌢

11(τ) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

W̃
ʹ
11

ψ̃ʹ
x11

ψ̃ʹ
y11

Φ̃
ʹ
11

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

K̃11 K̃12 K̃13 K̃14
K̃21 K̃22 K̃23 K̃24
K̃31 K̃32 K̃33 K̃34
K̃41 K̃42 K̃43 K̃44

⎤

⎥
⎥
⎥
⎦
+ α Ω2

⎡

⎢
⎢
⎢
⎢
⎣

K
⌢

11(τ) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W̃11

ψ̃x11

ψ̃y11

Φ̃11

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= α

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F
⌢

1(τ)
0
0
0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(B.2)

Where the prime superscript signifies the derivative about dimensionless time τ. The matrix components are represented as follows:

M̃11 = 1+ π2μ*
(
1+ a2r
ar

)

, M̃22 = 1+ π2μ*
(
1+ a2r
ar

)

, M̃33 = 1+ π2μ*
(
1+ a2r
ar

)

,

M
⌢

11(τ) = 4 cos2(πζ cos(τ))cos2(πη sin(τ)) + 4π2μ* cos2(πζ cos(τ))cos2(πη sin(τ))
(
1+ a2r
ar

)

,

C
⌢

11(τ) = 8πζ sin(τ)cos(πζ cos(τ))sin(πζ cos(τ))cos2(πη sin(τ))

+8π3μ*ζ sin(τ)cos(πζ cos(τ))sin(πζ cos(τ))cos2(πη sin(τ))
(
1+ a2r
ar

)

− 8πη cos(τ)cos2(πζ cos(τ))cos(πη sin(τ))sin(πη sin(τ))

− 8π3μ*η cos(τ)cos2(πζ cos(τ))cos(πη sin(τ))sin(πη sin(τ))
(
1+ a2r
ar

)

,

K̃11 = 1+ k*w + π2k*wμ*
(
1+ a2r
ar

)

+ k*g + π2k*gμ*
(
1+ a2r
ar

)

+ N*x + π2N*xμ*
(
1+ a2r
ar

)

+N*y + π2N*yμ*
(
1+ a2r
ar

)

+ 2Q1 + 2π2Q1μ*
(
1+ a2r
ar

)

+ 2Q2 + 2π2Q2μ*
(
1+ a2r
ar

)

,

K̃12 = T1, K̃13 = T2, K̃14 = −

⎡

⎢
⎢
⎣

2
π
(
a2r A1E1 + A2E2

)+
2

π
(

A1E3 +
1
a2r
A2E4

)

⎤

⎥
⎥
⎦,

K̃21 = 12T8, K̃22 = T3 + T4 + 12T5, K̃23 = T6 + T7,

K̃24 = −

[
24

π2κ
(
a2r

̅̅̅̅̅̅̅̅
r3arb

√
A1E5 +

̅̅̅̅̅̅̅̅
r3arb

√
A2E6

)+
24

π2
(
a2r

̅̅̅̅̅̅̅̅
r3arb

√
A1E1 +

̅̅̅̅̅̅̅̅
r3arb

√
A2E2

)

]

,

K̃31 = 12T12, K̃32 = T6 + T7, K̃33 = T9 + T10 + 12T11,

K̃34 = −

⎡

⎢
⎢
⎢
⎣

24

π2κ
(

̅̅̅̅̅̅̅̅
rar3b

√
A1E7 +

̅̅̅̅̅̅̅̅
rar3b

√

ar
A2E8

)+
24

π2
(

̅̅̅̅̅̅̅̅
rar3b

√
A1E3 +

̅̅̅̅̅̅̅̅
rar3b

√

ar
A2E4

)

⎤

⎥
⎥
⎥
⎦
,

K̃41 =
4r2b

π Ξ1E9
+

4r2a
π Ξ1E10

,

K̃42 =
4
̅̅̅̅̅̅̅̅
r3arb

√

π2 Ξ1E10
+
4
̅̅̅̅̅̅̅̅
r3arb

√

π2 Ξ1E11
,

K̃43 =
4
̅̅̅̅̅̅̅̅
rar3b

√

π2 Ξ1E9
+
4
̅̅̅̅̅̅̅̅
rar3b

√

π2 Ξ1E12
,

K̃44 = 1+ r2b Ξ2 + r2b Ξ3,

(B.3)
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K
⌢

11(τ) = − 4π2ζ2 sin2(τ)cos2(πζ cos(τ))cos2(πη sin(τ))

− 4π4μ*ζ2 sin2(τ)cos2(πζ cos(τ))cos2(πη sin(τ))
(
1+ a2r
ar

)

− 4π2η2 cos2(τ)cos2(πζ cos(τ))cos2(πη sin(τ))

− 4π4μ*η2 cos2(τ)cos2(πζ cos(τ))cos2(πη sin(τ))
(
1+ a2r
ar

)

