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ABSTRACT 

This study deals with the dynamic analysis of cantilever plates with 

variable thickness under the effect of periodic load. Two types of plates 

are analyzed a)Plate with out stiffeners, b)Plate with stiffeners, The 

studied cases are modeled by the finite element methods and analyzed by 

using STAAD PRO. Version 7 program. 

The main objective of this study is to predict the effect of periodic 

load on the deflection of the cantilever plate. For both types of plates 

stiffened and unstiffened, two length to average thickness ratios are 

studied (13.4, 8.9). 

A periodic load which represents a function of harmonic sine force 

is used. The amplitude is equal to (50 kN) and distributed on six nodes 

located in the center of the plates. Each node caries(8.4 kN). The load is 

applied with different frequencies ranging between 20 cycle/sec to 60 

cycle/sec, and the distance between each force is (0.2m). All the results 

(displacements) are obtained at two points on the free end of the 

cantilever plate( center and corner points), and normalized to those of 

static load. 

The results shows a significant variation of response across the transverse 

section of the cantilever plate. The normalized displacement is grater than 

(1.0) when the frequency of the applied dynamic load is (0.4 — 1.6) from 

the natural frequency. 
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'Chapter One 	 Introduction 

INTRODUCTION 

 

1-1 General 

In construction of buildings ,particularly in large cities, the current 

tendency is to make use of every area of land down to the last meter. 

This is usually achieved by constructing high-rise buildings. Constructing 

tall buildings necessitates careful attention to building outlooks which 

may be regarded as an essentiality in tall buildings especially residential 

tall buildings. In such buildings it is necessary to employ some electrical 

and mechanical equipments such as [1]: 

• air-conditioning and refrigeration units. 

• heat ventilation. 

• generators. 

The use of the above-mentioned equipments may cause undesirable 

vibrations which cause deformations or failures in some parts of the 

building such the balconies for example. Accordingly, it is important to 

take into account such vibrations in the analysis and design of any 

construction in the tall buildings. 

Almost any type of structural system may be subjected to one form 

or another of dynamic loading during its life time. From an analytical 

stand point , it is convenient to divide prescribed or deterministic loadings 

into two basic categories, periodic and nonperiodic. 

Periodic loadings are repetitive loads which exhibit the same 

time variation successively for a large number of cycles . 
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A nonperiodic loading may be either short — duration impulsive 

loading or long duration general forms of load[2]. 

1-2 Aim of Study 

The aim behind this work is to study the effect of periodical load on 

the deflection of two types of plates 

1- cantilever plate 'without stffeners 

2- cantilever prate with stiffeners. 

Both types are rectangular plates with variable thickness. The cases 

studied are modeled by the finite element methods and analyzed by using 

staad pro . program version 2007 . 

The periodic load which represents a function of harmonic sine 

force is used. It is distributed on six nodes which are located in the 

center of cantilever plates. The force is applied with different frequencies. 

The results (displacements) are predicted at the corner and middle 

nodes of the free end of the cantilever plate. 

Additionally, the present study focuses on: 

• The frequency of load. 

• The plate dimentions. 

a. Length of plate 

b. Width of plate 

c. Thickness of plate. 

• The beam dimentions. 
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Chapter One 	 Introduction 

1.3 Layout of thesis 
This thesis is arranged into five chapters. The current chapter is 

being the first. Chapter two presents a review of previous work related to 

the study. In chapter three the mathematical modeling of problems under 

study are derived and the available methods of solution are discussed. 

Different cases are studied, results obtained, and discussion of results are 

presented in chapter four. Chapter five includes the main conclusions 

drawn from this study, and suggestions for future works. 
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Chapter Two 	 REVIEW of LITERATURE ILI) 

REVIEW of LITERATURE 

The analysis of dynamically loaded structures has received a 

continuous but varying level of attention over the past years. Due to the 

infinite number of permutations of structural parameters and due to the 

costs of performing tests on such structures, the amount of available 

experimental data, while broad, is also scant relative to any particular 

combination of structure and dynamic load.[3] 

This chapter reviews previous studies that deal with the dynamic 

analysis of different types of plates under the action of general time-

dependent loads. 

