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Abstract: Wireless Sensor Networks (WSNs) play a pivotal role in remote monitoring, surveillance, and Internet of 

Things (IoT) applications. The efficient utilization of battery-powered sensor nodes in WSNs, given their limited 

power capacity, is crucial for successful data transmission. Conventional clustering algorithms while efficient in 

clustering, often lacks the efficient management of data generated by sensor nodes, leading to redundant data in 

applications like IoT leading to reduced network lifetime. To overcome this issue, this paper introduces a novel 

approach, named CCOA-DC (Improved Coati Optimization with Cognitive Factor (CCOA) through Data 

Compression (DC)), in clustering heterogeneous aggregated WSN data. The research unfolds in two novel phases. 

Initially, a non-negative matrix factorization (NMF) model is introduced data compression for clustering, addressing 

the challenge of data transmission and energy efficiency. Subsequently, the performance is enhanced through load 

balancing, featuring dynamic cluster head selection via Improved Coati Optimization (COA) with cognitive factor (C), 

denoted as CCOA. A distinctive aspect is the incorporation of the NMF data compression technique in both clustering 

and cluster head selection processes, introducing an energy-efficient, load-balanced, and compressed data aggregation 

mechanism. The proposed CCOA-DC undergoes rigorous testing, comparing its performance against existing models 

to validate its superiority. Comparative analyses with renowned models such as TCBDGA, HEED, and FEEC-IIR 

underscore the distinct advantages of CCOA-DC. Notably, it achieves a reduction of 78.57% of packet loss ratio 

compared to FEEC-IIR model. The model achieves high packet delivery ratio which is 98.67%, and shows optimized 

energy consumption of 68.01% Joules. This novel compression-based metaheuristic data aggregation algorithm 

showcases its effectiveness in addressing the energy conservation challenge, affirming its prominence in the area of 

WSNs based IoT applications. 

Keywords: Wireless sensor networks, Data aggregation, Clustering, Non-negative matrix factorization, Coati 

optimization algorithm, Data compression, Energy consumption, Load balancing. 

 

 

1. Introduction 

The deployment of Wireless Sensor Networks 

(WSNs) has witnessed remarkable growth across 

diverse domains, driven by advancements in sensors, 

p r oce s so r s ,  a nd  wi r e l e s s  commu nica t i on 

technologies [1]. These networks play a pivotal role 

in applications such as industrial monitoring, 

healthcare, environmental sensing, and military 

operations [2]. In WSN, the sensor nodes are highly 

distributed with limited energy sources and 

composed of various elements, including transceivers, 

memory, and microcontrollers. The main challenges 

of this system are data aggregation, energy efficiency, 

scalability, security, and load balancing among these 

heterogeneous nodes (nodes with varying states). 

Collecting and organizing data from various sensor 

nodes before transmitting it to the sink or next 

forwarding node is crucial in WSN and termed as 

Data Aggregation. However, sensor nodes require 

immense energy to deliver a large number of packets. 

If the load on a sensor node continuously increases, 

the sensor’s energy depletes faster and it dies soon. 

In order to maintain the system’s efficiency, the 

network’s traffic load has to be balanced, termed as 

load balancing. In most of the studies, this issue of 

load balancing is addressed through clustering the  
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Table 1 Overview of the Related works 

Reference Optimization Algorithm Residual Energy Distance Load balancing Trust 

[1] RFPT Approx. Algorithm ✔ ✘ ✘ ✘ 

[2] GWO ✔ ✔ ✔ ✘ 

[3] Memetic-Based Approach ✔ ✘ ✘ ✘ 

[4] IIoT Model ✘ ✘ ✘ ✔ 

[5] Feature Extraction (NMF) ✘ ✘ ✘ ✔ 

[8] IDAF-FIT Algorithm ✔ ✔ ✘ ✘ 

[9] Fuzzy Logic for Routing ✔ ✔ ✘ ✘ 

[10] F-LEACH ✔ ✔ ✘ ✘ 

[11] Fog-Assisted EHDA Scheme ✔ ✔ ✘ ✘ 

[14] Hybrid EPO Algorithm ✔ ✘ ✘ ✘ 

[15] HFLSBC ✔ ✔ ✘ ✘ 

[17] Energy-Efficient CH Selection ✔ ✘ ✘ ✘ 

[18] FEWO Algorithm ✔ ✘ ✘ ✘ 

[19] DDCA-WSN ✔ ✘ ✘ ✘ 

[20] CRSH ✔ ✔ ✘ ✘ 

[21] EEC-MA-PSOGA ✔ ✔ ✘ ✘ 

nodes and efficient Cluster Head (CH) selection. The 

main goal of the proposed clustering algorithm is to 

carefully select the CH with sufficient energy such 

that the delay of the network is reduced with 

increased overhead, this prolongs the lifetime of 

network. This section focuses on reviewing variety of 

optimization algorithms and strategies that have been 

proposed to enhance load balancing through 

clustering approach to drive the motivation to 

contribute in this field. The related studies ensure 

prolonged network lifespan and improved 

performance based on the employed varying network 

parameters as objective functions.  

Several energy-efficient routing techniques have 

been proposed for WSNs so far. The clustering and 

data aggregation strategy is the most efficient among 

these approaches. The presence of a cluster head in a 

WSN necessitates additional energy consumption 

and decreases the network’s overall lifespan. This 

phenomenon is commonly referred to as the Load 

Balancing Clustering Issue (LBCI). In order to 

address this matter, an FPT-approximation technique 

called RFPT was proposed to determine the optimal 

route from CH to the sink [1]. However, Gateways 

located in close proximity to the sink node experience 

faster depletion of energy due to heavy traffic load. It 

is necessary to position gateways at a greater distance 

from the sink to address this issue. By employing two 

innovative fitness functions in the optimization 

algorithm, the lifespan of the network can be 

enhanced and reduced energy depletion [2]. While 

the clustering strategy is effective in minimizing the 

network’s energy usage, it is plagued with energy 

gaps and uneven load distribution. In order to address 

the issue of clustering, researchers devised a memetic 

algorithm and a load-balancing clustering scheme [3]. 

