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Abstract—The filter is designed with air holes distributed in 

a hexagonal shape, and in the core of the filter, there are four 

gold rods to achieve surface plasmon resonance (SPR). The 

effect of the air hole's diameter and the hole-pitch (p) dimension 

on the effective mode area (X-polarization) and the 

Confinement Loss was studied using the finite element method 

(FEM). This analysis found evidence that the hole-pitch (p) is 

the most crucial factor that affects confinement loss value 

without shifting the resonant wavelength. In addition, 

increasing the air hole's diameter (d) can affect the amount of 

power transferred by changing the refractive index and shifting 

the resonant wavelength toward longer wavelengths. Our 

results demonstrated that could attain a maximum confinement 

loss of 332.95 dB∕cm and a minimum effective mode area of 10.44 

μm2 for p=1.9 μm and d= 1.2 μm at λ=0.75 μm. The control d 

(1.2, 1.3, 1.4, and 1.6) μm can be used to produce different 

induced resonant wavelengths (0.68, 0.7, 0.72, and 0.75) μm 

respectively. This filter has a lot of advantages, like being able 

to filter out wavelengths between 0.68 and 0.75 μm, and it can 

be used for a bunch of different things in biotech and medicine.  

Additionally, PCF has a simple structure and is simple to 

manufacture. 

Keywords—Photonic crystal, Surface plasmon resonance, 

Optical filter 

I. INTRODUCTION  

Photonic crystal fiber (PCF), also known as "holey fiber," 
this type of fiber has tiny, cylinder air holes spaced at regular 
intervals along its entire length [1]. Photonic-Bandgap guiding 
occurs when the optical fibers holes distribution is changed to 
improve optical fiber performance. For example, PCF can be 
changed as follows: elliptical holes distribution [2], octagonal 
holes distribution [3], square holes distribution [4], and 
hexagonal holes distribution [5]. The PCF was used in a 
pharmacy to test pharmaceutical items containing vitamins B 
(B1), B6, B12, and C from various suppliers [6], as well as, 
the refractive features of PCF have been applied to bacteria 
[7] , COVID [8] and cancer detection [9 ]in the field of 
sensors.  

In modern optical communications, using photonic 
crystals, they can control light rays in the near-infrared. This 
can help improve optical systems by increasing light 

transmission and light direction [10]. PCF filters provide a 
great degree of design freedom and may eliminate undesired 
wavelengths caused by noise. There are various solutions to 
this problem in the literature. Khaleque and Hattori, for 
example, investigated an optical filter with an elliptical metal 
film at 1310 nm and a loss of 1221 dB/cm for the direction x 
polarized [11]. Wang et al. suggested a gold nanofilm optical 
filter with a loss of 8578 dB/cm at the resonant wavelength of 
1310 nm [12]. Yang et al. used a silver-filled liquid-filled 
silver sheet to create a polarization filter at 1550 nm with a 
loss of 305 dB/cm [13]. Dan Yang have reported a D-shaped 
filter based on Surface Plasmon Resonance (SPR) with a loss 
1307.90dB/cm at 1310 nm [14]. Several filters in the 
wavelength range (0.68-0.75) µm are utilized for a variety of 
applications. In high-content screening [15] and DNA 
sequencing [16], for example, optical filters (0.68 µm) can 
eliminate undesirable background fluorescence noise. 
Furthermore, in molecular technology, optical filters can 
minimize excitation light noise or scattered light from the 
excitation source [17]. Furthermore, optical filters improve 
two-photon deep tissue imaging in the (0.68-0.75) µm range 
[18]. Another form of filter known as a "Barrier filter" is used 
in biotechnology and biomedicine to avoid unwanted 
excitation light in the fluorescence emission area (0.68 µm) 
[19]. Providing a quick and easy technique to identify 
vegetation and measure the general health of plants in the field 
of agriculture [20]. One of the main objectives of this paper 
was to design a four- layer hexagonal air hole optical filter 
with SPR, this filter operates in the (0.68 - 0.75) µm range. 
The filter's performance can be improved by adjusting the air 
hole diameter (d) and hole pitch (p). Meanwhile, this design 
can be used in place of other filters whose efficiency is 
uncontrollable. 

