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b Department of Civil Engineering, College of Engineering, University of Misan, Misan, Iraq
c KTI – Institute for Transport Sciences and Logistics, Than Karoly str 3-5, Budapest 1119, Hungary

A R T I C L E  I N F O

Keywords:
CO2 emissions
Decomposition
Kaya identity
ARIMA model

A B S T R A C T

This study addresses a critical research gap by analyzing transportation-related CO₂ emissions in Central Europe 
with a region-specific focus, incorporating diverse economic structures, energy dependencies, and policy chal
lenges. Existing studies often neglect the interplay of regional dynamics and specific drivers of emissions. This 
research combines the KAYA Identity and Logarithmic Mean Divisia Index (LMDI) models with ARIMA fore
casting to uncover the distinct contributions of GDP intensity, population emissions intensity, energy intensity, 
and carbon emission intensity in five Central European countries: Hungary, the Czech Republic, Poland, 
Slovakia, and Austria. By integrating historical decomposition with robust time-series forecasting, the study 
provides novel insights into emissions drivers and long-term trends through 2050.

The results reveal substantial variation in emissions reduction trajectories. Austria successfully decouples 
economic growth from emissions, with a projected 7.6 % reduction in GDP-related emissions by 2050, driven by 
energy efficiency and renewable energy policies. Slovakia and Hungary exhibit moderate progress, while Poland 
faces significant challenges, including a forecasted 10.2 % increase in energy intensity and stagnation in carbon 
intensity, underlining the need for urgent policy reforms. ARIMA forecasts also highlight challenges in predicting 
emissions related to population and energy trends, particularly in Poland, due to high Mean Absolute Percentage 
Error (MAPE) values.

This study integrates advanced modeling techniques to provide actionable insights into transportation 
decarbonization, renewable energy expansion, and energy efficiency. The findings highlight regional disparities, 
emphasizing tailored policies to achieve EU climate goals. This approach sets a new benchmark by bridging 
historical trends with future projections in a region-specific context

1. Introduction

The transportation sector is one of the most significant contributors 
to global CO₂ emissions, significantly exacerbating climate change. Ac
cording to the International Energy Agency (IEA), transportation is 
responsible for nearly a quarter of global CO₂ emissions, with road 
transport accounting for the majority. As nations strive to meet ambi
tious climate goals, such as those set by the Paris Agreement, under
standing the key factors that drive these emissions is crucial. Accurate 
forecasts are essential for guiding policymakers in implementing effec
tive strategies to reduce the sector’s environmental impact (IEA, 2021).

This study focuses on five Central European countries (Hungary, 
Poland, Austria, the Czech Republic, and Slovakia), each facing unique 
challenges and opportunities in decarbonizing its transportation sector. 
While geographically close, these nations differ in their economic 
structures, energy policies, and transportation systems, which shape 
their respective CO₂ emissions profiles. For instance, Austria has made 
significant strides in energy efficiency, while Poland continues to face 
challenges due to its reliance on fossil fuels (Jabbar, 2022; Mohmmed 
et al., 2019). Understanding these differences is essential for developing 
tailored strategies that address each country’s needs while contributing 
to regional decarbonization efforts.
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To analyze the factors driving transportation-related CO₂ emissions 
in these countries, this study employs the Kaya Identity and the Loga
rithmic Mean Divisia Index (LMDI) decomposition methods. These 
methods allow for a detailed breakdown of emissions into four key 
drivers: population growth, GDP per capita, energy intensity, and car
bon intensity. Decomposing emissions into these components offers a 
clearer understanding of how each factor has influenced emissions 
trends over the past two decades. Previous studies have successfully 
used LMDI to analyze emission drivers across various sectors, demon
strating its effectiveness in identifying key influences on CO₂ emissions 
(Li et al., 2020).

In addition to analyzing historical data, this study utilizes the 
Autoregressive Integrated Moving Average (ARIMA) model to forecast 
future CO₂ emissions trends in Hungary, Poland, Austria, the Czech 
Republic, and Slovakia up to 2050. ARIMA is a widely used statistical 
tool for time series forecasting, particularly well-suited for data with 
long-term trends and patterns (Wen et al., 2023a). By integrating the 
Kaya Identity and LMDI decomposition findings with ARIMA-based 
forecasts, this study provides valuable insights into the future trajec
tory of transportation-related CO₂ emissions in each country. Such 
forecasts are critical for identifying key areas for policy intervention and 
formulating targeted strategies to reduce emissions.

This study addresses a significant research gap by focusing on 
emissions trends specific to Central Europe, a region often overlooked in 
broader EU-level assessments. This research provides novel insights into 
regional emissions dynamics by analyzing the distinct challenges and 
opportunities faced by five countries—Austria, Poland, Hungary, 
Slovakia, and the Czech Republic—with diverse energy dependencies, 
economic structures, and policy contexts. A key contribution of the 
study is its emphasis on the transportation sector, a major source of CO₂ 
emissions that has been underexplored in previous studies, identifying it 
as a critical area for decarbonization efforts. The research employs a 
unique combination of decomposition methods (KAYA Identity and 
LMDI) and forecasting models (ARIMA) to understand historical emis
sions drivers and predict future trends, offering a robust and innovative 
analytical framework. These findings are highly relevant for stake
holders, including policymakers, energy planners, and environmental 
agencies, as they provide actionable, country-specific recommendations 
for renewable energy expansion, energy efficiency improvements, and 
transportation decarbonization. Furthermore, the study highlights op
portunities for regional collaboration, enabling more coordinated efforts 
to meet EU climate objectives and accelerate sustainable decarbon
ization. By bridging theoretical modeling with practical policy appli
cations, this research delivers valuable tools and insights to support 
evidence-based decision-making and advance climate mitigation stra
tegies across Central Europe.