Srinivas and Rao (1970) 14-1  presented a unified exact method for the 

static and dynamic analysis of class of thick laminates. A three-

dimensional, linear small deformation theory of elasticity solution was 

developed for bending vibration and buckling of simply supported thick 

orthotropic rectangular plates and laminates. The solution is formally 

exact and leads to a simple infinite series for stresses and displacements 

in flexure. Some numerical results were presented for plates and 

laminates. 

Pica and Hinton (1980) 1151  presented a unified approach for the 

static and transient dynamic linear and geometrically nonlinear analysis 

of Mindline plates including initial imperfections. The effects of 

transverse shear deformation and rotary inertia were automatically taken 

into account. A finite element idealization was adopted and the quadratic 
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Lagrangian Mindlin plate element was used together with select ve 

integration. Several numerical examples were presented and compared 

with results from other sources. 

Dobyns (1981) (6] presented equations for the analysis of simply 

supported orthotropic plates subjected to static and dynamic loading 

conditions. Transient loading conditions considered, included sine, 

rectangular, and triangular pulses, and pulses representative of high 

explosive blast and nuclear blast. These pulses could be applied as a 

uniform load over the panel, a concentrated load, a uniform load applied 

over a small rectangular area, and a cosine loading applied over a small 

rectangular area. A method for the analysis of low velocity impact was 

also presented. 

Reddy (1983) /7/, employed the finite element method to investigate 

the transient response of isotropic, orthotropic and layered anisotropic 

composite plates. Numerical convergence and stability of the element was 

established using Newmark's direct integration technique. Numerical 

ea. 
	 results for deflections and stresses were presented for rectangular plates 

under various boundary conditions and loadings. The parametric effects 

of the time step, finite element mesh, lamination scheme and orthotropy 

on the response were investigated. The presented results agreed very 

closely with the results available in the literature for isotropic plates. 

Grace and Kennedy (1985) 181, investigated the dynamic response of 

orthotropic plate structures having fixed-simply supported and free-free 

boundary conditions using orthotropic plate theory. They examined the 

influences of aspect ratio and rigidity ratio on the natural frequencies and 

compared the results to those obtained from beam-theory. The analytical 
os- 
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results also compared with experimental test results. The comparison 

confirmed for this class of structures the natural frequencies beyond the 

first cannot be reliably estimated by beam-theory. 

Ohga and Shigemtsui (1988) 19/ , applied the finite element method 

and transfer matrix on the large displacement dynamic analysis of the 

plate structures subjected to random out-of-plane and in-plane 

excitations. The transfer matrix relating to the incremental state variables 

on the left and right boundaries of a strip was derived from the system of 

equations of motion for a strip. They introduced, an approximation in the 

equations of motion in order to reduce computational efforts. The 

Newmark method was employed for time integrations. Equilibrium 

iterations based on the modified Newton-Raphson method were 

employed and geometric nonlinearity was considered by using a set of 

moving coordinate systems. Various numerical examples were proposed 

and their results were compared with those obtained by other methods. 

Khdeir and Reddy(1988) /10/ presented the transient response of 

simply supported anti-symmetric rectangular plates subjected to arbitrary 

loading. The state variable technique was used to solve exactly the 

equations of motion of the first-order transverse shear deformation theory 

as well as the classical laminate theory. The solutions of these two 

theories were considered to bring out the influence of the transverse shear 

deformation, the degree of anisotropy, and the number of layers. 

Mallikarjuna and Kant (1988) /11/ presented a simple isoparametric 

finite element formulation based on a higher-order displacement model 

for the dynamic analysis of multi-layer symmetric composite plates with 

an explicit time marching scheme. A higher-order theory which was more 
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accurate than the IVIindlin theory was applied, for the evaluation of plate 

response to different types of dynamic loads. A special mass lumping 

scheme was adopted which conserves the total mass of the element and 

includes the effects due to rotary inertia terms. The parametric effects of 

the time step, finite element mesh, lamination scheme and orthotropy on 

the transient response were investigated. Several numerical examples 

were presented and compared with results from other sources. 

