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This study addresses a critical research gap by analyzing transportation-related COz emissions in Central Europe
with a region-specific focus, incorporating diverse economic structures, energy dependencies, and policy chal-
lenges. Existing studies often neglect the interplay of regional dynamics and specific drivers of emissions. This
research combines the KAYA Identity and Logarithmic Mean Divisia Index (LMDI) models with ARIMA fore-
casting to uncover the distinct contributions of GDP intensity, population emissions intensity, energy intensity,
and carbon emission intensity in five Central European countries: Hungary, the Czech Republic, Poland,
Slovakia, and Austria. By integrating historical decomposition with robust time-series forecasting, the study
provides novel insights into emissions drivers and long-term trends through 2050.

The results reveal substantial variation in emissions reduction trajectories. Austria successfully decouples
economic growth from emissions, with a projected 7.6 % reduction in GDP-related emissions by 2050, driven by
energy efficiency and renewable energy policies. Slovakia and Hungary exhibit moderate progress, while Poland
faces significant challenges, including a forecasted 10.2 % increase in energy intensity and stagnation in carbon
intensity, underlining the need for urgent policy reforms. ARIMA forecasts also highlight challenges in predicting
emissions related to population and energy trends, particularly in Poland, due to high Mean Absolute Percentage
Error (MAPE) values.

This study integrates advanced modeling techniques to provide actionable insights into transportation
decarbonization, renewable energy expansion, and energy efficiency. The findings highlight regional disparities,
emphasizing tailored policies to achieve EU climate goals. This approach sets a new benchmark by bridging
historical trends with future projections in a region-specific context

1. Introduction

The transportation sector is one of the most significant contributors
to global CO: emissions, significantly exacerbating climate change. Ac-
cording to the International Energy Agency (IEA), transportation is
responsible for nearly a quarter of global CO: emissions, with road
transport accounting for the majority. As nations strive to meet ambi-
tious climate goals, such as those set by the Paris Agreement, under-
standing the key factors that drive these emissions is crucial. Accurate
forecasts are essential for guiding policymakers in implementing effec-
tive strategies to reduce the sector’s environmental impact (IEA, 2021).

This study focuses on five Central European countries (Hungary,
Poland, Austria, the Czech Republic, and Slovakia), each facing unique
challenges and opportunities in decarbonizing its transportation sector.
While geographically close, these nations differ in their economic
structures, energy policies, and transportation systems, which shape
their respective COz emissions profiles. For instance, Austria has made
significant strides in energy efficiency, while Poland continues to face
challenges due to its reliance on fossil fuels (Jabbar, 2022; Mohmmed
et al., 2019). Understanding these differences is essential for developing
tailored strategies that address each country’s needs while contributing
to regional decarbonization efforts.
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To analyze the factors driving transportation-related CO= emissions
in these countries, this study employs the Kaya Identity and the Loga-
rithmic Mean Divisia Index (LMDI) decomposition methods. These
methods allow for a detailed breakdown of emissions into four key
drivers: population growth, GDP per capita, energy intensity, and car-
bon intensity. Decomposing emissions into these components offers a
clearer understanding of how each factor has influenced emissions
trends over the past two decades. Previous studies have successfully
used LMDI to analyze emission drivers across various sectors, demon-
strating its effectiveness in identifying key influences on CO2 emissions
(Li et al., 2020).

In addition to analyzing historical data, this study utilizes the
Autoregressive Integrated Moving Average (ARIMA) model to forecast
future CO:2 emissions trends in Hungary, Poland, Austria, the Czech
Republic, and Slovakia up to 2050. ARIMA is a widely used statistical
tool for time series forecasting, particularly well-suited for data with
long-term trends and patterns (Wen et al., 2023a). By integrating the
Kaya Identity and LMDI decomposition findings with ARIMA-based
forecasts, this study provides valuable insights into the future trajec-
tory of transportation-related CO: emissions in each country. Such
forecasts are critical for identifying key areas for policy intervention and
formulating targeted strategies to reduce emissions.

This study addresses a significant research gap by focusing on
emissions trends specific to Central Europe, a region often overlooked in
broader EU-level assessments. This research provides novel insights into
regional emissions dynamics by analyzing the distinct challenges and
opportunities faced by five countries—Austria, Poland, Hungary,
Slovakia, and the Czech Republic—with diverse energy dependencies,
economic structures, and policy contexts. A key contribution of the
study is its emphasis on the transportation sector, a major source of CO-
emissions that has been underexplored in previous studies, identifying it
as a critical area for decarbonization efforts. The research employs a
unique combination of decomposition methods (KAYA Identity and
LMDI) and forecasting models (ARIMA) to understand historical emis-
sions drivers and predict future trends, offering a robust and innovative
analytical framework. These findings are highly relevant for stake-
holders, including policymakers, energy planners, and environmental
agencies, as they provide actionable, country-specific recommendations
for renewable energy expansion, energy efficiency improvements, and
transportation decarbonization. Furthermore, the study highlights op-
portunities for regional collaboration, enabling more coordinated efforts
to meet EU climate objectives and accelerate sustainable decarbon-
ization. By bridging theoretical modeling with practical policy appli-
cations, this research delivers valuable tools and insights to support
evidence-based decision-making and advance climate mitigation stra-
tegies across Central Europe.