The structure of the paper is as follows: Section 2 reviews the factors 
influencing CO₂ emissions and standard forecasting methods used in 
emissions modeling. Section 3 introduces the ARIMA model and its 
integration with the Kaya Identity and LMDI decomposition methods. 
Section 4 details the data collection and processing procedures, while 
Section 5 presents the results of the CO₂ emissions forecasts for each 
country, followed by a discussion of their implications for transportation 
sectors. Finally, Section 6 offers policy recommendations to support 
these countries in achieving their emissions reduction goals and iden
tifies areas for future research.

2. Literature review

2.1. Factors influencing CO₂ emissions

CO₂ emissions in the transportation sector are influenced by several 
key factors, primarily economic activity, energy intensity, population 
growth, and technological advancements. Economic growth is a signif
icant driver of emissions, as increasing GDP is typically associated with 
greater demand for transportation services. As economies expand, the 

need for road, air, and freight transport rises, leading to higher CO₂ 
emissions. Studies consistently highlight a strong correlation between 
economic growth and increasing emissions. For instance, (Al-Lami and 
Török, 2023; Fan and Lei, 2016) demonstrated that even in highly 
developed regions, economic growth drives CO₂ emissions, particularly 
in sectors like transportation, where demand is closely tied to financial 
performance(Abbood et al., 2025).

Energy intensity, or the amount required to produce one unit of GDP, 
is another critical factor affecting CO₂ emissions. Countries that rely 
heavily on fossil fuels, particularly coal, tend to exhibit higher energy 
intensity, leading to more significant CO₂ emissions. For example, 
Poland’s heavy dependence on coal has resulted in higher 
transportation-related emissions than countries like Austria, which has 
successfully integrated renewable energy sources into its energy mix 
(Mendonça et al., 2020).

Population growth also plays a significant role in driving CO₂ emis
sions. Larger populations increase the demand for transportation ser
vices, energy consumption, and infrastructure development, 
contributing to higher emissions. Urbanization intensifies transportation 
demands, as urban areas require more public and private transport op
tions. Mohsin, 2019. It is found that countries experiencing rapid pop
ulation growth and urbanization, such as Poland and Slovakia, face 
substantial emissions challenges due to increased transportation needs 
(Mohsin et al., 2019).

Technological advancements and changes in carbon intensity are 
critical for reducing CO₂ emissions. Carbon intensity refers to the CO₂ 
emitted per unit of energy consumed. Technological innovations, such 
as the adoption of electric vehicles and improvements in fuel efficiency, 
can significantly reduce the carbon intensity of transportation. Austria 
and Slovakia have substantially reduced carbon intensity by embracing 
cleaner technologies. At the same time, countries like Hungary continue 
to grapple with the challenge of transitioning their transportation sec
tors to lower-carbon alternatives (Hortay and Pálvölgyi, 2022; Horváth 
and Szemesová, 2023).

2.2. The use of kaya identity and LMDI decomposition

The Kaya Identity and LMDI) decomposition is a widely used method 
to break down CO₂ emissions into their driving components, allowing for 
a detailed analysis of how each factor—economic activity, population, 
energy intensity, and carbon intensity—contributes to emissions. The 
Kaya Identity offers a simplified mathematical framework for under
standing the relationships between these factors and CO₂ emissions. It 
provides a comprehensive view of how changes in population, economic 
growth, and energy use affect emissions levels.

LMDI decomposition complements the Kaya Identity by enabling a 
more nuanced analysis of how each component drives emissions 
changes over time. In LMDI decomposition analysis, the problem can be 
formulated either additively or multiplicatively. In additive decompo
sition analysis, an aggregate indicator’s arithmetic (or difference) 
change, such as total energy consumption, is decomposed. The aggre
gate change and decomposition results are given in a physical unit. In 
multiplicative decomposition analysis, the ratio change of an aggregate 
indicator is decomposed. In this case, the aggregate change and 
decomposition results are expressed in indexes (Ang, 2015). This 
method allows researchers to attribute emissions growth or reduction to 
specific factors, offering valuable insights into where policy in
terventions may be most effective. For instance, (Hortay and Pálvölgyi, 
2022) used LMDI to analyze CO₂ emissions in China’s energy sector, 
finding that economic activity and energy intensity were the primary 
drivers of emissions increases. In contrast, improvements in energy ef
ficiency contributed to emissions reductions. Also (Al-lami and Török, 
2024; Fernández González et al., 2014), the LMDI was used to study the 
changes in the energy mix that significantly impact CO2 emissions in the 
EU power sector, with specific environmental recommendations for in
dividual countries.
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This study applies the Kaya Identity and LMDI decomposition to 
decompose transportation-related CO₂ emissions in Hungary, Poland, 
Austria, the Czech Republic, and Slovakia from 2001 to 2021. By 
analyzing the four main factors—Economic Activity Effect (ΔCO₂ GDP), 
Population Emissions Effect (ΔCO₂ POP), Energy Intensity Effect (ΔCO₂ 
EIE), and Carbon Emission Intensity Effect (ΔCO₂ CEIE)—we can iden
tify the specific contributions of each factor to emissions changes in 
these countries. This analysis is crucial for understanding how different 
policy approaches and economic conditions have influenced CO₂ emis
sions in the transportation sectors of Central Europe. The Kaya Identity 
and LMDI have proven effective in other regions for identifying the key 
drivers of emissions, providing a clear framework for emissions reduc
tion strategies(Singpai and Wu, 2021).

