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This paper focuses on a combined SIR-SI epidemic model to evaluate the transmission dynamics 
of dengue fever, integrating the susceptible-infected-recovered (SIR) framework for the human 
population with the susceptible-infected (SI) framework for mosquitoes. The model is formulated 
as a system of nonlinear differential equations and is further extended by incorporating fractional-
order derivatives in the Caputo sense to capture memory effects in disease transmission. A thorough 
investigation of the disease-free and endemic equilibrium points is conducted, encompassing both 
local and global stability at the disease-free state. The basic reproduction number, R0, is derived, 
and a sensitivity analysis is performed to identify the key parameters influencing the transmission 
dynamics. To ensure mathematical rigor, the existence and uniqueness of the model’s solutions are 
also examined. For numerical approximation, the two-step Lagrange polynomial method is applied, 
enabling simulation of the model under various fractional orders and parameter settings. The results 
demonstrate that the fractional-order approach offers deeper insights into the dynamics of dengue 
transmission, highlighting the importance of memory effects. These findings provide valuable guidance 
for medical professionals, policymakers, and public health authorities in designing more effective 
control strategies.
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Dengue fever represents a major public health concern worldwide, placing considerable strain on medical 
infrastructures and economic resources, ultimately leading to increased rates of hospitalization and death. The 
symptoms usually manifest within three to fourteen days after infection and may include severe headaches, high 
fever, nausea, muscle and joint pain, as well as a distinctive skin rash accompanied by itching. Most individuals 
recover from dengue fever within two to seven days1. According to the World Health Organization, the following 
key facts about dengue have been reported2,3:

•	 Dengue fever is caused by a mosquito infected with the dengue virus, which is transmitted to humans through 
mosquito bites.

•	 Between 100 and 400 million cases are reported annually, meaning nearly half of the world’s population is at 
risk.

•	 Urban and semi-urban areas in tropical and subtropical climates are the most common locations where the 
disease is found.

•	 There is no specific treatment available for dengue or severe dengue.

Mathematical modeling is crucial for managing epidemics and implementing preventive measures. This study 
analyzes infection and recovery rate statistics, utilizing several mathematical models established in recent 
decades to enhance understanding and predictions. Examples include the simultaneous outbreak of dengue 
and COVID-19 in Brazil4, the interaction between Zika and Dengue with cross-enhancement effects5, and 
a fractional-order model incorporating quarantine and vaccination strategies for dengue transmission6. A 
well-known framework for studying disease spread is the susceptible-infected-recovered (SIR) model, first 
proposed in7. Additional models have been examined, including the SIR model with constant human and vector 

1Department of Applied Sciences and Humanities, Panipat Institute of Engineering and Technology, Samalkha, 
Panipat, Haryana 132102, India. 2Department of Mathematics, Sardar Vallabhbhai National Institute of Technology, 
Surat, Surat, Gujarat 395 007, India. 3School of Mathematics and Computer Science, Iran University of Science 
and Technology, Narmak, Tehran 16846-13114, Iran. 4Department of Mathematics, College of Education, Misan 
University, Misan 62001, Iraq. email: omidnikan77@yahoo.com

OPEN

Scientific Reports |        (2025) 15:30677 1| https://doi.org/10.1038/s41598-025-16599-w

www.nature.com/scientificreports

https://orcid.org/0000-0002-1843-0725
https://orcid.org/0000-0002-9070-0419
https://orcid.org/0000-0003-3041-8726
https://orcid.org/0009-0002-8396-9820
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-16599-w&domain=pdf&date_stamp=2025-8-20


populations, as well as the susceptible-exposed-infected-recovered (SEIR) model, specifically developed for 
studying the impact of rainfall on the spread of dengue in Thailand8. Supriatna et al.9 analyzed the SIR-SI model, 
incorporating age-dependent survival rates, effectively describing dengue transmission dynamics between 
humans and mosquitoes. The authors discussed comparing the Wolbachia strategy and vaccination, highlighting 
the potential of combining or prioritizing biological interventions for controlling dengue.

Fractional calculus is currently a popular and emerging area of study10–13. The research conducted in this 
newly established study topic has been published in prestigious journals, seminars, workshops, and international 
conferences, showcasing its high quality and demonstrating its potential and practicality. The study is motivated 
by the extensive application of fractional calculus in several engineering and science fields. Prominent 
mathematicians such as Fourier, Liouville, Euler, and Riemann made significant contributions to classical 
calculus during the 18th century, which were documented in the literature. Moreover, that specific era was 
widely recognized as the pinnacle of fractional calculus, during which numerous significant breakthroughs were 
achieved. Fractional calculus remains a subject of great interest among scholars, primarily due to its extensive 
range of practical applications. Fractional calculus has been employed in mathematical modelling to elucidate 
diverse inherent phenomena and retrieve measurements that classical calculus cannot represent. Furthermore, 
because of the localized nature of its fractional differential operator, fractional calculus exhibits a greater 
level of freedom compared to classical calculus. Recent research has developed fractional models, such as a 
generalized HBV model that captures both transmission channels, an HBV model with cell-to-cell and virus-to-
cell transmissions and adaptive immunity, and a two-strain SVLIR model with vaccination and quarantine14–16.

