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Abstract: This paper addresses a numerical approach for computing the solitary wave solutions of
the generalized Rosenau–Kawahara–RLW model established by coupling the generalized Rosenau–
Kawahara and Rosenau–RLW equations. The solution of this model is accomplished by using the
finite difference approach and the upwind local radial basis functions-finite difference. Firstly, the
PDE is transformed into a nonlinear ODEs system by means of the radial kernels. Secondly, a high-
order ODE solver is implemented for discretizing the system of nonlinear ODEs. The main advantage
of this technique is its lack of need for linearization. The global collocation techniques impose a
significant computational cost, which arises from calculating the dense system of algebraic equations.
The proposed technique estimates differential operators on every stencil. As a result, it produces
sparse differentiation matrices and reduces the computational burden. Numerical experiments
indicate that the method is precise and efficient for long-time simulation.

Keywords: generalized Rosenau–Kawahara–RLW; solitary wave solutions; local meshless technique

1. Introduction

A disturbance of the ocean surface generally resulting from deep-sea earthquakes
shifting the sea floor and generating tsunami waves and oceanic acoustic fields has in-
terested scientists for a long time [1,2]. Tsunamis are near-shore propagating waves with
long wavelengths and enormous amplitudes. The possibility of migration of these waves
into the coast and devastation of property is substantial. Wave trains and wave forms
with leading elevated or depressed waves have been previously observed. With respect
to human catastrophes, the wavelength and amplitude ranges of these kinds of wave are
considerable. Climate change and global warming are examples of these great natural
disasters. Flooding, heat waves, early spring arrival, sea-level rise, glacier melting, coral
reef bleaching, and disease contagions are the present-day results of climate change [3–7].
Nevertheless, these giant waves can constitute alternative energy resources for near-future
applications if the essential technology is implemented [8–12].

Nonlinear partial differential equations (NPDEs) govern many natural phenomena
arising in mathematical physics and engineering sciences [13–15]. Nonlinear waves are
an important scientific research field. In recent decades, numerous scientists developed
various mathematical models, such as the Korteweg–de Vries (KdV) [16], regularized-long
wave (RLW) [17], and Rosenau [18] equations, to describe wave behavior. Indeed, the
wave–wall and wave–wave interactions in compact discrete systems dynamics cannot
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be appropriately accomplished by the KdV model. To tackle this issue, Rosenau [19,20]
introduced the following so-called Rosenau model:

ut + uxxxxt + ux + uux = 0, (1)

which commonly represents the dense discrete system and simulates the long-chain trans-
mission model via an L-C flow in the computer and radio fields. The symbol u = u(x, t)
represents the wave velocity and the term −uxxt in the Rosenau model (1) is used to take
into account nonlinear waves. Park [21] proved the uniqueness and existence of the solution
to (1).

For further analysis of nonlinear waves, one term −uxxt needs to be involved in the
Rosenau Equation (1). The obtained model is typically known as the following Rosenau–
RLW model [22–24]:

ut + uxxxxt − uxxt + uux + ux = 0. (2)

Following [25,26], the Rosenau–RLW model can be developed in the generalized
Rosenau–RLW model as:

ut − uxxt + uxxxxt + ux + upux = 0, (3)

in which p ≥ 1 is a positive integer.
The KdV equation was modified by Kawahara [27] using solitary waves to balance the

nonlinear effect via the higher-order dispersion effect. Hence, Kawahara [27] introduced a
generalized non-linear dispersive relationship through the addition of a fifth-order term to
this model. He took into account the effects of higher-order dispersion by approximating
his model in the following form:

ut + ux + uux + uxxx − uxxxxx = 0. (4)

The Kawahara-type equation was proposed for the shallow water wave theory with
surface tension [27]. If the third nonlinear term on the left-hand side of the equation is
substituted by u2ux, then the Equation (4) is called as the modified Kawahara equation.