2.3. Models to predict CO₂ emissions

Accurate forecasting of CO₂ emissions is critical for developing 
effective policies to reduce emissions in the transportation sector. 
Several models have been employed to predict emissions, ranging from 
traditional statistical methods to advanced machine-learning tech
niques. One of the most used models for time series forecasting is the 
Autoregressive Integrated Moving Average (ARIMA) model. ARIMA is 
particularly useful for predicting CO₂ emissions because it can model 
linear relationships in time series data and capture trends over time. 
(Wang et al., 2020) applied ARIMA to forecast CO₂ emissions in India, 
demonstrating its effectiveness in identifying long-term emissions pat
terns and providing reliable projections.

However, emissions data often exhibit non-linear behaviors due to 
the complex interactions between technological advancements, policy 
interventions, and economic fluctuations. To address these complexities, 
machine learning models such as Artificial Neural Networks (ANN), 
Long Short-Term Memory (LSTM) networks, and hybrid models have 
been increasingly used for CO₂ emissions forecasting. ANN models have 
proven effective in capturing non-linear relationships between eco
nomic growth, energy consumption, and emissions. (Acheampong and 
Boateng, 2019) Successfully applied ANN to forecast emissions in China, 
highlighting the model’s ability to account for non-linear dynamics in 
emissions data.

LSTM networks are handy for sequential data and have demonstrated 
solid predictive capabilities in emissions forecasting. Wen et al. (2023a)
used LSTM to predict CO₂ emissions in the aviation sector, finding the 
model effective in capturing long-term dependencies and trends in 
emissions data.

Hybrid models combining ARIMA-LSTM and ARIMA-LSTM-DP 
hybrid models offer significant improvements in predicting healthy 
production by combining linear and nonlinear components, making 
them more efficient than traditional models, significantly when manual 
operations impact the data. Coupling ARIMA with LSTM, particularly in 
the ARIMA-LSTM-DP variant, enhances the accuracy of production 
forecasts, outperforming individual models like ARIMA and LSTM and 
proving more robust in scenarios involving manual operations. These 
hybrid models effectively integrate the advantages of both linearity and 
nonlinearity, addressing the limitations of traditional approaches (Fan 
et al., 2021).

Recent mathematical modeling and analysis advancements have 
provided innovative tools for addressing complex system dynamics, 
particularly in energy storage and forecasting. For instance, state-of- 
charge estimation for lithium-ion batteries has been significantly 
enhanced using an improved particle swarm optimization-adaptive 
square root cubature Kalman filter. This hybrid approach improves 
prediction accuracy by dynamically adjusting the estimation process 
(Bian et al., 2024). Similarly, advancements in feedforward-long 
short-term memory (LSTM) modeling have enabled precise 
whole-life-cycle state-of-charge predictions by incorporating current, 
voltage, and temperature variations, providing robust modeling under 
dynamic conditions (Tian et al., 2020). Furthermore, anti-noise adaptive 

LSTM neural network modeling has been applied to predict the 
remaining useful life of lithium-ion batteries with high robustness and 
reliability, even under noise-prone scenarios (Wang et al., 2023) These 
advancements in mathematical analysis highlight the growing potential 
of integrating optimization algorithms and advanced neural network 
architectures to improve predictive accuracy and robustness in energy 
and emissions forecasting.

Previous studies on CO₂ emissions trends often focus on EU or global 
scales, neglecting the unique dynamics of Central Europe. While 
methods like the KAYA Identity and LMDI effectively decompose emis
sions drivers, they are rarely integrated with advanced forecasting 
models like ARIMA to provide a holistic view of historical and future 
trends. The transportation sector, a significant source of CO₂, receives 
limited attention in region-specific analyses, and Central Europe’s socio- 
economic and policy diversity is often overlooked.

This study addresses these gaps by combining decomposition and 
forecasting techniques to analyze emissions drivers and transportation 
dynamics across Austria, Poland, Hungary, Slovakia, and the Czech 
Republic. It highlights the critical role of economic activity, energy in
tensity, and technological advancements and provides actionable policy 
recommendations to reduce transportation-related emissions. The 
findings emphasize energy efficiency, renewable energy adoption, and 
regional collaboration as essential strategies for achieving climate goals 
and advancing global mitigation efforts.

3. Methodology

3.1. Data collection and study area

This study utilizes secondary data from the International Energy 
Agency (IEA) for emissions and energy consumption, and from the 
World Bank, Eurostat, and UITP for GDP and population figures. The 
analysis focuses on the transportation sector from 2001 to 2021. A novel 
methodological framework integrates the KAYA Identity, Logarithmic 
Mean Divisia Index (LMDI) decomposition, and ARIMA model. The 
KAYA Identity and LMDI decomposition analyze historical emissions, 
breaking them into four drivers: GDP intensity, population emissions 
intensity, energy intensity, and carbon intensity. The ARIMA model 
forecasts long-term trends for each driver, offering a comprehensive 
understanding of emissions dynamics and actionable insights for 
decarbonization in Central Europe through 2050.

3.2. Kaya identity and LMDI decomposition

The Kaya Identity provides a framework for decomposing CO2 
emissions into four main contributing factors: 

F = (C/EC) ∗ (EC/G) ∗ (G/P) ∗ P (1) 

Where: population (P) [inhabitant], GDP per capita (G/P) [USD/ 
inhabitant], energy intensity (EC/G) [Mtoe/USD], and carbon intensity 
(C/EC) [MtCO2 /Mtoe] of energy use.

