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Abstract: Aquatic ecosystems play a crucial role in biodiversity and ecological stability but are 

increasingly threatened by climate change, pollution, habitat degradation, and invasive species. 

Traditional monitoring methods are labor-intensive, costly, and limited in spatial and temporal 

coverage. This study integrates deep learning techniques with biodiversity monitoring to enhance 

species identification, abundance estimation, and ecosystem assessment in freshwater environments. 

Focusing on the Tigris River, Iraq, we developed convolutional neural network (CNN) - based 

models to automate species detection and classification from underwater imagery. Our multi-tiered 

data collection approach, which includes direct field sampling, remote sensing, and citizen science, 

yielded a dataset of over 8,000 images across six camera locations. The Faster R-CNN model 

achieved a mean average precision (mAP) of 88% for fish identification, while U-Net segmentation 

models demonstrated 99% accuracy in organism detection, significantly outperforming traditional 

methods. The application of optimized deep learning models significantly enhanced the accuracy and 

efficiency of aquatic biodiversity monitoring. The Faster R-CNN model, after hyperparameter 

optimization and transfer learning, achieved an accuracy of 88% in species identification, 

outperforming baseline models that averaged around 75%. The optimization techniques, particularly 

data augmentation and early stopping, improved the model’s robustness to environmental variations, 

such as high turbidity and poor lighting conditions. Unlike traditional methods that rely on expert 

identification, the deep learning model provided automated, scalable, and real-time monitoring 

capabilities, reducing the need for labor-intensive field surveys. Additionally, the model 

demonstrated higher precision in detecting species that are typically misclassified in traditional 

statistical models, thereby offering a more reliable approach to biodiversity conservation and 

ecological assessments. These results underscore the potential of deep learning to provide scalable, 

automated, and highly accurate biodiversity assessments. Our findings demonstrate how artificial 

intelligence can revolutionize ecological conservation, offering a cost-effective and reliable solution 

for biodiversity monitoring. The study also emphasizes the importance of interdisciplinary 

approaches in addressing global biodiversity loss and advancing conservation strategies. 

  

Introduction 

Aquatic ecosystems, encompassing rivers, lakes, 

estuaries, and oceans, are vital components of the 

global ecosystem, providing essential services and 

supporting a significant portion of the planet's 

biodiversity. Effective monitoring of aquatic 

biodiversity is crucial for assessing ecological health, 

understanding ecosystem dynamics, and informing 
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evidence-based management and conservation 

practices. Traditional methods for aquatic biodiversity 

monitoring often face limitations due to their high 

costs, labor-intensive nature, and limited spatial and 

temporal coverage. The ongoing global biodiversity 

crisis, particularly severe in freshwater ecosystems 

and often exacerbated by pollution, necessitates the 

development of innovative and efficient monitoring 
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 techniques applicable across diverse taxa and spatial 

scales (Benouis et al., 2022; Aziz et al., 2024).  

Deep learning, a powerful subset of machine 

learning, has emerged as a transformative technology 

in various scientific fields, including ecology and 

biodiversity research (Høye et al., 2021; Borowiec et 

al., 2022; Al-Majidi et al., 2023; Pichler and Hartig, 

2023). Deep learning models, particularly 

convolutional neural networks (CNNs), excel at 

processing large datasets, automatically extracting 

complex patterns, and making accurate predictions 

(Radhi et al., 2024; Al-Majidi et al., 2025). 

Convolutional Neural Networks (CNNs) are a 

specialized type of deep neural network designed for 

processing images. CNNs utilize convolutional layers 

to learn hierarchical spatial features, capturing the 

intrinsic patterns within an image dataset. Biological 

images, like those used in biodiversity monitoring, 

contain spatial features that represent relationships 

between significant spatial points and image objects. 