Cederbaum and Aboudi (1989)114  investigated the dynamic response 

of viscoelastic laminated plates subjected to impulsive loading. The Fourier 

transform of the Boltzmann representation of the viscoelastic phases was 

incorporated into a micromechanical analysis, which establishes the five 

frequency-dependent functions characterizing the effective behavior of 

unidirectional fiber composites. First-order as well as higher-order shear 

deformation theories were used for the investigation of the laminated plate's 

response. The inversion of the response function into the time domain was 

performed by the Fast Fourier transform algorithm. It was shown that the 

viscoelastic behavior is significantly different from the elastic one. 

Comparisons between the results obtained from the various theories were 

discussed. 

Kant and Mallikarjuna(1989) ", employed a finite element method 

based on Mindlin's theory in the prediction of the dynamic transient 

response of multilayered composite sandwich plates. Numerical 

convergence and stability of 4-noded linear, 8-noded serendipity, and 9- 

noded Lagrangian elements were established using an explicit time 

integration technique. A special mass matrix diagonalization scheme was 

adopted which conserves the total mass of the element and includes the 
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effects due to rotary inertia terms. The parametric effects of the time step, 

finite element mesh, lamination scheme, and orthotropy on the transient 

response were investigated. Numerical results for deflections and stresses 

are presented under various boundary conditions and loadings. 

Yung and Chang (1989), 1.141  presented a transient dynamic finite 

element analysis for studying the response of laminated composite plates 

due to transverse foreign object impact. The analysis can be used to 

calculate displacements of composite plate during impact and transient 

stress and strain. the Newmark scheme was adopted to perform time 

integration from step by step . 

Katsikadelis et al. (1990), (15/  developed a boundary element 

approach for the static and dynamic analysis of Kirchhoffs plates of 

arbitrary shape which, in addition to the boundary supports, were also 

supported inside the domain on isolated points (columns), lines (walls) or 

regions (patches). They treated all kinds of boundary conditions. The 

supports inside the domain of the plate may yield elastically. The method 

r 
	 used the Green's function for the static problem without the internal 

supports to establish an integral representation for the solution which 

involves the unknown internal reactions and inertia forces within the 

integrand of the domain integrals. The Green's function was established 

numerically using boundary element method. Subsequently, using an 

effective Gauss integration for the domain integrals and a boundary 

element method technique for line integrals a system of simultaneous 

equations. In general, nonlinear algebraic equations is obtained which is 

solved numerically. Several examples for both the static and dynamic 

problem are presented to illustrate the efficiency and the accuracy of the 

proposed method. 
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Chapter Four   Applications and discussion of results 5271 

leads to a decrease in the max. dynamic displacement for the point which 

lies in the middle of the free end with ratio (3%-20%) for the same case. 

Table (4-4): natural frequency and natural period for plate sections of case 4 

rDimensions of plate 

(B*L) M 

Natural frequency 

Cycle/sec. 

Natural period 

Sec. 

2x4 41.513 0.0240 

3x4 25.791 0.0387 

4x4 19.063 0.0524 

I
5x4 15.226 0.0656 
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with stiffness of plate for point 2, case 4 
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4-3-9 Case 5:  The plates with stiffeners (beams), (L/t =13.4). The 

dimension of beam, (a:1.6m , b=0.25m). For (LB) ratios studied ranging 

from 0.5 to 1.25 . Dimensions of plates, natural frequency and natural period 

for plate sections are shown in Table (4-5). 

Results of point (1) are shown in Fig.(4-22) and Fig.(4-23), which 

represents the variation of normalized displacement (dynamic amplification 

factor) with stiffness of plate and variation of dynamic displacement with 

natural period of plate. 