The logarithmic Mean Divisia Index (LMDI) is a valuable tool in 
studying energy and emissions, mainly due to its capacity to model 
various factors’ interaction and joint effects. Accounting for multipli
cative relationships provides a more comprehensive and accurate rep
resentation of how technological, economic, and structural changes 
jointly affect energy consumption and emissions. This makes LMDI 
indispensable for policymakers and researchers to understand the 
broader impact of energy policies and technological innovations(Ang, 
2005; Ang and Liu, 2007; Fernández González et al., 2014; Gu et al., 
2019).

The (LMDI) method will decompose changes in CO2 emissions and 
energy consumption into various factors, as specified by Yoichi Kaya’s 
identity. The shift in CO2 emissions within the transportation sector 
from an initial year 0 to a designated target year t can be dissected into 
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four distinct influences, as in Eq. (3). 

ΔCtot = Cti j − C
0
i j = ΔCCEIE + ΔCEIE + ΔCGDPE +ΔCPOPE

(2) 

Where Carbon Emission Intensity Effect (ΔCO2CEIE), Energy In
tensity Effect (ΔCO2 EIE), Economic Activity Effect (ΔCO2GDP), and 
Population Emissions Effect (ΔCO2POP). Each factor effect on the right- 
hand side of Eq. (3) can be calculated according to the general (LMDI) 
formulation: 

ΔCi =
∑

i

Ctij − C0
ij

lnCtij − lnC0
ij

.ln(
it

i0
) (3) 

Carbon emissions in the target year (Cti j), Carbon emissions in the 
base year (C0i j), fuel (i), transportation (j).

Then, all four driving forces of CO2 emissions are calculated using 
Eq. (3), and these results are used for the forecasting step.

3.3. The autoregressive integrated moving average (ARIMA)

The ARIMA model is a statistical tool for time series analysis and 
forecasting, particularly effective for data with trends and patterns. 
Defined by three parameters—p (autoregressive order), d (degree of 
differencing), and q (moving average order)—ARIMA captures de
pendencies between observations and lagged errors.

3.3.1. Data preparation and stationarity testing
Data from previous studies identified key CO₂ emissions drivers: GDP 

intensity (ΔCO₂GDP), population emissions intensity (ΔCO₂POP), en
ergy intensity (ΔCO₂EIE), and carbon intensity (ΔCO₂CEIE). The data 
was cleaned, visualized, and tested for stationarity using the Augmented 
Dickey-Fuller (ADF) test. Non-stationary series were differenced until 
stationarity was achieved, determining the ’d’ parameter.

3.3.2. Model identification and estimation
The Partial Autocorrelation Function (PACF) and Autocorrelation 

Function (ACF) plots were used to identify the autoregressive (p) and 
moving average (q) orders. The ARIMA (p, d, q) model was fitted using 
Maximum Likelihood Estimation (MLE), with residual analysis per
formed to confirm white noise properties.

3.3.3. Forecasting and evaluation
The ARIMA model forecasted future values for each emissions driver, 

with performance evaluated using metrics such as R² (model fit), RMSE 
(error magnitude), MAE (mean error), and MAPE (error percentage). An 
R² close to 1 and low error values indicated strong model. 

• Lower RMSE and MAE indicate a more accurate model.
• MAPE values below 10 % are considered very good, 10–20 % good, 

20–50 % reasonable, and above 50 % may indicate that the model is 
inaccurate.

4. Results

This section presents the detailed yearly forecast of CO₂ emissions for 
Hungary, Austria, Poland, Czech Republic, and Slovakia, based on the 
four fundamental driving forces: Economic Activity Effect (ΔCO₂ GDP), 
Population Emissions Effect (ΔCO₂ POP), Energy Intensity Effect (ΔCO₂ 
EIE), and Carbon Emission Intensity Effect (ΔCO₂ CEIE). Along with the 
forecasted behavior, the ARIMA evaluation indicators (MAPE, MAE, 
RMSE, and R²) are provided to assess the accuracy of the forecasts. The 
historical data from 2002 to 2021 is based on the Kaya Identity and 
LMDI models, and the forecasting continues until 2050.

Fig. 1. represents the time-series forecasting of the GDP Intensity of 
CO₂ Emissions (ΔCO₂GDP) as follows: 

• Hungary (HU): From 2002 to 2021, Hungary’s emissions intensity 
showed minor fluctuations until 2010, followed by a relatively stable 
period up to 2021. The ARIMA model forecasts that Hungary will 
experience a modest decrease in GDP-related emissions intensity, 
with a projected 0.12 % annual reduction, leading to a total 
decline of 4.3 % by 2050. This steady downward trend suggests that 
Hungary may successfully decouple economic growth from CO₂ 
emissions intensity over time. The model performed well for 
Hungary, with a MAPE of 5.19 %, indicating a high level of accu
racy, and an R² of 0.9030, showing that 90.3 % of the variance in 
emissions was captured.

• Czech Republic (CZ): The Czech Republic experienced significant 
fluctuations in emissions intensity between 2005 and 2010, followed 
by a more stable period through 2021. The ARIMA model projects 
that emissions will gradually decrease, with an estimated 0.15 % 
annual reduction, culminating in a total decline of approximately 
5.2 % by 2050. Minor oscillations are expected, but the overall trend 
is downward. The model’s accuracy for the Czech Republic was 

Fig. 1. Methodology for mathematical and statical analysis.
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moderate, with a MAPE of 13.39 % and an R² of 0.9372, showing 
that the model captured 93.72 % of the variance in the data.