In order to take nonlinear waves into consideration, Pan and He [28] derived the
Rosenau–Kawahara equation with the addition of the viscous terms −uxxxxx and +uxxx
and obtained the generalized form of the Rosenau–RLW model (3). They investigated the
solitary and periodic solutions of the following equation:

ut + ux + upux + uxxx − uxxt + uxxxxt − uxxxxx = 0. (5)

In this paper, we focus on finding the approximate solutions of the initial boundary
value problem (IBVP) for the one-dimensional (1D) generalized Rosenau–Kawahara–RLW
model as

ut + αux + βupux + γuxxx − µuxxt + ηuxxxxt − σuxxxxx = 0, (6)

where the initial and boundary conditions (abbreviated as IC and BCs, respectively) are
prescribed as

u(x, 0) = g(x), (7)

u(a, t) = u(b, t) = ux(a, t) = ux(b, t) = uxx(a, t) = uxx(b, t) = 0, (8)

in which constants α, β, γ, η, σ and µ represent non-negative constants, p ≥ 2 denotes a positive
integer, g(x) is prescribed continuous function, and u = u(x, t) is a real-valued function.

When γ = σ = 0, Equation (6) converts to the generalized Rosenau–RLW model.
For the case of α = µ = η = 1, γ = σ = 0 and β = 2, Equation (6) becomes to the
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usual Rosenau–RLW model. For the special case α = γ = η = σ = 1, µ = 0 and β = 2,
Equation (6) corresponds to the usual Rosenau–Kawahara model and for µ = 0, Equation (6)
becomes the generalized Rosenau–Kawahara model.

Lemma 1 (See [28]). Let u0(x) ∈ C7
0([a, b]). Then, the IBVP (6)–(8) satisfies the following energy

conservative property:

E(t) =
b∫

a

(u2 + µu2
x + ηu2

xx)dx = ||u||2L2 + µ||ux||2L2 + η||uxx||2L2 = E(0), µ, η > 0, t ∈ [0, T],

where C7
0([a, b]) represents the set of functions that are seventh order continuous differentiable in

the spatial interval [a, b] and have compact supports inside (a, b).

Over the last few years, some analytical and numerical approaches have been adopted
to obtain the solution of the IBVP (6)–(8). Jin [29] applied the homotopy perturbation
and variational iteration methods. Korkmaz and Dag [30] used the cosine expansion and
Lagrange interpolation polynomials based on differential quadrature. Zuo [31] adopted the
tanh ansatz and sech ansatz techniques to obtain exact bright and dark 1-soliton solutions.
Pan and He [28] proposed a three-level linearly implicit finite difference (FD) approach.
Later, He [32] derived the exact solitary wave solution with power law nonlinearity and
advanced a three-level linearly implicit difference approach. Wang and Dai [33] developed
a three-level conservative fourth-order FD approach, while Gazi et al. [34] employed a
septic B-spline collocation finite element (FE) technique.

Mesh-free (meshless) methods have drawn considerable interest from the scientific
community in recent decades. Unlike conventional mesh-dependent techniques (such as
the FE, FD, and spectral techniques), these methods are independent of predefined grids
and alignment for discretizing the domain. They use merely a group of scattered nodes
provided by the initial data in order to cover the interior and the boundaries of the domain.
They are also independent of the problem’s geometry. The radial basis function (RBF) is one
type of these methods. The RBF method utilizes a univariate function with an Euclidean
norm, which converts a multidimensional problem into one that is virtually one-dimensional.
Meshless RBFs have recently been widely utilized as a potential choice for solving PDEs
in different applications [35]. The meshless characteristic of RBF-based methods provides
flexibility with respect to the problem geometry, simplicity of multidimensional application,
and a high convergence order. The RBF method may be either local or global, each of
which has advantages and disadvantages. In global methods, all the nodal points in the
domain of the problem are used, and implementation is simple. Small-scale problems can be
easily solved by global methods, although ill-conditioned interpolation matrices are often
encountered in these techniques. On the other hand, the local RBF techniques use only nodes
in every subdomain’s influence area around each spatial point. This mitigates the original
ill-conditioning problem and the computational cost. Some authors have tried localized
RBF-based strategies, such as the localized RBF-generated FD (LRBF-FD) [36,37] and the
localized RBF partition of unity (LRBF-PU) [38,39], which produce well-conditioned systems.