CNNs create a hierarchy of spatial field images, 

enabling them to model biologically plausible data 

patterns and transform spatial image hierarchies. This 

capability makes them ideal for processing images 

used in aquatic biodiversity monitoring. These 

capabilities have immense potential for 

revolutionizing aquatic biodiversity monitoring by 

automating species identification, abundance 

estimation, and habitat characterization (Gambín et 

al., 2021; Villon et al., 2022; Borowiec et al., 2022). 

Freshwater ecosystems, despite representing a 

small fraction of the Earth's water, harbor a 

disproportionately high percentage of global 

biodiversity. However, freshwater fauna has 

experienced alarming declines due to pollution, 

climate change, habitat destruction, and 

overharvesting (Parmesan et al., 2023; Tickner et al., 

2020; Cantonati et al., 2020; Fadhil et al., 2024; 

Rashid et al., 2024). Combating these threats requires 

efficient and precise monitoring of aquatic 

biodiversity to assess the conservation status of 

populations and ecosystems, identify threats, and track 

the effectiveness of conservation actions. Traditional 

methods for aquatic biodiversity monitoring, such as 

electrofishing, netting, and visual surveys, are often 

costly, time-consuming, and may disturb the habitats 

being studied. These limitations hinder monitoring at 

high spatial and temporal resolutions, crucial for 

understanding ecosystem dynamics and responding to 

rapid environmental changes. Recent advances in data 

acquisition techniques, information technology, and 

computational power provide exciting opportunities to 

enhance biodiversity monitoring using citizen-

sourced or field-collected data. For example, magnetic 

field residual analysis provides a non-invasive means 

to monitor aquatic populations without disturbing 

their natural behavior (Wang et al., 2021; Eastick et 

al., 2020; Castañeda et al., 2020). The resulting data 

can be analyzed using deep learning algorithms, 

enabling automated feature extraction and species 

detection without manual intervention.  

The Tigris River, along with the Euphrates, forms 

the lifeline of Iraq’s freshwater ecosystems, 

supporting diverse fish, invertebrates, and aquatic 

plants. However, biodiversity in Iraqi freshwater 

systems faces severe threats, including dam 

construction, pollution, climate change, and habitat 

fragmentation. Limited scientific monitoring efforts 

have been conducted, with most biodiversity 

assessments relying on traditional field surveys and 

outdated records. Recent studies suggest a decline in 

native fish populations due to the introduction of 

invasive species and changing hydrological conditions 

(Saleh et al., 2021) or due to the distribution of many 

microorganisms such as parasites that contaminated 

the rivers water (Al-Abboodi, 2023) or due to air 

pollution (Fadhil et al., 2023).  

In Iraq, aquatic biodiversity monitoring is further 

challenged by a lack of standardized protocols and 

limited technological integration, necessitating 

innovative, scalable solutions such as deep learning-

based approaches. Despite the growing recognition of 

the importance of biodiversity monitoring, research on 

applying advanced AI-driven techniques, particularly 

deep learning, to freshwater ecosystems remains 

scarce. Existing studies have largely focused on 
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marine environments, leaving riverine ecosystems like 

the Tigris River understudied in terms of automated 

biodiversity assessment. Furthermore, most 

traditional monitoring methods in Iraq lack the 

technological integration and large-scale automation 

needed to address the increasing threats to freshwater 

biodiversity. This study bridges this gap by 

implementing deep learning models tailored for 

species identification and abundance estimation in a 

highly dynamic and ecologically critical environment. 

Our specific objectives are to develop and evaluate 

deep learning models for identifying aquatic plants, 

invertebrates, and fish from image and video data, 

explore the application of deep learning for object 

detection and tracking to estimate species abundance 

and distribution, and examine a case study of the 

Tigris River, illustrating the practical application of 

these techniques in a real-world scenario. This study 

contributes to developing more advanced, efficient, 

and scalable biodiversity monitoring approaches. It 

provides evidence of the suitability and feasibility of 

deep learning for tracking target species in 

conservation areas, ultimately supporting more 

effective management and conservation efforts. 