• Poland (PL): Poland exhibited large fluctuations in emissions in
tensity, especially between 2005 and 2010, with significant peaks 
surpassing other countries in the analysis. After 2015, emissions 
stabilized somewhat. The ARIMA model forecasts an upward trend in 
emissions until 2035, after which emissions will stabilize and grad
ually decline. Emissions are expected to decrease by 0.1 % per year, 
with a total decline of 3.7 % by 2050. However, the initial increase 
until 2035 suggests that Poland may face short-term challenges in 
reducing GDP-driven emissions. The model exhibited moderate ac
curacy for Poland, with a MAPE of 12.93 % and a strong R² of 
0.9655, indicating a robust overall fit.

• Slovakia (SK): Slovakia’s emissions intensity followed a fluctuating 
pattern, with notable peaks around 2005 and 2010 and a gradual 
decline in recent years. The ARIMA model predicts a steady decline 
in emissions intensity, with a 0.18 % annual decrease, leading to 
a total decline of 4.8 % by 2050. This forecast suggests that 
Slovakia is on a consistent path toward reducing emissions intensity 
over time. The model performed well for Slovakia, with a MAPE of 
11.27 % and a strong R² of 0.9272, indicating good model 
reliability.

• Austria (AT): Austria’s emissions intensity displayed a generally 
decreasing trend throughout the observed period from 2002 to 2021, 
with only minor fluctuations. The ARIMA model forecasts a 
consistent decline in emissions intensity, with an annual decrease 
of 0.25 %, resulting in a 7.6 % total reduction by 2050. Austria 
shows the most robust downward trend among the five countries, 
reflecting the effective decoupling of GDP growth from emissions 
intensity. The model demonstrated exceptional performance for 
Austria, with a MAPE of 4.59 % and an almost perfect R² of 
0.9999, indicating near-complete accuracy in its predictions.

From Fig. 2. Population Intensity of CO₂ Emissions (ΔCO₂ POP). It 
shows apparent fluctuations for 2002–2021, with a relative increase 
expected for the next 30 years for most countries in the study.(Fig. 3) 

• Hungary (HU): From 2002 to 2021, Hungary’s population-related 
emissions initially exhibited slight fluctuations, followed by a sig
nificant decline after 2010. The ARIMA model predicts that 
population-related emissions will remain relatively stable 
throughout the forecast period, with a marginal annual increase of 
0.03 %, resulting in a 1.5 % total increase by 2050. While there is a 
slight rise in emissions over time, the effect of population changes on 
emissions is projected to remain minimal. The model performed 
adequately for Hungary, with a MAPE of 23.95 %, indicating mod
erate prediction accuracy, and an R² of 0.9323, showing that the 
model captures most of the variance in emissions.

• Czech Republic (CZ): Between 2002 and 2021, the Czech Republic 
experienced significant fluctuations in population-related emissions, 
with noticeable peaks around 2005 and 2015. The ARIMA model 
projects that emissions will remain relatively flat through 2050, with 
slight oscillations and an overall decrease of 0.02 % annually, 
resulting in a 0.6 % decline by 2050. This suggests that population 
growth will not significantly impact future emissions. The model 
struggled with accuracy for the Czech Republic, showing a high 
MAPE of 112.24 %. However, the R² of 0.7541 suggests that while 
the model captures some variance, the high error rate reflects the 
complexity of forecasting population-driven emissions.

• Poland (PL): Poland’s population-related emissions followed a vol
atile pattern between 2002 and 2021, with sharp increases and de
creases, particularly between 2005 and 2015. The ARIMA model 
predicts a slight increase in emissions over the forecast period, with 
an annual rise of 0.2 %, leading to a 5.5 % total increase by 2050. 
This rise reflects anticipated population growth and its impact on 
emissions. However, the model struggled with accuracy, as indicated 
by a MAPE of 124.19 %. Despite the high error rate, the model’s R² 
of 0.9140 reasonably captures the overall trend.

• Slovakia (SK): From 2002 to 2021, Slovakia’s population-related 
emissions exhibited significant fluctuations, particularly around 
2010, followed by gradual stabilization. The ARIMA model forecasts 
minimal increases in population-related emissions, with an annual 

Fig. 2. Date time series forecasting of GDP intensity of emissions effect.
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rise of 0.03 %, resulting in a 0.8 % total increase by 2050. Like 
Hungary, Slovakia’s population is projected to have a negligible ef
fect on future CO₂ emissions. The model displayed moderate accu
racy, with a MAPE of 104.78 % and an R² of 0.739774, suggesting 
difficulty capturing the complexity of population-related emissions.

• Austria (AT): Austria’s population-related emissions remained 
relatively stable from 2002 to 2021, with minor fluctuations until 
2020. The ARIMA model predicts a gradual increase in emissions, 
with an annual rise of 0.1 %, leading to a 2.8 % total increase by 
2050. This suggests that population growth will have a modest yet 
positive impact on emissions in Austria. The model performed 
reasonably well, with a MAPE of 15.17 % and an R² of 0.8237, 
indicating that the model captures a significant portion of the vari
ance in emissions. 

the Energy Intensity of CO₂ Emissions Effect (ΔCO₂ EIE). The en
ergy intensity of CO₂ Emissions Affect (ΔCO₂ EYE) represents the 
biggest influence on the change of CO2 emissions with different re
sults between these countries:

• Hungary (HU): From 2002 to 2021, Hungary’s energy intensity 
emissions fluctuated significantly, particularly from 2005 to 2015, 
but stabilized close to zero by 2020. The ARIMA model predicts a 
gradual increase in energy intensity emissions, with an annual 
growth rate of 0.2 %, leading to a total increase of 4.5 % by 2050. 
This rising trend suggests that improvements in energy efficiency 
may stagnate unless corrective policies are implemented. The model 
performed moderately well, with a MAPE of 12.40 % and an R² of 
0.9792, indicating that the model explains most of the variance in 
energy intensity-driven emissions.