The research has discovered security concerns in the 

Industrial Internet of Things (IIoT). To tackle these 

issues, a model based on WSN was designed to 

enhance the security performance of IIoT [4]. While 

these studies ensure less energy consumption to 

improve the network lifetime, the cost of the energy 

required to store and process the data among the 

network becomes high and affects the network 

lifetime. To overcome this issue, methods like in [5-

7, 11, 13, 8, 19] introduce the use of data compression 

techniques, as noted in Table 1 as the overview for 

the related work reviewed here. For instance, in [13], 

the concept of data compression is used to compress 

the data sent to the sink by sensors. The primary 

objective of data compression is to transform 

unstructured or redundant data from various sensor 

nodes into a more organized and interpretable format 

suitable for network communication. The 

compression process helps alleviate the strain on 

communication resources, increases sensor storage 

capacity, and ultimately enhances the overall lifespan 

and performance of the WSN. 

The Table 1, provides an overview of the related 

works in the field of WSN summarizing key aspects 

of each paper, including the utilization of data 

compression, optimization algorithms employed, and 

the objective functions employed for Cluster Head 

(CH) selection. The majority of papers (e.g., [1-3, 8-

11, 14, 15, 17-21]) consider residual energy as a 

crucial factor for CH selection. This aligns with the 
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common objective of prolonging network lifetime by 

selecting nodes with higher energy reserves. 

However, some papers do not prioritize residual 

energy and consider other factors like distance and 

trust. 

Several works, such as [1-3, 8, 9, 22], have 

employed optimization algorithms like RFPT 

Approximation, Grey Wolf Optimization (GWO), 

Memetic-Based Meta-heuristic, IDAF-FIT 

Clustering, and Fuzzy Logic, respectively. These 

algorithms aim to enhance clustering efficiency, CH 

selection, and routing by considering parameters like 

efficient routing algorithms, residual energy, distance 

from the base station, and node degree for CH 

selection. However, these algorithms have their own 

advantages and disadvantages. For instance, EPO 

with ASO improves network life and reduces packet 

delay but does not prevent node capture attacks [14]. 

Additionally, algorithms like WOA-P are not 

universally applicable to all clustering techniques or 

to dense node scenarios [23]. To overcome this, 

recent studies have adopted the hybrid optimization 

approaches, as noted in Table 1. Hybrid techniques 

leverage the strengths of multiple algorithms to 

address the limitations of individual methods. For 

instance, the Hybrid Emperor Penguin Optimization 

(EPO) algorithm combines the benefits of both EPO 

and Ant Swarm Optimization (ASO) [14]. Similarly, 

a Hybrid Extended Multi-sink and Anycast Routing 

(EMPAR) integrates various strategies to improve 

network lifetime and load balancing simultaneously 

[13]. Hybrid optimization is favoured for its ability to 

offer a comprehensive solution, combining different 

algorithms’ strengths to achieve superior load 

balancing and overall network optimization 

performance. Considering this, the present study is 

motivated to implement a hybrid approach for the 

dynamic selection of CH, capitalizing on the 

enhanced optimization capabilities of the coati 

optimization algorithm (COA) in diverse problem 

spaces. 

Another challenging task is to identify the 

parameters for CH selection; from the literature, it is 

seen that common objective functions for CH 

selection involve factors such as residual energy, 

distance metrics, and node-specific characteristics. 

Residual energy, a fundamental parameter in WSNs, 

is consistently considered in works like [1, 2, 8, 9, 17, 

21]. It directly influences the lifespan and 

performance of sensor nodes, making it a crucial 

metric for CH selection. Additionally, distance-

related metrics, such as the distance to the base 

station or proximity to the CH, are commonly 

employed, as evident in [2, 9, 15, 22]. The 

consideration of node-specific attributes, like 

mobility, node degree, and energy levels, is also 

prominent in works like [3, 8, 15]. These factors 

collectively contribute to the overall efficiency and 

load balancing in WSNs. Hence, the study is 

motivated to propose an improved optimization-

based clustering scheme where CH selection is based 

on multi-objectives based on the energy of the nodes 

as well as the consumption of energy by the sink.   

It is also noted from the related works as in Table 

1, the recent studies are limited as the nature of the 

nodes becomes different and distributed. The cost of 

the energy is still affected and ultimately affects the 

communication in Distributed data in WSN [19]. The 

motivation behind employing data compression in 

WSNs is to mitigate issues related to communication 

overload, energy consumption, and network lifetime 

[5-7]. Data compression techniques, particularly 

Non-Negative Matrix Factorization (NMF), are used 

to transform unstructured data into a more 

interpretable format suitable for communication. As 

seen in [5-7, 19], is chosen for its ability to handle the 

spectral representation of data and efficiently identify 

faulty nodes, reducing false measurements and 

improving overall network lifetime. Hence, 

considering this, the study is motivated to use the 

Matrix factorization-based technique to compress the 

data at the required position to improve the process 

of CH selection and reduce energy costs.  

The key contributions to the energy consumption 

reduction in WSN data aggregation in this manuscript 

are: 

• Employing Non-Negative Matrix Factorization 

to cluster nodes, emphasizing uniform node 

density for enhanced efficiency. 

• Implementing a lossless matrix factorization 

approach, the aim is to compress aggregated 

data at the cluster head (CH), with the goal of 

reducing CH energy consumption and extending 

the overall system lifetime. 

• Introduce a multi-objective problem 

formulation for the selection of an optimal CH, 

emphasizing load balance. This approach is 

designed to enhance the lifespan of active nodes 

and reduce energy consumption in both 

directions of communication between nodes and 

the CH. 

• Propose a novel Cognitive Coati Optimization 

Algorithm (CCOA) to address the multi-

objective optimization problem associated with 

optimal CH selection. The algorithm is intended 

to provide an effective solution for optimizing 

load balance and energy consumption in the 

network. 
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The paper is structured as follows: Section 2 presents 

the preliminaries of the methods used in this article. 

Section 3 proposes the CCOA for selecting the 

optimum cluster head, followed by data aggregation 

and load balancing. Section 4 presents the results and 

discussion, followed by the conclusion. 

2. Preliminaries 

This section discusses the basics of the 

methodology used in the proposed work to improve 

WSN networks’ performance. A brief idea is 

provided in this section about the conventional COA 

optimization. The conventional COA method is 

presented here to discuss the possible future 

improvement to enhance the WSN networks’ 

performance.  

2.1 Conventional coati optimization algorithm 

(COA) 

The conventional COA is used for finding the 

optimal cluster head, considering the fitness 

functions. The author in [23] introduce the Coati 

optimization algorithm (COA), which utilizes the 

population-based metaheuristic approach. The 

proposed COA method for global optimization has 

many advantages. Since this technique does not 

incorporate parameters, no regulation is needed. 