The major objective of this work is to implement the meshfree LRBF-FD strategy for
computing the solitary wave propagation of the generalized Rosenau–Kawahara–RLW
model. The major advantages of the proposed mesh-free (meshless) technique and the
related generalization over surfaces are that they are independent from a background mesh
or cell for approximation and are easy to implement on different irregular domains in
multi-dimensional spaces. The meshless LRBF-FD is the hybridization of the meshless
concept with the FD technique. Nonetheless, this approach does not require meshing
over the stencil nodes (the local subdomain or the subdomain), unlike the FD method.
This process is performed for all grid points within the computational region. In addition,
the grid points in each stencil can be readily increased for improving accuracy.



Symmetry 2023, 15, 1980 4 of 17

The outline of this paper has been organized as follows. Section 2 introduces the LRBF-
FD strategy and the meshfree scheme of lines is applied to discretize the spatial variable
of the generalized Rosenau–Kawahara–RLW model. Consequently, a nonlinear system
of ODEs is derived that can be solved using either a numerical time stepping method or
a direct solution in the time dimension. Some numerical tests are given in Section 3 to
verify the numerical accuracy and performance of the LRBF-FD. In addition, it is shown
that the computational efficiency of the proposed method is sufficiently superior to one
exhibited by the other schemes in the existing literature. Finally, Section 4 presents the
concluding remarks.

2. The RBF Collocation Scheme

Let X = {x1, x2, . . . , xN} ⊆ Rd, be a finite set of scattered data interpolation in a
bounded and closed domain containing with corresponding values fi for i = 1, 2, . . . , N.

2.1. The RBF Collocation Technique

Based on the Kansa method [35], the RBF interpolation method uses linear combi-
nations of translations of one function φ of a single real variable. In 1D, the basic RBF
interpolant for the solution u(x) at discrete nodes takes the form

u(x) ≈ s(x, ε) =
N

∑
j=1

ajφj(x) =
N

∑
j=1

ajφ(||x− xj||), (9)

where aj are unknown constants and ‖.‖ represents the Euclidian norm, xj are centers
that coincide with the collocation nodes xi ∈ Ω and φj(x) = φ(||x − xj||) are radial
basis functions:

s(xi, ε) = fi, i = 1, . . . , N. (10)

Imposing Equation (10) in (9) on u(x) leads to a system of linear equations of the form

Aφ Λ = f , (11)

with

Aφ, ij = φj(xi), f =


f1
f2
...

fN

, Λ =


a1
a2
...

aN

, i, j = 1, . . . , N,

where the unknown vector Λ can be computed by making use of the collocation method.

2.2. The LRBF-FD Collocation Technique

The global RBF (GRBF) method requires all the grid nodes in the domain to es-
timate differential operators L at a node as the center. Indeed, all the grid points in
the spatial interval must be considered in order to calculate the interpolation coefficient.
Nevertheless, a larger and ill-conditioned linear system is generated in GRBF, which may
lead to uncertain outcomes. In contrast, the local RBF method can be used only for the
stencil (restricted points) on every center instead of the whole point domain. This method
results in a linear system that is sparse and better-conditioned, while obtaining good relia-
bility for ill-conditioned problems. The LRBF-FD estimates the linear differential operator
L via the FD at each stencil. For every stencil, a small linear system must be solved with a
conditionally positive definite (CPD) coefficient matrix. The LRBF-FD constitutes a general-
ization of the traditional FD technique that replaces the polynomial interpolation within a
FD stencil with the RBF interpolation to compute the weighting coefficients.
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Suppose that Ω ⊂ R and xi ∈ R are arbitrary in which this node has a support domain
with ni points Ii = {xi1 , xi2 , . . . , xini

} inside its stencil. The FD scheme approximates the
differential operator L at a reference node by using the weighted linear sum of function
values at all grid nodes into its stencil, in which the weighting coefficients at the stencil can
be achieved as comes next:

L u(xi) =
ni

∑
j=1

wju(xij). (12)

Figure 1 displays demonstration of the distributed points in the computational domain
with a stencil at point x3.

Figure 1. Demonstration of the distributed points in the computational region with a stencil at nodal
point x3.

