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Abstract 
Thalassemia is a major health problem in Iraq, and despites a prevention pro-
gramme. There has been no decrease in the prevalence of the disease, due to a 
lack of awareness, implying that genetic counseling was a failure. This failure 
has been attributed to a lack of recognition of problems related to Thalasse-
mia, unorganised teamwork and services, lack of knowledge and insufficient 
numbers of extension workers, lack of Thalassemia support groups, and in-
adequate research in Thalassemia prevention and control. Autoregressive In-
tegrated Moving Average (ARIMA) model and forecasting has become a ma-
jor tool in different applications. The ARIMA model introduced by Box and 
Jenkins (1971) is among the most effective approaches for analysing time-se- 
ries data. In this study, we used Box and Jenkins methodology to build an 
ARIMA model to forecast the number of people with Thalassemia, for the pe-
riod from 2016-2018, from the data base from Maysan Health Center specific 
for Thalassemia the Maysan Provence, Iraq. After the model selection, the best 
model for forecasting was ARIMA (0, 1, 1) and of models were used for fore-
casting Thalassemia. 
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1. Introduction 

The Arabisation (The Arabic meaning) of Thalassemia is Mediterranean disease, 
where the Middle East and the Gulf Arab states are included, Thalassemia, which 
is spread throughout Iraq and other Middle East countries, is one of the most 
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famous genetic diseases that lead to severe anaemia and other complications in 
the long term. It requires quoting a regular blood transfusion every three to four 
weeks, accompanied by pain to the patients and great suffering to their families. 
On top of this, the transfer of continuous blood also leads to the accumulation of 
iron in the vital organs of the body, such as the liver and heart, which leads to 
serious complications. Infected cases of this disease are divided into two types: 
Thalassemia Minor—characterises people who have the disease, but are living a 
normal life and not complaining of any symptoms. The second type is Thalas-
semia major, which can occur in offspring of two carriers of Thalassemia Minor, 
with 25% likelihood that their children are not infected with the disease, 25% 
that they suffer a severe form of the disease, and 50% that they have Thalassemia 
Minor [1]. Iraq is witnessing a monthly birth-rate of between (100 - 150) child-
ren with the disease, which is the same as getting approximately (2000) cases per 
year and these numbers are disastrous compared to neighbouring countries. 
Another classification of Thalassemia is according to the site of the defect in the 
protein molecule of the red blood cells, according to which: α- and β-Thalas- 
semia, β-Thalassemia is a common hereditary disorder caused by mutations in 
one or more of the β-globin gene loci that result in reduced β-globin production 
[2]. Recently, more than 200 different mutations have been detected affecting a 
variety of levels of β-globin gene expression causing β-Thalassemia. These muta-
tions are not uniformly distributed, but have a geographical particularity and ra-
cial origin, as each is characterised by the presence of a few common mutations 
and variable numbers of rare ones [3]. Mutations such as nucleotide substitu-
tions and/or frame shifts of the insertion/deletion kind have been reported to 
interfere with the transcription of the β-globin gene, splicing procedures, and 
translation of β-globin gene mRNA, which causes either absence or reduction of 
synthesis of β-globin chains [4]. One of the most important elements of building 
health is the prevention of all diseases, including serious diseases, such as Tha-
lassemia, that cause a high percentage of deaths compared to other diseases, due 
to the increasing number of people infected with this disease in recent times. 
This study was conducted in order to forecast the prevalence of this disease in 
future, which has been increasing in all areas of Iraq, especially in the province 
of Maysan. This study was based on monthly data for the patients with Thalas-
semia for the period between 2005-2015, and used data of patients as a series of 
time for the purpose of analysis for optimal modelling using the ARIMA Me-
thodology, the forecasting to predict the numbers of people with this disease in 
subsequent, periods in order to take the necessary measures and substitutions to 
reduce morbidity in the future. A time-series typically consists of a set of obser-
vations of a variable taken at evenly spaced intervals of time [5]. The most com-
prehensive of all popular and widely known statistical models which have been 
used in the last four decades for time series forecasting are the Box-Jenkins me-
thod. However, the ARIMA model is only a class of linear model and, thus, it 
can only capture linear feature of data time series [6]. Many of standards deter-
mining the rank of model have been proposed by researchers [7] [8] [9]. There are 
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different models of precision can juggle in time series analysis to clarify the giv-
en set of data, not be easy to choose the better model, in many cases, it has de-
veloped several criteria to compare models in the process of selecting the rank of 
model, and derive the importance of selecting the rank of the model from the 
fact that choosing the lowest rank of the actual rank of the model leads to incon-
sistency of the model parameters, while choosing a higher rank than the actual 
rank of the form to increase the model variance; this leads to a loss of accuracy 
due to the increase in the number of model parameters chosen. 