COA’s has ability to solve complex, high-

dimensional optimization issues in numerous 

disciplines is its second benefit. The third feature of 

the suggested approach is its ability to balance 

research and search processes, which speeds 

convergence and provides optimal choice variable 

values despite optimization dilemmas. Fourth, the 

suggested COA solves practical optimization issues 

well. The growing field of science and engineering 

involves multiple computational and non-linear 

problems that cannot be solved using a standard 

optimization algorithm. Although, this type of 

metaheuristic-based effective algorithm can easily 

find the best solution. The inherent behaviors of the 

coatis are elucidated in reference [23], which has a 

substantial impact on the proposed COA method. 

2.1.1 Initialization phase 

The COA method is a metaheuristic algorithm 

that considers coatis as population members. The 

location of each coati within the search space directly 

corresponds to the values assigned to the decision 

variables. Therefore, within the context of the COA, 

the position of coatis suggests a potential solution to 

the problem. During the earliest stages of COA 

implementation, the coatis’ positions in the search 

space are randomly initialized using Eq. (1). 

 

𝑋𝑖: 𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟(𝑢𝑏𝑗 − 𝑙𝑏𝑗), i =  1, 2, . . . , N, j =

 1, 2, . . . , m,                  (1) 

 

The variable 𝑥𝑖,𝑗  denotes the value of the 𝑗𝑡ℎ 

decision variable, while 𝑋𝑖 represents the location of 

the 𝑖𝑡ℎ  coati in the search space. The quantity of 

coatis is represented by the symbol 𝑁 , whilst the 

quantity of decision variables is represented by the 

symbol 𝑚 . The symbol 𝑟  indicates a random real 

integer between 0 and 1. The lower bound and upper 

bound are expressed by the symbols 𝑙𝑏𝑗  and 𝑢𝑏𝑗 , 

respectively. The population matrix 𝑋 is utilized to 

offer a numerical depiction of the coati population of 

the COA. 

The following matrix X, referred to as the 

population matrix, is used to numerically depict the 

coati’s population in the COA. 

 

X =

[
 
 
 
 
 
X1

:
:
Xi

:
XN]

 
 
 
 
 

N × m =

[
 
 
 
 
 
x1,1 … … x1,j … x1,m

x2,1 ⋯ ⋯ x2,j ⋯ x2,n

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

xi,1 ⋯ ⋯ xi,j ⋯ xi,m

xN,1 ⋯ ⋯ xN,j … xN,m]
 
 
 
 
 

N × m               (2) 

 

The evaluation of various values for the 

problem’s objective function results from the 

positioning of potential solutions in choice variables. 

Eq. (3) is used to display these values. 

 

𝐹 =

[
 
 
 
 
𝐹1

:
𝐹𝑖

:
𝐹𝑁]

 
 
 
 

 𝑁 × 1 =

[
 
 
 
 
𝐹 (𝑋1)

:
𝐹 (𝑋𝑖)

:
𝐹 (𝑋𝑁)]

 
 
 
 

  𝑁 × 1   (3) 

 

The vector 𝐹  represents the objective function, 

while 𝐹𝑖  represents the objective function value 

acquired from the 𝑖𝑡ℎ  coati. The objective function 

value is used to evaluate candidate solutions in 

metaheuristic algorithms like the proposed COA. The 

population member who evaluates the best value for 

the objective function is considered the best member. 

As candidate solutions are updated during algorithm 
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rounds, the best member of the population is likewise 

updated. 

The COA algorithm updates the position of coatis 

(candidate solutions) by modeling two natural 

behaviors of these animals. The behaviors being 

studied are the strategy coatis use when attacking 

iguanas and their escape strategy from predators. As 

per the process, the COA population is updated in two 

distinct phases. 

2.1.2 Exploration phase 

The initial coatis population update is modeled by 

replicating their tactics for attacking iguanas in the 

search space. One approach involves coatis climbing 

a tree to intimidate an iguana. Several coatis wait 

behind a tree till the iguana falls. Once the iguana is 

down, coatis attack and hunt it. By using this method, 

the COA can explore the problem-solving space 

globally by moving coatis to different spots. See Fig. 

2 for the pattern diagram of this method. 

 

𝑋𝑖
𝑃1: 𝑥𝑖,𝑗

𝑃1 = 𝑥𝑖 ,𝑗 + 𝑟 . (𝐾𝑗 − 𝐼 . 𝑥𝑖 ,𝑗) ,  

for i =  1, 2, . . . , ⌊ N 2 ⌋ and j =  1, 2, . . . , m   (4) 

 

In the construction of the COA, the assumption is 

made that the position of the most optimal member of 

the population corresponds to the position of the 

iguana. The vertical displacement of the coatis as 

they climb down from the tree is quantitatively 

calculated using Eq. (4). The iguana (𝐾) is randomly 

put in the search space after falling to the ground. Eqs. 

(5) and (6) replicate the movement of ground-based 

coatis in the search space based on their random 

position. 

 

𝐾𝐺 : 𝐾𝐽
𝐺 = 𝑙𝑏𝑗 + 𝑟(𝑢𝑏𝑗 − 𝑙𝑏𝑗),    , 𝑗 =  1, 2, . . . , m (5) 

 

𝑋𝑖
𝑃1: 𝑥𝑖,𝑗

𝑃1 =

{
𝑥𝑖,𝑗 + 𝑟 .  (𝐾𝐽

𝐺 − 𝐼 . 𝑥𝑖 ,𝑗),        𝐹𝐾𝐺 < 𝐹𝑖   

𝑥𝑖,𝑗 + 𝑟 .  (𝑥𝑖 ,𝑗 − 𝐾𝐽
𝐺),            𝑒𝑙𝑠𝑒,

}  (6) 

𝑓𝑜𝑟 𝑖 =  [
𝑁

2
] + 1, [

𝑁

2
] + 2,…… . , 𝑁 𝑎𝑛𝑑  𝑗 

=  1, 2, . . . , m  
 

The updated position for each coati is acceptable 

if it improves the objective function. Otherwise, the 

coati remains in the prior location. This update 

condition applies to simulated 𝑖 =  1, 2, . . . , 𝑁 using 

Eq. (7). 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1,           𝐹𝑖
𝑃1 < 𝐹𝑖 ,