II. PROPOSED PCF APPROACH 

Transmission and coupling properties of PCFs were 
studied for performance analysis with the help of COMSOL 
commercial software integrated with FEM solvers and 
combined with PML (Perfect Match Layer) in COMSOL 
software 5.2 
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Fig. 1. Cross section details of PCF 

A PCF filter diagram via SPR with four gold rods is shown 
in Figure (1). PML is a layer that is 14.3 μm. The gold rod is 
the orange circle. The mode near the core of the PCF was 
computed using the FEM. Using Sellmeier's equation and the 
values of (1) provided in Table (1),  it is possible to estimate 
how the refractive index of SiO2 varies with wavelength [21]. 

 � ��� � �1 	 
��
���� 	 
�

��� 	 
��
���� (1) 

TABLE I.  PARAMETERS OF SELLMEIER’S EQUATION 
A1 A2 A3 

0.6961663 0.4079426 0.8974794 

λ1 µm2 λ2 µm2 λ3 µm2 

0.0684043 0.1162414 9.896161 

 

Drude-Lorentz model for metal was used to calculate the 
relative permittivity of gold as [22].  Table 2 shows the 
parameters of (2), where ω=2πc/λ, c is speed of light.  

 ε �� � ε� � ��   �������  � � �� ������� ��!" �   (2) 

TABLE II.  PARAMETERS OF RELATIVE PERMITTIVITY FOR GOLD 

 
The effective mode area is calculated as: [23] 

#$%% � ∬ |(�),+�|,),+-.-∬ |(�),+�|/,),+-.-   ,                                                  (3) 

The incident and surface plasmon resonance modes are 
treated dependently, The SPR effect is based on coupled mode 
theory is given by the following equations: [24] 

       0123405 � iκ89:;< 	 i=8>9?@A   ,     (4) 

      ,1BCD,E � F=>89:;< 	 FG>9?@A  ,  (5) 

C21, C12 are coupling coefficient between the Einc and ESPR 
modes and n is refractive index of the SiO2. 

κ1 , κ2 are the propagation constants of the Einc and ESPR of 
electric field of core and SPR modes respectively, and given 
by:  

  κ8 �  Hε IJKκL  , κ> � nκLN1 � OP� QRSP
P� TUP V        (6) 

where ε IJK  is permittivity of SiO2.  The general solution 

of (4 and 5) can be written in matrix form as:  

 
,,E W 9:;<9?@AX � F W κ8 =8>C>8 κ> X W 9:;<9?@AX (7) 

The eigenvalue of κ can be found by applying the 
following equation:  

  
,,E W 9:;<9?@AX � W9:;<9?@AX Z:[E  (8) 

From  (7), let matrix transformation \ � W κ8 =8>C>8 κ> X and 

the determinant of a matrix of (7 and 8) given by:  

  ]Z^|\ � G_| � 0, (9) 

I is the identity matrix (9) can be used to find κ.  

  �G8 � G��G> � G� � =8>=>8 � 0,  (10) 

Since the center of the PCF is symmetric, then C12 = C21 = 
C , κ satisfies the quadratic equation given by: 

      Ga � �G8 	 G> 2⁄ � a d ,  (11) 

where γ � H�κ8 � κ> 2⁄ � 	 C> , The coupling coefficient, 
which governs the PCF coupling between the Einc and ESPR, is 
given by: [25] 

 = � [f ∬ g;|(�),+�|,),+-.-∬ |(�),+�|,),+-.- ,  (12) 

If the mode is homogenous, the coupling coefficient is 
given by: 

  = � 2hi� �⁄ ,  (13) 

The refractive index �∆�� based on p for SiO2 is obtained 
by a Fourier series of periodic index variations within the 
center of the PCF is given by: [26]  

  ∆� � ∑ ��lm�� Z�n2opq , (14) 

The real part of the refractive index of SiO2 is given by:  

  ∆� � � rst u>vw xy, (15) 

The complex refractive index i� in (12) that results is the 
sum of the contributions of  p  and the wavelength.  

  i� � ∆� 	 � ���, (16) 