2. Method 

For realizing the forecast of the analysed time-series we use modern methods, 
such as ARIMA models, because they are among the models that can analyse 
large time-series data and forecast future cases 

2.1. Models of Box & Jenkins 

The pioneers in this area were Box and Jenkins, who popularized an approach 
that combines the moving average and the autoregressive models (1971). An 
ARMA (p, q) model is a combination of AR (p) and MA (q) models, and is suit-
able for univariate time-series modelling. In an AR (p) model the future value of 
a variable is assumed to be a linear combination of p past observations and a 
random error, together with a constant term. Mathematically, the AR (p) model 
can be expressed as [10]: 

1 1 1 2 21
p

t t i t t t p t p tiY c y c y y yϕ ε ϕ ϕ ϕ ε− − − −=
= + + = + + + + +∑         (1) 

Here ty  and tε  are respectively the actual value and random error (or 
random shock) at time period t, ( )1,2i i pϕ =   are model parameters and c is 
a constant. The integer constant p is known as the order of the model. Some-
times the constant term is omitted for simplicity. Usually, for estimating para-
meters of an AR process using the given time series, the Yule-Walker equations 
are used. Just as an AR (p) model regresses against past values of the series, an 
MA (q) model uses past errors as the explanatory variables. The MA (q) model is 
given by [11] 

1 1 2 21
q

t j t j t t t q t q tjy µ θ ε ε µ θ ε θ ε θ ε ε− − − −=
= + + = + + + + +∑        (2) 

Here µ  is the mean of the series ( )1, 2j j qθ =   are the model parameters 
and q is the order of the model. The random shocks are assumed to be a white 
noise process, i.e. a sequence of independent and identically distributed (i.i.d) 
random variables with zero mean and a constant variance 2σ . Generally, the 
random shocks are assumed to follow the typical normal distribution. Thus, 
conceptually, a moving average model is a linear regression of the current ob-
servation of the time series against the random shocks of one or more prior ob-
servations. Fitting an MA model to a time series is more complicated than fitting 
an AR model because in the case of the former the random error terms are not 
fore-seeable. Autoregressive (AR) and moving average (MA) models can be ef-
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fectively combined together to form a general and useful class of time series 
models, known as the ARMA models. Mathematically an ARMA (p, q) model is 
represented as 

1 11 1
p q

t t t j t ji jy c yε ϕ θ ε− −= =
= + + +∑ ∑                 (3) 

Usually ARMA models are manipulated using the lag operator notation. The 
lag or Backshift operator is defined as 1t tLy y −= . Polynomials of lag operator or 
lag polynomials are used to represent ARMA models as follows [11]: 

( ) ( )model : t tAR p L yε ϕ=                    (4) 

( ) ( )model : t tMA q y Lθ ε=                     (5) 

( ) ( ) ( ), model : t tARIMA p q L y Lϕ θ ε=               (6) 

Here ( ) 111 p i
iL Lϕ ϕ
=

= −∑  and ( ) 11 .Q
J jJL Lθ θ

=
= +∑  

It is shown in that an important property of AR (p) process is invertibility, 
i.e. an AR (p) process can always be written in terms of an MA (∞) process. 
Whereas for an MA (q) process to be invertible, all the roots of the equation 
( ) 0Lθ =  must lie outside the unit circle. This Condition is known as the In-

evitability Condition for an MA process. 

2.2. ARIMA Model 

In both statistics and econometrics, time series analysis of an autoregressive in-
tegrated moving average, an ARIMA model is the integration of an autoregres-
sive moving average (ARMA) model. These models are fitted to time-series data, 
either to better understanding the data or to forecast future points in the series 
(forecasting). It is applied, in some cases where the figures show proof that they 
are not stationary, where an initial differencing step (corresponding to the inte-
grated fraction of the model) can be applied to reduce the non-stationarity [12], 
non-periodical ARIMA models which are generally denoted by ARIMA (p,d,q) 
where parameters p, d, and q are non-negative integers, p is the order of the 
Autoregressive model, d is the degree of differencing, and q is to arrange of the 
Moving-average model. ARIMA models form is an important part of the Box- 
Jenkins approach to time-series modeling [13]. ARIMA models can be seen as a 
chain of two models. The first is not fixed: 

0 1 1 2 2 1 1 2 2t t t p t p t t t tx x x x e e e e qθ φ φ φ θ θ θ− − − − −= + + + + − − − −       (7) 

where Xt and et are the actual values and random error at time t, respectively, 
( )1,2, ,i i pφ =   and ( ) 1, 2, ,j j qθ =   are model parameters. p and q are in-

tegers and often referred to as orders of autoregressive and moving average po-
lynomials respectively. 