The LRBF-FD computes the weighting coefficients w1, w2, . . . , wni by enforcing the

requirement that the linear combination (12) must be exact for the set of RBF, {φj(x)}
∣∣∣ni

j=1
,

where the centers are located at

L u(xi) =
ni

∑
j=1

wjφj(xij). (13)

In a more concise form, the LRBF-FD weights in (13) can be illustrated in a matrix
form as

Aφ w = Ψ , (14)

where

w =


w1
w2
...

wni

, Ψ =


Lφi1(x)|x=xi

Lφi2(x)|x=xi
...

Lφini
(x)|x=xi

, Aφ, rs = φir (xis), r, s = 1, . . . , ni. (15)

The weighting coefficients w1, w2, . . . , wni are the unknown coefficients to be computed
from the above-mentioned system at every stencil [40].

2.3. Discretization of the Generalized Rosenau–Kawahara–RLW Model

The LRBF-FD method approximates the unknown function by implementing RBFs
while estimating the lth derivative via the FD method. The major benefit of these methods
is their approximation of derivatives using the FD scheme at every local support domain.
As such, at each support domain, a small linear algebraic equations system must be resolved
using the CPD interpolation matrix.

Here, we discretize spatial derivatives of the generalized Rosenau–Kawahara–RLW
model by means of the LRBF-FD technique. Based on this, the first, third, fourth and fifth
order derivatives of u(x, t) can be approximated by means of the function values at all
nodes in the stencil of xi, as comes next:
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ux(xi, t) =
ni

∑
j=1

wx,1
i,j u(xij , t) = Wxu(t), (16)

uxx(xi, t) =
ni

∑
j=1

wx,2
i,j u(xij , t) = Wxxu(t), (17)

uxxx(xi, t) =
ni

∑
j=1

wx,3
i,j u(xij , t) = Wxxxu(t), (18)

uxxxx(xi, t) =
ni

∑
j=1

wx,4
i,j u(xij , t) = Wxxxxu(t), (19)

uxxxxx(xi, t) =
ni

∑
j=1

wx,5
i,j u(xij , t) = Wxxxxxu(t), (20)

where the symbol wx,l
i,j denotes the weighted differences for the order derivatives l =

{1, 2, 3, 4, 5} and u(t) = [u1(t), . . . , uN(t)] at every stencil. The matrices structure Wx, Wxx,
Wxxx, Wxxxx and Wxxxxx relies on the number of nodes in every stencil. For example, if we
select three nodes at every stencil, then the matrices Wx,Wxx, Wxxx, Wxxxx and Wxxxxx are
tridiagonal matrices.

We obtain the following ODEs system by replacing Equations (16)–(20) in (6) and
collocating nodes in it by

d(I− µWxx + ηWxxxx)u(t)
dt

= −αWxu(t)− βup(t). ∗Wxu(t)− γWxxxu(t) + σWxxxxxu(t). (21)

Here, an ODE solver is adopted for solving the system of ODEs (21) in the temporal
direction. The method of lines is a method that utilizes FD in the time dimension to solve
ODE problems. If all eigenvalues of the spatial discretization technique, scaled by the time
step (δt), are within the stability region of the spatial operator approximating time, then
this method is considered stable. Algorithm 1 outlines the steps for fully discretizing the
1D Rosenau–Kawahara–RLW model using this approach.

Algorithm 1: Full discretization of the generalized Rosenau–Kawahara–RLW
model
1 Enter the required simulation parameters such as: N, ni, δt, T, α, β, µ, η, γ and σ;
2 tstep = [0 : δt : T];
3 Construct the differentiation matrices Wx, Wxx, Wxxx, Wxxxx and Wxxxxx;
4 Construct the coefficient matrix of the ODE obtained :
5 M = I− µWxx + ηWxxxx;
6 Make the right-hand side of (21):
7 RHS = @(t, u) − αWxu(t)− βup(t). ∗Wxxxu(t) + γWxxxu(t) + σWxxxxxu(t);
8 Enter the IC u0 = g(x);
9 Apply the BC;

10 To solve the ODE obtained, use the following command:
11 opt = odeset(’RelTol’, 2.3× 10−14, ’AbsTol’, 1× 10−13, ’Mass’, M);
12 [t, u] = ode15s(@(t, u) RHS(t, u), tstep, u0, opt);
13 Calculate the absolute error.
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3. Numerical Experiments

This section introduces three numerical examples on the generalized Rosenau–Kawahara–
RLW model to measure the accuracy and the performance of the LRBF-FD technique.
For this purpose, we calculate the L∞, L2, and Lrms norm errors as

L∞ = max
1≤i≤N

|ui −Ui|,

L2 =

√√√√ N

∑
i=1

(ui −Ui)
2,

Lrms =

√√√√√ N
∑

i=1
(ui −Ui)

2

N
.