The structure of the paper is as follows: Section 2 reviews the factors
influencing CO= emissions and standard forecasting methods used in
emissions modeling. Section 3 introduces the ARIMA model and its
integration with the Kaya Identity and LMDI decomposition methods.
Section 4 details the data collection and processing procedures, while
Section 5 presents the results of the COz emissions forecasts for each
country, followed by a discussion of their implications for transportation
sectors. Finally, Section 6 offers policy recommendations to support
these countries in achieving their emissions reduction goals and iden-
tifies areas for future research.

2. Literature review
2.1. Factors influencing CO2 emissions

CO: emissions in the transportation sector are influenced by several
key factors, primarily economic activity, energy intensity, population
growth, and technological advancements. Economic growth is a signif-
icant driver of emissions, as increasing GDP is typically associated with
greater demand for transportation services. As economies expand, the
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need for road, air, and freight transport rises, leading to higher CO:
emissions. Studies consistently highlight a strong correlation between
economic growth and increasing emissions. For instance, (Al-Lami and
Torok, 2023; Fan and Lei, 2016) demonstrated that even in highly
developed regions, economic growth drives CO2 emissions, particularly
in sectors like transportation, where demand is closely tied to financial
performance(Abbood et al., 2025).

Energy intensity, or the amount required to produce one unit of GDP,
is another critical factor affecting CO2 emissions. Countries that rely
heavily on fossil fuels, particularly coal, tend to exhibit higher energy
intensity, leading to more significant CO2 emissions. For example,
Poland’s heavy dependence on coal has resulted in higher
transportation-related emissions than countries like Austria, which has
successfully integrated renewable energy sources into its energy mix
(Mendonca et al., 2020).

Population growth also plays a significant role in driving COz emis-
sions. Larger populations increase the demand for transportation ser-
vices, energy consumption, and infrastructure development,
contributing to higher emissions. Urbanization intensifies transportation
demands, as urban areas require more public and private transport op-
tions. Mohsin, 2019. It is found that countries experiencing rapid pop-
ulation growth and urbanization, such as Poland and Slovakia, face
substantial emissions challenges due to increased transportation needs
(Mohsin et al., 2019).

Technological advancements and changes in carbon intensity are
critical for reducing COz emissions. Carbon intensity refers to the CO2
emitted per unit of energy consumed. Technological innovations, such
as the adoption of electric vehicles and improvements in fuel efficiency,
can significantly reduce the carbon intensity of transportation. Austria
and Slovakia have substantially reduced carbon intensity by embracing
cleaner technologies. At the same time, countries like Hungary continue
to grapple with the challenge of transitioning their transportation sec-
tors to lower-carbon alternatives (Hortay and Palvolgyi, 2022; Horvath
and Szemesova, 2023).

2.2. The use of kaya identity and LMDI decomposition

The Kaya Identity and LMDI) decomposition is a widely used method
to break down CO: emissions into their driving components, allowing for
a detailed analysis of how each factor—economic activity, population,
energy intensity, and carbon intensity—contributes to emissions. The
Kaya Identity offers a simplified mathematical framework for under-
standing the relationships between these factors and CO: emissions. It
provides a comprehensive view of how changes in population, economic
growth, and energy use affect emissions levels.

LMDI decomposition complements the Kaya Identity by enabling a
more nuanced analysis of how each component drives emissions
changes over time. In LMDI decomposition analysis, the problem can be
formulated either additively or multiplicatively. In additive decompo-
sition analysis, an aggregate indicator’s arithmetic (or difference)
change, such as total energy consumption, is decomposed. The aggre-
gate change and decomposition results are given in a physical unit. In
multiplicative decomposition analysis, the ratio change of an aggregate
indicator is decomposed. In this case, the aggregate change and
decomposition results are expressed in indexes (Ang, 2015). This
method allows researchers to attribute emissions growth or reduction to
specific factors, offering valuable insights into where policy in-
terventions may be most effective. For instance, (Hortay and Palvolgyi,
2022) used LMDI to analyze CO: emissions in China’s energy sector,
finding that economic activity and energy intensity were the primary
drivers of emissions increases. In contrast, improvements in energy ef-
ficiency contributed to emissions reductions. Also (Al-lami and Torok,
2024; Fernandez Gonzalez et al., 2014), the LMDI was used to study the
changes in the energy mix that significantly impact CO2 emissions in the
EU power sector, with specific environmental recommendations for in-
dividual countries.
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This study applies the Kaya Identity and LMDI decomposition to
decompose transportation-related CO2 emissions in Hungary, Poland,
Austria, the Czech Republic, and Slovakia from 2001 to 2021. By
analyzing the four main factors—Economic Activity Effect (ACO2 GDP),
Population Emissions Effect (ACO2 POP), Energy Intensity Effect (ACO2
EIE), and Carbon Emission Intensity Effect (ACO2 CEIE)—we can iden-
tify the specific contributions of each factor to emissions changes in
these countries. This analysis is crucial for understanding how different
policy approaches and economic conditions have influenced CO: emis-
sions in the transportation sectors of Central Europe. The Kaya Identity
and LMDI have proven effective in other regions for identifying the key
drivers of emissions, providing a clear framework for emissions reduc-
tion strategies(Singpai and Wu, 2021).

2.3. Models to predict CO2 emissions

Accurate forecasting of CO: emissions is critical for developing
effective policies to reduce emissions in the transportation sector.
Several models have been employed to predict emissions, ranging from
traditional statistical methods to advanced machine-learning tech-
niques. One of the most used models for time series forecasting is the
Autoregressive Integrated Moving Average (ARIMA) model. ARIMA is
particularly useful for predicting CO: emissions because it can model
linear relationships in time series data and capture trends over time.
(Wang et al., 2020) applied ARIMA to forecast CO:z emissions in India,
demonstrating its effectiveness in identifying long-term emissions pat-
terns and providing reliable projections.