 

Materials and Methods 

Image classification and object detection: Object 

detection, which involves identifying and localizing 

objects within an image by drawing bounding boxes 

around them, is another area where deep learning is 

making significant contributions to biodiversity 

monitoring. Unlike image classification, which only 

identifies the objects present in an image, object 

detection also provides their location. This capability 

is crucial for tasks such as counting individual fish of 

different species, estimating population sizes, and 

studying species and niche distributions. Object 

detection methods differ from image classification 

methods in that they attempt to associate an image 

with a label from a predefined set of categories and 

draw bounding boxes around the objects. Images were 

labeled using bounding boxes and their corresponding 

labels to make predictions with a certain level of 

confidence. Various object detection models were 

developed for use on the images from the dataset, 

including one-stage systems and two-stage detectors. 

One-stage systems, such as YOLO (You Only Look 

Once) and SSD (Single Shot MultiBox Detector), are 

faster and more suitable for real-time applications but 

may have slightly lower accuracy compared to two-

stage detectors. Two-stage detectors, such as Faster R-

CNN, first propose regions of interest and then 

classify and refine the bounding boxes in a second 

stage, resulting in higher accuracy but slower 

processing speeds. Although real-time animal tracking 

can be used for conservation purposes, we found that 

the two-stage detectors allowed for higher accuracy, 

as there was no need for real-time detection abilities. 

These models enable the monitoring of fish 

populations, studying their behavior, and detecting 

rare or invasive species. The ability to accurately 

count fish using object detection provides important 

indicators of species composition, distribution, and 

abundance, which are essential for assessing 

ecosystem health and informing conservation 

management decisions. 

Data collection and preparation: The success of 

deep learning models depends heavily on the 

availability of high-quality data for training and 

validation. In aquatic biodiversity monitoring, the 

increasing use of digital technologies has led to a 

greater ability to collect and analyze data. Data from 

various sources along the Tigris River were collated 

with a wide range of water conditions, locations, and 

species depicted. Collecting diverse and consistent 

data on species distribution across populations, 

locations, and sampling times is crucial for developing 

robust deep learning models, ensuring high 

performance across all conditions. Tasks such as 

object detection or segmentation require substantial 

amounts of annotated data, which can be time-

consuming and costly to obtain, often requiring the 

expertise of trained annotators. Preprocessing and 

filtering techniques are applied to improve the quality 

of the raw data and enhance the performance of deep 

learning models. To ensure accurate and 
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 comprehensive monitoring of aquatic biodiversity in 

the Tigris River, a multi-faceted data collection 

strategy has been employed. Our approach integrated 

direct field sampling, remote sensing imagery, and 

citizen science contributions. The study covered three 

major zones along the Tigris River within Maysan 

Province, Iraq: (1) upstream region (low 

anthropogenic impact, clear water conditions), (2) 

midstream urban area (moderate anthropogenic 

impact, medium turbidity), and (3) downstream 

agricultural zone (high anthropogenic impact, high 

turbidity). 

Over 8000 underwater images from 6 camera 

locations were collected from submersible camera 

units positioned at fixed stations along the river. 

Visually based fish counts were conducted in 100 m² 

transects, replicated three times per site per sampling 

period. Water turbidity (NTU) was recorded at each 

station. Each image was annotated by two independent 

taxonomic experts, with a cross-validation accuracy of 

95%. Automated species identification models were 

benchmarked against expert manual identifications. 

The impact of turbidity on deep learning accuracy was 

analyzed by segmenting images into low, moderate, 

and high turbidity categories, allowing for algorithm 

performance calibration. Reported performance 

metrics (e.g., 91% accuracy for U-Net, 88% accuracy 

for Faster R-CNN) were subjected to rigorous cross-

validation and sensitivity analysis, ensuring that 

performance remained robust across different 

environmental conditions. Model uncertainty analysis 

was conducted to identify potential biases and ensure 

that dataset artifacts or imbalanced class distributions 

did not inflate high performance. Bootstrapping 

techniques and Monte Carlo simulations were used to 

evaluate model performance variability, providing 

confidence intervals for accuracy and error rates. To 

validate findings, species abundance trends were 

compared with historical records from Iraqi fisheries 

and marine resources reports (Mohamed and Al-Noor, 

2008; Mohamed and Abood, 2020) and Global 

Biodiversity Information Facility (GBIF) database 

(Saarenmaa, 1999; Lane and Edwards, 2007). 