From Fig.(4-22), it can be noted that, the max. normalized 

displacement varies from 0.9 to 3.75. This min. value (0.9) appears due to 

the ratio of the period of applied load to the natural period for the section of 

the plate equal to (62%), while the max. value ( 3.75) appears due to the 

period of the applied load is (93%) of the natural period. 

Results of point (2) are shown in Fig. (4-24) and Fig. (4-25), which 

represents the variation of normalized displacement (dynamic amplification 

factor) with stiffness of plate and variation of dynamic displacement with 

natural period of plate. 

Fig(4-24), it is noted that the max. normalized displacement for the 

point which lies at the edge of the free end is greater than the max. 

normalized displacement for the point which lies in the middle of the free 

end by (7% -280%), although the dynamic displacement for the point which 

lies at the edge of the free end represents ( 25%- 65%) of the dynamic 

displacement for the point which lies in the middle of the free end. 

Comparing (case 5) ,(case3) and (easel): It is found that the max. 

dynamic displacement for the point at the edge in (case 5) represents ( 53% 

- 70%) of the max. dynamic displacement for the point which lies at the edge 
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in case 3 and also represents ( 30% - 50%) of the max. dynamic 

displacement for the point which lies at the edge in (case 1). The dynamic 

displacement for the point which lies in the middle of the free end also 

decreased in its value compared with (case 1) and (case 3). Except when the 

value of the frequency of the applied load (40cycle/sec.), the magnitude of 

the dynamic displacement higher in case 5 when compared it with the 

dynamic displacement in (case 1) and (case 3). 

Table (4-5):natural. frequency and natural period for plate sections of case 5 

Dimensions of plate 

(B*L) M 

Natural frequency 

Cycle/sec. 

Natural period 

Sec. 

2x4 37.299 	 0.0268 

3x4 22.400 	 0.0446 

4x4 
_ 

14.648 	L 	0.0682 

5x4 10.899 	I  0.0917 
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Figure (4-22): the variation of normalized displacement (dynamic amplification factor) 
with stiffness of plate for point 1, case 5 
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Figure (4-24): the variation of normalized displacement (dynamic amplification factor) 

with stiffness of plate for point 2, case 5 
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Figure (4-25): the variation of dynamic displacement of point 2 with natural period of 

plate, case 5 
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4-3-11 Case 6:  The plates with stiffeners (beams), (Lit = 8.9). The 

dimension of beam, (a=0.6m , b=0.25m). For (LB) ratios are ranging 

from 0.5 to 1.25. Dimensions of plates, natural frequency and natural period 

for plate sections are shown in Table (4-5). 

Results of point (1) are shown in Fig.(4-26) and Fig.(4-27), which 

represents the variation of normalized displacement (dynamic amplification 

factor) with stiffness of plate and variation of dynamic displacement with 

natural period of plate. 

From Fig. (4-26), it can be shown that, the max. normalized 

displacement varies from (1.0 —2.4). the value (2.4) appears because the 

ratio of period of the applied load represents 20% greater than the natural 

period. The ratio of dynamic displacement to static displacement is equal to 

(1.0) because the period of the applied load is approximately equal to 20% 

from the ratio of the natural period of plate. 

Results of point (2) are shown in Fig.(4-28) and Fig.(4-29), which 

represents the variation of normalized displacement (dynamic amplification 

factor) with stiffness of plate and variation of dynamic displacement with 

natural period of plate. 

Fig.(4-28), it is noted that, the max. normalized displacement of point 2 

represents ( 40% - 99%) from the max. normalized displacement of point 1. 

Comparing (case 6) , (case 4) and (case 2): the max. displacement for 

the point which lies at the edge of the free end in (case6) is equal to (20% -

80%) from the value of max. dynamic displacement for the same point in 

(case 2), while the point which lies at the mid of the free end for (case 6) 

represents (52 % - 82%) of the dynamic displacement for the same point in 
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(case 2). Except for Fig.(4-27), load frequency (60 cycle/sec.) when it is 

compared with Fig.(4-11), load of frequency (60 cycle/sec.), it is noted that 

the values of dynamic displacement increase and also there is an increase in 

the magnitude of normalized displacement. This shows that the value of the 

static displacement has been effected greatly with the presence of the beams. 