However, emissions data often exhibit non-linear behaviors due to
the complex interactions between technological advancements, policy
interventions, and economic fluctuations. To address these complexities,
machine learning models such as Artificial Neural Networks (ANN),
Long Short-Term Memory (LSTM) networks, and hybrid models have
been increasingly used for CO: emissions forecasting. ANN models have
proven effective in capturing non-linear relationships between eco-
nomic growth, energy consumption, and emissions. (Acheampong and
Boateng, 2019) Successfully applied ANN to forecast emissions in China,
highlighting the model’s ability to account for non-linear dynamics in
emissions data.

LSTM networks are handy for sequential data and have demonstrated
solid predictive capabilities in emissions forecasting. Wen et al. (2023a)
used LSTM to predict CO: emissions in the aviation sector, finding the
model effective in capturing long-term dependencies and trends in
emissions data.

Hybrid models combining ARIMA-LSTM and ARIMA-LSTM-DP
hybrid models offer significant improvements in predicting healthy
production by combining linear and nonlinear components, making
them more efficient than traditional models, significantly when manual
operations impact the data. Coupling ARIMA with LSTM, particularly in
the ARIMA-LSTM-DP variant, enhances the accuracy of production
forecasts, outperforming individual models like ARIMA and LSTM and
proving more robust in scenarios involving manual operations. These
hybrid models effectively integrate the advantages of both linearity and
nonlinearity, addressing the limitations of traditional approaches (Fan
et al., 2021).

Recent mathematical modeling and analysis advancements have
provided innovative tools for addressing complex system dynamics,
particularly in energy storage and forecasting. For instance, state-of-
charge estimation for lithium-ion batteries has been significantly
enhanced using an improved particle swarm optimization-adaptive
square root cubature Kalman filter. This hybrid approach improves
prediction accuracy by dynamically adjusting the estimation process
(Bian et al., 2024). Similarly, advancements in feedforward-long
short-term memory (LSTM) modeling have enabled precise
whole-life-cycle state-of-charge predictions by incorporating current,
voltage, and temperature variations, providing robust modeling under
dynamic conditions (Tian et al., 2020). Furthermore, anti-noise adaptive
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LSTM neural network modeling has been applied to predict the
remaining useful life of lithium-ion batteries with high robustness and
reliability, even under noise-prone scenarios (Wang et al., 2023) These
advancements in mathematical analysis highlight the growing potential
of integrating optimization algorithms and advanced neural network
architectures to improve predictive accuracy and robustness in energy
and emissions forecasting.

Previous studies on CO:z emissions trends often focus on EU or global
scales, neglecting the unique dynamics of Central Europe. While
methods like the KAYA Identity and LMDI effectively decompose emis-
sions drivers, they are rarely integrated with advanced forecasting
models like ARIMA to provide a holistic view of historical and future
trends. The transportation sector, a significant source of CO, receives
limited attention in region-specific analyses, and Central Europe’s socio-
economic and policy diversity is often overlooked.

This study addresses these gaps by combining decomposition and
forecasting techniques to analyze emissions drivers and transportation
dynamics across Austria, Poland, Hungary, Slovakia, and the Czech
Republic. It highlights the critical role of economic activity, energy in-
tensity, and technological advancements and provides actionable policy
recommendations to reduce transportation-related emissions. The
findings emphasize energy efficiency, renewable energy adoption, and
regional collaboration as essential strategies for achieving climate goals
and advancing global mitigation efforts.

3. Methodology
3.1. Data collection and study area

This study utilizes secondary data from the International Energy
Agency (IEA) for emissions and energy consumption, and from the
World Bank, Eurostat, and UITP for GDP and population figures. The
analysis focuses on the transportation sector from 2001 to 2021. A novel
methodological framework integrates the KAYA Identity, Logarithmic
Mean Divisia Index (LMDI) decomposition, and ARIMA model. The
KAYA Identity and LMDI decomposition analyze historical emissions,
breaking them into four drivers: GDP intensity, population emissions
intensity, energy intensity, and carbon intensity. The ARIMA model
forecasts long-term trends for each driver, offering a comprehensive
understanding of emissions dynamics and actionable insights for
decarbonization in Central Europe through 2050.

3.2. Kaya identity and LMDI decomposition

The Kaya Identity provides a framework for decomposing CO2
emissions into four main contributing factors:

F = (C/EC) % (EC/G) * (G/P) + P e8]
Where: population (P) [inhabitant], GDP per capita (G/P) [USD/
inhabitant], energy intensity (EC/G) [Mtoe/USD], and carbon intensity
(C/EC) [MtCO2 /Mtoe] of energy use.

The logarithmic Mean Divisia Index (LMDI) is a valuable tool in
studying energy and emissions, mainly due to its capacity to model
various factors’ interaction and joint effects. Accounting for multipli-
cative relationships provides a more comprehensive and accurate rep-
resentation of how technological, economic, and structural changes
jointly affect energy consumption and emissions. This makes LMDI
indispensable for policymakers and researchers to understand the
broader impact of energy policies and technological innovations(Ang,
2005; Ang and Liu, 2007; Fernandez Gonzdlez et al., 2014; Gu et al.,
2019).