Here, Ui and ui denote the numerical and exact solutions, respectively. The numerical
examples use the multiquadric RBF (MQ) φ(r) =

√
1 + ε2r2 as the basis function with

a shape parameter ε. The accuracy and flatness of the function heavily depend on this
parameter ε, but there is no agreement on the best value. The LRBF-FD method places great
importance on the selection of ε. To determine the optimal shape parameter ε, we utilize
Algorithm 2 from Sarra’s method [41].

Algorithm 2: Optimal shape parameter [41].

1 Kmin, Kmax, εIncrement
2 Optimal Shape Parameter
3 function OptimalShapeParameter(Kmin, Kmax)
4 K = 1 while K < Kmin or K > Kmax do
5 Construct interpolation matrix M;
6 [U, S, V] = svd(M);
7 K = σmax

σmin
; if K < Kmin then

8 ε = ε− εIncrement

9 else
10 ε = ε + εIncrement

11 return ε

The MATLAB R2016a environment on a Windows 10 desktop computer with 4 GB RAM
was used for numerical computations. The condest command in MATLAB can be used to
obtain the condition number (CN) of the coefficient matrix.

Example 1. Let us study the generalized Rosenau–Kawahara–RLW model (6) associated with
α = β = µ = η = σ = 1 and p = 2 on the space interval [−40, 200] so that exact solitary wave
solution is

u(x, t) =
3
4

√
370− 5

√
10√

5
√

37− 29
sech2

[√√
37− 5
4

(
x− 33− 5

√
37

5
√

37− 29
t

)]
. (22)

Hereafter, we study this example based on the LRBF-FD collocation technique for
different values of δt, N, ni and T. Table 1 reports the errors of numerical solutions L∞, L2,
and Lrms norms, CN and computational times (in seconds) at different values of stencil
sizes ni with δt = 1/1000 when T = 2. Table 2 compares the errors of numerical solutions
using L∞ and L2 norms with techniques described in [28,33] when T = 10 by taking
δt = 0.005. Table 3 compares the L∞ and L2 norm errors with methods introduced in [28,33]



Symmetry 2023, 15, 1980 8 of 17

by various values of δt and N when T = 40. Based on comparisons in Tables 2 and 3, we
can observe that the proposed strategy is slightly better than the techniques introduced
in [28,33]. Table 4 lists the conservative invariant E over spatial interval [−40, 200] at
various total times T. It can be seen that the method is conservative perfectly (up to 5
decimals) for energy during the long-term time evolution of the solitary wave. Figure 2
shows the numerical solution and corresponding maximum norm errors when δt = 1/1000,
N = 600 and ni = 581 over spatial interval [−40, 200]. Figure 3 displays the long-time
behavior of numerical solutions with N = 500, ni = 467 and δt = 1/1000 at several total
times T ∈ {0, 20, 30, 40, 60} over spatial interval [−40, 200]. As seen in Figure 3, the single
solitons move to the right-side with the preserved amplitude and shape. Finally, Figure 4
depicts the maximum norm errors L∞ at various total times T ∈ {0, 20, 30, 40, 60} with
N = 350, ni = 321 and δt = 0.01 over spatial interval [−40, 200].

Table 1. Errors using L∞, L2, and Lrms norms, CN and computational times with δt = 1/1000 at
various stencil sizes ni over spatial interval [−40, 200] for Example 1 when T = 2.