• Czech Republic (CZ): Between 2002 and 2021, the Czech Republic 
experienced significant fluctuations in energy intensity-related 
emissions, with positive and negative peaks between 2005 and 
2015. The ARIMA model forecasts a steady decline in emissions, 
with an annual decrease of 0.25 %, resulting in a total reduction of 
6.5 % by 2050. This decline reflects potential improvements in en
ergy efficiency and emission control. The model’s accuracy for the 
Czech Republic was moderate, with a MAPE of 42.68 % and an R² of 

0.7863, indicating that while the model captures the overall trend, it 
struggles with the high volatility in the data.

• Poland (PL): Poland’s energy intensity emissions exhibited extreme 
fluctuations from 2005 to 2015, with sharp rises and falls, followed 
by stabilization around 2020. The ARIMA model predicts a signifi
cant increase in energy intensity emissions for Poland, with an 
annual growth rate of 0.4 %, leading to a total increase of 10.2 % 
by 2050. This suggests Poland may face challenges in reducing its 
energy-related emissions without substantial interventions. The 
model’s prediction accuracy was poor, reflected in a high MAPE of 
196.24 % and a weak R² of 0.5582, indicating significant forecast 
errors likely due to historical volatility.

• Slovakia (SK): Slovakia’s energy intensity emissions fluctuated with 
positive and negative peaks between 2005 and 2015, stabilizing near 
2020. The ARIMA model predicts a consistent reduction in energy 
intensity emissions, with an annual decrease of 0.22 %, leading to a 
total decline of 5.9 % by 2050. This reflects ongoing improvements 
in energy efficiency. The model performed well for Slovakia, with a 
MAPE of 69.96 % and a high R² of 0.9859, indicating that the model 
captures most of the trend despite some volatility in the data.

• Austria (AT): Austria experienced a downward trend in energy 
intensity-related emissions from 2002 to 2021, with noticeable 
negative peaks around 2015 and stabilization by 2020. The ARIMA 
model forecasts a continued decline in energy intensity emissions, 
with an annual decrease of 0.3 %, resulting in a total reduction of 
7.8 % by 2050. Austria’s robust decline reflects effective energy 
efficiency measures expected to continue in the coming decades. The 
model shows strong performance, with a MAPE of 47.97 % and an 
R² of 0.8755, suggesting that it captures the long-term trend but may 
miss short-term volatility.

Based on Fig. 4, most countries show a decreasing CO2 emissions 
trend because of ΔCO₂CEIE.(Fig. 5) 

• Hungary (HU): From 2002 to 2021, Hungary’s carbon intensity 
emissions fluctuated, stabilizing after 2010. The ARIMA model pre
dicts no significant change, with a slight annual increase of 0.02 % 
by 2050. The model performed moderately well, with a MAPE of 

Fig. 3. Date time series forecasting of population intensity of emissions effect.
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41.54 % and R² of 0.9937, indicating that the model captures most 
of the trend but could improve.

• Czech Republic (CZ): The Czech Republic experienced peaks in 
carbon intensity before 2015, followed by stabilization. The forecast 
shows a slight annual increase of 0.03 %, leading to a 1.2 % rise 
by 2050. The model’s accuracy was moderate, with a MAPE of 
93.06 % and R² of 0.9708, capturing the broader trend but strug
gling with short-term variations.

• Poland (PL): Poland’s emissions were volatile from 2005 to 2015, 
stabilizing afterward. The forecast predicts no significant change in 
carbon intensity by 2050. The model performed poorly, with a 

MAPE of 189.29 % and R² of 0.6170, highlighting difficulties in 
accurately forecasting Poland’s trend.

• Slovakia (SK): Slovakia’s emissions fluctuated until 2015, then 
stabilized. The forecast shows no significant change by 2050, with 
only a 0.01 % annual decrease. The model had moderate accu
racy, with a MAPE of 69.77 % and R² of 0.7101, capturing long- 
term trends but struggling with short-term predictions.

• Austria (AT): Austria’s carbon intensity emissions fluctuated, with 
harmful emissions around 2015. The forecast predicts a steady 

Fig. 4. Date time series forecasting of energy intensity of emissions effect.

Fig. 5. Date time series forecasting of carbon energy intensity emissions effect.
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decline of 0.25 % annually, leading to a 7.2 % reduction by 2050. 
The model performed moderately, with a MAPE of 71.29 % and R² 
of 0.8777, capturing the long-term trend but missing some short- 
term fluctuations.

5. Discussions

The ARIMA model results provide crucial insights into future CO₂ 
emissions trends for Hungary, the Czech Republic, Poland, Slovakia, and 
Austria based on four key factors: GDP Intensity (ΔCO₂ GDPE), Popu
lation Intensity (ΔCO₂ POPE), Energy Intensity (ΔCO₂ EIE), and Carbon 
Emission Intensity (ΔCO₂ CEIE).