2.3. Steps of ARIMA Methodology [14] 

• Analysis of the series: The first step in the process of modelling is to check 
for the stationary of the time series data. 

• Identification of the model: This step aimed to detect periodically and to 
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identify the order of seasonal autoregressive terms and seasonal moving av-
erage terms. This stage includes calculation of the estimated autocorrelation 
function (ACF) and estimation of partial autocorrelation function (PACF) 
these functions measure the statistical dependence between observations of 
data outputs. 

• Estimation of ARIMA parameters: The estimation of ARIMA parameters is 
achieved by the nonlinear least squares method. The values of the model 
coefficients are determined in relation to a particular criterion; one of these 
may be the maximum likelihood criterion. It can be shown that the likelih-
ood function associated with a correct ARIMA model, used to determine the 
estimates of maximum likelihood of the parameters, contains all the useful 
information from the data series about the model's parameters. 

• Diagnostic checking: In this stage it is assumed that the errors represent a 
stationary process and the residues are white noise (or independent if the 
distribution is normal), a normal distribution with mean and variance stable. 
The tests used to validate the model are based on the estimated residues. It is 
checked that the components of this vector are autocorrelated. If there is au-
tocorrelation, the checked model is not correctly specified. In this case, the 
dependencies between the components series are specified in an incomplete 
manner, and we have to return to the model identification step and try 
another model. Otherwise, the model is good and can be used to make pre-
dictions for a given time horizon. 

• Forecasting.  

3. Criteria for Selection of the Rank of the Model 
3.1. Bayesian Information Criterions (BIC) [8] 

( ) ( ) ( )

( ) ( )( )( )
2

2 2

ˆln ln 1 ln

ˆ ˆ ln 1

a

Y a

BIC n n M M n M n

M M

σ

σ σ

= − − − +

 +   

           (8) 

where:  
P: model rank, 
n: Views, 
M: The number of parameters, 

2ˆYσ : Estimator series variance, 
2ˆaσ : Estimator error variance, 

( ) ( )1

22ˆ ˆn
a t tt y y n pσ

=
= − −∑                    (9) 

3.2. Akaike Information Criterion [7] 

( ) 2ˆln 2aAIC M n Mσ= +                     (10) 

or 

( ) ( )2ˆ, ln 2aAIC p q p q nσ= + +                  (11) 

where: 
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M: p + q; p, q: model rank; n:views; 2ˆaσ : Estimator error variance 

4. The Application of Data 

This study is based on the time-series data provided by the hereditary blood dis-
ease centre in Iraq (Maysan) from people diagnosed with Thalassemia for the 
period 2005-2015. 

4.1. Analysis of the Series 

The first step in the process of modelling is to check for the stationary of the 
time series data. This is done by observing the graph of the data or autocorrela-
tion and the partial autocorrelation functions [2]. It notes, through a graph of 
the time series, that there are high rates of Thalassemia as compared with pre-
vious years (Figure 1).  

4.2. Stationary 

The first stage of ARIMA model building is to identify whether the variable, 
which is being forecasted, is stationary in the time-series or not. By stationary, 
with autocovariance functions, we can define the covariance stationarity, or weak 
stationarity. In the literature, usually stationarity means weak stationarity, unless 
otherwise specified. The time serie ( ),tx t z  s. 

Where z is the integer set is said to be stationarity if:  

( )var .tx t z< ∞∀ ∈  

tEX t Zµ= ∀ ∈  
( ) ( ), , , ,x s t x s h t h s t h Zγ γ= + + ∀ ∈  

The time plot of the { }tx  must have three features: finite variation, constant 
first moment, and that the second moment ( ),x s tγ  only depends on ( )t s−   

 

 
Figure 1. Graph of original series, increase the number of patients suffering from thalas-
semia year 2005-2015 in southern Iraq, time series before differencing shows the variabil-
ity of the series appears to be changing with time. Therefore the mean and variance are 
not constant, suggesting that the series is not stationary. 
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and not depends on s or t In light of the last point, we can rewrite the auto cova-
riance function of a stationarty process as 

( ) ( )Cov ,   for  ,t t hx h x x t h Zγ += ∈                 (12) 

Also, when tx  is stationarty we must have  

( ) ( )x h x hγ γ= −                        (13) 

When 0h = , ( ) ( )0 cov ,t tx x xγ = =  is the covariance of tx  so the autocor-
relation function for stationarty time series tx  is defined to be  

( ) ( )( ) ( )( )0px h x h xγ γ=                    (14) 

In Figure 1 the thalassemia data, clearly shows that the data is not stationary 
(actually, it shows an increasing trend in time series). The ARIMA model cannot 
be built until we make this series stationary. We first have to differentiate the 
time series “d” times, to obtain a stationary series in order to have an ARIMA (p, 
d, q) model with “d” as the order of differencing. Care should be taken in diffe-
rencing, as over differencing will tend to an increase in the standard deviation, 
rather than a reduction. The best idea is to start with differencing of the lowest 
order (of first order, d = 1) and test the data for unit root problems 6.  