N ni L∞ L2 Lrms CN CPU Times

600 295 1.3656× 10−6 3.7376× 10−6 1.5259× 10−7 1.3729× 104 3.285035
600 341 1.3268× 10−6 3.6333× 10−6 1.4833× 10−7 1.3732× 104 3.289796
600 427 1.3028× 10−6 3.5684× 10−6 1.4568× 10−7 1.3735× 104 3.291074
600 451 1.2926× 10−6 3.5449× 10−6 1.4472× 10−7 1.3736× 104 3.333106
600 591 7.6618× 10−7 2.1733× 10−6 8.8726× 10−8 5.4577× 104 3.499641

Table 2. Comparison of errors using L∞ and L2 norms with δt = 0.005 over spatial interval [−40, 200]
for Example 1 when T = 10.

h Method ε N ni L∞ L2

0.8
LRBF-FD 0.23 300 175 1.114× 10−6 3.518× 10−6

Ref. [33] − 300 − 1.177× 10−4 3.279× 10−4

Ref. [28] − 300 − 1.032× 10−1 2.660× 10−1

0.4
LRBF-FD 0.62 600 587 1.125× 10−6 7.358× 10−6

Ref. [33] − 600 − 5.431× 10−5 1.187× 10−4

Ref. [28] − 600 − 2.570× 10−2 6.650× 10−2

0.2
LRBF-FD 0.749 1200 1153 1.037× 10−6 8.134× 10−6

Ref. [33] − 1200 − 4.686× 10−5 1.124× 10−4

Ref. [28] − 1200 − 6.460× 10−3 1.666× 10−2

0.1
LRBF-FD 1.749 2400 2251 4.098× 10−7 4.981× 10−6

Ref. [33] − 2400 − 4.634× 10−5 1.118× 10−4

Ref. [28] − 2400 − 1.631× 10−3 4.209× 10−3

Table 3. Errors using L∞ and L2 norms over spatial interval [−40, 200] for Example 1 when T = 40.

N δt Method [33] LRBF-FD

L2 L∞ L2 L∞

300 0.4 3.3196758× 100 1.2567252× 100 1.5078× 10−4 4.5268× 10−5

600 0.1 1.6009018× 10−1 6.2383859× 10−2 7.7671× 10−5 1.4522× 10−5

1200 0.025 9.8513233× 10−3 3.8451638× 10−3 6.1025× 10−5 9.6039× 10−6
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Table 4. The conservative invariant E over spatial interval [−40, 200] at several values of total times
T for Example 1.

T Method [33] LRBF-FD T Method [28] LRBF-FD

0 25.44743969249009 25.44116739376160 0.05 25.451405792697514 25.44116739121527
10 25.44743945612407 25.44116721399481 19.95 25.451405792697514 25.44116705761903
20 25.44743934987927 25.44116705606914 39.95 25.451405792447929 25.44116686770641
30 25.44743928843207 25.44116686591815 59.95 25.451405792214793 25.44116686770641
40 25.44743923198240 25.44116649829927 79.95 25.451405791920855 25.44116686770641
50 25.44743917723612 25.44116687547143 99.95 25.451405792207414 25.44116686770641

Figure 2. The approximation solution and corresponding maximum norm errors when δt = 1/1000,
N = 600 and ni = 581 over spatial interval [−40, 200] for Example 1.
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Figure 3. The long-time behavior of approximate solutions at various total times T ∈ {0, 20, 30, 40, 60}
with N = 500, ni = 467 and δt = 1/1000 over spatial interval [−40, 200] for Example 1.

Figure 4. The maximum norm errors L∞ at various total times T ∈ {0, 20, 30, 40, 60} with N = 350,
ni = 321 and δt = 0.01 over spatial interval [−40, 240] for Example 1.

Example 2. Consider the generalized Rosenau–Kawahara–RLW model (6) associated with α =

β = γ = η = σ = 1, µ = 2 and p = 4 on the space interval [−40, 240] so that the exact solitary
wave solution is

u(x, t) =

[
40(
√

127− 10)2

3(10
√

127− 129)

] 1
4

sech

[√√
127− 10

3

(
x− 118− 10

√
127

10
√

127− 109
t

)]
. (23)