For GDP intensity, Austria is expected to achieve the most signifi
cant reductions by 2050, with a projected decrease of 7.6 %, showcasing 
the country’s effective decoupling of economic growth from emissions. 
Slovakia and Hungary also show moderate reductions, indicating 
ongoing progress. However, Poland faces challenges with an initial in
crease in emissions until 2035, followed by a slower decline, high
lighting the need for more robust economic and energy policy 
interventions. In terms of population emissions intensity, Poland is 
forecasted to see a 5.5 % increase in emissions by 2050, driven by 
population growth, while Austria shows a modest 2.8 % increase. In 
contrast, Hungary and Slovakia’s emissions from population growth 
remain stable, with minimal increases, and the Czech Republic is ex
pected to experience a slight decline. However, the high MAPE values 
for population forecasts, particularly for Poland and Slovakia, suggest 
that predicting population-driven emissions is complex due to de
mographic uncertainties. The energy intensity forecasts reveal that 
Austria and Slovakia are expected to make the most progress, with re
ductions of 7.8 % and 5.9 %, respectively, driven by energy efficiency 
improvements and cleaner energy sources. Poland, however, is fore
casted to experience a 10.2 % increase in energy intensity emissions, 
underscoring the ongoing difficulties in reducing emissions in its energy 
sector, which is still heavily reliant on fossil fuels. Hungary also faces a 
slight increase, indicating that more robust energy efficiency measures 
will be necessary. (Li et al., 2020) demonstrated the effectiveness of 
LMDI in identifying emissions drivers in China’s industrial sector, 
emphasizing the critical role of energy intensity improvements. our 
findings align with these results, highlighting energy efficiency as a key 
driver of emissions reduction. However, our study extends this by 
integrating forecasting to predict long-term trends, offering actionable 
insights for policy planning. Regarding carbon energy intensity 
emission, Austria again stands out with a projected 7.2 % reduction by 
2050, signaling successful decarbonization efforts. However, Hungary, 

Poland, and Slovakia show slight improvement, with Poland forecasting 
no significant change in its carbon intensity. This stagnation in carbon 
intensity reflects the slow progress in transitioning to cleaner energy, 
particularly in Poland and Hungary. The high MAPE values in these 
areas indicate that forecasting carbon intensity remains challenging, 
mainly due to the unpredictability of energy transitions and the adop
tion of cleaner technologies. Most EU-level studies, such as (Fernández 
González et al., 2014), analyze aggregate emissions trends, often over
looking regional dynamics. this study fills this gap by providing tailored 
recommendations for Central European countries, highlighting the need 
for differentiated policies to meet EU climate goals.

Table 1 presents various performance metrics used to evaluate 
optimization compared to the composite function data. Standard error 
metrics like mean absolute error (MAE), mean absolute percentage error 
(MAPE), and root mean square error (RMSE) are included. These metrics 
range from 0, representing the optimal outcome, to + ∞, representing 
the worst-case scenario. Despite the relatively low values of these met
rics in the table, they are challenging to interpret due to their unbounded 
upper limit. In contrast, the coefficient of determination (R²) and sym
metric mean absolute percentage error (SMAPE) have fixed upper limits, 
making them easier to assess. R² values range from 0 to 1, where zero 
indicates a poor model fit and 1 represents a perfect fit. SMAPE values 
span from 0 % to 200 %, with 0 reflecting an ideal fit and 200 % indi
cating the worst possible fit(Alatawneh and Torok, 2023). The ARIMA 
model performed well for long-term GDP-related emissions trends (R² >
0.90) but struggled with high volatility, as seen in Poland’s energy in
tensity (MAPE 196.24 %). Advanced models like LSTM and hybrid 
ARIMA-LSTM offer improved accuracy for non-linear and volatile 
trends. (Acheampong and Boateng, 2019; Wen et al., 2023b) Integrating 
such models could enhance performance in challenging contexts like 
Poland’s energy sector, and 189.29 % for carbon intensity, indicating 
significant difficulties in accurately forecasting these factors. These high 
MAPE values suggest that the model struggled to account for Poland’s 
volatility in historical emissions, leading to unreliable forecasts. MAE 
and RMSE values also reflected this, particularly in Poland, where the 
significant differences between predicted and actual values underscore 
the unpredictability of the country’s emissions trajectory. Similarly, 
Slovakia and the Czech Republic also showed high MAPE values for 
population and energy intensity, reflecting the model’s challenges in 
predicting these more volatile factors. For example, Slovakia’s MAPE for 
population emissions intensity reached 104.78 %, indicating the 
model’s difficulty in capturing demographic shifts and their impact on 
emissions. In contrast, R² values were generally strong across all 
countries for GDP-related emissions.

Table 1 
Prediction evaluation indicators values of ARIMA model.

Region Factors MAPE MAE SMAPE RMSE R2

Hungary ΔCO2 GDP 5.19 % 0.0600 5.28 % 0.0894 0.9030
ΔCO2POP 23.95 % 0.0041 16.91 % 0.0060 0.9323
ΔCO2 EIE 12.40 % 0.0262 11.59 % 0.0750 0.9792
ΔCO2 CEIE 41.54 % 0.0057 28.55 % 0.0062 0.9937

Austria ΔCO2 GDP 4.59 % 0.0336 4.71 % 0.0336 0.9999
ΔCO2POP 15.17 % 0.0198 15.64 % 0.0260 0.8237
ΔCO2 EIE 47.97 % 0.1902 38.06 % 0.2487 0.8755
ΔCO2 CEIE 71.29 % 0.0513 73.50 % 0.0671 0.8777

Czeck ΔCO2 GDP 13.39 % 0.0516 9.70 % 0.0984 0.9372
ΔCO2POP 112.24 % 0.0153 44.19 % 0.0204 0.7541
ΔCO2 EIE 42.68 % 0.1595 35.18 % 0.1992 0.7863
ΔCO2 CEIE 93.06 % 0.0382 74.78 % 0.0462 0.9708

Poland ΔCO2 GDP 12.93 % 0.2018 11.68 % 0.2562 0.9655
ΔCO2POP 124.19 % 0.0249 79.42 % 0.0307 0.9140
ΔCO2 EIE 196.24 % 0.9011 93.84 % 1.2452 0.5582
ΔCO2 CEIE 189.29 % 0.1241 107.28 % 0.1611 0.6170

Slovakia ΔCO2 GDP 11.27 % 0.0484 11.84 % 0.0642 0.9272
ΔCO2POP 104.78 % 0.0019 58.54 % 0.0026 0.739774
ΔCO2 EIE 69.96 % 0.1142 37.62 % 0.1575 0.9859
ΔCO2 CEIE 69.77 % 0.0085 95.70 % 0.0102 0.7101
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Austria showed near-perfect values (0.9999 for GDP Intensity), 
indicating that the model captured long-term trends well in more stable 
factors like GDP emissions. However, the lower R² values for Poland in 
carbon intensity (0.6170) and energy intensity (0.5582) reinforce the 
model’s struggle to fit the data accurately in these areas.