In recent years, numerous studies have focused on integer-order and fractional derivatives, incorporating 
both local and non-local kernels across various mathematical models17–19. Hamdan and Kilicman20 investigated 
the SIR epidemic model for dengue transmission using a fractional methodology. Hamdan and Kilicman21 used 
the fractional derivative to discuss the mathematical model of dengue using the real data of Malaysia. Hoang et 
al.22 analyzed the dynamics and numerical approximations of a fractional-order susceptible-infected-susceptible 
epidemic model incorporating a saturating contact rate. Ahmad et al.23 conducted an analysis of a fractional 
dengue model that provides a description of the dynamics of dengue. This model incorporates interactions 
between human populations and vector populations, specifically mosquito populations, with the aim of 
improving understanding and forecasting epidemics. Harris24 analyzed the SIR model to analyze COVID-19’s 
Omicron surge in New York City, using least-squares minimization to estimate infection dynamics, improving 
epidemic forecasting and public health response strategies. Contreras et al.25 have presented a comprehensive 
multi-group SEIRA model to depict the transmission of COVID-19 throughout a heterogeneous population and 
have evaluated it using a numerical case study. Ortiz et al.26 have examined the particular to a nation forecasting 
model for the effective reproduction number Rt of Coronavirus health issues.Several studies have contributed 
to the modeling of COVID-19 dynamics using advanced mathematical tools, including a correlated stochastic 
epidemic model incorporating vaccination, an optimal control-based epidemiological model for analyzing 
pandemic trends, and a fractional-order model for asymptotic analysis of the disease transmission27–29. Sapakova 
et al.30 evaluated the SIR model to assess the epidemiological situation in Kazakhstan and neighboring countries, 
using real data to analyze transmission dynamics and intervention impacts. Mungkasi31 investigated an enhanced 
variational iteration approach to address the SIR model for dengue fever, addressing its application to disease 
dynamics in South Sulawesi for improved predictions. Shah et al.32 examined a fractional model of dengue fever 
utilizing the Caputo-Fabrizio derivative. Vijayalakshmi and Ariyanatchi33 studied the fractional dengue fever 
model in the ABC sense and analyzed the stability of the proposed model. Numerous researchers have explored 
various epidemic models incorporating fractional derivatives, aiming to solve these fractional models through 
numerical methods such as Jan and Boulaaras34 evaluated the fractional-order dynamics of dengue infection, 
utilizing nonlinear incidence functions to provide a more refined model of the disease’s transmission dynamics. 
Maayah et al.35 studied the numerically solve the fractional order of the SIR model of dengue fever using the 
Laplace transform method. Ahmad et al.36 discussed the stability analysis of the transmission of Buruli diseases 
through the fractional SIR model with the application in a bio-medical. Nisar et al.37 discussed the disease’s 
different types of mathematical models in a fractional order. Sabir et al.38 implemented artificial neuron networks 
in conjunction with the Levenberg-Marquardt backpropagation to conduct a study on the numerical studies of a 
fractional nonlinear dengue model. Meetei et al.39 presented a quantitative analysis utilizing the Caputo-Fabrizio 
fractional-order derivative to investigate dengue’s transmission dynamics. Youssef et al.40 examined the stability 
of SIR, SEIR, SIR-SI, and SEIR-SI models, analyzing them under the assumption that recovered patients may 
experience reinfection with dengue.

This research primarily aims to characterize the dynamic transmission of the dengue fever model through the 
SIR-SI framework using the Caputo fractional derivative. Further, we investigate the stability and reproduction 
number of the fractional SIR-SI model and also discuss the sensitivity analysis of the parameter. The numerical 
method uses the two-step Lagrange polynomial technique to solve the proposed fractional model. It also 
discusses the effect of distinct values of fractional order and parameters on the behaviour of the proposed model.