First Difference: 1  where  2,3Zt yt t n= − =   
Second Difference: ( ) ( )1 1 2   where  3, 4Zt yt yt yt yt t n= − − − − − − =    
As a result we obtained a time-series of first order differencing and Figure 2, 

below, is the line plot of the first order differenced Thalassemia data. It can easily 
be inferred from the graph that the time series appears to be stationary both in 
its mean and variance. Moreover, the time series data was subjected to Dick-
ey-Fuller test to check the number of differenced time-series data for stationari-
ty. 

Using the adjusted (ADF) test [15]: 
Our null hypothesis (H0) in the test is that the time series data is non-statio- 

nary; while the alternative hypothesis (Ha) is that the series is stationary. The  
 

 
Figure 2. Time series for after first difference d = 1 become stationary. 
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hypothesis is then tested by performing appropriate differencing of the data in 
dth order and applying the ADF tests to the differenced time series data. First 
order differencing (d = 1) means we generate a table of differenced data of cur-
rent and immediately previous time 1t t tx x x −∆ = − . The ADF test result, as ob-
tained upon application, is shown below (using Eviews program) in Table 1. 

We, therefore, fail to accept H0 and, hence, can conclude that the alternative 
hypothesis is true i.e. the series is stationary in its mean and variance. Thus, 
there is no need for further differencing of the time series and we adopt d = 1 for 
our ARIMA (p, d, q) model. This test enables us to go further in steps for 
ARIMA model development i.e. to find suitable values of p in AR and q in MA 
in our model. For that, we need to examine the correlogram and partial correlo-
gram of the stationary (first order differenced) time series. The dickey fuller test 
depends on three simple equations and assumes a random the context of a pat-
tern of downhill autocorrelation of (1) these equations are: 

1 1t t tx x eα −∆ = +                        (15) 

0 1 1t t tx x eα α −∆ = + +                      (16) 

0 1 1t t t tx x B eα α − +∆ = + +                     (17) 

Whereas: 
∆ : The first difference factor, which: 1,t t tx x x −∆ = −  

te : White noise process. 
 

Table 1. The augmented dickey-fuller test results. 

Augmented Dickey –Fuller test statistic t-statistic Prob. 

 
−11.38261 0.0000 

Test critical values 

1% level −3.482035  

5% level −2.884109  

10% level −2.578884  

Augmented Dickey-Fuller Test Equation 
Dependent variable :D(DTHALASSEMIA) 
Method Least Squares 
Sample(adjusted)2005 M05 2015M12 

Variable Coefficient Std. error t-statistic Prob. 

DTHALASSEMIA(−1) −2.176864 0.191245 −11.38261 0.0000 

D(DTHALASSEMIA(−1) 0.699137 0.145316 4.811158 0.0000 

DTHALASSEMIA(−2) 0.381127 0.085537 4.455672 0.0000 

C 0.094297 0.109530 0.860923 0.3909 

R-sequard 0.719809 Mean dependent var 0.046875 

Adjusted R-sequard 0.713030 S.D dependent var 2.310058 

S.E. of regression 1.237487 Akaike info criterion 3.294795 

Sum squared resid 189.8905 Schwarz criterion 3.383920 

Log likelihood 206.8669 Hannan-Quinn criter 3.331007 

F-Statistic 106.1852 Dubin-Watson stat 1.998406 

Prob(F-statistic) 0.000000   
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4.3. Correlogram and Partial Correlogram 

Figure 3, below, represents the plot of correlogram (auto-correlation function, 
ACF) from lags 1 to 20 of the first order differenced time-series of the Thalasse-
mia patients (Figure 3). The above correlogram infers that the auto-correlation 
and partial autocorrelation between lag 1 and 20 does not exceed the significance 
limits and auto-correlations tail off to zero the autocorrelation at rest. 