This example is simulated by using the LRBF-FD collocation scheme for different
values of δt, N, ni and T. Table 5 presents the errors of numerical solutions having L∞, L2,
and Lrms norms, CN and computational times (in seconds) at several values of stencil sizes
ni with δt = 1/1000 when T = 5. Table 6 includes the errors of approximate solutions by
making use of L∞ and L2 norms with techniques described in [28,33] by taking δt = 0.005
at total time T = 10. In view of Table 5, we can observe that the numerical accuracy of the
LRBF-FD is clearly better than the technique described in [28,33]. Table 7 lists the conserva-
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tive invariant E at several total times T over spatial interval [−40, 240]. One can observe
that E is conserved (up to 8 decimals) and the method can be well applied to investigate the
solitary wave over a long time. Figure 5 represents the long-time behavior of numerical so-
lutions with N = 500, ni = 437 and δt = 1/1000 at several total times T ∈ {0, 20, 30, 40, 60}
over spatial interval [−40, 240]. As observed in Figure 5, the single solitons move to the
right side with the preserved amplitude and shape. Figure 6 shows the maximum norm
errors L∞ at several total times T ∈ {20, 30, 40, 60} with N = 1200, ni = 1153 and δt = 0.1
over spatial interval [−40, 240]. Figure 7 depicts the numerical solution and corresponding
maximum norm errors L∞ when δt = 1/1000, N = 450 and ni = 379 over spatial inter-
val [−40, 240]. Finally, Figure 8 depicts the relevant matrix’s sparsity structures M with
N = 110 in the case of ni ∈ {11, 15}.

Table 5. Errors using L∞, L2, and Lrms norms, CN and computational times with δt = 1/1000 at
various stencil sizes ni over spatial interval [−40, 240] for Example 2 when T = 5.

N ni L∞ L2 Lrms CN CPU Times

700 341 1.7097× 10−6 8.8572× 10−6 3.3477× 10−7 1.8396× 104 1.767428
700 457 1.5070× 10−6 6.5384× 10−6 2.4713× 10−7 1.8400× 104 1.796425
700 571 1.4809× 10−6 6.0702× 10−6 2.2943× 10−7 1.3651× 104 1.840518
700 677 1.4589× 10−6 5.1799× 10−6 2.1883× 10−7 1.3392× 104 1.984204
700 695 1.4405× 10−6 5.1403× 10−6 1.9428× 10−7 1.8353× 105 2.023724

Table 6. Errors using L∞ and L2 norms with δt = 0.005 at T = 10 over spatial interval [−40, 240] for
Example 2.

h Method ε N ni L∞ L2
0.8

LRBF-FD 0.23 300 175 1.815× 10−6 6.139× 10−6

Ref. [33] − 300 − 7.812× 10−4 1.684× 10−3

Ref. [28] − 300 − 5.839× 10−2 1.543× 10−1

0.4
LRBF-FD 0.62 600 587 1.823× 10−6 9.347× 10−6

Ref. [33] − 600 − 9.057× 10−5 2.037× 10−4

Ref. [28] − 600 − 1.446× 10−2 3.790× 10−2

0.2
LRBF-FD 0.749 1200 1153 1.545× 10−6 1.093× 10−5

Ref. [33] − 1200 − 3.270× 10−5 7.840× 10−5

Ref. [28] − 1200 − 3.599× 10−3 9.440× 10−3

0.1
LRBF-FD 1.749 2400 1541 1.190× 10−6 1.043× 10−5

Ref. [33] − 2400 − 2.890× 10−5 7.020× 10−5

Ref. [28] − 2400 − 9.011× 10−4 2.366× 10−3

Table 7. The conservative invariant E over spatial interval [−40, 240] at various total times T for
Example 2.

T Method [33] LRBF-FD T Method [28] LRBF-FD

0 13.56376151273996 13.5545486917708 0.05 13.565665615099391 13.5545486917729
10 13.56376156073630 13.5545486910319 19.95 13.565665614771643 13.5545486904145
20 13.56376142914885 13.5545486904287 39.95 13.565665614965912 13.5545486914574
30 13.56376135010697 13.5545486912147 59.95 13.565665614937172 13.5545486900692
40 13.56376129439884 13.5545486914564 79.95 13.565665614960499 13.5545486949607
50 13.56376125125742 13.5545486907607 99.95 13.565665614998375 13.5545486936278
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Figure 5. The long-time behavior of numerical solutions at several total times T ∈ {0, 20, 30, 40, 60}
with N = 500, ni = 437 and δt = 1/1000 over spatial interval [−40, 240] for Example 2.