The structure of the paper is as follows: “Mathematical model” presents the fractional SIR-SI model 
for dengue fever using the Caputo derivative. “Stability analysis” and “Existence and uniqueness conditions 
of solution” discuss the stability analysis as well as the uniqueness and existence of the approximate solution 
of the proposed model, respectively. “Numerical procedure of SIR-SI model” and “Sensitivity analysis of the 
parameters” explain the numerical procedure of the SIR-SI model and the sensitivity analysis of the parameter, 
respectively. “Numerical results and discussion” provides the results and discussion. Finally, “Conclusion” 
presents the concluding remark of the research paper.
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Mathematical model
We examine the SIR-SI epidemic model41,42, which is a model that integrates two distinct frameworks in this 
section. The modeling framework includes of an SIR structure for the human population and an SI structure 
for the mosquito population. In this framework, the human population is divided into three compartments: 
susceptible (Sh), infected (Ih), and recovered (Rh) individuals. Likewise, the mosquito population is divided 
into two compartments: susceptible (Sv) and infected (Iv). It is further assumed that the total populations of 
both humans and mosquitoes remain constant over time, as reflected in the following equations.

	 Nh = Sh(t) + Ih(t) + Rh(t),� (1)

and

	 Nv = Sv(t) + Iv(t).� (2)

At the time t, Sh(t) denotes the numbers of susceptible, Ih(t) denote the numbers of infected and Rh(t) denote 
the numbers of recovered humans, respectively, whereas Sv(t) indicate the numbers of susceptible and Iv(t) 
indicate the numbers of infected mosquitoes. The integrated model is expressed as a set of nonlinear differential 
equations representing the transmission dynamics between people and mosquitoes. Figure 1 illustrates the 
mathematical structure of the SIR-SI model for dengue fever.

Begin with SIR model for human population by considering death and birth quality rate in the human 
population41,42:

	

dSh(t)
dt

= αhNh − dδh

Nh
Iv(t)Sh(t) − αhSh(t),

dIh(t)
dt

= dδh

Nh
Iv(t)Sh(t) − (αh + βh)Ih(t),

dRh(t)
dt

= βhIh(t) − αhRh(t),





t ≥ 0.� (3)

Subject to initial condition of the model (3) about t = 0 as

	 Sh(0) = Sh0 , Ih(0) = Ih0 , and Rh(0) = Rh0 .� (4)

On the other hand, the SI model for mosquito population after the considering death and birth quality rate in 
the mosquito population41,42:

	

dSv(t)
dt

= αvNv − dδv

Nv
Ih(t)Sv(t) − αvSv(t),

dIv(t)
dt

= dδv

Nh
Ih(t)Sv(t) − αvIv(t),




t ≥ 0.� (5)

Subject to initial condition of the model (5) about t = 0 as

	 Sv(0) = Sv0 and Iv(0) = Iv0 .� (6)

Using Eqs. (1), (2), (3), (4), (5), and (6), the SIR and SI epidemic models are combined to form the SIR-SI dengue 
fever epidemic model as follows:

Fig. 1.  The representation of SIR-SI dengue fever model.
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dSh(t)
dt

= αhNh − dδh

Nh
Iv(t)Sh(t) − αhSh(t),

dIh(t)
dt

= dδh

Nh
Iv(t)Sh(t) − (αh + βh)Ih(t),

dIv(t)
dt

= dδv

Nh
Ih(t)Sv(t) − αvIv(t),




t ≥ 0.� (7)

Subject to initial condition of the model (7) about t = 0 as

	 Sh(0) = Sh0 , Ih(0) = Ih0 , and Iv(0) = Iv0 .� (8)

In what follows, Table 1 provides the definitions of the parameters used in the model given by Eq. (7), along with 
their associated units.

where, the unit of αh, αv, δh, δv  and βh are per day. Now, we non-dimensionalize the model (7) using the 
following values:

	
x(t) = Sh(t)

Nh
, y(t) = Ih(t)

Nh
, and z(t) = Iv(t)

Nv
.� (9)

By substituting Eq. (9) into Eq. (7), the following system is derived:

	

dx(t)
dt

= α(1 − x(t)) − βz(t)x(t),

dy(t)
dt

= βz(t)x(t) − γy(t),

dz(t)
dt

= δy(t)(1 − z(t)) − µz(t),




t ≥ 0.� (10)

Subject to initial conditions of the model (10) about t = 0 as

	 x(0) = x0, y(0) = y0, and z(0) = z0.� (11)

Where x(t), y(t), and z(t) represent the number of susceptible humans, infectious humans, and infectious 
mosquitoes, respectively, at time t. α = αh,  β = dδhNv

Nh
,  γ = (αh + βh),  δ = dδv ,  and  µ = αv  are positive 

parameters.
The formulation of the model (7) is within integer-order derivatives. We extend the model (7) with fractional-

order derivatives, providing a more general and flexible approach to describe the dynamics. Now, the fractional 
SIR-SI dengue fever model is

