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Abstract: The search for new parameters for the prediction of type 2 diabetes mellitus (T2DM) or
its harmful consequences remains an important field of study. Depending on the low-grade inflam-
matory nature of diabetes, we investigated three proteins in T2DM patients: 1-aminocyclopropane-
1-carboxylate synthase (ACCS), granulocyte–colony-stimulating factor (G-CSF), and Sma Mothers
Against Decapentaplegic homolog-4 (SMAD4). In brief, sixty T2DM and thirty healthy controls
had their serum levels of ACCS, G-CSF, SMAD4, and insulin tested using the ELISA method. The
insulin resistance (IR) parameter (HOMA2IR), beta-cell function percentage (HOMA2%B), and insulin
sensitivity (HOMA2%S) were all determined by the Homeostasis Model Assessment-2 (HOMA2)
calculator. The predictability of these protein levels was investigated by neural network (NN) analysis
and was associated with measures of IR. Based on the results, ACCS, G-CSF, and SMAD4 increased
significantly in the T2DM group compared with the controls. Their levels depend on IR status and
inflammation. The multivariate GLM indicated the independence of the levels of these proteins on
the covariates or drugs taken. The receiver operating characteristic area under the curve (AUC) for
the prediction of T2DM using NN analysis is 0.902, with a sensitivity of 71.4% and a specificity of
93.8%. The network predicts T2DM well with predicted pseudoprobabilities over 0.5. The model’s
predictive capability (normalized importance) revealed that ACCS is the best model (100%) for the
prediction of T2DM, followed by G-CSF (75.5%) and SMAD4 (69.6%). It can be concluded that ACCS,
G-CSF, and SMAD4 are important proteins in T2DM prediction, and their increase is associated with
the presence of inflammation.

Keywords: Sma mothers against decapentaplegic homolog-4 (SMAD4); 1-aminocyclopropane-1-
carboxylate synthase (ACCS); granulocyte–colony-stimulating factor (G-CFS); diabetes mellitus;
insulin resistance

1. Introduction

According to the International Diabetes Federation’s estimation in 2021, the global
prevalence of type 2 diabetes mellitus (T2DM) was 10.5%, with a projected increase of 12.2%
by 2045. This projection indicates that over 783 million adults will be affected. Diabetes
has a substantial impact on both individual and global health economies, as evidenced
by estimated costs of USD 966 billion [1]. Individuals with T2DM are highly susceptible
to morbidity and mortality, primarily due to cardiovascular disease. Attaining rigorous
glycemic control is crucial in mitigating the probability of complications and diabetes
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disease progression [2]. T2DM is a medical condition characterized by insufficient insulin
production and release by the β-cells in the pancreatic islets, as well as decreased insulin
sensitivity, commonly known as insulin resistance (IR). The gradual increase in fasting
and postprandial blood glucose levels is a characteristic feature of the development of
this disease. It is noteworthy that a reduction in insulin sensitivity is one of the earliest
pathogenic events that occur several decades prior to the onset of T2DM [3]. IR is a
prevalent pathology in both obesity and T2DM. It is characterized by a cellular state in
which insulin fails to elicit a response, ultimately leading to the onset of hyperglycemia [4].
The occurrence of IR results in an elevation of glucose concentration that falls within the
range between normal levels and the established thresholds for T2DM. This particular
metabolic state is commonly referred to as prediabetes. Although not classified as a clinical
entity, it serves as a risk factor for progressing to diabetic pathology [5]. More than 90% of
all diabetes cases are attributable to T2DM, which is characterized by IR and reduced cell
function [6].

Many parameters were previously studied for diagnosis, prognosis, and follow-up.
However, there are essential compounds that are not well-researched. The Sma Moth-
ers Against Decapentaplegia homolog-4 (SMAD4) is a key transcriptional mediator of
transforming growth factor-β (TGFβ) [7]. Since SMAD4 controls the canonical route of
TGFβ, it is especially vulnerable to the effects of intermittent hypoxia and disruptions in its
circadian rhythm [8]. Patients with hypertension, T2DM, and cardiovascular disease have
been shown to have high plasma levels of TGFβ, indicating a probable involvement in the
development of these diseases [9,10]. Therefore, for example, the pleiotropic effects of TGF
signaling on energy balance and metabolism are pertinent for the genesis and development
of T2DM [11]. When Smad4 is activated, it binds with other Smad proteins, moves into
the nucleus, and controls the production of genes that are involved in cellular responses
to oxidative stress [12]. It also plays an important role in the inflammation process [13],
which causes many of the complications and symptoms of diabetes. Smad4 plays a vital
role in the growth and proper functioning of pancreatic beta cells. It aids in the regulation
of genes that are involved in the release of insulin and the survival of beta cells [14].