The confinement loss (CL) can be calculated by using the 
following equation: [27] 

 α�λ� � 8.686 � Im�i���  � κL � 10��dB/cm�, (17) 

Im[δn]  is the complex refractive index ( imaginary part ) 
and  κL � 2π λ⁄  , when κ1=κ2, κ in (11) is given by:  

��  �� ��⁄  

(THz) 

�� ��⁄  

(THz) 

� ��⁄  

(THz) 

�� ��⁄  

(THz) 

�� 

5.967 15.92 2113.6 650.07 104.86 1.09 
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 Ga � G8 a �2h �⁄ �i�,  (18) 

By using the boundary condition that Einc is incident on the 
core such that Einc = Einc (0) and ESPR =0, the solution of (4 and 
5) is given by: 

9:;<�x� � 9:;<�0��rst dx 	 F�G8 � G> 2d⁄ � tF��dx��, (19) 

  9?@A�x� � 9?@A�0��F= d⁄ � tF��dx�, (20) 

III. RESULTS AND DISCUSSION 

The electric field distributions of one of the PCF's modes 
are depicted in Figure 2. 

 

Fig. 2. Electric field distributions of the core mode 

 
 

 

 
 

 

 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Modal field distribution (a) core mode ( X-polarization) (b)at 
λ=0.72 μm  and (c) at λ=0.74 μm   the beginning of SPR modes  generation 

around a surface the gold rods (d) SPR modal field at λ=0.75 μm   . 

The core mode is shown in Figure 3(a). The distribution of 
the core mode and the start of plasmon phenomena 
surrounding the surface of gold rods are shown in Figures 3 
(b) and (c). The resonant coupling between the SPR and the 
core mode is shown in Figure 3(d). Figure 4 depicts the 
effective index of the core mode (blue line) and SPR mode 
(green curve) as a function of wavelength, as well as CL 
spectrum of the core mode (red curve). Note that the resonance 
wavelengths  0.68 µm and 0.75 µm happen when the line of 
the effective index of the core mode intersects with the line of 
effective index SPR mode at Re[neff] = 1.4376 (SPR1) and, 

Re[neff] = 1.4399 (SPR2). When incident light strikes the 
interface between SiO2, air, and the surface of the rods gold, 
setting κ1-κ2=0, C= γ, and using (19 and 20), the following 
equations are obtained: 

  �:;<�z� � �:;<�0� cos>�dz� ,  (21) 

  �?@A�x� � �?@A�0� tF�>�dx�, (22) 

where  PJ�� � |EJ��|> is incident power and PI�� � |EI��|> 
is plasmon power. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Real part of the Re[neff ](Blue curve), the SPR mode (Green 
curve), and the confinement loss spectrum (Red curve). 

A. The Effect of the (d) on the Effective Mode Area(X-

polarization). 

Figure 5 indicates the Effective Mode Area (EMA) 
varying with wavelength. Two EMA of SPR1 and SPR2 are 
observed at the wavelengths of 0.68 μm (λSPR1) and 0.75 μm 
(λSPR2), based on SPR phenomena, it is deduced that 
fundamental mode interacts with SPR mode at 0.68 μm  and 
0.75 μm . EMA of the core modes reaches a maximum at 8 
μm2 for the resonant wavelength 0.68 μm and 10.1 μm2 for the 
resonant wavelength 0.75 μm.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. EMA of core mode vs. wavelength 

EMA curves for various d diameters are shown in Figure 
6. As seen in Figure 6, the EMA of the core mode decreases 
as d increases. The explanation for this behavior might be due 
to the fact that the increase in d leads to a narrowing of the 
core, and the thickness of the air circumference around the 
core of the PCF increases, As a result, κ1 and κ2 vary 
depending on the boundary condition of the air/ SiO2/ Au 
interface as shown in (6).  

Another interesting observation is that the EMA at the 
resonant wavelength moves toward the longer wavelength 
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(red-shifted) with increasing (d), it is obvious that changing 
the d causes the varying of the phase matching in the core 
mode and induces a phase shift. It can be explained by Aeff is 
essentially related to the coupling coefficient C=2πδn/λ, it is 
quite clear that C of core mode is modulated by δn.  