4.4. Selecting the Rank of Model [16] 

Seen from the Table 2 that the best model for this series is ARIMA (0, 1, 1) for 
having the lowest values for the standards of information. This is perhaps the 
most commonly used model in forecasting. It is the exponential smoothing 
model. The general form of the model is: 

1 1, 1 t t t tZ Z c a aθ θ− −− = + − <                  (18) 

Following the common practice, we shall assume c = 0. Since the model is in-
vertible, the π  weights are ( )1 1i iπ θ θ= − −  for 1i ≥ . Thus 

1 0.05577677 0.98928205 1t tZ Z t−− = + −  
 

 
Figure 3. Plot of the autocorrelation and partial autocorrelation functions of the diffe-
renced series. 

 
Table 2. Shows the results of information criterion for various models of the time series. 

Models AIC BIC 

ARIMA (1, 1, 0) 89.7921 −65.0102 

ARIMA (0, 1, 1) 38.5633 −122.7428 
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5. The Forecasting 

The results showed that after we apply (eviews, gretl, minitab) specific statistical 
programs on our data and charts, there is an increase in cases with Thalassemia 
in the coming years from 2016 to 2018, according to the Figure 4, Figure 5 and 
Table 3, where the number of patients monthly will be between (7 - 11) patients  

 

 
Figure 4. Forecasting the expected number of patients with thalassemia years (2016- 
2018) using a form ARIMA (0, 1, 1). 

 

 
Figure 5. Forecasting the expected number of patients with thalassemia years (2016- 
2018) using a form ARIMA (1, 1, 0). 
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Table 3. Year Forecasting for thalassemia patients The number of people forecaster their 
thalassemia in 2016-2018 For 95% confidence intervals, z (0.025) = 1.96. 

Obs Forecast ARIMA (1, 1, 0) Forecast ARIMA (0, 1, 1) 

2016:01 6.94 8.17 

2016:02 6.94 8.46 

2016:03 6.82 8.28 

2016:04 7.41 8.82 

2016:05 9.27 10.00 

2016:06 8.01 9.07 

2016:07 7.77 8.43 

2016:08 8.10 8.40 

2016:09 5.65 7.48 

2016:10 5.53 8.07 

2016:11 5.76 7.78 

2016:12 8.08 8.58 

2017:01 7.04 9.03 

2017:02 7.04 9.32 

2017:03 7.54 9.14 

2017:04 8.91 9.68 

2017:05 10.85 10.87 

2017:06 8.61 9.94 

2017:07 6.82 9.30 

2017:08 8.08 9.28 

2017:09 5.32 8.37 

2017:10 5.82 8.96 

2017:11 4.79 8.67 

2017:12 8.05 9.46 

2018:01 6.99 9.92 

2018:02 6.99 10.22 

2018:03 7.14 10.04 

2018:04 8.07 10.58 

2018:05 9.96 11.78 

2018:06 8.26 10.85 

2018:07 7.33 10.21 

2018:08 8.06 10.19 

2018:09 5.47 9.28 

2018:10 5.62 9.87 

2018:11 5.29 10.39 

2018:12 8.02 9.969 
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Table 4. The values of criterion of final prediction error. 

Model FPE 

ARIMA (0, 1, 1) 0.03256 

ARIMA (1, 1, 0) 0.06542 

 
and these numbers are high compared to previous years, where highest fore-
casting for the patients is during June of 2018. Some months during the period 
of 2005-2015 did not record any cases while in the forecasting period 2016-2018 
every month is accepted to have some patients. 

Final Prediction Error (FPE) [9] 

Been using the final prediction error (FPE) a good estimate of prediction error 
for model with n parameters is given by the final prediction error see Table 4:  

( )( ) ( )2 , 1 1rFPE N N n N Nσ β ∧= + + − −             (19) 

2
rσ  =variance of the residuals.  

N is the number of values in the estimation data set. 
From Table 4 that the model ARIMA (0, 1, 1) has the lowest value of the cri-

terion of (FPE). 

6. Conclusions 

1) ARIMA model was suitable for application to Thalassemia data and analy-
sis of other similar medical data. 

2) By application of ARIMA model, we were able to forecast future cases easily 
and accurately. 

3) Cases of Thalassemia will increase within coming years, which means that, 
currently, no serious efforts are offered to solve or treat this disease in Iraq. 

7. Recommendations 

1) Doing more similar studies using data from other provinces of Iraq to 
overcome the disease. 

2) Doing pre-marriage tests to detect the carriers to limit the future incidence.  
3) The bone marrow transplant is the most suitable treatment of the disease 

but it is so costly for patients that governmental support will be very helpful. 
4) Should take care to Sanitaryware industry pain less and more safety during 

blood transfusions to relieve pain and prevent infection from bacterial and viral 
diseases. 
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