Also the dynamic displacement for the point which lies at the edge of the 

free end in (case 6) represents ( 30% - 94%) of the dynamic displacement for 

the same point in (case 4). The point which lies in the mid of the free end 

has seen an increase in the dynamic displacement for (case 6) compare with 

(case 4). This increase happens only when the ratio of the period of the 

applied load is equal to 80% of the value of the natural period. 

Table (4-6): natural frequency and natural period for plate sections of case 6 

Dimensions of plate 

(B*L) M 

Natural frequency 

Cycle/sec. 

Natural period 

Sec. 

2x4 47.878 0.02080 

3x4 27.825 0.03600 

4x4 19.614 0.05100 

5x4 15.345 0.06516 
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JUL (1 x10 -3) M3  
Figure (4-26): the variation of normalized displacement (dynamic amplification factor) 

with stiffness of plate for point I, case 6 
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Figure (4-27): the variation of dynamic displacement of point I with natural period of 

plate, case 6 
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2 	4 	6 	8 	10 

UL (1 x10 -3) 

12 14 16 

Figure (4-28): the variation of normalized displacement (dynamic amplification factor) 
with stiffness of plate for point 2, case 6 

2.5 

load fr.=20 cycle/sec. 

2 

1 0.5 	 load fr.=40 cycle/sec. 

load fr.=60 cyc sec. 

0: 
0.065 0.02 	0.025 	0.03 	0.035 	0.04 	0.045 	0.05 	0.055 	0.06 	 0.07 

Tn (Sec) 
Figure (4-29): the variation of dynamic displacement of point 2 with natural period of 

plat, case 6 
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5-1CONCLUSIONS 
The main conclusions from this work for the dynamic analyses of 

cantilever plates are listed below: 

1- For the cantilever plate with variable thickness, the normalized 

displacement is grater than (1.0) when the frequency of the applied 

dynamic load is (0.4 — 1.6) from the natural frequency. Therefore, 

this ratio must be taken into consideration in geometrical design in 

order to avoid the resonance. 

2- The maximum normalized displacement for the point located on 

the corner of the free end is (1 - 2.85) of the maximum normalized 

displacement for the point located in the middle of the free end for 

the cases studied. 

3- For plate with beams, when the ratio of stiffness factor of plate to 

stiffness factor of beam is ranging from (0.011) to (3.056), the 

maximum normalized displacement for the point located at the 

corner of the free end is (1 — 3.8) of the maximum normalized 

displacement for the point located at the middle of the free end. 

4- For plate with beams, when the stiffness factor of beam is equal to 

(5.3x10 -3) m3, the maximum dynamic displacement for the point 

located at the middle of the free end is ( 0.75 — 0.99 ) of the 

maximum dynamic displacement for the same point of the plates 

without beams. Also, the maximum dynamic displacement for the 

point located at the corner of the free of plate with beams is 
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( 0.4 — 0.9 ) of the maximum dynamic displacement for the same 

point of the plates without beams. 

5- For plate with beams, when the stiffness factor of beam is equal to 

(0.018) m3, the maximum dynamic displacement for the point 

located at the middle of the free end is ( 0.2 — 0.8 ) of the 

maximum dynamic displacement for the same point of the plate 

without beams. 

6- The reduction of (length to average thickness) ratio, from 13.4 to 

8.9, or the addition of beams to plates does not necessarily result in 

a decrease in the maximum normalized displacement. 

5-2 RECOMMENDATIONS 
The following are some recommendations for future work : 

1 — Studying the effect of presence of beams all around the plate. 

2— Studying the effect of presence of line loads on beams which represent 

walls. 

3— Changing the position of the load. 

4— Changing the properties of plate. 