𝑋𝑖 ,                𝑒𝑙𝑠𝑒     
}    (7) 

 

In this context, 𝑋𝑖
𝑃1  represents the updated 

position of the 𝑖𝑡ℎ  coati, whereas 𝑥𝑖,𝑗
𝑃1 represents its 

𝑗𝑡ℎ dimension. The coati objective function value is 

denoted by 𝐹𝑖
𝑃1. Random real number r ranges from 

0 to 1. 𝐾  represents the iguana’s best member 

position in the search space. 𝐾𝑗  represents its 𝑗𝑡ℎ 

dimension.  𝐼  is a randomly chosen number from 

{1, 2}. In 𝐾𝐺, the iguana is randomly placed on the 

floor, and in 𝐾𝐽
𝐺 , its jth dimension. The objective 

function value for the iguana’s position is 𝐹𝐾𝐺. Use 

the floor function ⌊·⌋ to find the largest integer less 

than or equal to the provided number. 

2.1.3 Exploitation phase 

Based on how coatis naturally interact with and 

flee from predators, a mathematical model is used to 

simulate the second step of the process of updating 

coatis’ locations in the search space. 

 

𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙 = 

𝑙𝑏𝑗

𝑡
, 𝑢𝑏𝑗

𝑙𝑜𝑐𝑎𝑙 =
𝑢𝑏𝑗

𝑡
, 

where t =  1, 2, . . . , T      (8) 

 

𝑋𝑖
𝑃2: 𝑥𝑖,𝑗

𝑃2 = 𝑥𝑖,𝑗 + (1 − 2𝑟) . ( 𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙 +

𝑟 . (𝑢𝑏𝑗
𝑙𝑜𝑐𝑎𝑙 − 𝑙𝑏𝑗

𝑙𝑜𝑐𝑎𝑙)),     (9) 

 

𝑖 = 1, 2, . . . , N, 𝑗 =  1, 2, . . . , m, 

 

To replicate the behavior of each coati, a random 

place is generated around their current location, based 

on Eqs. (8) and (9). If the objective function, 

represented by Eq. (10), exhibits a rise in value, then 

the newly estimated position is considered acceptable. 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2,           𝐹𝑖
𝑃2 < 𝐹𝑖 ,

𝑋𝑖 ,                𝑒𝑙𝑠𝑒     
}              (10) 

 

The equation 𝑋𝑖
𝑃2 shows the updated position of 

the 𝑖𝑡ℎ coati, determined by the second phase of COA. 

𝑥𝑖,𝑗
𝑃2  represents the coati’s 𝑗𝑡ℎ  dimension, whereas 

𝐹𝑖
𝑃2 represents its objective function. The variables 𝑟, 

𝑡, 𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙, 𝑢𝑏𝑗

𝑙𝑜𝑐𝑎𝑙, 𝑙𝑏𝑗, and 𝑢𝑏𝑗 are random numbers 

between 0 and 1, the iteration counter, and the 

relative lower and higher bounds of the 𝑗𝑡ℎ  crucial 

parameter. Once the positions of all coatis in the 

search space have been updated according to the first 

and second stages, a COA’s iteration is considered 

finished. The population is updated iteratively using 

Eqs. (4)-(10) until the final iteration of the procedure. 

Upon completion of the COA run, the result is the 

best answer achieved during all iterations of the 
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algorithm. The COA is further enhanced cognitively 

to optimally selection of CH and discussed in section 

3.2.2. 

2.2 Non-negative matrix factorization (NMF) 

NMF, or Non-negative Matrix Factorization, is a 

most widely used matrix decomposition method and 

applied in engineering problems. In this process the 

matrix 𝑌 is decomposed into the product of two non-

negative matrices 𝑋 and 𝐼, as represented by Eq. (11), 

 

𝑌 ≈ 𝑋𝐼 = 𝑋𝑛𝑙𝐼𝑙𝑜               (11) 

 

In this equation, 𝑌 ∈ 𝑆+
𝑛×𝑜 , 𝑋 ∈ 𝑆+

𝑛×𝑙 , 𝐼 ∈ 𝑆+
𝑙×𝑜 , 

and 𝑙”
𝑛𝑜

𝑛+𝑜
. The expression indicates that each column 

𝑦𝑗 of the matrix 𝑌  is approximated by a linear 

combination of the columns of 𝑋  weighted by the 

elements of . The choice of 𝑙 (the number of basis 

vectors) and the number of iterations (𝑢) are critical 

in NMF, with the NMF error curve guiding their 

determination. The objective in NMF is to find 

matrices 𝑋  and 𝐼  that minimize the reconstruction 

error represented by matrix 𝐹 in Eq. (12): 

 

𝐹 = 𝑌 − 𝑋𝐼                (12) 

 

To achieve this, the Maximum Likelihood 

Estimation (MLE) is employed, assuming a Gaussian 

distribution for the noise. The likelihood function 

𝑀(𝑋, 𝐼) in Eq. (13) is maximized by minimizing the 

negative log-likelihood function 𝐾(𝑋, 𝐼) in Eq. (15). 

The gradient descent [26], iterations in Eqs. (16) and 

(17) are used to update 𝑋 and 𝐼, with multiplicative 

update rules (Eq. (21)) ensuring positivity. 

 

𝑀(𝑋, 𝐼) = ∏
1

√2𝜋𝜎(𝑗,𝑘) 𝑒
−

𝐹𝑗𝑘
2

2𝜎2 =

∏
1

√2𝜋𝜎(𝑗,𝑘) 𝑒
−

(𝑌𝑗𝑘−𝑋𝑗𝑙𝐼𝑙𝑘)
2

2𝜎2                (13) 

 

ln𝑀(𝑋, 𝐼) = ∑ [𝑙𝑛
1

√2𝜋𝜎
−

1

2𝜎2 (𝑌𝑗𝑘 − 𝑋𝑗𝑙𝐼𝑙𝑘)
2
]

(𝑗,𝑘)

 

(14) 

 

𝐾(𝑋, 𝐼) =
1

2
∑ [𝑌𝑗𝑘 − 𝑋𝑗𝑙𝐼𝑙𝑘]

2
𝑗,𝑘               (15) 

 
𝜕𝐾(𝑋,𝑖)

𝜕𝑋𝑗𝑙
= (𝑌𝐼𝑇)𝑗𝑙 − (𝑋𝐼𝐼𝑇)𝑗𝑙              (16) 

 
𝜕𝐾(𝑋,𝑖)

𝜕𝐼𝑙𝑘
= (𝑋𝑇𝑌)𝑙𝑘 − (𝑋𝑇𝑋𝐼)𝑙𝑘                           (17) 

 

𝑋𝑗𝑙 = 𝑋𝐽𝐿 − η1
𝜕𝐾(𝑋,𝑖)

𝜕𝑋𝑗𝑙
                            (18) 

 

𝐼𝑙𝑘 = 𝐼𝑙𝑘 − η2
𝜕𝐾(𝑋,𝑖)

𝜕𝐼𝑙𝑘
               (19) 

 

The update rules for 𝑋 and 𝐼 are provided in Eqs. 