	

0Dκ
t x(t) = α(1 − x(t)) − βz(t)x(t),

0Dκ
t y(t) = βz(t)x(t) − γy(t),

0Dκ
t z(t) = δy(t)(1 − z(t)) − µz(t),


 t ≥ 0.� (12)

The initial conditions of the model (12) are the same as in Eq. (11). To extend the model into the fractional domain, 
we introduce the Caputo fractional derivative, offering a more adaptable framework for capturing memory 
and hereditary characteristics in the context of disease transmission dynamics. The fractional order κ ∈ (0, 1] 
governs the extent of nonlocality in the model. The Caputo fractional derivatives of x(t), y(t), and z(t) are given 
by 0Dκ

t x(t), 0Dκ
t y(t), and 0Dκ

t z(t), respectively. Among the various definitions of fractional derivatives, the 
Caputo derivative is widely used, particularly in applied modeling, because it naturally incorporates traditional 

Parameter Description Units

αh Human birth/death rate day−1

αv Mosquito birth/death rate day−1

b Avg. mosquito biting rate
bites
mosq-
 uito−1

  day−1

δh Human force of infection day−1

δv Mosquito force of infection day−1

βh Human recovery rate day−1

Table 1.  A detailed description of the parameters used in the model (7), along with their corresponding units.
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initial conditions, making it more practical for real-world applications. The Caputo derivative of order α, where 
0 < α ⩽ 1, for a function f(t) is defined as:

	
0Dα

t f(t) = 1
Γ(1 − α)

∫ t

0

f ′(u)
(t − u)α

du.� (13)

Here, Γ(·) is the Gamma function, and f ′(u) is the classical first-order derivative of f(u). Table 1 lists a detailed 
description of the parameters used in both the integer-order and fractional-order SIR-SI models.

Theorem 2.1  The closed region D = {(x, y, z) ∈ R+
3; 0 ≤ x + y ≤ 1, 0 ≤ z ≤ 1} is positively invarient set 

for model (12).

Proof  Based on the model system given in Eq. (12), we obtain the following:

	

x(t) + y(t) = 1 − Rh(t)
Nh

,

z(t) = 1 − Sv

Nv
.

Thus, the model system (12) is bounded. � □

Stability analysis
Equilibrium point
The model admits two categories of equilibrium points: the disease-free equilibrium (DFE) and the endemic 
equilibrium. According to model (12), we perform calculations on both points for the model.

The DFE occurs when there is no infection in the population, i.e., y = 0 and z = 0. The DFE point (E1) 
of the model system (12) can be calculated by putting 0Dκ

t x(t) = 0,  0Dκ
t y(t) = 0,   and 0Dκ

t z(t) = 0 and is 
given as E1 = (xeq, yeq, zeq) = (1, 0, 0).

The endemic equilibrium point occurs when there is infection in the population. The endemic equilibrium 
point (E2) of the model system (12) can be calculated by putting 0Dκ

t x(t) = 0,  0Dκ
t y(t) = 0,   and 0Dκ

t z(t) = 0 
and is given as

	
E2 = (x∗, y∗, z∗) =

(
µγ + δα

δ(α + β) ,
α(δβ)

γδ(α + β) ,
α(δβ − µγ)
β(µγ + δα)

)

.

Reproduction number
The compartments of the model (12) that are infected are made up of classes that exist in the (y, z) coordinates. 
Using the next generation technique43,44, it is possible to compute the basic reproduction number R0 by utilizing 
the relation R0 = ρ(F V −1), which represents the spectral radius of the eigenvalue of the Jacobian matrix 
evaluated at the DFE point E1. Both the Jacobian matrix of the transmission terms, denoted by F, and the 
Jacobian matrix of the transition terms, represented by V, the values of which are, respectively,

	
F =

( 0 β
0 0

)
and V =

(
γ 0

−δ µ

)
.

Thus, the next generation matrix is written by:

	
F V −1 =

(
δβ
γµ

β
µ

0 0

)
.

The basic reproduction number (R0) is the spectral radius of the eigenvalues of matrix F V −1:

	
R0 = ρ(F V −1) = δβ

γµ
.� (14)

Remark 3.1  The R0, represents the expected number of secondary infections generated by a single infective 
individual in a fully susceptible population. It serves as a critical measure of disease spread potential and acts as 
a threshold for the stability of the DFE, aiding in disease control strategies.

Local and global stability of DFE
In numerous epidemiological models, a DFE exists, representing a state where the population is disease-free. The 
theorems below address the local and global stability of the DFE, denoted as E1.