− 8π2ζη sin(τ) cos(τ)sin(πζ cos(τ))sin(πη sin(τ))cos(πζ cos(τ))cos(πη sin(τ))

− 8π4μ*ζη sin(τ) cos(τ)sin(πζ cos(τ))sin(πη sin(τ))cos(πζ cos(τ))cos(πη sin(τ))
(
1+ a2r
ar

)

+4πζ cos(τ)cos(πζ cos(τ))sin(πζ cos(τ))cos2(πη sin(τ))

+4π3μ*ζ cos(τ)cos(πζ cos(τ))sin(πζ cos(τ))cos2(πη sin(τ))
(
1+ a2r
ar

)

+4πη sin(τ)cos2(πζ cos(τ))cos(πη sin(τ))sin(πη sin(τ))

+4π3μ*η sin(τ)cos2(πζ cos(τ))cos(πη sin(τ))sin(πη sin(τ)),

F
⌢

1 = 4g* cos(πζ cos(τ))cos(πη sin(τ)),

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cscee.2025.101125.
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[14] M. Şimşek, H.H. Yurtcu, Analytical solutions for bending and buckling of
functionally graded nanobeams based on the nonlocal Timoshenko beam theory,
Compos. Struct. 97 (2013) 378–386.

[15] S. Hosseini-Hashemi, M. Zare, R. Nazemnezhad, An exact analytical approach for
free vibration of Mindlin rectangular nano-plates via nonlocal elasticity, Compos.
Struct. 100 (2013) 290–299.

[16] M. Sobhy, Generalized two-variable plate theory for multi-layered graphene sheets
with arbitrary boundary conditions, Acta Mech. 225 (2014) 2521–2538.

[17] A.-L. Chen, Y.-S. Wang, L.-L. Ke, Y.-F. Guo, Z.-D. Wang, Wave propagation in
nanoscaled periodic layered structures, J. Comput. Theor. Nanosci. 10 (2013)
2427–2437.

[18] C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Buckling and post-buckling of
size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-
mechanical loadings, Int. J. Struct. Stabil. Dynam. 14 (2014) 1350067.

[19] A.S. Sayyad, Y.M. Ghugal, Bending and free vibration analysis of thick isotropic
plates by using exponential shear deformation theory, Appl. Comput. Mech. 6
(2012).

[20] M.A. Eltaher, F.A. Omar, W.S. Abdalla, E.H. Gad, Bending and vibrational
behaviors of piezoelectric nonlocal nanobeam including surface elasticity, Waves
Random Complex Media 29 (2019) 264–280.

[21] M. Zarepour, S.A.H. Hosseini, A.H. Akbarzadeh, Geometrically nonlinear analysis
of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on
Eringen’s differential model, Appl. Math. Model. 69 (2019) 563–582.

[22] C. Liu, L.-L. Ke, J. Yang, S. Kitipornchai, Y.-S. Wang, Nonlinear vibration of
piezoelectric nanoplates using nonlocal Mindlin plate theory, Mech. Adv. Mater.
Struct. 25 (2018) 1252–1264.

[23] F. Ebrahimi, M. Karimiasl, R. Selvamani, Bending analysis of magneto-electro
piezoelectric nanobeams system under hygro-thermal loading, Adv. nano Res. 8
(2020) 203–214.

[24] O. Mazur, J. Awrejcewicz, Nonlinear vibrations of embedded nanoplates under in-
plane magnetic field based on nonlocal elasticity theory, J. Comput. Nonlinear
Dynam. 15 (12) (2020) 121001.

[25] M. Pirmoradian, E. Torkan, N. Abdali, M. Hashemian, D. Toghraie, Thermo-
mechanical stability of single-layered graphene sheets embedded in an elastic
medium under action of a moving nanoparticle, Mech. Mater. (2019) 103248.

[26] M. Pirmoradian, E. Torkan, D. Toghraie, Study on size-dependent vibration and
stability of DWCNTs subjected to moving nanoparticles and embedded on two-
parameter foundations, Mech. Mater. 142 (2020) 103279.

[27] A.G. Arani, R. Kolahchi, H.G. Afshar, Dynamic analysis of embedded PVDF
nanoplate subjected to a moving nanoparticle on an arbitrary elliptical path,
J. Brazilian Soc. Mech. Sci. Eng. 37 (2015) 973–986.

[28] A. Haghshenas, A.G. Arani, Nonlocal vibration of a piezoelectric polymeric
nanoplate carrying nanoparticle via Mindlin plate theory, Proc. Inst. Mech. Eng.
Part C J. Mech. Eng. Sci. 228 (2014) 907–920.

[29] F. Ebrahimi, M.R. Barati, Damping vibration analysis of smart piezoelectric
polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient
theory, Smart Mater. Struct. 26 (2017) 65018.