The granulocyte–colony-stimulating factor (G-CSF) is an additional biomarker, syn-
thesized by numerous cell types, that warrants investigation in patients with T2DM. The
primary role of G-CSF is to facilitate neutrophil differentiation and proliferation within
the bone marrow and modulate the release of these cells into the bloodstream. Further-
more, G-CSF has been observed to have the potential to impact the oxidative process and
phagocytosis [15]. Research found that persons with type 2 diabetes (T2DM) had signifi-
cantly elevated blood G-CSF levels compared with the healthy controls. These levels were
strongly correlated with several inflammatory indicators linked to problems associated
with diabetes [16]. Another research presented data indicating that diabetic individuals
had elevated levels of G-CSF, revealing its potential as a biomarker associated with inflam-
mation and perhaps the severity of diabetes complications [17]. Previous studies have
shown that elevated levels of G-CSF may suggest a continuous immunological response in
patients with diabetes, indicating the presence of chronic low-grade inflammation often
seen in diabetics [18].

The 1-Aminocyclopropane-1-carboxylate synthase enzyme (ACCS), also known as
S-adenosyl-L-methionine methylthioadenosine lyase, catalyzes the conversion of SAM
into 1-aminocyclopropane-1-carboxylate (ACC) [19]. The ACCS regulates the biosynthe-
sis of ethylene [20], in addition to many other pathological processes, including cancer,
infection, and inflammation [21–23]. The intestinal microbiota is believed to increase lev-
els of ethylene, the precursor of ethylene oxide, through metabolic processes and lipid
peroxidation [24]. However, the role of ACCS in diabetes has not yet been studied.

In the present study, ACCS, GCSF, and SMAD4 levels in T2DM were correlated with
IR status, and their ability to diagnose diabetes mellitus state using neural network (NN)
analysis was studied.
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2. Materials and Methods
2.1. Subjects

The present investigation enlisted a cohort of 60 individuals diagnosed with T2DM
and 30 individuals who were considered healthy controls, with age and sex being matched
to the T2DM patients. This study recruited participants from Sadr Teaching Hospital, Najaf
Governorate, Iraq, during the period from December 2022 to the end of January 2023. The
diagnostic criteria for T2DM patients followed the guidelines set forth by the World Health
Organization [25,26], which stipulates that patients must exhibit fasting plasma glucose
levels of ≥7.0 mM and the level of glycated hemoglobin (HbA1c) exceeding 6.5%.

The exclusion criteria employed for patients in this study were as follows: patients who
exhibited major overt diabetic complications, including heart disease, liver disease, and
renal diseases, as well as patients whose albumin/creatinine ratio exceeded 30 mg/g [27].
Serum CRP concentrations of all participants were found to be below 6 mg/dL, indicating
the absence of overt inflammation [28]. The participants under consideration engage in
physical exercise by visiting a fitness center at least twice a week and dedicating a minimum
of one hour to training during each visit. All participants gave their informed written
permission to take part in this study before they were enrolled. The IRB of the University
of Kufa gave its permission to carry out the research (IRB reference number 811B/2022).
As required by the Declaration of Helsinki, the IRB follows the International Guidelines for
the Protection of Human Subjects of Research.

2.2. Methods

Blood was collected at 8:00 a.m. after an overnight fasting period. Venous blood
samples were collected from both patients and controls, with a volume of five milliliters per
sample. After complete clotting, the blood sample was centrifuged at a rate of 1500× g for
10 min. The resulting serum was then separated and stored at a temperature of −80 degrees
Celsius until further analysis. Serum levels of ACCS, SMAD4, and G-CSF were quantified
by ELISA reader (Model, Biotek ELx 800, Hudson, NY, USA) using commercial ELISA
sandwich kits obtained from Nanjing Pars Biochem Co., Ltd. (Nanjing, China). The
procedures were executed precisely as per the manufacturer’s guidelines, without any
alterations. The limit of detection for the other kits was 1 ng/mL. The precision within
an assay, as indicated by the intra-assay coefficient of variation (CV), was found to be less
than 10.0%.