The resonance wavelengths are 0.68, 0.7, 0.72, and 0.75 
μm and the corresponding EMAs are 10.1, 10.24, 10.3, and 
10.5 μm2 respectively, as shown in Figure 6. 

 
Fig. 6. EMA vs. wavelength for p=2.2 μm, d=1.2, 1.3, 1.4 and 1.6 μm 

As shown in Figure 7, the (d ) mostly influences the 
resonance wavelength. And it also has minimal effect on the 
EMA at SPR1 and SPR2. 

 

Fig. 7. EMA of core mode for p=2.2 μm , d=1.2, 1.3, 1.4 and 1.6 μm 

B. The Effect of the (p) on the Effective Mode Area(X-

polarization). 

Figure 8 shows the effect of various (p) values on the EMA 
for the core mode, first point, the curves of EMA are exactly 
identical; second point, there is no shift in the peaks of SPR1 
or SPR2 as a result of the influence of (p). It can also be 
noticed from Figure 8 the increase in EMA as a result of the 
increase in (p). This is because a larger ( p) increases the SiO2 
of the core relative to the air holes. Additionally, it should be 
noted that the increase in( p) does not influence the resonance 
wavelength because (p) in this range (p = 1.9-2.3 μm), does 
not affect phase-matching condition. 

 

Fig. 8. EMA vs. wavelength for d=1.2 μm, p=1.9, 2, 2.1 and 2.3μm 

For the hole-pitch p = 1.9, 2, 2.1, and 2.3 μm, the EMA of 
the SPR2 are 10.44, 11.04, 11.855, and 14.085 μm2 and those 
of the SPR1 are 7.8, 8.6, 9.3, and 10.98 μm2, respectively, as 
shown in Figure 9. 

 

 

Fig. 9. EMA of core mode for d=1.2 μm, p=1.9, 2, 2.1 and 2.3μm 

C. The Effect of the (d) on the C L 

The CL was estimated by utilizing the imaginary part of 
the effective mode index according to  (17). Figure10 
indicates the CL spectrum in core mode, SPR1 �G�� and SPR2  �G��   are observed at the wavelengths of 0.68 μm and 0.75 
μm. Figure 11 shows the CL of core mode when the( d ) is 
selected as 1.2 μm, 1.3 μm, 1.4 μm, and 1.6 μm. It can be 
found that SPR resonant wavelengths red shift with an 
increase in (d) at the same (p). Meanwhile, the value of the CL 
is increasing with an increase in (d). 

 
Fig. 10. CL vs. wavelength 
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Fig. 11. C L vs. wavelength for p=2.2 μm ,d=1.2, 1.3, 1.4, and 1.6 μm 

The result of CL in Figure 12 shows that when d = 1.2, 1.3, 
1.4  and 1.6 μm, the CLs are 57.6, 102.9 , 153, and 280.7 
dB/cm respectively. In addition, an increase in d = 1.2, 1.3, 1.4  
and 1.6 μm leads to resonance wavelengths 0.68, 0.7, 0.72 and 
0.75μm, respectively. Hence, the resonance wavelength value 
is easily controlled by changing the value of (d).  

Note that the γ � H�κ8 � κ> 2⁄ � 	 C> � C � 2πi� �⁄ ,at κ8 � κ> .An increase in d leads to an increase in the air in the 
holes which has a low refractive index compared to the 
material of the core (SiO2), therefore the i� of the core mode 
is changing , A change in δn changes the coupling coefficient 
(C), which induces a phase shift. In addition, the PI���0� in  PI���z� � PI���0� sin>�γz� is increased.  

According to (21 and 22), If γz = (π /4), the �:;<�0� is 
distributed equally between core mode and SPR mode; if γ z 
= (π/2), all of �:;<�0� is transferred into SPR mode; and if γz 
= (π), all of their PI���0� is returned to core mode. 