[30] S.A. Eftekhari, D. Toghraie, Vibration and dynamic analysis of a cantilever
sandwich microbeam integrated with piezoelectric layers based on strain gradient
theory and surface effects, Appl. Math. Comput. 419 (2022) 126867.

[31] A. Taguet, B. Ameduri, B. Boutevin, Crosslinking of vinylidene fluoride-containing
fluoropolymers, in: Crosslinking in Materials Science, Springer, 2005, pp. 127–211.

N.S. Sawaran Singh et al.

https://doi.org/10.1016/j.cscee.2025.101125
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref1
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref1
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref1
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref1
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref2
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref2
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref2
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref2
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref3
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref3
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref3
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref3
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref4
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref5
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref5
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref5
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref6
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref6
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref6
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref7
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref7
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref7
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref8
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref8
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref8
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref9
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref9
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref9
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref10
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref10
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref10
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref11
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref11
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref12
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref12
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref13
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref13
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref13
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref14
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref14
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref14
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref15
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref15
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref15
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref16
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref16
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref17
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref17
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref17
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref18
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref18
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref18
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref19
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref19
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref19
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref20
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref20
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref20
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref21
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref21
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref21
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref22
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref22
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref22
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref23
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref23
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref23
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref24
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref24
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref24
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref25
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref25
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref25
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref26
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref26
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref26
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref27
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref27
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref27
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref28
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref28
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref28
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref29
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref29
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref29
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref30
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref30
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref30
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref31
http://refhub.elsevier.com/S2666-0164(25)00032-5/sref31


Case Studies in Chemical and Environmental Engineering 11 (2025) 101125

20

[32] E. Torkan, M. Pirmoradian, M. Hashemian, On the parametric and external
resonances of rectangular plates on an elastic foundation traversed by sequential
masses, Arch. Appl. Mech. 88 (2018) 1411–1428.

[33] S. Amir, E. Arshid, Z. Khoddami Maraghi, A. Loghman, A. Ghorbanpour Arani,
Vibration analysis of magnetorheological fluid circular sandwich plates with
magnetostrictive facesheets exposed to monotonic magnetic field located on visco-
Pasternak substrate, J. Vib. Control 26 (2020) 1523–1537.

[34] E. Arshid, A.R. Khorshidvand, Free vibration analysis of saturated porous FG
circular plates integrated with piezoelectric actuators via differential quadrature
method, Thin-Walled Struct. 125 (2018) 220–233.

[35] C. Liu, L.-L. Ke, Y.-S. Wang, J. Yang, Nonlinear vibration of nonlocal piezoelectric
nanoplates, Int. J. Struct. Stabil. Dynam. 15 (2015) 1540013.

[36] E. Arshid, Z. Soleimani-Javid, S. Amir, N.D. Duc, Higher-order hygro-magneto-
electro-thermomechanical analysis of FG-GNPs-reinforced composite cylindrical
shells embedded in PEM layers, Aero. Sci. Technol. 126 (2022) 107573.

[37] E. Arshid, S. Amir, A. Loghman, Bending and buckling behaviors of heterogeneous
temperature-dependent micro annular/circular porous sandwich plates integrated
by FGPEM nano-Composite layers, J. Sandw. Struct. Mater. 23 (2021) 3836–3877.

[38] E. Mahmoudpour, S.H. Hosseini-Hashemi, S.A. Faghidian, Nonlinear resonant
behaviors of embedded thick FG double layered nanoplates via nonlocal strain
gradient theory, Microsyst. Technol. 25 (2019) 951–964.

[39] E. Torkan, M. Pirmoradian, M. Hashemian, Dynamic instability analysis of
moderately thick rectangular plates influenced by an orbiting mass based on the
first-order shear deformation theory, Modares Mech. Eng. 19 (2019) 2203–2213.

[40] J. Chen, M.K. Khabaz, M.M. Ghasemian, F.M.A. Altalbawy, A.T. Jalil, S.
A. Eftekhari, M. Hashemian, D. Toghraie, Z.F. Albahash, Transverse vibration
analysis of double-walled carbon nanotubes in an elastic medium under
temperature gradients and electrical fields based on nonlocal Reddy beam theory,
Mater. Sci. Eng. B 291 (2023) 116220.

[41] M. Khaje khabaz, S.A. Eftekhari, M. Hashemian, D. Toghraie, Optimal vibration
control of multi-layer micro-beams actuated by piezoelectric layer based on
modified couple stress and surface stress elasticity theories, Phys. A Stat. Mech. its
Appl. 123998 (2020).

[42] M. Khorasani, Z. Soleimani-Javid, E. Arshid, S. Amir, Ö. Civalek, Vibration analysis
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