The (LMDI) method will decompose changes in CO, emissions and
energy consumption into various factors, as specified by Yoichi Kaya’s
identity. The shift in CO, emissions within the transportation sector
from an initial year O to a designated target year t can be dissected into



A. Al-lami and A. Torok

four distinct influences, as in Eq. (3).

AGwr = *CO j=ACcgs + ACgr + ACeppr + ACpope

@

Where Carbon Emission Intensity Effect (AgooCEIE), Energy In-
tensity Effect (Acoz EIE), Economic Activity Effect (Aco2GDP), and
Population Emissions Effect (Aco2POP). Each factor effect on the right-
hand side of Eq. (3) can be calculated according to the general (LMDI)
formulation:

-Cy it
a6 = Z lnCt 7lrLC°l @ ®

Carbon emissions in the target year (C; j), Carbon emissions in the
base year (C‘i’j), fuel (i), transportation (j).

Then, all four driving forces of CO, emissions are calculated using
Eq. (3), and these results are used for the forecasting step.

3.3. The autoregressive integrated moving average (ARIMA)

The ARIMA model is a statistical tool for time series analysis and
forecasting, particularly effective for data with trends and patterns.
Defined by three parameters—p (autoregressive order), d (degree of
differencing), and q (moving average order)—ARIMA captures de-
pendencies between observations and lagged errors.

3.3.1. Data preparation and stationarity testing

Data from previous studies identified key CO2 emissions drivers: GDP
intensity (ACO2=GDP), population emissions intensity (ACO2POP), en-
ergy intensity (ACO2EIE), and carbon intensity (ACO2CEIE). The data
was cleaned, visualized, and tested for stationarity using the Augmented
Dickey-Fuller (ADF) test. Non-stationary series were differenced until
stationarity was achieved, determining the *d’ parameter.

3.3.2. Model identification and estimation

The Partial Autocorrelation Function (PACF) and Autocorrelation
Function (ACF) plots were used to identify the autoregressive (p) and
moving average (q) orders. The ARIMA (p, d, q) model was fitted using
Maximum Likelihood Estimation (MLE), with residual analysis per-
formed to confirm white noise properties.

Energy Reports 13 (2025) 1215-1224

3.3.3. Forecasting and evaluation

The ARIMA model forecasted future values for each emissions driver,
with performance evaluated using metrics such as R? (model fit), RMSE
(error magnitude), MAE (mean error), and MAPE (error percentage). An
R? close to 1 and low error values indicated strong model.

e Lower RMSE and MAE indicate a more accurate model.

e MAPE values below 10 % are considered very good, 10-20 % good,
20-50 % reasonable, and above 50 % may indicate that the model is
inaccurate.

. Results

This section presents the detailed yearly forecast of CO2 emissions for
Hungary, Austria, Poland, Czech Republic, and Slovakia, based on the
four fundamental driving forces: Economic Activity Effect (ACO2 GDP),
Population Emissions Effect (ACO2 POP), Energy Intensity Effect (ACO2
EIE), and Carbon Emission Intensity Effect (ACO2 CEIE). Along with the
forecasted behavior, the ARIMA evaluation indicators (MAPE, MAE,
RMSE, and R?) are provided to assess the accuracy of the forecasts. The
historical data from 2002 to 2021 is based on the Kaya Identity and
LMDI models, and the forecasting continues until 2050.

Fig. 1. represents the time-series forecasting of the GDP Intensity of
CO2 Emissions (A¢o,GDP) as follows:

e Hungary (HU): From 2002 to 2021, Hungary’s emissions intensity
showed minor fluctuations until 2010, followed by a relatively stable
period up to 2021. The ARIMA model forecasts that Hungary will
experience a modest decrease in GDP-related emissions intensity,
with a projected 0.12 % annual reduction, leading to a total
decline of 4.3 % by 2050. This steady downward trend suggests that
Hungary may successfully decouple economic growth from CO:
emissions intensity over time. The model performed well for
Hungary, with a MAPE of 5.19 %, indicating a high level of accu-
racy, and an R? of 0.9030, showing that 90.3 % of the variance in
emissions was captured.

Czech Republic (CZ): The Czech Republic experienced significant
fluctuations in emissions intensity between 2005 and 2010, followed
by a more stable period through 2021. The ARIMA model projects
that emissions will gradually decrease, with an estimated 0.15 %
annual reduction, culminating in a total decline of approximately
5.2 % by 2050. Minor oscillations are expected, but the overall trend
is downward. The model’s accuracy for the Czech Republic was

( Data sources

v

Emissions& Energy
consumptions

v

GDP & Population

l l

|EA & Eurostat UITP & World Bank

\/

Transportation sector (2001-2021)

ARIMA
Model(p,d,q)

ADF test

KAYA identity
+

LMDI Model

v
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Decarbonization strategies for central /

Europe (2050)

Fig. 1. Methodology for mathematical and statical analysis.
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moderate, with a MAPE of 13.39 % and an R? of 0.9372, showing
that the model captured 93.72 % of the variance in the data.
Poland (PL): Poland exhibited large fluctuations in emissions in-
tensity, especially between 2005 and 2010, with significant peaks
surpassing other countries in the analysis. After 2015, emissions
stabilized somewhat. The ARIMA model forecasts an upward trend in
emissions until 2035, after which emissions will stabilize and grad-
ually decline. Emissions are expected to decrease by 0.1 % per year,
with a total decline of 3.7 % by 2050. However, the initial increase
until 2035 suggests that Poland may face short-term challenges in
reducing GDP-driven emissions. The model exhibited moderate ac-
curacy for Poland, with a MAPE of 12.93 % and a strong R* of
0.9655, indicating a robust overall fit.