Preprocessing techniques: Preprocessing aims to 

enhance data quality by addressing issues related to 

mismatched resolutions, irregular time steps, outliers, 

and missing data. The collected dataset contained 

various sources of noise, including image blurriness, 

variations in lighting, turbidity effects, and motion 

artifacts from underwater cameras. To enhance data 

quality, denoising filters, contrast normalization, and 

image augmentation techniques were applied. 

Gaussian filtering was used to reduce random pixel 

noise, and histogram equalization improved visibility 

in low-light conditions. Additionally, outlier removal 

was performed to discard mislabeled or ambiguous 

samples, ensuring higher reliability in model training. 

Techniques applied to the data include data 

normalization, resizing, augmentation, filtering, and 

denoising. Handling data lacking in certain factors is 

particularly important in environmental data analysis. 

Various techniques have been developed to augment 

reference or feature data in case of an unideal 

environment. Preprocessing and augmentation 

methods enhance performance, emulating a larger, 

more comprehensive dataset, despite its size. Several 

studies have demonstrated the successful application 

of preprocessing techniques in aquatic environments. 

For example, using unsupervised learning and 

denoising encoders can markedly improve automatic 

image encoding and handling of problematic data 

(Farooq and Savaş, 2024). Hybrid feature selection 

preprocessing techniques, combining deep learning 

and F-mapping techniques, can further enhance the 

performance of denoising preprocessors. 

Preprocessing techniques in deep learning for 

environmental monitoring include: data 

normalization, resizing, augmentation, filtering, and 

data denoising. 

Experimental setup: The implementation of deep 

learning models for aquatic biodiversity monitoring 

requires careful consideration of the experimental 

setup, including hardware and software specifications, 

training and validation procedures, and 

hyperparameter optimization. This section details the 

experimental setup used in our study, ensuring 
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transparency and reproducibility. Regarding hardware 

and software specifications, the data augmentation, 

processing, and model training were performed using 

a high-performance computing environment with the 

following specifications: Processors (AMD Epyc 

Platform, 32 CPU cores), memory (256 GB of main 

memory), accelerators (4xNVIDIA Volta 100 GPUs), 

and a software environment includes: Python: The 

primary programming language for model 

implementation; PyTorch: Open-source machine 

learning library for data handling, model prototyping, 

and training with CUDA acceleration; Pandas: Library 

for managing input files and data manipulation.  

These specifications were chosen to ensure 

efficient model development and training, particularly 

for handling large datasets and computationally 

intensive deep learning models, while fitting within 

the available budget. After preprocessing, the dataset 

was subjected to cross-validation and performance 

benchmarking to ensure a robust analysis. A Monte 

Carlo simulation was used to assess model stability 

under varying environmental conditions, and 

bootstrapping techniques were used to evaluate 

classification confidence intervals. To validate species 

identification, model outputs were compared with 

expert-annotated labels, achieving a 95% agreement 

rate with taxonomists. Performance metrics, including 

accuracy, recall, and mean average precision (mAP), 

were used to quantify detection reliability across 

different turbidity levels. The neural network models 

in this study were implemented using convolutional 

neural networks (CNNs), specifically Faster R-CNN 

for object detection and U-Net for segmentation. The 

Faster R-CNN model consisted of a backbone ResNet-

50 architecture with a feature pyramid network (FPN) 

to enhance multi-scale feature extraction. The key 

hyperparameters included a learning rate of 0.001, a 

batch size of 32, and a training duration of 50 epochs. 

The Adam optimizer was employed for optimization, 

with a weight decay of 0.0001 to prevent overfitting. 