Theorem 3.1  The DFE of the model system described in Eq. (12) is locally asymptotically stable if R0 < 1, and 
becomes unstable when R0 > 1.
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Proof  : The local stability of the disease-free equilibrium point (E1) is determined by analyzing the eigenvalues 
of the Jacobian matrix (J) evaluated at E1:

	
J =

(
−α 0 −β
βz −γ β
0 δ −µ

)
.

It is obvious that λ1 = −α are first negative eigenvalues of J. The remaining eigenvalues of J are determined 
using the following block matrix (J1), which helps analyze the system’s stability and behavior. The matrix is

	
J1 =

(−γ β
δ −µ

)
.

The characteristic equation associated with the matrix J is expressed a

	 P (λ) = λ2 + (γ + µ)λ + (µγ − βδ).

By the Routh–Hurwitz-criteria45 of stability and some algebraic manipulations, it can easily be proved that if 
R0 < 1. Consequently, the Jacobian matrix (J1) has negative real components in all of its eigenvalues. Hence, 
the disease-free equilibrium (DFE) of the model system (12) is locally asymptotically stable if R0 < 1, and 
becomes unstable when R0 > 1. � □

The following theorem investigates the DFE’s global stability using the approach developed by Castillo-
Chavez and Song46.

Theorem 3.2  If R0 < 1, the DFE E1 of the model (12) is globally asymptotically stable in its feasible region.

Proof  We begin by reformulating the model (12) as follows:

	

0Dκ
t X(t) = F (X, Y ),

0Dκ
t Y (t) = G(X, Y ), with G(X, 0) = 0,

where the non-disease and disease compartments are represented as X = x ∈ R and Y = (y, z) ∈ R2 
respectively. The subsequent two requirements (H1) and (H2) are necessary for the global asymptotic stability 
of the DFE of the model (12).

(H1): For the system 0Dκ
t X(t) = F (X, 0), the equilibrium point X∗ = xeq  is globally asymptotically 

stable, where F (X∗, 0) = 0.
(H2): The function G(X, Y ) is expressed as G(X, Y ) = BY − G1(X, Y ), where G1(X, Y ) ≥ 0 for all 

(X, Y ) ∈ D, and B = DY G(X∗, 0) is assumed to be an M -matrix. The non-negative off-diagonal entries of 
B guarantee that the system remains biologically meaningful within the region D.

For model (12), we have

	 0Dκ
t X(t) = F (X, 0) = α(1 − x).� (15)

Indeed, the system (15) is globally asymptotically stable around X∗ = xeq = 1. This can be verified from the 
solution x(t) = 1 − (1 − x0)e−αt such that lim

t→∞
x(t) = 1, which implies that the global convergence of 

system (15) in D. Furthermore, from the model (12), we obtain

	
B =

(
γ β
δ −µ

)

and

	
G1(X, Y ) =

(
βxz

0
)

.

Clearly, βxz ≥ 0 inside D and therefore, G1(X, Y ) ≥ 0. Thus, the two conditions (H1) and (H2) are satisfied. 
Therefore, the DFE E1 of model (12) is globally asymptotically stable when R0 < 1. � □

Existence and uniqueness conditions of solution
In recent years, numerous studies have explored the existence and uniqueness of solutions for initial and 
boundary value problems related to NFDEs47–49, contributing significantly to the theoretical development of 
fractional calculus and its applications. The model delineated in Eq. (12) can be articulated as follows:

	

0Dκ
t x(t) = f1(x(t), y(t), z(t)),

0Dκ
t y(t) = f2(x(t), y(t), z(t)),

0Dκ
t z(t) = f3(x(t), y(t), z(t)),



 , t ≥ 0, κ ∈ (0, 1],
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with x(0) = x0, y(0) = y0, and z(0) = z0 over the domain 
Ω = {x(t), y(t), z(t) ∈ R : |x(t)| ≤ A1, |y(t)| ≤ A2, |z(t)| ≤ A3, t ∈ [0, ρ]}. If 
|fi(x(t), y(t), z(t))| ≤ Mi,  i = 1, 2, 3, and

	

∣∣∣∣
∂fi(x, y, z)

∂x

∣∣∣∣ ≤ p1i,

∣∣∣∣
∂fi(x, y, z)

∂y

∣∣∣∣ ≤ p2i, and

∣∣∣∣
∂fi(x, y, z)

∂z

∣∣∣∣ ≤ p3i

then model (12) has the unique solution. The parameters Mi, Ai, p1i, p2i, and p3i, i = 1, 2, 3 are positive 
constants.