(18) and (19), with 𝜂1 and 𝜂2 being update 

coefficients. The final update rule (Eq. (21)) involves 

multiplying the current values by factors dependent 

on the accuracy of the estimate. This iterative, 

multiplicative approach ensures that each step 

maintains non-negativity and decreases the objective 

function, leading to a globally optimum matrix 

factorization. 

 

η1 =
𝑋𝑗𝑙

(𝑋𝑇𝑋𝐼)𝑙𝑘
     η2 =

𝑋𝑗𝑙

(𝑋𝐼𝐼𝑇)𝑙𝑘
                          (20) 

 

𝑋𝑗𝑙 = 𝑋𝑗𝑙

(𝑌𝐼𝑇)
𝑗𝑙

(𝑋 𝐼 𝐼𝑇)𝑗𝑙
     𝐼𝑙𝑘 = 𝐼𝑙𝑘

(𝑋𝑇𝑌)
𝑙𝑘

(𝑋𝑇𝑋 𝐼)𝑙𝑘
             (21) 

 

In practical applications, NMF is employed in 

two stages: load balancing clustering and CH 

selection, as detailed in sections 4.1.1 and 4.1.2, 

respectively. This utilization of NMF enhances 

efficiency, particularly when dealing with high-

dimensional matrices by effectively reducing the 

original matrix. 

3. Methodology 

3.1 Problem statement 

The main aim of the study is to apply clustering 

and select an optimal CH while compressing the data 

aggregated in the heterogenous WSN. Maintaining 

and balancing the energy consumption and load of the 

nodes is the challenge to be addressed in WSN where 

data processing affects the battery life. This is 

achieved with efficient load balancing; it reduces the 

processing overhead, improves the energy 

consumption and focuses on improving the network 

lifetime. 

3.1.1 Load balanced clustering 

In clusters of WSN, the huge amount of data 

produced causes overloading in respective CH and 

this effects the performance of the network causing 

delay in transmission of packets and huge energy 

consumption. To overcome this problem an efficient 

design of cluster for clustering process for load 

balancing is significant step [24]. Such overloading 

in CH will affect its capacity to hold the information 

and leads to delay in transmission. Here to address  
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Figure. 1 Illustration of load balancing in WSN 

 

the load balancing issue, the data is redistributed 

through a strategy. This concept is illustrated and 

explained through Fig. 1. In an uneven distributed 

WSN environment, with the varying sensor nodes in 

WSN given 9, 4 and 5 be the CHs expressed as K1, 

K3 and K2 respectively. Such uneven distributed led 

to overloading at the K1 risking its ability to transmit 

data and reduce the lifetime. In such cases, the 

overload can be mitigated by distributing it to the K2 

and K3 extending the lifetime.  In this study, it is 

formulated as, assuming the sensor nodes as 𝑁 

distributed in random in WSN the data generated is 

given as 𝑌𝑗∈{1,2,..𝑁} = (𝑦1, 𝑦2, ⋯ , 𝑦𝑁) , where 

𝑦𝑗∈{1,2..𝑁}  shows the data from the 𝑗𝑡ℎ  sensor. The 

distances between nodes are formulated in the 𝑌 

matrix as seen in Eq. (22). 

 

𝑌 =

[
 
 
 
 
 

𝑦1,1 ⋯ ⋯ 𝑦1,𝑘
𝑦1,𝑜−1 𝑦1,𝑜

𝑦2,1 ⋯ ⋯ 𝑦2,𝑘
⋯ 𝑦2,𝑜

⋯
⋮

𝑦𝑂−1,1

𝑦𝑂,1

⋯
⋮
⋯
⋯

⋯
⋮
⋯
⋯

⋯
⋮

𝑦𝑂−1,𝑘

𝑦𝑂,𝑘

⋯
⋮
⋯

𝑦𝑂,𝑜−1

⋯
⋮

𝑦𝑂−1,𝑜

𝑦𝑂,𝑜 ]
 
 
 
 
 

 

(22) 

 

To frame a clustering problem, the centroids for 

each data in 𝑌  are discovered and a factorization 

model is achieved. The main objective of NMF is to 

decompose such input (𝑌) as two matrices 𝑋 and 𝐼 as 

explained in Eq. (11). The noise and unnecessary data 

with same distance is removed by fine-tuning of the 

matrix 𝐼 , addressing the features in the input data 

through NMF effectively. Such fine-tuning is 

obtained by the application of K-means algorithm. 

Here through K-means the clustered index of the 

nodes in 𝑁𝑠𝑒𝑛𝑠𝑜𝑟 are calculated. Assuming the cluster 

centers 𝑑  as a set in 𝐵  given as, {𝑏1,⋯ , 𝑏𝑑} . 

Consider 𝑋𝑙 as a data collection in a d-dimensional 

Euclidean space, where the Euclidean norm is given 

by 𝑒𝑗𝑙  =  ‖𝑥𝑖𝑗  −  𝑏𝑙  ‖ is applied. Let 𝑉 be a matrix 

with dimensions (𝑜 ×  𝑑)  where 𝜇𝑗𝑙   is a binary 

variable (𝜇𝑗𝑙  ∈  {0,1})  indicating whether the data 

point 𝑥𝑖𝑗  corresponds to the k-th cluster (where 𝑘 =

 1,⋯ , 𝑑) and say 𝑉 = [𝜇𝑗𝑙]𝑜×𝑑
. Using the K-means 

clustering method, 𝑘 clusters are formed based on the 

Euclidean distance between values in the fine-tuned 

distance matrix, serving as the similarity measure for 

grouping into clusters. 