For segmentation tasks, the U-Net model incorporated 

ReLU activation functions, a dropout rate of 0.2 for 

regularization, and categorical cross-entropy as the 

loss function. Model performance was evaluated using 

mean average precision (mAP) for detection tasks and 

the Dice coefficient for segmentation accuracy. 

 

Results and Discussions 

The application of deep learning methods to aquatic 

biodiversity monitoring in the Tigris River ecosystem 

yielded promising results, demonstrating their 

potential to enhance the accuracy, efficiency, and 

scalability of monitoring and conservation efforts.  

Performance metrics: Several performance metrics 

were employed to evaluate the effectiveness of the 

deep learning models, including accuracy, recall, and 

mean average precision (mAP). These metrics provide 

a comprehensive assessment of model performance, 

considering both the ability to correctly identify 

species (accuracy) and the ability to detect all 

instances of a species (recall): accuracy and recall as 

shown in Figure 1. In our experiments, the deep 

learning models achieved high accuracy in identifying 

aquatic species from images and videos. For example, 

the Faster R-CNN model achieved an accuracy of 88% 

and a recall of 91% in detecting fish from underwater 

camera footage. The U-Net model performed 

exceptionally well in detecting and segmenting 

Figure 1. Scatter plot showing the relationship between water 

turbidity (NTU) and species detection accuracy (%) and recall (%) 

using the Faster R-CNN model. Accuracy and recall decline as 

turbidity increases, highlighting the impact of visibility degradation 

on species identification. 
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 aquatic organisms, achieving an accuracy of 91% and 

a recall of 94%. These results demonstrate the ability 

of deep learning models to accurately identify and 

localize aquatic species, even in challenging 

underwater environments with varying lighting 

conditions, turbidity, and complex backgrounds. 

Despite this, increased turbidity was associated with 

decreased performance; however, it was still more 

accurate than expert human identification. The high 

performance of these models suggests that they can be 

effectively used to automate species identification and 

abundance estimation, significantly reducing the time 

and effort required compared to traditional methods 

(Tian et al., 2023). Traditional statistical models, such 

as Generalized Linear Models (GLMs) and Species 

Distribution Models (SDMs), have been widely used 

in aquatic biodiversity monitoring for species 

abundance estimation and habitat suitability 

modeling. These models rely on predefined 

relationships between environmental variables and 

species occurrence, requiring extensive manual 

feature engineering and assumptions about data 

distributions. In contrast, the proposed deep learning 

models, including Faster R-CNN and U-Net, 

automatically extract features from raw image data, 

allowing for higher adaptability and scalability. Our 

results indicate that Faster R-CNN achieved an 

accuracy of 88% in species identification, 

outperforming statistical models such as GLMs, 

which typically exhibit classification accuracies 

below 70% when applied to similar datasets (Zhang et 

al., 2023). Furthermore, deep learning models perform 

significantly better in complex environments with 

high turbidity and diverse species interactions, where 

traditional models struggle due to limited feature 

representation. However, statistical models remain 

valuable for ecological interpretation and predictive 

analysis in cases with small datasets, as deep learning 

requires extensive labeled data and computational 

resources. By integrating both approaches, future 

biodiversity monitoring systems can leverage the 

predictive power of statistical models alongside the 

automation and precision of deep learning techniques. 

Comparison with traditional methods: Compared to 

traditional methods for monitoring aquatic 

biodiversity, deep learning techniques offer several 

advantages in terms of accuracy, efficiency, and 

scalability. Traditional methods, such as visual 

surveys, netting, and electrofishing, are often labor-

intensive, time-consuming, and may significantly 

disturb the habitats being studied. These methods can 

also be prone to errors due to observer bias, species 

misidentification, and difficulty in detecting rare or 

cryptic species. Deep learning models, on the other 

hand, can automate the process of species 

identification and abundance estimation, significantly 

reducing the time and effort required (Zhang et al., 

2023). These models can also achieve higher accuracy 

compared to traditional methods, particularly in 

complex environments where visual identification is 

challenging. For example, studies have shown that 

deep learning models can outperform human experts 

in identifying fish species from underwater images, 

even in conditions with poor visibility (Fig. 2). 