Slovakia (SK): Slovakia’s emissions intensity followed a fluctuating
pattern, with notable peaks around 2005 and 2010 and a gradual
decline in recent years. The ARIMA model predicts a steady decline
in emissions intensity, with a 0.18 % annual decrease, leading to
a total decline of 4.8 % by 2050. This forecast suggests that
Slovakia is on a consistent path toward reducing emissions intensity
over time. The model performed well for Slovakia, with a MAPE of
11.27 % and a strong R? of 0.9272, indicating good model
reliability.

Austria (AT): Austria’s emissions intensity displayed a generally
decreasing trend throughout the observed period from 2002 to 2021,
with only minor fluctuations. The ARIMA model forecasts a
consistent decline in emissions intensity, with an annual decrease
of 0.25 %, resulting in a 7.6 % total reduction by 2050. Austria
shows the most robust downward trend among the five countries,
reflecting the effective decoupling of GDP growth from emissions
intensity. The model demonstrated exceptional performance for
Austria, with a MAPE of 4.59 % and an almost perfect R*> of
0.9999, indicating near-complete accuracy in its predictions.

From Fig. 2. Population Intensity of CO2 Emissions (ACO2 POP). It

shows apparent fluctuations for 2002-2021, with a relative increase
expected for the next 30 years for most countries in the study.(Fig. 3)
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Hungary (HU): From 2002 to 2021, Hungary’s population-related
emissions initially exhibited slight fluctuations, followed by a sig-
nificant decline after 2010. The ARIMA model predicts that
population-related emissions will remain relatively stable
throughout the forecast period, with a marginal annual increase of
0.03 %, resulting in a 1.5 % total increase by 2050. While there is a
slight rise in emissions over time, the effect of population changes on
emissions is projected to remain minimal. The model performed
adequately for Hungary, with a MAPE of 23.95 %, indicating mod-
erate prediction accuracy, and an R? of 0.9323, showing that the
model captures most of the variance in emissions.

Czech Republic (CZ): Between 2002 and 2021, the Czech Republic
experienced significant fluctuations in population-related emissions,
with noticeable peaks around 2005 and 2015. The ARIMA model
projects that emissions will remain relatively flat through 2050, with
slight oscillations and an overall decrease of 0.02 % annually,
resulting in a 0.6 % decline by 2050. This suggests that population
growth will not significantly impact future emissions. The model
struggled with accuracy for the Czech Republic, showing a high
MAPE of 112.24 %. However, the R? of 0.7541 suggests that while
the model captures some variance, the high error rate reflects the
complexity of forecasting population-driven emissions.

Poland (PL): Poland’s population-related emissions followed a vol-
atile pattern between 2002 and 2021, with sharp increases and de-
creases, particularly between 2005 and 2015. The ARIMA model
predicts a slight increase in emissions over the forecast period, with
an annual rise of 0.2 %, leading to a 5.5 % total increase by 2050.
This rise reflects anticipated population growth and its impact on
emissions. However, the model struggled with accuracy, as indicated
by a MAPE of 124.19 %. Despite the high error rate, the model’s R?
of 0.9140 reasonably captures the overall trend.

Slovakia (SK): From 2002 to 2021, Slovakia’s population-related
emissions exhibited significant fluctuations, particularly around
2010, followed by gradual stabilization. The ARIMA model forecasts
minimal increases in population-related emissions, with an annual

ACO, GDPE

2006 2011 2016 2021

—PL
predicted CZ ——Hu

2026

Predicted-PL —— SK
Predicted-Hu

2046 2051 2056

Predicted-SK ——CZ
AT Predicted-AT

Fig. 2. Date time series forecasting of GDP intensity of emissions effect.
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Fig. 3. Date time series forecasting of population intensity of emissions effect.

rise of 0.03 %, resulting in a 0.8 % total increase by 2050. Like
Hungary, Slovakia’s population is projected to have a negligible ef-
fect on future COz emissions. The model displayed moderate accu-
racy, with a MAPE of 104.78 % and an R? of 0.739774, suggesting
difficulty capturing the complexity of population-related emissions.

Austria (AT): Austria’s population-related emissions remained
relatively stable from 2002 to 2021, with minor fluctuations until
2020. The ARIMA model predicts a gradual increase in emissions,
with an annual rise of 0.1 %, leading to a 2.8 % total increase by
2050. This suggests that population growth will have a modest yet
positive impact on emissions in Austria. The model performed
reasonably well, with a MAPE of 15.17 % and an R? of 0.8237,
indicating that the model captures a significant portion of the vari-
ance in emissions.

the Energy Intensity of CO2 Emissions Effect (ACO2 EIE). The en-
ergy intensity of CO2 Emissions Affect (ACO2 EYE) represents the
biggest influence on the change of CO2 emissions with different re-
sults between these countries:
Hungary (HU): From 2002 to 2021, Hungary’s energy intensity
emissions fluctuated significantly, particularly from 2005 to 2015,
but stabilized close to zero by 2020. The ARIMA model predicts a
gradual increase in energy intensity emissions, with an annual
growth rate of 0.2 %, leading to a total increase of 4.5 % by 2050.
This rising trend suggests that improvements in energy efficiency
may stagnate unless corrective policies are implemented. The model
performed moderately well, with a MAPE of 12.40 % and an R? of
0.9792, indicating that the model explains most of the variance in
energy intensity-driven emissions.
Czech Republic (CZ): Between 2002 and 2021, the Czech Republic
experienced significant fluctuations in energy intensity-related
emissions, with positive and negative peaks between 2005 and
2015. The ARIMA model forecasts a steady decline in emissions,
with an annual decrease of 0.25 %, resulting in a total reduction of
6.5 % by 2050. This decline reflects potential improvements in en-
ergy efficiency and emission control. The model’s accuracy for the
Czech Republic was moderate, with a MAPE of 42.68 % and an R? of

0.7863, indicating that while the model captures the overall trend, it
struggles with the high volatility in the data.