Overall, while the R² values were generally good, indicating strong 
model performance for long-term trends, the high MAPE and RMSE 
values in specific areas, such as Poland’s energy and carbon intensity, 
reveal weak indicators for reliable evaluation, highlighting the need for 
improved modeling techniques or the inclusion of additional variables 
to handle more volatile factors. These high errors suggest that certain 
areas’ forecasts should be interpreted cautiously, especially where his
torical data shows significant variability or future trends are highly 
uncertain.

6. Conclusion

This study provides critical insights into CO₂ emissions trends in 
Central Europe, applying a novel framework that integrates the KAYA 
Identity, LMDI decomposition, and ARIMA forecasting. This approach 
combines historical decomposition with long-term forecasting by 
analyzing four key drivers—GDP intensity, population emissions in
tensity, energy intensity, and carbon intensity. Austria leads in decou
pling economic growth from emissions, with a projected 7.6 % GDP- 
related emissions reduction by 2050, while Slovakia and Hungary 
show moderate progress but need stronger energy efficiency measures. 
Poland faces significant challenges, with a 10.2 % increase in energy 
intensity and stagnant carbon intensity, highlighting the need for 
transformative policies. Demographic factors, particularly in Poland and 
Slovakia, complicate emissions trends.

This study’s novel integration of advanced decomposition and fore
casting methods uncovers regional disparities in emissions trends and 
offers actionable insights into policy measures. Countries like Austria 
and Slovakia showcase the success of targeted interventions, while 
Poland and Hungary must urgently address stagnation through aggres
sive energy transitions and decarbonization strategies. The innovative 
methodological framework introduced here provides a foundation for 
future research, supporting the development of region-specific climate 
strategies and fostering collaboration to meet EU climate goals. By 
enhancing forecasting accuracy and addressing emissions volatility, this 
research paves the way for evidence-based policymaking and sustain
able decarbonization in Central Europe.

7. Recommendations and future work

To support CO₂ emissions reduction across Hungary, the Czech Re
public, Poland, Slovakia, and Austria, several vital actions are 
recommended: 

• Targeted Policy Interventions: Poland and Hungary should prior
itize transitioning to cleaner energy, with stricter emissions regula
tions, renewable energy investments, and improved industrial 
energy efficiency to address rising carbon and energy intensity 
emissions.

• Strengthen Energy Efficiency: Austria and Slovakia should main
tain their energy efficiency programs, while Hungary, the Czech 
Republic, and Poland need to intensify efforts, particularly in 
transport and industry.

• Improve Forecasting Models: Future research should enhance 
ARIMA models by incorporating more variables like policy changes, 
technological advancements, and economic shifts to improve accu
racy, especially for population-driven and energy-related emissions.

• Expand Renewable Energy: Increasing renewable energy produc
tion, particularly in Poland, is essential to reduce dependency on 
fossil fuels and lower carbon and energy intensity.

• Regular Policy Monitoring: Governments should implement real- 
time monitoring systems to assess emissions data and policy effec
tiveness, allowing adjustments to meet decarbonization goals.

• Address Demographic Impacts: More granular population data, 
including urbanization and migration trends, should be incorporated 
to improve emissions forecasting for demographic changes.

• Cross-country collaboration: Countries should share best practices, 
particularly Austria, which has decoupled GDP growth from emis
sions, providing a model for others.

• Future work, refining emissions models through machine learning, 
incorporating real-time policy and technological updates, focusing 
on specific regions or sectors, and using scenario-based forecasting 
are recommended to improve accuracy and provide more detailed 
insights into emissions reduction strategies.

7.1. Limitations of the study

This study has several limitations that affect the accuracy and 
applicability of the forecasts: 

• Model Limitations: ARIMA, though adequate for time-series fore
casting, struggles with capturing non-linear trends, policy shifts, and 
unexpected events (e.g., economic recessions or technological 
breakthroughs). It assumes future emissions trends will follow his
torical patterns, which may not fully reflect reality.

• Data Quality: The study’s reliance on historical data from 2002 to 
2021 poses challenges due to potential gaps or inconsistencies. 
Additionally, forecasts are limited by demographic and emissions 
data availability and do not account for future policy or technolog
ical shifts.

• Emissions Volatility: Countries with historically volatile emissions, 
such as Poland and Slovakia, produced high MAPE values, indicating 
difficulties in accurately forecasting fluctuating trends, particularly 
in energy and carbon intensity.

• Simplified Assumptions: The ARIMA model’s simplified approach 
may not capture the full complexity of the relationships between 
emissions drivers like population growth and economic activity. 
Future studies should consider multi-factor models that incorporate 
more variables and interaction effects.

• Lack of Real-Time Updates: The model does not account for real- 
time policy changes or technological innovations (e.g., carbon cap
ture, renewable energy advancements), which limits its ability to 
reflect aggressive climate policies or breakthrough technologies.

• Generalized Analysis: The country-level focus may overlook sig
nificant regional variations within countries, especially in larger 
economies like Poland. More detailed regional analyses would offer 
better insights into emissions trends.
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