 

Fig. 12. CL vs. wavelength at d=1.2, 1.3, 1.4, and 1.6 μm 

D. The Effect of the (p) on the CL 

Figure 13 illustrates the CL of the core mode when p = 1.9, 
2, 2.1, 2.2, and 2.3 μm. By fixing the (d) and changing the (p), 
it is noting that the value of SPR2 increases as (p) decreases, 
although the resonant wavelengths remain constant at 0.68 μm 
(SPR1) and 0.75 μm (SPR2). Furthermore, the behavior of the 
CL curve is same, and there is no shift in the resonant 
wavelengths as (p) increases. As a result, the (p) can control 
the amount of CL, while the resonance wavelength remains 
constant. This is because the reduction of (p) and fixed (d) in 
this PCF structure decreases the air in the holes and increases 
the material of the core (SiO2), this indicates that (γz) in PI���z� � PI���0� sin>�γz�  is still constant with an increase 
in (p). 

At 0.75 μm resonance wavelength, the CL for p = 1.9, 2, 
2.1, 2.2, and 2.3 μm are 332.95, 280.74, 240.73, 192.59, and 
149.97 dB/cm, respectively. Moreover At 0.68 μm resonance 
wavelength the CL for p = 1.9, 2, 2.1, 2.2, and 2.3 μm are 
90.55, 67.38, 45.88, 31.39, and 22.43 dB/cm, respectively.  

 

Fig. 13. CL vs. wavelength for d=1.2 μm ,p=1.9, 2, 2.1, 2.2 and 2.3μm 

The main findings from the table.3 are as follows: 1. 
Maximum CL for Y-polarized core mode is observed in most 
of the studies (with the exception of Lu et al., 2018; Hossen, 
2019), whereas our results indicate a high maximum CL for 
X-polarized core mode 2. The wavelengths of the resonance 
are 1.31 and 1.55 μm, while our results show that the 
wavelengths of the resonance are 0.68 and 0.75 μm. 

TABLE III.  COMPARISON RESULTS BETWEEN THE PROPOSED DESIGN 

FILTER AND THE OTHER DESIGNS FILTER. 

Ref. Resonance 
wavelength (μm) 

CL (dB/cm) SPR 

[28] 1.31  508  Gold-layer 

[29] 1.55  630.20  Gold-layer 

[30] 1.31-1.55   234  Gold-layer 

[31] 1.55  718.87  Gold-layer 

[32] 1.55  1304.02  Gold film 

[33] 1.31 - 1.55  234  Gold film 

[34] 1.55  563.29  Gold film 

[35] 1.55  1024.84  Gold film 

[36] 1.31-1.55  251.26  Gold rod 

[37] 1.42 692.25  Gold wires 

[38] 1.519 - 1.664  573.33-543.21  Gold owire 

[39] 1.2-1.3475 -1.567  946.63- 826.79- 737.13  Gold rod 

[40] 0.75-0.85- 0.9 - 1 312.6- 438 - 376.8 - 285.2  Gold rod 

 

IV. CONCLUSIONS  

The SPR-based hexagonal photonic crystal filter has a 
basic design and is easy to fabricate. Gold is the metal used to 
create the plasmonic phenomena. A mathematical modelling 
technique and a mathematical model of plasmonic phenomena 
in the hexagonal photonic crystal filter have been developed. 
The finite element method was utilized to investigate the 
effective mode area and CL of the core mode, as well as the 
characteristics of the proposed PCF filter. According to the 
results, the resonance wavelengths of the proposed PCF filter 
are 0.68 μm, 0.7 μm, 0.72 μm, and 0.75 μm depending on (d). 
In addition, the amount of CLs can be adjusted by changing 
(p). When λSPR =0.75 μm and d=1.2 μm the following CLs are 
observed: (a) 332.95 dB∕cm at p=1.9 μm (b) 280.74 dB∕cm at 
p=2 μm (c) 240.73 dB∕cm at p=2.1 μm (d) 192.59 dB at p=2.2 
μm (e) 149.97 dB/cm at p=2.3 μm. Consequently, when λSPR 
=0.68 μm and d=1.2 μm(a) 90.55 dB∕cm at p=1.9 μm (b) 67.38 
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dB∕cm at p=2 μm (c) 45.88 dB∕cm at p=2.1 μm (d) 31.39 dB 
at p=2.2 μm (e) 22.43 dB/cm at p=2.3 μm. 
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