64)  
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Appendix L63) 
1- Shape function of beam element : 

The displacement for the nods of element is given as : 

de  = AG  cc 	(1) 

where : 

(2) 

and a is a constant vector given as : 

ao 

} 

V 
01

2 
 

02 

a= a2  

a3 

  

(3) 

  

     

from Eq. 1 

a = Ae-I  de 	.(4) 

where : 

A.,-I  = 
1 

1 
-3 
0 
1 

a 
-a 
-a 
a 

2 
3 
0 

-1 

-a 
-a 
a 
a 

 4 

v = N(.4.) de  	(6) 

(5) 





v 0 
1 0 
0 v)/2 

1 
E 

c= 1 — v 	0 
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where: 
N is a matrix of shape function given as : 

N(t) = PAe-1 = [Ng) N2(4) N3(4) N4(4)] 	(7) 

In which the shape functions are given as : 

N1(4) = 1 
	

- 34 + 43) 

N2(4) = 	a (I - - 	e) 

N3(4)= 4 (2  - 3 - 43) 

a 
1\14(0 = 	(1  - - 	) 

2- The matrix of material constant is given as 



- 



67 

References 

1. Ara H. Marddirosian (1984). " Analysis Of Tapered Cantilever 

Plates Stiffened By Edge Beams By Finite Elements." M.SC. Thesis, 

University of Basrah, College of engineering, Iraq. 

2. Ray W . Clough and Joseph Penzien (1975) " Dynamics Of Structure 

" McGraw-Hill, Inc. 

3. Yaman Nashaat (2002). " Nonlinear Finite Element Analysis Of 

Reinforced Concrete Beam — Column Connections With Construction 

Joints Under Dynamic Loads " M.SC. Thesis, University of Tikrit, 

College of engineering, Iraq. 

4. S.Srinivas and A.K.Rao (1970) "bending, vibration and bucking of 

simply supported thick orthotropic rectangular plates and laminates ", 

Journal of Solids and Structures, Vol. 6, pp. (1463-1478). 

5. A.Pica and E.Hinton. (1980) "Transient And Pseudo—Transient 

Analysis Of Mindlin Plates", Int. J. Numerical Method in Engineering, 

Vol. 15, pp. (189 — 208). 

6. A.L.Dobyns, "Analysis Of Simply—Supported Orthotropic Plates 

Subjected To Static And Dynamic Loads", AIAA. J, Vol. 19, no. 3, 

(1981), pp. (642-650). 

7. J.N.Reddy. (1983) "Dynamic (Transient) Analysis Of Layered 

Anisotropic Composite—Material Plates ", int. J. Numerical Methods 

in Engineering, Vol. 19, pp. (237-255). 



- 



68 

8. Nabil F. Grace and John E. Kennedy. (1985) " Dynamic Analysis 

Of Orthotropic Plate Structures " Journal of structural engineering, 

ASCE, Vol. 111, No. 8, pp. 1027-1037. 

9. Mitao ohga and Tsunemi shigemtsui. (1988) " Large Deformation 

Dynamic Analysis Of Plates " Journal of structural engineering, 

ASCE, Vol. 114, No. 4, pp. 624-637. 

10. A.A.Khdeir and T.N.Reddy, (1988) "Dynamic Response Of Anti—

Symmetric Angle—Ply Laminated Plates Subjected To Arbitrary 

Loading", Journal of Sound and Vibration, Vol. 126, No. 3, pp. (437-

445). 

11. Mallikarjuna and T.Kant, (1988) "Dynamics Of Laminated 

Composite Plates With A Higher—Order Theory And Finite Element 

Discretization" Journal of Sound and Vibration, Vol. 126, No. 3, pp. 

(463-475). 

12. G.Cederbaum and J.Aboudi, (1989) "Dynamic Response Of 

Viscoelastic Laminated Plates", Journal of Sound and Vibration, Vol. 

133, No. 28. 

13. Kant and Mallikarjuna, (1989) " Transient Dynamics Of Composite 

Sandwich Plates Using 4, 8, 9—Nodded isoparametric Quadrilateral 

Elements " Journal of. Finite elements in Analysis and Design, Vol. 6, 

pp. (307-318). 