3.1.2 CH selection 

Although the proposed clustering in the above 

section ensures the even distribution of nodes and 

workload among the nodes in clusters, it is important 

to maintain the durability of CH. Such compromise 

in the durability of CH will cause disruption in 

network. To address this issue, in this proposed 

model, the objective function of optimisation 

algorithm is dependent on the density of nodes in the 

cluster 𝑘 such that the aim is to balance the clusters 

with distributed residual energy.  

The proposed effective fitness function for load 

balancing of cluster heads [24], denoted as 𝑓1, is 

calculated using the equation, 

 

𝑓1 = (1 −
𝜇𝑙𝑜𝑎𝑑

𝐶𝐻𝑚𝑎𝑥
) + (

𝑙𝑜𝑎𝑑𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ℎ𝑒𝑎𝑑

𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ℎ𝑒𝑎𝑑
)              (23) 

 

Here, 𝜇𝑙𝑜𝑎𝑑 represents the mean of load 

calculated by Eq. (24) [24], and 𝐶𝐻𝑚𝑎𝑥 is the CH 

with the maximum load. 

 

𝜇𝑙𝑜𝑎𝑑 =
∑ 𝐿𝑜𝑎𝑑 (𝐶𝐻𝑞)𝑚

𝑖=1

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ℎ𝑒𝑎𝑑𝑠
               (24) 

 

The load on a cluster head 𝐿𝑜𝑎𝑑(𝐶𝐻𝑞)  is 

influenced by the number of sensor nodes (𝑁), initial 

energy 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (𝐶𝐻𝑞)  and remaining energy 

𝐸𝑟𝑒𝑚𝑎𝑖𝑛 (𝐶𝐻𝑞) as described in Eqs. (25) and (26). 

 

𝐿𝑜𝑎𝑑 (𝐶𝐻𝑞) =  𝑁 ×
𝐸𝑟𝑒𝑚𝑎𝑖𝑛 (𝐶𝐻𝑞)

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝐶𝐻𝑞)
             (25) 

 

The energy consumption of each node is modeled 

by the function 𝑓2  = 𝐸𝑇(𝑁, 𝑑) where 𝑑0 represents 

the distance between the sender and receiver, 𝑁 

denotes the number of nodes, and 𝐸𝑒𝑙𝑒𝑐 is the energy 

required by electronic circuitry. 

 

𝑓2 = 𝐸𝑇(𝑁, 𝑑) =

{
𝑁 × 𝐸𝑒𝑙𝑒𝑐 + 𝑁 ×∈𝑓𝑠× 𝑑2,              𝑑 < 𝑑0

𝑁 × 𝐸𝑒𝑙𝑒𝑐 + 𝑁 ×∈𝑚𝑝× 𝑑4,          𝑑 ≥ 𝑑0
}          (26) 

 

Here, ∈𝑚𝑝 represents Multipath channel energy, 

and ∈𝑓𝑠  represents free space energy. Additionally, 

data compression occurs at the CH, utilizing Non-

negative Matrix Factorization (NMF) to achieve 
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dimension reduction. The third fitness function, 𝑓3 =
𝐸𝑇(𝐶𝐻, 𝑑)  captures the energy consumed by the 

cluster head after data compression. 

 

𝑓3 = 𝐸𝑇(𝐶𝐻, 𝑑) =

{
𝐶𝐻 × 𝐸𝑒𝑙𝑒𝑐 + 𝐶𝐻 ×∈𝑓𝑠× 𝑑2,              𝑑 < 𝑑0

𝐶𝐻 × 𝐸𝑒𝑙𝑒𝑐 + 𝐶𝐻 ×∈𝑚𝑝× 𝑑4,          𝑑 ≥ 𝑑0
}   (27) 

 

The proposed CCOA utilizes three fitness 

functions, denoted as 𝑓1 , 𝑓2 , and 𝑓3 , as inputs to 

derive an optimal solution based on a lower-order 

rank matrix. The objective is to minimize these 

fitness functions, where a lower value indicates a 

superior solution. The computation of fitness 

function 𝐹1  is explained using an example. Let’s 

consider nodes 𝐾1,𝐾2, 𝐾3, and 𝐾4 with loads 15, 9, 

18, and 22, respectively. The load 𝜇𝑙𝑜𝑎𝑑 is calculated 

as the average of these loads, i.e., 
15+9+18+22

4
. Given 

𝐶𝐻𝑚𝑖𝑛 and 𝐶𝐻𝑚𝑎𝑥values as 9 and 22, respectively, 

𝑇𝑚𝑎𝑥  and 𝑇𝑚𝑖𝑛  are determined according to the 

provided information [24]. 

Using 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛values, a CH with a load of 

22 is categorized as heavily loaded, while a load of 9 

designates an underloaded CH. The fitness value 𝐹1 

is then computed using Eq. (23), which involves the 

ratio of underloaded to heavily loaded nodes. As an 

example, assuming uniform loads of 5 on 𝐾1,𝐾2,𝐾3, 
and 𝐾4 , the calculated 𝐹1 value is 0, indicating a 

perfectly balanced network. Achieving a fitness value 

close to zero is recommended in practical scenarios, 

as achieving a completely balanced network is often 

impractical. Hence, selecting a solution with a fitness 

value approaching zero is a pragmatic choice. 

3.2 Proposed methodology 

Considering the problem formulated in load 

balancing in section 4.1, the optimal CH selection is 

converted to a single objective problem by weighted 

sum of Eqs. (23), (24) and (26). The fitness function 

that consists of above objectives can be defined as 

𝑓(𝑥) = 𝑤1𝑓1 + 𝑤2𝑓2 + 𝑤2𝑓2, where 𝑤∈{1,2,3} are the 

weights assigned to the objectives 𝑓1, 𝑓2, 𝑓3 . The 

above three objectives are linked to a common node’s 

attribute i.e. distance, so these don’t present the 

pareto front optimization problem. Due to this, these 

objectives are converted into weighted single 

objective problem. 

The optimization problem converted into 

identifying the optimal node to be eligible for CH 

with minimum value of the 𝑓(𝑥) into that cluster. 