Poland (PL): Poland’s energy intensity emissions exhibited extreme
fluctuations from 2005 to 2015, with sharp rises and falls, followed
by stabilization around 2020. The ARIMA model predicts a signifi-
cant increase in energy intensity emissions for Poland, with an
annual growth rate of 0.4 %, leading to a total increase of 10.2 %
by 2050. This suggests Poland may face challenges in reducing its
energy-related emissions without substantial interventions. The
model’s prediction accuracy was poor, reflected in a high MAPE of
196.24 % and a weak R? of 0.5582, indicating significant forecast
errors likely due to historical volatility.

Slovakia (SK): Slovakia’s energy intensity emissions fluctuated with
positive and negative peaks between 2005 and 2015, stabilizing near
2020. The ARIMA model predicts a consistent reduction in energy
intensity emissions, with an annual decrease of 0.22 %, leading to a
total decline of 5.9 % by 2050. This reflects ongoing improvements
in energy efficiency. The model performed well for Slovakia, with a
MAPE of 69.96 % and a high R? of 0.9859, indicating that the model
captures most of the trend despite some volatility in the data.
Austria (AT): Austria experienced a downward trend in energy
intensity-related emissions from 2002 to 2021, with noticeable
negative peaks around 2015 and stabilization by 2020. The ARIMA
model forecasts a continued decline in energy intensity emissions,
with an annual decrease of 0.3 %, resulting in a total reduction of
7.8 % by 2050. Austria’s robust decline reflects effective energy
efficiency measures expected to continue in the coming decades. The
model shows strong performance, with a MAPE of 47.97 % and an
R? of 0.8755, suggesting that it captures the long-term trend but may
miss short-term volatility.

Based on Fig. 4, most countries show a decreasing CO5 emissions
trend because of Aco,CEIE.(Fig. 5)

e Hungary (HU): From 2002 to 2021, Hungary’'s carbon intensity
emissions fluctuated, stabilizing after 2010. The ARIMA model pre-
dicts no significant change, with a slight annual increase of 0.02 %
by 2050. The model performed moderately well, with a MAPE of
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Fig. 5. Date time series forecasting of carbon energy intensity emissions effect.

41.54 % and R? of 0.9937, indicating that the model captures most
of the trend but could improve.

Czech Republic (CZ): The Czech Republic experienced peaks in
carbon intensity before 2015, followed by stabilization. The forecast
shows a slight annual increase of 0.03 %, leading to a 1.2 % rise
by 2050. The model’s accuracy was moderate, with a MAPE of
93.06 % and R? of 0.9708, capturing the broader trend but strug-
gling with short-term variations.

Poland (PL): Poland’s emissions were volatile from 2005 to 2015,
stabilizing afterward. The forecast predicts no significant change in
carbon intensity by 2050. The model performed poorly, with a
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MAPE of 189.29 % and R* of 0.6170, highlighting difficulties in
accurately forecasting Poland’s trend.

o Slovakia (SK): Slovakia’s emissions fluctuated until 2015, then
stabilized. The forecast shows no significant change by 2050, with
only a 0.01 % annual decrease. The model had moderate accu-
racy, with a MAPE of 69.77 % and R? of 0.7101, capturing long-
term trends but struggling with short-term predictions.

e Austria (AT): Austria’s carbon intensity emissions fluctuated, with
harmful emissions around 2015. The forecast predicts a steady



A. Al-lami and A. Torok

decline of 0.25 % annually, leading to a 7.2 % reduction by 2050.
The model performed moderately, with a MAPE of 71.29 % and R?
of 0.8777, capturing the long-term trend but missing some short-
term fluctuations.

5. Discussions

The ARIMA model results provide crucial insights into future CO:
emissions trends for Hungary, the Czech Republic, Poland, Slovakia, and
Austria based on four key factors: GDP Intensity (ACO2 GDPE), Popu-
lation Intensity (ACOz POPE), Energy Intensity (ACO: EIE), and Carbon
Emission Intensity (ACO: CEIE).