Fasting blood glucose was measured by spectrophotometer (Model CGOLDENWALL
721, Guangzhou, China) using a kit supplied by Agappe® Diagnostics Ltd. (Cham, Switzer-
land). The kit used to detect serum CRP levels was supplied by Spinreact® (Girona,
Spain). The Homeostasis Model Assessment 2 (HOMA2) calculator© (Version 2.2.3), de-
veloped by University of Oxford (UK), downloaded freely at https://www.dtu.ox.ac.uk/
homacalculator/download.php (14 February 2022), was employed to derive measures
of β-cell function (HOMA2%B), insulin sensitivity (HOMA2%S), and insulin resistance
(HOMA2-IR) based on the individual’s fasting serum insulin and glucose concentrations.
The HOMA2 calculator uses a more complex algorithm that accounts for variations in
fasting insulin and glucose levels. HOMA2 provides estimates of both IR and HOMA2%B,
offering a more comprehensive view of metabolic health compared with the simple HOMA-
IR equation, which only focuses on insulin resistance [29]. Studies have shown that HOMA2
calculator results correlate better with gold-standard measures of insulin sensitivity, such
as the euglycemic clamp technique [30].

The exclusion criteria for patients consisted of serum fasting blood glucose levels
exceeding 25 mM and fasting insulin levels surpassing 400 pM, as determined by the
HOMA calculator software (Version 2.2.3). Furthermore, patients with overt diabetic com-
plications and heart, liver, and kidney diseases were excluded. We excluded patients
receiving metformin due to its potential impact on IR measurement [30] and insulin sensi-
tivity [31], as well as patients with an albumin/creatinine ratio greater than 30 mg/g [27].
All participants had serum CRP concentrations below 6 mg/dL, indicating the absence of
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overt inflammation among the subjects. The participants under consideration engage in
physical exercise by visiting a fitness center at a minimum frequency of twice per week and
allocating a minimum of one hour per visit for training purposes.

2.3. Statistical Analysis

The Kolmogorov–Smirnov test was utilized to analyze the distribution types of the
variables. The mean ± standard deviation was used to express the results for variables
that followed a normal distribution. Analysis of variance (ANOVA) was used to quantify
differences between continuous variables, while the analysis of contingency tables (χ2-
test) was used to assess correlations between nominal variables. Results were reported
as medians with an interquartile range of 25% to 75% when the variables did not follow
a normal distribution. The Mann–Whitney test was used to make comparisons between
the patient and control cohorts, as well as within subgroups, with respect to the measured
parameters. The Spearman correlation coefficients (ρ, rho) were calculated in order to assess
the correlation between parameters. This study used multivariate general direct model
(GLM) analysis to examine the correlation between biomarkers and diagnosis (controls
versus T2DM), while also accounting for background variables such as age, BMI, nicotine
dependence, sex, and education. This study conducted tests to examine the associations
between diagnosis and each biomarker through between-subject effects. The effect sizes
were evaluated using partial eta (η2) values. The sample size computation was conducted
using the G*Power 3.1.9.7 software. Based on the utilization of an effect size of 0.3, a p-value
of 0.05, a power of 0.8, and the incorporation of two groups in the analysis of covariance, it
is recommended that the overall sample size be 90. Consequently, a total of 90 participants
were recruited, comprising 30 individuals in the control group and 60 patients in the
experimental group.

To ensure normal distribution for all statistical analyses, the variables SMAD4, ACCS,
and G-CSF underwent the Ln transformation. The statistical tests used were two-tailed,
and the threshold for statistical significance was set at a p-value of 0.05. Statistical analyses
were performed using IBM SPSS Windows version 25 in 2017.

This study used Multilayer Perceptron NN models to evaluate the intricate relation-
ships between the diagnosis of T2DM and the control group as output variables, and
the measured biomarkers as input variables. The network was trained using automated
feedforward architecture models, which involved the utilization of two hidden layers
with a maximum of four nodes. Minibatch training with gradient descent was used and
the training process was carried out over 30 epochs. Ultimately, error, relative error, and
importance were calculated for all input variables. The statistical tests employed were
two-tailed and the level of significance chosen was 0.05.