The novel improved optimization algorithm CCOA 

has the responsibility to select the optimal node to 

elected as CH. Its an iterative process and a new set  

 
Figure.  2 CH selection by selecting the minimum objective  

value from possible search space in every iteration 

 

of CHs in all clusters are selected by the CCOA. The 

dimension of tuning variable 𝑚 of CCOA is equal to 

the number of clusters i.e. 𝑚 = 𝑘. In every iteration, 

the three objectives are calculated and a matrix 𝑋 of 

size 𝑁 × 𝑀 possible solutions is stored into 𝐹 as in 

Eqs. (2) and (3). The position with the minimum of 

𝐹𝑁×1 is selected as the best set of CHs location so far. 

An example for this from the optimization values of 

CCOA is shown in Fig. 2. 

The minimum objective value 𝐹𝑖
𝑃1  indexed 

solution 𝑋𝑖
𝑃1 is considered as the set of optimal CH 

parameters so far. 𝑋𝑖
𝑃1gets updated by the Eq. 6 in 

COA. The conventional COA algorithm traps into 

local minima in exploration step due to considering 

the best local position in the update equation.  

In this article, we proposed a novel terminology 

addition in exploration phase of the COA to make it 

more able to exploit the search space and avoid the 

trap of local minima. This new term is named 

cognitive factor. Utilizing this factor can aid the 

COA in expediting its convergence towards the 

optimal solution by upholding the heterogeneity 

among its constituents, thereby preventing the 

occurrence of entrapment in local minima. The 

cognitive factor uses the subtraction of the local best 

position from the randomly selected current set of CH 

locations. Eq. (6) can be updated to incorporate the 

cognitive factor as in Eq. (28). The 3rd factor added is 

the cognitive factor and 𝑙𝑜𝑐𝑎𝑙(𝑗) is the local position 

selected randomly from the 𝑋𝑖  possible set of CH 

indexes in each cluster in the 𝑗𝑡ℎ iteration. After this 

introduction in the exploration step, the new 

optimization algorithm is termed as Cognitive Coati 

Optimization Algorithm (CCOA). Fig. 3 depicts the 

addition of cognitive factor into the old coati 

optimization algorithm. 

The novel CCOA can be used in many 

engineering applications. The usage of this algorithm 

in WSN CH selection needs the understanding of 

precise mapping of the CCOA terminologies in CH 

selection problem. Table 2 denotes the coati’s 

structure. The coati’s positions are represented as the 

index of the nodes which are picked as the CH in each 

cluster and of size 𝑁 × 𝑚 with 𝑁 number of possible 

set of selected CHs and 𝑚 is the number of CH as per 

the number of clusters in the network. 
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𝑋𝑖
𝑃1: 𝑥𝑖,𝑗

𝑃1 = {
𝑥𝑖,𝑗 + 𝑟 .  (𝐾𝐽

𝐺 − 𝐼 . 𝑥𝑖 ,𝑗) + (𝟏 − 𝒓) × (𝒍𝒐𝒄𝒂𝒍(𝒋) − 𝑰 . 𝒙𝒊 ,𝒋), 𝐹𝐾𝐺 < 𝐹𝑖  

𝑥𝑖,𝑗 + 𝑟 .  (𝑥𝑖 ,𝑗 − 𝐾𝐽
𝐺),            𝑒𝑙𝑠𝑒,

}   (28) 

 

 
Figure. 3 Novel Cognitive Coati optimization algorithm 

(CCOA) Position Update 

 

 
Table 2. A generic layout of CCOA terminologies with 

CH selection problem 

Structure of a Coati 

Matrix account for Coati’s position => Matrix 

account for Resource Allocation 

Fitness (Cost) => weighted sum of the three 

objectives of CH selection as in equation 23,26, and 

27 

𝐅𝐢
𝐏𝟏 and 𝐅𝐢

𝐏𝟐 => best fitness value in exploration and 

exploitation phase respectively 

 

 
Figure. 4 Illustration of original data at the sink and 

compressed data with MSE value 1 

 

 
Figure. 5 Illustration of original data at the sink and 

compressed data with MSE value 2 

 
Figure. 6 Illustration of original data at the sink and 

compressed data with MSE value 3 

 

 

The energy consumption by the nodes from the 

CH to the cluster member is considered one of the 

objective functions. The CH aggregates the data from 

clustered nodes and due to higher payload, the energy 

depletes faster, and CH node dies soon. The lossless 

data compression method proves to be a boon to 

enhance the CH lifetime. The NMF suggested in 

section 2.2 is used for that purpose. The received data 

matrix is factorized by NMF and the first orthogonal 

factor is transmitted to sink from CH which is lesser 

in payload but enrich in information. Eq. (12) is used 

to reconstruct the complete information if required 

using another broadcasted factor. The tolerable error 

in reconstruction is decided by the type of 

information broadcasted. The redundant bits in the 

data are removed by the NMF and an optimal 

compression ratio is selected that depends on the 

tolerance of error as shown in Fig. 4. Higher the 

compression ratio, higher is the reconstruction error, 

the simulated plots for three MSE values are provided 

in Figs. 4-6. The compression ratio from the Fig. 4 is 
14

22
= 0.36  with MSE as 1.1178 whereas the 

compression ratio of 0.14 results in lesser 

reconstruction MSE of 0.0014. An optimal 

compression ratio of 0.14 can be selected for 

reconstruction MSE of 0.0014 in the CH aggregated 

data compression. 

 

Algorithm 1: Pseudo-code of the Hybrid 

Improved CCOA Algorithm 

Input: Number of clusters (𝑚), Number of iterations 

(𝑚𝑎𝑥𝑖𝑡𝑒𝑟), Number of nodes (𝑁), Initial CH positions 

(𝑋𝑖), Objective weights (𝑤1,𝑤2,𝑤3). 

Procedure: 

#Clustering Phase 
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1. Generating a matrix 𝑌𝑗  where 𝑗 ∈ {1,2. . 𝑁} 

for 𝑁𝑠𝑒𝑛𝑠𝑜𝑟 sensor nodes in WSN  

2. Applying the NMF through Eq. (11), where 

𝑌 = (𝑋, 𝐼) 

3. Using the matrix information from 𝐼 after data 

reduction apply K-means  

4. For data in 𝐼 obtained from previous stage the 

distance is calculated through Euclidean space 

𝑒𝑗𝑙  =  ‖𝑥𝑖𝑗  −  𝑏𝑙  ‖  forming the clusters 𝑘 

based on it. 