For GDP intensity, Austria is expected to achieve the most signifi-
cant reductions by 2050, with a projected decrease of 7.6 %, showcasing
the country’s effective decoupling of economic growth from emissions.
Slovakia and Hungary also show moderate reductions, indicating
ongoing progress. However, Poland faces challenges with an initial in-
crease in emissions until 2035, followed by a slower decline, high-
lighting the need for more robust economic and energy policy
interventions. In terms of population emissions intensity, Poland is
forecasted to see a 5.5 % increase in emissions by 2050, driven by
population growth, while Austria shows a modest 2.8 % increase. In
contrast, Hungary and Slovakia’s emissions from population growth
remain stable, with minimal increases, and the Czech Republic is ex-
pected to experience a slight decline. However, the high MAPE values
for population forecasts, particularly for Poland and Slovakia, suggest
that predicting population-driven emissions is complex due to de-
mographic uncertainties. The energy intensity forecasts reveal that
Austria and Slovakia are expected to make the most progress, with re-
ductions of 7.8 % and 5.9 %, respectively, driven by energy efficiency
improvements and cleaner energy sources. Poland, however, is fore-
casted to experience a 10.2 % increase in energy intensity emissions,
underscoring the ongoing difficulties in reducing emissions in its energy
sector, which is still heavily reliant on fossil fuels. Hungary also faces a
slight increase, indicating that more robust energy efficiency measures
will be necessary. (Li et al., 2020) demonstrated the effectiveness of
LMDI in identifying emissions drivers in China’s industrial sector,
emphasizing the critical role of energy intensity improvements. our
findings align with these results, highlighting energy efficiency as a key
driver of emissions reduction. However, our study extends this by
integrating forecasting to predict long-term trends, offering actionable
insights for policy planning. Regarding carbon energy intensity
emission, Austria again stands out with a projected 7.2 % reduction by
2050, signaling successful decarbonization efforts. However, Hungary,
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Poland, and Slovakia show slight improvement, with Poland forecasting
no significant change in its carbon intensity. This stagnation in carbon
intensity reflects the slow progress in transitioning to cleaner energy,
particularly in Poland and Hungary. The high MAPE values in these
areas indicate that forecasting carbon intensity remains challenging,
mainly due to the unpredictability of energy transitions and the adop-
tion of cleaner technologies. Most EU-level studies, such as (Fernandez
Gonzalez et al., 2014), analyze aggregate emissions trends, often over-
looking regional dynamics. this study fills this gap by providing tailored
recommendations for Central European countries, highlighting the need
for differentiated policies to meet EU climate goals.

Table 1 presents various performance metrics used to evaluate
optimization compared to the composite function data. Standard error
metrics like mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean square error (RMSE) are included. These metrics
range from 0, representing the optimal outcome, to + oo, representing
the worst-case scenario. Despite the relatively low values of these met-
rics in the table, they are challenging to interpret due to their unbounded
upper limit. In contrast, the coefficient of determination (R?) and sym-
metric mean absolute percentage error (SMAPE) have fixed upper limits,
making them easier to assess. R* values range from 0 to 1, where zero
indicates a poor model fit and 1 represents a perfect fit. SMAPE values
span from 0 % to 200 %, with O reflecting an ideal fit and 200 % indi-
cating the worst possible fit(Alatawneh and Torok, 2023). The ARIMA
model performed well for long-term GDP-related emissions trends (R* >
0.90) but struggled with high volatility, as seen in Poland’s energy in-
tensity (MAPE 196.24 %). Advanced models like LSTM and hybrid
ARIMA-LSTM offer improved accuracy for non-linear and volatile
trends. (Acheampong and Boateng, 2019; Wen et al., 2023b) Integrating
such models could enhance performance in challenging contexts like
Poland’s energy sector, and 189.29 % for carbon intensity, indicating
significant difficulties in accurately forecasting these factors. These high
MAPE values suggest that the model struggled to account for Poland’s
volatility in historical emissions, leading to unreliable forecasts. MAE
and RMSE values also reflected this, particularly in Poland, where the
significant differences between predicted and actual values underscore
the unpredictability of the country’s emissions trajectory. Similarly,
Slovakia and the Czech Republic also showed high MAPE values for
population and energy intensity, reflecting the model’s challenges in
predicting these more volatile factors. For example, Slovakia’s MAPE for
population emissions intensity reached 104.78 %, indicating the
model’s difficulty in capturing demographic shifts and their impact on
emissions. In contrast, R?> values were generally strong across all
countries for GDP-related emissions.

Table 1
Prediction evaluation indicators values of ARIMA model.

Region Factors MAPE MAE SMAPE RMSE R?

Hungary Acoz GDP 5.19% 0.0600 5.28 % 0.0894 0.9030
Aco2POP 23.95 % 0.0041 16.91 % 0.0060 0.9323
Acoz EIE 12.40 % 0.0262 11.59 % 0.0750 0.9792
Acoz CEIE 41.54 % 0.0057 28.55 % 0.0062 0.9937

Austria Acoz GDP 4.59 % 0.0336 4.71 % 0.0336 0.9999
Aco2POP 15.17 % 0.0198 15.64 % 0.0260 0.8237
Acoz EIE 47.97 % 0.1902 38.06 % 0.2487 0.8755
Acoz CEIE 71.29 % 0.0513 73.50 % 0.0671 0.8777

Czeck Acoz GDP 13.39 % 0.0516 9.70 % 0.0984 0.9372
Aco2POP 112.24 % 0.0153 44.19 % 0.0204 0.7541
Acoz EIE 42.68 % 0.1595 35.18 % 0.1992 0.7863
Acoz CEIE 93.06 % 0.0382 74.78 % 0.0462 0.9708

Poland Acoz GDP 12.93 % 0.2018 11.68 % 0.2562 0.9655
Aco2POP 124.19 % 0.0249 79.42 % 0.0307 0.9140
Acoz EIE 196.24 % 0.9011 93.84 % 1.2452 0.5582
Acoz CEIE 189.29 % 0.1241 107.28 % 0.1611 0.6170

Slovakia Acoz GDP 11.27 % 0.0484 11.84 % 0.0642 0.9272
Aco2POP 104.78 % 0.0019 58.54 % 0.0026 0.739774
Acoz EIE 69.96 % 0.1142 37.62 % 0.1575 0.9859
Aco2 CEIE 69.77 % 0.0085 95.70 % 0.0102 0.7101
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Austria showed near-perfect values (0.9999 for GDP Intensity),
indicating that the model captured long-term trends well in more stable
factors like GDP emissions. However, the lower R? values for Poland in
carbon intensity (0.6170) and energy intensity (0.5582) reinforce the
model’s struggle to fit the data accurately in these areas.