3. Results
3.1. Sociodemographic and Clinical Characteristics

Table 1 shows the clinical and biochemical data of healthy controls and T2DM patients.
Age, BMI, sex, marital status, residency, TUD, and exercise frequency are not significantly
different between patients and control groups. Patients treated with Sitagliptin (100 mg)
or Amaryl (4 mg) were 18 out of 60, while 24 patients were treated with Daonil (5 mg).
The patient’s group has a significantly higher (p < 0.001) family history of T2DM than the
control group. As expected, there is significant hyperglycemia in T2DM patients. The
duration of disease in the patient’s group was 12.411 ± 5.363 years. The results show a
significant decrease (p < 0.001) in HOMA2%B and HOMA2IR, in addition to a significant
increase in HOMA2%S in T2DM patients compared with the control group. Serum levels
of SMAD4, ACCS, and G-CSF are significantly higher (p < 0.001) than in the control group.



Biomedicines 2024, 12, 2015 5 of 13

Table 1. Demographic, clinical, and biochemical data in type 2 diabetes mellitus (T2DM) patients and
healthy controls.

Variables Control
n = 30

T2DM
n = 60 df F/χ2 p

Age years 44.67 ± 9.279 46.62 ± 8.279 1/88 1.023 0.315
Sex (Female/Male) 19/11 37/23 1 0.024 0.878
BMI (kg/m2) 26.778 ± 4.819 26.837 ± 3.052 1/88 0.005 0.944
Single/Married 2/28 4/56 1 0 1
Residency Rural/Urban 3/27 6/54 1 0 1
Family History (No/Yes) 29/1 35/25 1 14.306 <0.001
Exercise (No/Yes) 8/22 11/49 1 1.092 0.311
TUD (No/Yes) 19/11 34/26 1 0.367 0.545
Duration of DM Years - 12.411 ± 5.363 - - -
Glucose mM 5.532 ± 0.686 8.182 ± 2.742 1/88 27.038 <0.001
Insulin pM 60.228 ± 10.731 42.592 ± 13.171 1/88 40.329 <0.001
(Insulin/Glucose) ×10−9 11.018 ± 2.324 5.884 ± 2.774 1/88 75.975 <0.001
HOMA2%B 83.250 (71.825–102.925) 37.650 (21.650–57.625) 1/88 75.008 <0.001
HOMA2%S 86.800 (76.025–102.000) 114.850 (91.825–135.850) 1/88 14.652 <0.001
HOMA2IR 1.151 ± 0.208 0.884 ± 0.252 1/88 25.136 <0.001
SMAD4 ng/mL 63.335 (34.757–106.058) 177.793 (84.827–284.376) 1/88 37.916 <0.001
ACCS pg/mL 4.0188 (3.149–5.965) 6.061 (5.680–7.303) 1/88 39.313 <0.001
G-CSF pg/mL 67.059 (34.344–110.080) 143.992 (89.753–210.583) 1/88 30.207 <0.001
Sitagliptin 100 mg (No/Yes) 30/0 42/18 1 11.250 0.001
Amaryl 4 mg (No/Yes) 30/0 42/18 1 11.250 0.001
Daonil 5 mg (No/Yes) 30/0 36/24 1 16.364 <0.001

ACCS: 1-aminocyclopropane-1-carboxylate synthase, BMI: body mass index, G-CSF: granulocyte-colony stimulat-
ing factor, HOMA2IR: Homeostasis Model Assessment 2 insulin resistance score, HOMA2%B, Beta cell function
percentage, HOMA2%S: insulin resistance percentage, SMAD4: Sma Mothers Against Decapentaplegic homolog-4,
TUD: tobacco use disorder.

3.2. Results of Multivariate GLM Analysis

Table 2 shows the results of a multivariate GLM analysis with measured biomarkers
as dependent variables, while diagnosis and covariates (age, BMI, exercise, sex, and TUD)
were the explanatory variables. There was a highly significant effect of diagnosis (F = 12.959,
df = 9/75, p < 0.001) with an effect size (Partial η2) of 0.637 on the level of biomarkers. All
covariates had no significant effect on biomarkers.