Numerical procedure of SIR-SI model
A numerical technique utilizing the Caputo operator has been presented for modeling both nonlinear and 
linear systems, as previously identified by researchers50. Consequently, we now examine an IVP involving FO 
differential operators. We additionally construct a numerical approach utilizing Caputo derivatives to generate 
numerical estimates for models with both nonlinear and linear components50. The IVP involving the Caputo 
operator can be expressed as follows.

	

{
0Dκ

t b(t) = P (t, b(t)),
b(0) = b0

� (16)

Fractional calculus is applied to derive the integral from the above equation, resulting in:

	
b(t) − b(0) = 1

Γ(k)

∫ t

0
P (τ, b(τ))(t − τ)k−1dτ.� (17)

At the point, tl+1 = (l + 1)∆t, l = 0, 1, 2, ..., from above equation can be written as

	
b(tl+1) − b(0) = 1

Γ(k)

∫ tl+1

0
P (τ, b(τ))(tl+1 − τ)k−1dτ,� (18)

and we have

	
b(tl+1) − b(0) = 1

Γ(k)

l∑
m=0

∫ tm+1

tm

P (τ, b(τ))(tl+1 − τ)k−1dτ.� (19)

To facilitate the simplification of the integral on the R.H.S. of Eq. (19), we insert the Lagrange polynomial into 
the equation:

	

bl+1 = b0 + 1
Γ(k)

l∑
m=0

∫ tm+1

tm

[
P (tm, bm)

∆t
(τ − tm−1)

fracP (tm−1, bm−1)∆t(τ − tm)
]

× (tl+1 − τ)k−1dτ.

� (20)

Thus, Eq. (20) can be reconstructed as follows:

	

bl+1 = b0 + 1
Γ(k)

l∑
m=0

[ ∫ tm+1

tm

P (tm, bm)
∆t

(τ − tm−1) × (tl+1 − τ)k−1dτ

int
tm+1
tm

P (tm−1, bm−1)
∆t

(τ − tm) × (tl+1 − τ)k−1dτ
]
,

� (21)

and we have

	

bl+1 = b0 + 1
Γ(k)

l∑
m=0

P (tm, bm)
∆t

∫ tm+1

tm

(τ − tm−1) × (tl+1 − τ)k−1dτ

frac1Γ(k)
l∑

m=0

P (tm−1, bm−1)
∆t

∫ tm+1

tm

(τ − tm) × (tl+1 − τ)k−1dτ.

� (22)

The integrals in Eq. (22) are computed as follows:
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∫ tm+1

tm

(τ − tm−1) × (tl+1 − τ)k−1dτ

= ∆t)k+1

k(k + 1)

[
(l − m + 1)k(l − m + k + 2) − (l − m)k(l − m + 2k + 2)

]

∫ tm+1

tm

(τ − tm) × (tl+1 − τ)k−1dτ

= ∆t)k+1

k(k + 1)

[
(l − m + 1)k+1 − (l − m)k(l − m + k + 1)

]

� (23)

Inserting the value of these integrals in Eq. (22), we obtain

	

bl+1 = b0 + (∆t)k

Γ(k + 2)

l∑
m=0

P (tm, bm)
[
(l − m + 1)k(l − m + k + 2) − (l − m)k(l − m + 2k + 2)

]

frac(∆t)kΓ(k + 2)
l∑

m=0

P (tm−1, bm−1)
[
(l − m + 1)k+1 − (l − m)k(l − m + k + 1)

]
.

� (24)

Similarly, Eq. (12) can be obtained the numerical solution as follows:

	

xl+1 = x0 + (∆t)k

Γ(k + 2)

l∑
m=0

P1(tm, xm, ym, zm)
[
(l − m + 1)k(l − m + k + 2) − (l − m)k(l − m + 2k + 2)

]

frac(∆t)kΓ(k + 2)
l∑

m=0

P (tm−1, xm−1, ym−1, zm−1)
[
(l − m + 1)k+1 − (l − m)k(l − m + k + 1)

]
.

� (25)

	

yl+1 = y0 + (∆t)k

Γ(k + 2)

l∑
m=0

P1(tm, xm, ym, zm)
[
(l − m + 1)k(l − m + k + 2) − (l − m)k(l − m + 2k + 2)

]

frac(∆t)kΓ(k + 2)
l∑

m=0

P (tm−1, xm−1, ym−1, zm−1)
[
(l − m + 1)k+1 − (l − m)k(l − m + k + 1)

]
.

� (26)

	

zl+1 = z0 + (∆t)k

Γ(k + 2)

l∑
m=0

P1(tm, xm, ym, zm)
[
(l − m + 1)k(l − m + k + 2) − (l − m)k(l − m + 2k + 2)

]

frac(∆t)kΓ(k + 2)
l∑

m=0

P (tm−1, xm−1, ym−1, zm−1)
[
(l − m + 1)k+1 − (l − m)k(l − m + k + 1)

]
.