Figure 6. The maximum norm errors L∞ at various total times T ∈ {20, 30, 40, 60} with N = 1200,
ni = 1153 and δt = 0.1 over spatial interval [−40, 240] for Example 2.
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Figure 7. The approximation solution and corresponding maximum norm errors over spatial interval
[−40, 240] for Example 2 when δt = 1/1000, N = 450 and ni = 379.
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Figure 8. The sparsity structures of the relevant matrix M with N = 110 for ni ∈ {11, 15}.

Example 3. Consider the Kawahara-type Equation (6) with parameters as α = β = γ = σ = 1,
η = µ = 0 and p = 1 on the space interval [−20, 30] so that the exact solitary wave solution is

u(x, t) =
105
169

sech4

[√
13

26

(
x− 2− 36

169
t
)]

. (24)

The LRBF-FD collocation method is adopted for solving this problem for different
values of δt, N, ni and T. Table 8 presents the errors of numerical solutions by means of L∞,
L2 and Lrms norms, and computational times (in seconds) when T = 1 at several values of
stencil sizes ni with δt = 0.01. Table 9 represents the errors of approximate solutions based
on L∞ and L2 norms with techniques described in [42,43] at several values of time step δt
for N = 250, ni = 217 and c = 1.56 over spatial interval [−20, 30]. In view of Table 8, we
can see that the results by the proposed method show improvement over the techniques
presented in [42,43]. Finally, Figure 9 depicts the numerical solution and corresponding
maximum norm errors when δt = 0.1, N = 250 and ni = 235 over spatial interval [−20, 30].

Table 8. Errors using L∞, L2 and Lrms norms and CPU times with δt = 1/1000 when T = 1 and
N = 100 at different stencil sizes ni over spatial interval [−20, 30] for Example 3.

ni L∞ L2 Lrms CPU Times

41 1.8552× 10−2 4.6501× 10−2 4.6501× 10−3 1.304175
55 1.5961× 10−2 3.9228× 10−2 3.9228× 10−3 1.308950
75 1.4311× 10−3 4.4648× 10−3 4.4648× 10−4 1.260047
79 1.4258× 10−3 4.4197× 10−3 4.4197× 10−4 1.313903
83 1.1660× 10−3 3.6052× 10−3 3.6052× 10−4 1.292554
87 7.6704× 10−4 2.3372× 10−3 2.3372× 10−4 1.323965
91 5.9984× 10−4 1.8503× 10−3 1.8503× 10−4 1.354920
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Table 9. Errors using L∞ and L2 norms at several values of time step δt when T = 1, N = 250, and
ni = 217 over spatial interval [−20, 30] for Example 3.

δt = 0.1 δt = 0.05 δt = 0.025

L∞ L2 L∞ L2 L∞ L2

LRBF-FD 6.8953× 10−6 3.6243× 10−5 6.7890× 10−6 3.7916× 10−5 6.7890× 10−6 1.7916× 10−5

MQ-RBF [42] 3.7050× 10−5 7.5934× 10−5 2.1006× 10−5 4.3318× 10−5 1.1969× 10−5 2.8266× 10−5

MQ-RBF [43] 6.1666× 10−3 2.0797× 10−3 9.2686× 10−4 5.4222× 10−4 6.3848× 10−4 1.4557× 10−4

TPS-RBF [43] 2.0675× 10−3 8.7495× 10−4 1.0727× 10−3 4.5004× 10−4 7.4467× 10−4 2.6368× 10−4

Figure 9. The approximation solution and corresponding maximum norm errors when δt = 0.1,
N = 250 and ni = 235 over spatial interval [−20, 30] for Example 3.
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4. Concluding Remark

This paper adopted a meshless numerical procedure for solving the IBVP of the
generalized nonlinear Rosenau–Kawahara–RLW without using linearization. Firstly, the
PDE was converted into a nonlinear system of ODEs through radial kernels. Afterwards,
the method of lines was utilized to approximate the temporal direction and generate a
system of nonlinear ODEs. Furthermore, an ODE solver was utilized to obtain highly
accurate outcomes from the nonlinear ODEs system. Global RBF collocation techniques
have the disadvantage of high computational cost and ill-conditioned system. The proposed
method overcomes these challenges well and reduces the computational cost by sparsifying
the linear system. Numerical results verified the reliability and efficiency of the present
method when compared with existing ones.
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