Furthermore, deep learning models can be applied 

to large datasets collected from various sources, such 

Figure 2. Comparison of different machine learning techniques 

against expert human ID. 
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as underwater cameras, drones, and remote imaging 

platforms, enabling monitoring at larger spatial and 

temporal scales. This scalability is crucial for 

understanding ecosystem dynamics at a larger scale 

and responding to rapid environmental changes. 

While traditional methods have their merits and may 

still be necessary for certain applications and 

environments, the deep learning techniques explored 

offer a powerful and complementary approach to 

enhance aquatic biodiversity monitoring in the Tigris 

River. By combining the strengths of both approaches, 

researchers and conservationists can obtain more 

comprehensive, accurate, and timely data to inform 

management and conservation decisions. The use of 

trending algorithms has been shown to influence the 

prioritization of environmental topics, increasing 

governmental scrutiny and public discourse around 

pollution control measures (Hassan et al., 2024). 

Case study (The Tigris River, Iraq): The Tigris 

River, a major component of the Mesopotamian 

landscape, provides a compelling case study for the 

application of deep learning in aquatic biodiversity 

monitoring. This vital river system supports a diverse 

array of aquatic life but faces numerous anthropogenic 

pressures, including dam construction, water 

extraction, pollution, and the impacts of climate 

change. 

Biodiversity of the Tigris River: Historically, the 

Tigris River supported a rich diversity of fish species, 

with a 2012 study identifying 55 fish species 

belonging to 14 families within Salah Al-Din 

Governorate alone. However, recent data suggest a 

decline in fish diversity, with native species facing 

competition from introduced species and suffering 

from habitat degradation (Hussain and Ali 2012). 

Fish: Cyprinus carpio (Common Carp) is now 

prevalent, along with other members of the Cyprinidae 

family such as Luciobarbus xanthopterus and 

Carasobarbus luteus. Other families historically 

present, such as Siluridae, Sisoridae, and 

Mastacembelidae, now include rare or endangered 

species. Endemic species in the Tigris-Euphrates 

system are particularly vulnerable (Salman et al., 

2020). 

Invertebrates: Limited data exist on the current status 

of invertebrate communities, but studies on benthic 

macroinvertebrates suggest that pollution and habitat 

degradation are impacting these communities, leading 

to a decrease in sensitive species and an increase in 

pollution-tolerant ones. 

Aquatic plants: The Tigris River's aquatic vegetation 

includes submerged macrophytes, floating plants, and 

emergent vegetation. These plants play crucial roles in 

the ecosystem, but changes in water flow, nutrient 

levels, and turbidity are impacting their communities. 

Invasive species, such as the water hyacinth 

(Eichhornia crassipes), pose a further threat to native 

vegetation. 

Threats to biodiversity: The Tigris River faces 

multiple, interconnected threats, such as numerous 

dams in Turkey, Syria, and Iraq that have altered the 

river's flow regime, impacting sediment transport, 

water temperature, nutrient cycling, fish migration, 

and habitat connectivity (Jawad, 2021). In addition, 

large-scale water extraction for agriculture, industry, 

and urban use has reduced water flow, increased 

salinity, decreased dissolved oxygen levels, and led to 

habitat loss (Rahi and Halihan, 2018). Moreover, 

untreated or inadequately treated wastewater, 

industrial discharge, and agricultural runoff contribute 

to eutrophication, oxygen depletion, and toxin 

accumulation, and introduced species disrupt the 

ecosystem by competing with native species, 

introducing diseases, and altering food webs 

(Bachmann et al., 2019). 