Table 2. Results of multivariate GLM analysis examining the associations between the measured
biomarkers and the diagnosis (healthy control/T2DM).

Test Dependent Variables Explanatory Variables F df p Partial η2

Multivariate All measured
biomarkers

Diagnosis 12.959 9/75 <0.001 0.637
Age 0.721 9/75 0.702 0.089
Sex 1.258 9/75 0.288 0.156

TUD 0.575 9/75 0.829 0.072
Exercise 0.485 9/75 0.894 0.062

BMI 1.023 9/75 0.432 0.122

Between-subject
effects

Diagnosis

Insulin/Glucose 71.983 1 <0.001 0.464
HOMA2%B 71.811 1 <0.001 0.487

LnACCS 40.722 1 <0.001 0.329
Insulin 36.129 1 <0.001 0.303

LnSMAD4 35.426 1 <0.001 0.299
LnGCSF 30.418 1 <0.001 0.268
Glucose 27.320 1 <0.001 0.248

HOMA2IR 21.768 1 <0.001 0.208
HOMA2%S 12.629 1 0.001 0.132

ACCS: 1-aminocyclopropane-1-carboxylate synthase, BMI: body mass index, G-CSF: granulocyte-colony stimulat-
ing factor, HOMA2IR: Homeostasis Model Assessment 2 insulin resistance score, HOMA2%B, Beta cell function
percentage, HOMA2%S: insulin resistance percentage, Ln: natural logarithm, SMAD4: Sma Mothers Against
Decapentaplegic homolog-4, TUD: tobacco use disorder.
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Tests for effects between subjects showed that diagnosis has significant effects on
serum biomarker levels. The six main biomarkers that significantly (p < 0.001) affected
by the diagnosis were insulin/glucose ratio (F = 71.983, Partial η2 = 0.464), HOMA2%B
(F = 71.811, Partial η2 = 0.487), ACCS (F = 40.722, Partial η2 = 0.329), insulin (F = 36.126,
Partial η2 = 0.303), SMAD4 (F = 35.426, Partial η2 = 0.299), and GCSF (F = 30.418, Partial
η2 = 0.268), respectively.

3.3. Correlation Matrix

The correlation matrix showing the partial correlations of IR parameters indices,
SMAD4, ACCS, and G-CSF with other measured parameters adjusted for age, sex, BMI,
smoking, and exercise are presented in Table 3. ACCS is correlated with glucose (r = 0.273,
p < 0.01), G-CSF (r = 0.370, p < 0.01), and SMAD4 (r = 0.430, p < 0.001), while ACCS is
inversely and significantly correlated with insulin (r = −0.221, p < 0.05), insulin/glucose
ratio (r = −0.282, p < 0.05), and HOMA2%B (r = −0.292, p < 0.01). G-CSF is significantly
correlated with glucose (r = 0.344, p < 0.001), HOMA2%S (r = 0.214, p < 0.05), ACCS
(r = 0.370, p < 0.01), and SMAD4 (r = 0.745, p < 0.001).

Table 3. Correlation matrix showing the partial correlations adjusted for age, sex, BMI, smoking,
and exercise.

ACCS G-CSF SMAD4

Glucose 0.273 ** 0.344 ** 0.341 **
Insulin pM −0.221 * −0.274 ** −0.215 *

In/G −0.282 ** −0.336 ** −0.306 **
HOMA2%B −0.292 ** −0.356 ** −0.346 **
HOMA2%S 0.176 0.214 * 0.175
HOMA2IR −0.176 −0.214 * −0.175

ACCS 1.000 0.370 ** 0.430 **
G-CSF 0.370 ** 1.000 0.745 **

SMAD4 0.430 ** 0.745 ** 1.000
*: p < 0.05, **: p < 0.01, ACCS: 1-aminocyclopropane-1-carboxylate synthase, G-CSF: granulocyte-colony stim-
ulating factor, HOMA2IR: Homeostasis Model Assessment 2 insulin resistance score, HOMA2%B, Beta cell
function percentage, HOMA2%S: insulin resistance percentage, SMAD4: Sma Mothers Against Decapentaplegic
homolog-4.