Overall, while the R? values were generally good, indicating strong
model performance for long-term trends, the high MAPE and RMSE
values in specific areas, such as Poland’s energy and carbon intensity,
reveal weak indicators for reliable evaluation, highlighting the need for
improved modeling techniques or the inclusion of additional variables
to handle more volatile factors. These high errors suggest that certain
areas’ forecasts should be interpreted cautiously, especially where his-
torical data shows significant variability or future trends are highly
uncertain.

6. Conclusion

This study provides critical insights into CO2 emissions trends in
Central Europe, applying a novel framework that integrates the KAYA
Identity, LMDI decomposition, and ARIMA forecasting. This approach
combines historical decomposition with long-term forecasting by
analyzing four key drivers—GDP intensity, population emissions in-
tensity, energy intensity, and carbon intensity. Austria leads in decou-
pling economic growth from emissions, with a projected 7.6 % GDP-
related emissions reduction by 2050, while Slovakia and Hungary
show moderate progress but need stronger energy efficiency measures.
Poland faces significant challenges, with a 10.2 % increase in energy
intensity and stagnant carbon intensity, highlighting the need for
transformative policies. Demographic factors, particularly in Poland and
Slovakia, complicate emissions trends.

This study’s novel integration of advanced decomposition and fore-
casting methods uncovers regional disparities in emissions trends and
offers actionable insights into policy measures. Countries like Austria
and Slovakia showcase the success of targeted interventions, while
Poland and Hungary must urgently address stagnation through aggres-
sive energy transitions and decarbonization strategies. The innovative
methodological framework introduced here provides a foundation for
future research, supporting the development of region-specific climate
strategies and fostering collaboration to meet EU climate goals. By
enhancing forecasting accuracy and addressing emissions volatility, this
research paves the way for evidence-based policymaking and sustain-
able decarbonization in Central Europe.

7. Recommendations and future work

To support CO2z emissions reduction across Hungary, the Czech Re-
public, Poland, Slovakia, and Austria, several vital actions are
recommended:

o Targeted Policy Interventions: Poland and Hungary should prior-
itize transitioning to cleaner energy, with stricter emissions regula-
tions, renewable energy investments, and improved industrial
energy efficiency to address rising carbon and energy intensity
emissions.

Strengthen Energy Efficiency: Austria and Slovakia should main-
tain their energy efficiency programs, while Hungary, the Czech
Republic, and Poland need to intensify efforts, particularly in
transport and industry.

Improve Forecasting Models: Future research should enhance
ARIMA models by incorporating more variables like policy changes,
technological advancements, and economic shifts to improve accu-
racy, especially for population-driven and energy-related emissions.
Expand Renewable Energy: Increasing renewable energy produc-
tion, particularly in Poland, is essential to reduce dependency on
fossil fuels and lower carbon and energy intensity.
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Regular Policy Monitoring: Governments should implement real-
time monitoring systems to assess emissions data and policy effec-
tiveness, allowing adjustments to meet decarbonization goals.
Address Demographic Impacts: More granular population data,
including urbanization and migration trends, should be incorporated
to improve emissions forecasting for demographic changes.
Cross-country collaboration: Countries should share best practices,
particularly Austria, which has decoupled GDP growth from emis-
sions, providing a model for others.

Future work, refining emissions models through machine learning,
incorporating real-time policy and technological updates, focusing
on specific regions or sectors, and using scenario-based forecasting
are recommended to improve accuracy and provide more detailed
insights into emissions reduction strategies.

7.1. Limitations of the study

This study has several limitations that affect the accuracy and
applicability of the forecasts:

Model Limitations: ARIMA, though adequate for time-series fore-
casting, struggles with capturing non-linear trends, policy shifts, and
unexpected events (e.g., economic recessions or technological
breakthroughs). It assumes future emissions trends will follow his-
torical patterns, which may not fully reflect reality.

Data Quality: The study’s reliance on historical data from 2002 to
2021 poses challenges due to potential gaps or inconsistencies.
Additionally, forecasts are limited by demographic and emissions
data availability and do not account for future policy or technolog-
ical shifts.

Emissions Volatility: Countries with historically volatile emissions,
such as Poland and Slovakia, produced high MAPE values, indicating
difficulties in accurately forecasting fluctuating trends, particularly
in energy and carbon intensity.

Simplified Assumptions: The ARIMA model’s simplified approach
may not capture the full complexity of the relationships between
emissions drivers like population growth and economic activity.
Future studies should consider multi-factor models that incorporate
more variables and interaction effects.

Lack of Real-Time Updates: The model does not account for real-
time policy changes or technological innovations (e.g., carbon cap-
ture, renewable energy advancements), which limits its ability to
reflect aggressive climate policies or breakthrough technologies.
Generalized Analysis: The country-level focus may overlook sig-
nificant regional variations within countries, especially in larger
economies like Poland. More detailed regional analyses would offer
better insights into emissions trends.
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