Monitoring data and implications for deep 

learning: A monitoring survey in a section of the 

Tigris River near Misan Province reveals the data 

presented in Table 1. This data underscores the 

challenges facing the Tigris River's biodiversity, with 

several native species showing low abundance and 

potentially threatened conservation statuses, while 

introduced species thrive. The previously discussed 

deep learning techniques were employed to analyze 

imagery from underwater cameras, automatically 

identifying and quantifying species like those listed 
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below. This enables more efficient and frequent 

monitoring, providing valuable data for conservation 

efforts. 

Conservation efforts and the role of deep learning: 

Conservation efforts in the Tigris River are limited but 

include initiatives to improve water quality and 

promote sustainable agricultural practices. However, 

more comprehensive efforts are necessary, including 

habitat restoration, improved fish passage at dams, 

and public awareness campaigns. Deep learning can 

play a significant role in supporting these efforts by 

using object detection and tracking to quantify species 

abundance and map their distribution along the river, 

(Fig. 3A). In addition, it can assist in training models 

to identify fish, invertebrates, and aquatic plants from 

images and videos collected through various 

monitoring methods (Fig. 3B) and analyzing imagery 

to detect changes in vegetation cover, water clarity, 

and other habitat characteristics. Furthermore, training 

models to identify invasive species allows for rapid 

response and control measures. 

 

Conclusion 

This study demonstrated that deep learning 

techniques, particularly an optimized Faster R-CNN 

model, significantly enhance aquatic biodiversity 

monitoring, achieving an 88% species detection 

accuracy and outperforming traditional statistical 

Species 
Common 

Name 
Family 

Abundance 

(per 100 m2) 

Conservation 

Status 
Notes 

Cyprinus carpio Common Carp Cyprinidae 15 Least Concern 
Common, 

introduced species 

Luciobarbus 

xanthopterus 

Yellowish 

Barbel 
Cyprinidae 8 Vulnerable 

Native, declining 

due to habitat 

degradation 

Carasobarbus 

luteus 
Himri Cyprinidae 12 Least Concern 

Common, native 

species 

Silurus triostegus 
Mesopotamian 

Catfish 
Siluridae 2 Least Concern 

Native, impacted by 

dams and pollution 

Glyptothorax sp.  Sisoridae 1 Data Deficient 
Native, limited data 

available 

Mastacembelus 

mastacembelus 

Tire-track 

Spiny Eel 
Mastacembelidae <1 Endangered 

Native, impacted by 

habitat loss and 

fragmentation 

Gambusia holbrooki 
Eastern 

Mosquitofish 
Poeciliidae 5 Least Concern 

Introduced, 

potential threat to 

native species 

Planiliza abu 
Freshwater 

Mullet 
Mugilidae 3 

Near 

Threatened 

Native, impacted by 

changes in water 

flow and salinity 

Alburnus caeruleus - Cyprinidae 2 Least Concern 
Native, limited data 

available 

Mesopotamichthys 

sharpeyi 
Binni Cyprinidae 1 Vulnerable 

Native, highly 

vulnerable to 

habitat changes 

 

Table 1. Fish species abundance per 100 m² in a section of the Tigris River, with IUCN conservation status and notes on each species. 
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methods. The application of transfer learning and 

hyperparameter optimization improved model 

robustness under varying environmental conditions. 

However, challenges remain, particularly in extreme 

turbidity, highlighting the need for further 

refinements. The case study on the Tigris River 

underscores the pressing challenges facing many 

aquatic ecosystems worldwide and showcases deep 

learning's potential to improve conservation efforts. 

While the presented data emphasize the urgent need 

for comprehensive biodiversity assessments in this 

region, emerging sensors and AI technologies offer 

promising solutions for real-time monitoring and 

ecosystem management. Moving forward, integrating 

multi-modal data sources and additional optimization 

techniques will be crucial for enhancing model 

adaptability across diverse aquatic environments. As 

artificial intelligence continues to evolve, its role in 

biodiversity conservation will become even more 

vital. By embracing multidisciplinary approaches, we 

can develop more effective and scalable tools for 

protecting threatened ecosystems like the Tigris River 

and beyond. 
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