Serum G-CSF is significantly and inversely correlated with insulin (r = −0.274, p < 0.01),
In/G (r = −0.336, p < 0.001), HOMA2%B (r = −0.336, p < 0.01), and HOMA2IR (r = −0.214,
p < 0.05). A significant correlation between SMAD4 with glucose (r = 0.341, p < 0.001) and
ACCS (r = 0.430, p < 0.001). Serum SMAD4 is significantly and inversely correlated with
HOMA2%B (r = −0.346, p < 0.001), insulin (r = −0.215, p < 0.05), and In/G (r = −0.306,
p < 0.01).

3.4. Neural Network Study

The results of the neural network information of the model in patients to predict
patients with T2DM versus controls are presented in Table 4. NN analysis employed a
feedforward architecture, which involves the absence of feedback loops, as the connec-
tions within the network flow exclusively from the input layer to the output layer. The
present analysis involves the utilization of an input layer that comprises the predictors.
The concealed stratum comprises latent nodes, also known as units, that are not directly
observable. The value of the hidden unit is computed using a function that takes into
account both the kind of network and the user’s preferences. The final layer in the neural
network architecture is the output layer, which is responsible for generating the responses.
The two indicator variables serve to illustrate the dichotomous nature of the underlying
variable. Each unit’s output is calculated using a formula based on the hidden units that go
into making it up. The precise structure of the function depends on both the type of network
and the specifications that can be manipulated. There are three units (measured parameters)
in the input layer (layer containing factors for the prediction of the T2DM). This model was
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trained using two hidden layers, layer 1, consisting of three units, and layer 2, consisting of
two units, using the hyperbolic tangent and identity as activation functions, respectively.

Table 4. Results of neural networks with type 2 diabetes mellitus and healthy controls as a refer-
ence group.

Models T2DM vs. Control

Input Layer Number of units 3
Rescaling method Normalized

Hidden layers

Number of hidden layers 2
Number of units in hidden layer 1 1
Number of units in hidden layer 2 2

Activation Function Hyperbolic tangent

Output layer

Dependent variables T2DM vs. Control
Number of units 2

Activation function Identity
Error function Sum of squares

Training
Sum of squares error term 7.36

% Incorrect or relative error 22.0%
Prediction (sensitivity, specificity) 50%, 91.0%

Testing

Sum of squares error 2.15
Percent Incorrect Predictions 13.0%

Prediction (sensitivity, specificity) 71.4%, 93.8%
AUC ROC 0.902

Holdout
Percent Incorrect Predictions 11.8%

Prediction (sensitivity, specificity) 85.7%, 90.0%
AUC ROC: area under the curve of receiver operating curve.

Pseudoprobabilities predicted from both the training and holdout data are shown
in a box plot in Figure 1. The categories of responses that were actually received are
shown along the x-axis, while the categories that were anticipated are labeled in the legend.
Correct predictions are shown in the part of the box plot where the y-axis is greater than the
0.5 threshold. For this analysis, the individual pseudoprobabilities of having T2DM were
estimated from the classifier output using sigmoid fits. The area under the curve (AUC) of
the receiver operating characteristic was 0.902, with a sensitivity of 71.4% and a specificity
of 93.8%, in each of the three sets of data. It is shown in Figure 2 how significant each of the
model’s input variables is in terms of the model’s predictive ability. In terms of predictive
capability (normalized importance), ACCS is the best model (100%) for the prediction of
T2DM, followed by G-CSF (75.5%), and SMAD4 (69.6%).
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SMAD4: Sma Mothers Against Decapentaplegic homolog-4.

4. Discussion

The primary discovery in the current investigation is the elevation of serum SMAD4,
ACCS, and G-CSF concentrations in individuals with T2DM in contrast to the control
cohort, as demonstrated in Table 1. The observed outcomes can be elucidated via various
mechanisms. Hyperglycemia has been observed to disrupt the normal physiological
processes of various bodily systems, including the liver, pancreatic beta cells, circulatory
system, skeletal muscles, and gastrointestinal tract. This disruption can lead to systemic IR,
immune cell dysfunction, heightened intestinal permeability, and increased susceptibility
to infections and inflammation in individuals with T2DM [32]. Both patients and the
control group are within the normal values. However, it is expected that T2DM patients
have a lower insulin level than control due to the beta cell dysfunction. Before being
T2DM patients, they usually have an insulin resistance state expressed as hyperinsulinemia
and insulin resistance scale. After years of insulin resistance and hyperinsulinemia, the
beta-cells are malfunctioned and secrete lower insulin amounts.