14. His-Yung T. Wu and Fu-Kuo Chang. (1989) " Transient Dynamic 

Analysis Of Laminated Composite Plates Subject To Transverse 



I 



69 

Impact " Journal of computer and structure ,Vol. 31, No. 3, pp. 453-

466. 

15. J. T. Katsikadelis, E. J. Sapountzakis and E. G. Zorba (1990) 

" A Bern Approach To Static And Dynamic Analysis Of Plates With 

Internal Supports " journal of Computational Mechanics, Vol. 7, pp, 

31-40. 

16. Tasneem Pervez and Nicholas Zabaras (1991). " Transient 

Dynamic And Damping Analysis Of Laminated Anisotropic Plates 

Using A Refined Plate Theory " Journal for Numerical Methods in 

Engineering, Vol. 33, Issue 5, pp. 1059 - 1080 

17. T.Kant, C.P.Arora and J.H.Varaiya. (1992), " Finite Element 

Transient Analysis Of Composite And Sandwich Plates Based 

On A Refined Theory And A Mode Superposition Method", 

Journal of Composite Structures, Vol. 22, pp. (109-120). 

18. C. P. Providakis, D. E. Beskos and D. A. Sotiropoulos (1994). " 

Dynamic Analysis Of Inelastic Plates By The D/Bem " journal of 

Computational Mechanics, Vol. 13, No. 4, pp. 276-284. 

19. P.K. Parhi, S.K. Bhattacharyya and P.K. Sinha (1999). " Dynamic 

Analysis Of Multiple Delaminated Composite Twisted Plates " 

Journal of Aircraft Engineering and Aerospace Technology, Vol. 71, 

Issue. 5, pp. 451-461. 

20. C. P. Providakis and D. E. Beskos (1999). " Inelastic Transient 

Dynamic Analysis Of Reissner-Mindlin Plates By The Domain 



-, 

I 



••• 

70 

/Boundary Element Method "University of Patras, (www. 

d.e.beskos@patras.gr). 

21. J.Petrolito and B.W.Golley, "Vibration Of Thick Plates Using Finite 

Strip—Element" J. ANZIAM, Vol. 42(E), (2000), pp. C1137—

C1155. 

22. B. Gangadhara prusty and S. K. Satsangi (2001). " Finite Element 

Transient Dynmic Analysis Of Laminated Stiffened Shells " Journal 

of Sound and Vibration, Vol. 248, Issue. 2, pp. 215-233. 

23. A. H. Sheikh and M. Mukhopadhyay (2002). " Linear And 

Nonlinear Transient Vibration Analysis Of Stiffened Plate 

Structures " Journal of finite element of analysis and design " Vol. 

38, Issue. 6, pp. 477-502. 

24. J. Sladek, V. Sladek and H. A. Mang (2002). " Dynamic Analysis Of 

A Simply Supported And Clamped Thin Elastic Plates " Vienna 

University of Technology, pp. 84220. 

25. Abdullah. H. sofiyev, Erol. M. keskin, Hakan Erdem and Zihni 

zerin(2003). " Buckling Of An Orthotropic Cylindrical Thin Shell 

With Continuously Varying Thickness Under A Dynamic Loading " 

Indian Journal of Engineering and Materials Sciences, Vol. 10, pp. 

371-380. 

26. P. H. Wen and M. H. Aliabadi (2004). " Boundary Element 

Frequency Domain Formulation For Dynamic Analysis Of Mindlin 





71 

Plates " International Journal for Numerical Methods in 

Engineering Vol. 67 Issue 11, pp. 1617 — 1640. 

27. Nayak, AX., Shenoi, and Moy, (2006). " Dynamic Response Of 

Composite Sandwich Plates Subjected To Initial Stresses " Journal 

of Applied Science and Manufacturing, Vol. 37, Issuo. (8), pp. 

1189-1205. 