� (27)

Sensitivity analysis of the parameters
The aim of conducting a sensitivity analysis for an epidemic model is to identify the parameters that are most 
important about a particular intervention that significantly impacts the dynamics of the disease situation. We 
are interested in the features that are responsible for the significant variance in the value of the fundamental 
reproduction number. When a parameter is changed, the sensitivity indices can be utilized to ascertain the 
equivalent variation in the state variable that is brought about by the modification. For the purpose of calculating 
these indices, the definition provided in51 was utilized. The ratio between the relative change in the variable 
and parameter is known as normalized forward sensitivity index. When the variable in question is a parameter 
function that can be differentiated, the sensitivity index is computed by employing partial derivatives. The 
normalized forward sensitivity index of a variable, represented by R0, with respect to a parameter p, is defined 
as the relative change in R0 resulting from a relative change in p:

	
SR0

p = p

R0

∂R0

∂p
.

Using the basic reproduction number (R0 from Eq. (14)), we conduct a sensitivity analysis to identify the most 
influential parameters of the model. The sensitivity index for the parameters (β, δ, γ, and µ) can be calculated 
as follows:

	
SR0

β = β

R0

∂R0

∂β
= 1, SR0

δ = δ

R0

∂R0

∂δ
= 1, SR0

γ = γ

R0

∂R0

∂γ
= −1, SR0

µ = µ

R0

∂R0

∂µ
= −1.� (28)

The parameters (β and δ) with positive indices in Eq. (28) increase the value of R0, indicating a rise in disease 
transmission within the population. Conversely, parameters (γ and µ) with negative indices suggest a reduction 
in disease infection. As shown in Eq. (28), the most significant positive indices parameters are β and δ. This 
indicates that β and δ are the most sensitive parameters with positive indices, implying that controlling these 
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values can effectively reduce R0. Furthermore, the parameters with the most significant negative indices are 
γ and µ. This indicates that γ and µ are the most sensitive parameters with negative indices, implying that 
controlling these values can effectively reduce R0. Raising awareness about beta, delta, γ, and µ within the 
population could help manage the transmission of dengue fever. Figure 2 depicts the parameters’ sensitivity 
analysis.

Numerical results and discussion
The parameter values and the initial population values are taken from41,42: α = 0.00004, β = 0.009191, 
γ = 0.3333, δ = 0.375, µ = 0.083333, x(0) = 0.9999, y(0) = 0.0006, and z(0) = 0.056. Table 2 presents the 
numerical solutions obtained for x(t), y(t), and z(t), together with the corresponding reference values reported 
in52 for Case I. This table also includes the respective absolute errors, denoted by Ex, Ey , and Ez , thereby 
providing a direct quantitative comparison between the computed and reference results. The close agreement 
between the two sets of results attests to the high accuracy of the proposed method, thereby demonstrating its 
robustness and effectiveness in producing reliable numerical approximations. Figure 3 illustrates the behavior 
of the present model for different fractional orders: k = 0.70, 0.80, 0.90, and 1.00. The number of susceptible 
and infected individuals for humans, as well as infected mosquitoes, increases as the fractional order value 
decreases. Furthermore, x(t) decreases as time progresses, but after 50 days, x(t), y(t), and z(t) stabilize. From 
Fig. 3b, we observe that the initially infected population increases with time, then decreases after a certain period 
and stabilizes after 150 days. Figure 4 depicts the combined plotting of the solution of the present model for 
fractional orders k = 0.10, 0.30, and 0.50. Figure 5 illustrates the chaotic behavior of the present model for 
distinct fractional order values k = 0.70, 0.80, 0.90, and 1.00. Figure 6 displays the effect of the parameter β 
on the behavior of the present model (12) for fractional orders κ = 0.90 and 1.00. It can be observed that the 
susceptible population decreases as the parameter β increases for values β = 0.001, 0.002, 0.003, and 0.004, 
whereas the infected and recovered populations increase for these values of β (see Figure 6). Figure 7 illustrates 
the effect of the parameter δ on the behavior of the present model (12) for fractional orders κ = 0.90 and 1.00. 
Similar to β, the susceptible population decreases as δ increases for values δ = 0.001, 0.002, 0.003, and 0.004, 
whereas the infected and recovered populations increase for these values (see Fig. 7). Figure 8 portraits the 
effect of the parameter µ on the behavior of the present model (12) for fractional orders κ = 0.90 and 1.00. 