The investigated molecules SMAD4 [13], ACCS [33], and GCSF [34] are known as
inflammation-related molecules. Inflammation is an important part of diabetes pathophysi-
ology and complications [35,36]. Therefore, inflammation in diabetes is the plausible and
acceptable cause of increased levels of the proteins ACCS, GCSF, and SMAD4. Serum CRP
concentrations, measured by the latex agglutination tests, of all participants were found
to be negative below 6 mg/dL, indicating the absence of overt inflammation. Therefore,
there is no need to add the negative results. We used the CRP test to exclude any patients
with overt inflammation (positive CRP). Therefore, T2DM patients in the present study
may have low-grade inflammation.

Diabetes and IR are associated with the presence of oxidative stress, a pathological
process [37] that increases the likelihood of complications associated with T2DM, such
as nephropathy, neuropathy, retinopathy, and accelerated coronary artery disease [38].
Studies have indicated that elevated glucose levels can induce damage to β-cells through
the activation of reactive oxygen species (ROS), ultimately resulting in impaired insulin
release and IR [39]. The present study suggests that the increase in the ACCS, GCSF, and
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SMAD4 proteins observed in T2DM patients may be attributed to the inflammation caused
by ROS.

The possible effects of the covariates (age, BMI, exercise, sex, and TUD) on the levels
of the measured parameters were investigated to attribute the cause of the increase to the
presence of T2DM. The results of multivariate GLM analysis are displayed in Table 2 and
showed a highly significant effect of the disease with a high effect size on the levels of
ACCS, GCSF, and SMAD4 biomarkers. All the covariates had no significant effects on
the biomarkers and the cause for the increase in the levels of these e proteins is due to
the presence of diabetes in the subjects. Tests for effects between subjects showed that
diagnosis has the highest significant effects on the levels of serum Insulin/Glucose ratio,
HOMA2%B, ACCS, insulin, SMAD4, and GCSF after adjusting for all the covariates.

The main general conclusions from the partial correlation results in Table 3 are the
correlation of the levels of the investigated molecules (ACCS, SMAD4, and GCSF) with
the biomarkers of hyperglycemia, IR, and inflammation parameters. These results indi-
cate the role of these molecules in many areas of diabetes pathophysiology. Furthermore,
SMAD4 exhibits a diverse regulatory impact on metabolic homeostasis, stimulating fibrosis,
fibroblast, and matrix modification, as well as inflammation, as stated in the reference [13].
Elevated levels of SMAD4 in people with diabetes may be attributed to the correlation
between hypoxemia and diabetic acidosis, which has previously been shown to increase
the expression of SMAD4 [8]. The significant association between SMAD4 mRNA expres-
sion and hypoxia-inducible factor 1-alpha (HIF1α) as well as the mechanistic target of
rapamycin (mTOR) mRNA expression, which plays a crucial role in hypoxia, can account
for this phenomenon [8]. Dyslipidemia, which is often comorbid with diabetes, has been
identified as a contributing factor to elevated levels of plasma SMAD4 [8]. Prior research
has substantiated that the expression of TGFβ is induced by both HIF1α and circadian
genes [40]. Also, persistent increases in insulin levels might result in abnormal glucose
metabolism and lipid balance, causing a pro-inflammatory state. This leads to the produc-
tion of proinflammatory cytokines from adipose tissue and overactive immune cells, which
interfere with insulin signaling pathways. Inflammation disrupts insulin signaling cascades
by activating kinase molecules, causing insulin resistance [41]. The release of additional
inflammatory mediators and increased oxidative stress worsen insulin resistance. This
condition is worsened by the initiation of immunological responses as a result of inflamma-
tion in tissues, namely adipose tissue [42]. Additionally, individuals with T2DM showed
significant levels of TGF in their plasma when they participated in a prospective trial [10].
The SMAD pathway has also been shown to have a strong connection to the development
of diabetes [43].