28. E. J. Sapountzakis and V. G. mokos (2006). " Dynamic Analysis Of 

Plates Stiffened By Parallel Beams " WIT E. Library, Science and 

Engineering. 

29. E. L. Albuquerque, P. Sollero and W. Portilho de Paiv (2007). " The 

Boundary Element Method And The Radial Integration Method In 

The Dynamic Analysis Of Symmetric Laminate Composite Plates " 

Brazilian Society of Mechanical Sciences and Engineering, ISBN 

978- 85-85769-30-7. 

30. Abdelkrim kadid (2008). " Stiffened Plates Subjected To Uniform 

Blast Loading " Journal Of civil Engineering and Management, 

Vol. 14, No. 3, pp. 155-161. 

31. G. R. Liu and S. S. Quek (2003) " A Practical Course Of The Finite 

Element Method " National University of Singapore, Department of 

Mechanical Engineering. 

32. Ansys (1997) " Theory Reference " Release 5.4, Swanson Analysis 

System, Inc 





72 

33. Paz m. (1980) "Structural Dynamics Theory And Computation". 

Van nostrand reinhold company. 

34. Biggs J. M. (1964) "Introduction To Structural Dynamic" 

McGraw-Hill, Inc., 1964. 

35. Vugts J. H., and Hayes D. J. (1979). " Dynamic Analysis Of 

Fixed Offshore Structures: A Review Of Some Basic Aspects 

Of The Problem " Engineering Structures, Vol. 1, No. 3 . 

36. Zienkiewicz 0.C., Lewis R.w., and stagg K.G (1978). Numerical 

methods in offshore engineering. John wiely and sons. 

37. Hughes T. J. R. (1987). Finite Element Method. Prentice-Hall, 

38. Bathe K. J. and Wilson E. L.(1970) , Numerical Methods In Finite 

Element Analysis. Prentice-Hall. 







,-.11 	y=1,11 ,b1-11 c_)1;?,   cs_SILA  1:1/41.131 J.Lcl Lai Jall 

: 	 e 	all 

. 	:L11.4.1z. 	 —2 	4.riLat. .33.” c_jja.3  cr.i 	—1 

ell:15mA4 It 9•∎∎ 	SZA—Nall 	4s+)ki 1104Z e:a tatiAwl ja (.14:1 	Ts! 

. (Staad Pro.version 7) cc-4)4 

. ;4401 	4_)_9111 Lt a331 	li  472 Ste :t.‘01 Jall Cs 	Liagl 

cva_9331 Nil (13.4 , 8.9) rial  c & c (Se,131 ;.jam c)1 	ageirsse 	f 

;1_,e1 jall sta e‘z.s....all Jya3l J. JI vl . 	eS1 	;A S1  

t ..41C • :t C CU  A (50 KN) 1A J Si A (Amplitude) —4 (Sine-Force) a 

j_z5:Sm- 	 1 	a_zca:31 	 

. (0.2m) CAS 41-3.0.31  L55111 	A1.321_9 (20-60) cycle 

  

  

 

in 

j_k9  j_Side) 	 p 43.911 	 j315 cj.4 (cat%1S21) eilSill JS 

. y5L 31 LIA,11  ci3.4 	 Laa&I 	:1,1a. all  js1 44331 

;L451:131 :;—=.1_SV1 X31 ifuall Llsez.31 L54 47,1,31 &I j')/1) 

(+..4 (0.4 — 1.6) 	;t' 	4  e90 as Y (:),95,3 Leak (1.0)  Cy3 	 L.,11 

.41:1:11 creS.4.11 	 Date 3.&.i 	111 	 

JALS 43 OAl caitsall ,11 	taaii.t11 ZAL.;:el 	US . 

.L411.1,4 :dada 	JS:3 1.4a3c. 44, fit 





sad; 	DalaiaLl 	" 
oila 46.1)4 calia 141.441 

1.1!  aasio 
aisi.+11 itota 40 amisiall 

a#Lson isasigsdl 0.1& j+aau4,4 ao,i,1 	aLflislio  

(2009 -.4)14 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190