Fig. 2.  Analysis of the sensitivity of the basic reproduction number R0 with respect to different model 
parameters.
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It is evident that the susceptible population increases as µ increases (µ = 0.03, 0.05, 0.07, 0.09), whereas the 
infected and recovered populations decrease with increasing µ (see Figure 8). Figure 9 shows the effect of the 
parameter γ on the behavior of the present model (12) for fractional orders κ = 0.90 and 1.00. The susceptible 
population increases as γ increases (γ = 0.01, 0.02, 0.03, 0.04), while the infected and recovered populations 
decrease with increasing γ (see Fig. 9).

Fig. 3.  Behavior of the proposed model (12) for distinct values of fractional order (κ).

 

t x(t) x(t)52 Ex y(t) y(t)52 Ey z(t) z(t)52 Ez

0.0 0.9999000000 0.9999000000 0 0.0000460000 0.0000460000 0 0.0560000000 0.0560000000 0

0.1 0.9986673191 0.9986025092 6.48e−5 0.0012755922 0.0013383237 6.27e−5 0.0558511089 0.05584432375 6.79e−6
0.2 0.9973744401 0.9973097660 6.47e−5 0.0025061690 0.0025668085 6.06e−5 0.0557379906 0.05573333080 4.66e−6
0.3 0.9960853554 0.9960206778 6.47e−5 0.0036932091 0.0037521427 5.89e−5 0.0556679721 0.05566517284 2.80e−6
0.4 0.9947990780 0.9947341552 6.49e−5 0.0048390916 0.0048970106 5.79e−5 0.0556394191 0.05563800157 1.42e−6
0.5 0.9935146630 0.9934491131 6.55e−5 0.0059460778 0.0060040922 5.80e−5 0.0556507790 0.05564996870 8.10e−7
0.6 0.9922312050 0.9921644705 6.67e−5 0.0070163166 0.0070760632 5.97e−5 0.0557005773 0.05569922591 1.35e−6
0.7 0.9909478363 0.9908791497 6.87e−5 0.0080518503 0.0081155951 6.37e−5 0.0557874143 0.05578392491 3.49e−6
0.8 0.9896637251 0.9895920774 7.16e−5 0.0090546198 0.0091253552 7.07e−5 0.0559099613 0.05590221740 7.74e−6
0.9 0.9883780738 0.9883021840 7.59e−5 0.0100264698 0.0101080063 8.15e−5 0.0560669575 0.05605225506 1.47e−5
1.0 0.9870901169 0.9870084040 8.17e−5 0.0109691535 0.0110662072 9.71e−5 0.0562572067 0.05623218960 2.50e−5

Table 2.  Comparison of the numerical solutions x(t), y(t), and z(t) obtained using the present method with 
those reported in52 for case-I, including the corresponding absolute errors.
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Conclusion
This study employed the Caputo fractional derivative to investigate the epidemic dynamics of a SIR-SI model. 
Numerical techniques were implemented to solve the proposed system. Both the disease-free and endemic 
equilibrium points were explored, and a comprehensive analysis of local and global stability at the disease-free 
equilibrium was conducted. Additionally, a sensitivity analysis of parameters β, δ, µ, and γ was conducted 
concerning the basic reproduction number R0. The conditions for the existence and uniqueness of the solution 
within a stable framework were established. Numerical simulations supported the theoretical findings, showing 
that the fractional-order model exhibited a lower peak of infection, aligning more accurately with empirical 

Fig. 5.  Chaotic behaviour of the present model (12) for distinct values of fractional order (κ).

 

Fig. 4.  Combine ploting of the solution of the present model (12) for fractional order (κ = 0.10, 0.30, and 
0.50).
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data. The impact of varying parameter values on the model’s outcomes was discussed. Fractional mathematical 
modeling demonstrated a more precise and resilient approach for epidemiological models by utilizing fractional 
orders that closely matched real-world data. The fractional SIR-SI model can be expanded in future studies by 
adding other dengue serotypes, climate variables, and actual data. Stochastic or spatial dynamics and time-
dependent fractional orders could enhance realism. These developments can improve forecasting precision and 
facilitate better public health strategies for preventing dengue fever outbreaks.

Fig. 6.  Effect of parameter (β) on the behavior of the present model (12) for fractional order (κ = 0.90 and 
1.00).
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Fig. 7.  Effect of parameter (δ) on the behaviour of the present model (12) for fractional order (κ = 0.90 and 
1.00).
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Fig. 8.  Effect of parameter (µ) on the behavior of the present model (12) for fractional order (κ = 0.90 and 
1.00).
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Data availability
The data sets used and/or analyzed during the current study available from the corresponding author on rea-
sonable request.
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