Table 4 presents the outcomes of the neural network analysis of a model designed
to predict T2DM based on serum levels of G-CSF, ACCS, and SMAD4. As the network’s
connections propagate forward from the input layer to the output layer, the NN study used
a feedforward design, which is distinguished by the lack of feedback loops. The historical
default variable is represented by two indicator variables, since it is a binary category
variable. Each unit’s output is calculated using a formula based on the hidden units that
go into making it up. The particular form of the function depends on the kind of network
and the tunable parameters. The input layer, which comprises factors to predict the risk of
T2DM consists of three units that serve as measured parameters.

The predicted pseudo-probabilities correspond to the degree to which the state of a
given individual appears to match the T2DM pattern as seen in Figure 1. The network’s
performance in predicting instances belonging to the fixed time category using the 0.5 cut-
offs is clearly shown in the figure. Figure 2 shows the relative importance of the measured
parameters to predict T2DM in a subject. The ACCS showed the highest predictability
value. This result is novel and needs to be explained in detail.

Previously reported findings indicate that elevated levels of G-CSF in patients with
T2DM are the result of an inflammatory response [44]. The role of G-CSF in the development
of free fatty acid (FFA) induced IR has been suggested to be significant, as evidenced by
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the induction of IR in human adipocytes and myocytes after treatment with G-CSF [45].
According to a previous study, elevated glucose and free fatty acids elicited a significant
increase in the release of IL-6, IL-8, chemokines, and G-CSF by human beta-islets [46]. The
administration of G-CSF has been found to ameliorate neutropenia manifestations through
its ability to promote neutrophil progenitor cell proliferation and increase the activity of
fully differentiated neutrophils [47]. The administration of G-CSF has been shown to reduce
the duration and severity of neutropenia, as well as the occurrence of severe and febrile
neutropenias, and the mortality associated with infection in clinical contexts [48]. IR is
characterized by a reduced biological response to a specific concentration of insulin, which
is lower than the normal response [49].

ACCS is a pyridoxal phosphate-containing enzyme, and its activity is regulated at the
transcriptional and posttranscriptional levels [21]. However, the serum level of this protein
has not previously been studied. The increase in this protein in our patients may explain
the presence of measurable amounts of ethylene in different consequences of diabetes.

The detection of ethylene preceded the elevation of inflammatory cytokines and stress-
related hormones in humans. The aforementioned findings have brought to attention
the importance of ethylene emission as a fundamental and premature element of in vivo
lipid peroxidation, which has crucial clinical implications as a breath-based biomarker for
bacterial infection [22]. Several scholars have proposed that ethylene may be generated
in vivo as a result of oxidative harm [23,50,51]. The release of ethylene was observed to be
a component of the larger inflammatory and stress response, as evidenced by its significant
correlation with the release of epinephrine and IL-10 [22]. According to research, ethylene
has been proposed to be discharged by humans during systemic inflammation through
blood leukocytes, which is achieved through the oxidation of unsaturated fatty acids or
other related molecules [22]. Moreover, there exists evidence that ethylene release prior to
inflammatory cytokines presents a promising prospect for its participation in the initiation
of the cytokine response [52]. Previous research has established a correlation between
ethylene and oxidative stress in mammals [23,50]. The presence of oxidative stress among
people with T2DM triggers the production of inflammatory mediators. This, in turn, leads
to an increase in ROS generation among diabetic patients.

This interaction between, oxidative stress, inflammation, and ethylene production may
act as a promotor for the increase in the ACCS concentration in T2DM patients. However,
these results would be strictly confirmed if we could measure the ethylene concentration in
diabetic patients. The main limitation of this study is the relatively moderate sample size.
Also, it would be better to measure the glycated hemoglobin as another biomarker for the
level of the measured parameters.

5. Conclusions

The increased serum levels of ACCS, G-CSF, and SMAD4 in the T2DM group could be
used for the prediction of T2DM disease by using NN analysis. These protein levels depend
on the IR status and inflammation, regardless of the covariates of the drugs taken. NN
analysis produces good sensitivity and specificity for the prediction of T2DM. The model’s
predictive capability (normalized importance) revealed that ACCS is the best model (100%)
for the prediction of T2DM, followed by G-CSF (75.5%) and SMAD4 (69.6%).
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