5. Calculate cluster centroids of the clusters. 

#CH selection Phase, improved CCOA 

6. Calculate the fitness functions F1, F2 and F3 

using the Eqs. (23), (26) and (27) 

7. Calculate the objective function 𝑓(𝑥), 𝑓(𝑥) =
𝑤1𝑓1 + 𝑤2𝑓2 + 𝑤2𝑓2. 

8. Initialize the CCOA model with 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 

9. For 𝑖𝑡𝑒𝑟 in 𝑚𝑎𝑥𝑖𝑡𝑒𝑟: 

(1) A matrix 𝑋 is evaluated for where 𝑋 =
(𝑁,𝑀) # applying NMF 

(2) Generate the initial population and 

evaluate the objective function 𝑓(𝑥) 

for values stored in  

(3) Update the coati’s position in updated 

exploration phase of COA through Eq. 

(28)  

(4) Train the exploitation phase through 

Eq. (8)-(10). 

(5)  Save the best solution so far 𝐹𝑁×1 = 𝑋 

(6) Update the new position of coati such 

that 𝑚𝑖𝑛(𝐹𝑁×1) = 𝑏𝑒𝑠𝑡 𝐶𝐻 

10. End For 

Output: Return the final CH positions and 

compressed data parameters 

 

4. Result & discussion 

4.1 Simulation environment 

The whole work is simulated in MATLAB on the 

Intel core i7-2600 CPU with 3.40 GH and 12 GB 

RAM. The WSN environment simulation parameters 

are listed in table 3.  

 

Table 3. WSN parameters 

The improvement in the COA by the novel 

contribution of cognitive factor is evaluated on the 

benchmark functions of the optimization which is 

discussed in section 4.2 and final results evaluation 

on the basis of network parameters like number of 

alive nodes, packet delivery and residual energy is 

done in section 4.3, followed by the state-of-the-art 

comparison in section 4.4. 

4.2 Performance evaluation of CCOA 

(Benchmark testing) 

Several test functions are used to evaluate the 

CCOA’s convergence performance in comparison to 

the classic COA. The CCOA method proves its dual-

dimensional problem-solving capabilities when 

tested on these benchmark test functions. The test 

results are displayed in Table 4 together with the 

standard fitness functions [29]. Figs. 5-8 show the 

best-performing convergence curves that use the 

CCOA optimization benchmark functions. As can be 

seen from the figures, the CCOA demonstrates an 

improved degree of convergence on the given test 

functions. On top of that, CCOA outperforms 

conventional COA in terms of functional 

performance for non-linear functions and 

convergence speed for other test functions. 

4.3 Results evaluation 

In this Study, initially the nodes are distributed at 

random with node count as 500 showing the large-

scale application like IoT. The clustering process is 

carried out using NMF and 5 clusters are generated to 

challenge the uniform number of nodes in clusters; 

this is illustrated in Fig. 11. The number of nodes in 

5 clusters are 101, 97, 96, 107, 99. This shows the 

load balanced clustering by suggested NMF. With the 

proposed model the convergence speed of CCOA is 

improved compared to conventional COA shown in 

Figs. 7-10, run for test functions 7, 8, 13, and 21. 

With such improvement, the optimal selection of CH 

is achieved by CCOA. 

The concept of data compression through NMF is 

applied and the proposed model is evaluated over a 

range of metrics and showing that it has achieved a 

better network lifetime. Each network metric is 

compared into four test cases. The legends in the plots 

are indicting to those test case and the used acronym 

are CCOA-DC (Cognitive Coati Optimization 

Algorithm with Data Compression) as the final 

proposed methodology, CCOA as the test case 

without the data compression and similar are COA-

DC and COA. 

The node lifetime is simulated and evaluated over 

the simulation time as seen in Fig. 12. The number of  

Simulation Parameters Values 

Topology Pattern Random 

Nodes Quantity 500 

Antenna Direction Omnidirectional 

Initial Energy of nodes 0.5 J 

Transmission Distance 20 m 

Packet Size 64 bytes 

Data Rate 14 packets/sec 
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Table 4. Test Results for fitness functions 

Function Function COA CCOA 

F6 𝑓(𝑥) = ∑ ([𝑥𝑖 + 0.5])2
𝑛

𝑖=1
 

0.03 0.01 

F7 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=0
+ 𝑟𝑎𝑛𝑑𝑜𝑚 (0,1) 

10-3 10-4 

F8 𝑓(𝑥) = ∑ (−𝑥𝑖 sin(√|𝑥𝑖|
𝑛

𝑖=1
)) 

-2800 -3200 

F9 𝑓(𝑥) = ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 

10-11 10-10 

F10 

𝑓(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
) − 𝑒𝑥𝑝 (

1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20 + 𝑒 

 

10-15 10-15 

F11 
𝑓(𝑥) = 1 +

1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

𝑛

𝑖=1
 

10-15 10-13 

F12 𝑓(𝑥) =
𝜋

𝑛
{10 sin(𝜋𝑦1)}

+ ∑ (𝑦𝑖 − 1)2 [1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖 + 1)
𝑛

𝑖=1

+ ∑ 𝑢(𝑥𝑖 , 10,100,4)
𝑛

𝑖=1
] ,   𝑤ℎ𝑒𝑟𝑒 𝑦𝑖

= 1 +
𝑥𝑖 + 1

4
, 𝑢(𝑥𝑖 , 𝑎 𝑘,𝑚) {

𝐾(𝑥𝑖 − 𝑎)𝑚          𝑖𝑓  𝑥𝑖 > 𝑎
0                       − 𝑎 ≤ 𝑥𝑖 ≥ 𝑎

𝐾(−𝑥𝑖 − 𝑎)𝑚        − 𝑎 ≤ 𝑥𝑖

} 

 

1 1 

F13 𝑓(𝑥) = 0.1 (𝑠𝑖𝑛2(3𝜋𝑥1)

+ ∑ (𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)] + (𝑥𝑛 − 1)2
𝑛

𝑖=1

+ 𝑠𝑖𝑛2(2𝜋𝑥𝑛)) + ∑ 𝑢(𝑥𝑖 , 5, 100, 4)
𝑛

𝑖=1
 

1.2 1 

F14 

𝑓(𝑥) = (
1

500
+ ∑

1

𝑗 + ∑2
𝑖=1

25

𝑗=1
(𝑥𝑖 − 𝑎𝑖𝑗))

−1

 

- 2.984 

F15 
𝑓(𝑥) = ∑ [𝑎𝑖 −

𝑥1(𝑏𝑖
2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]

2
11

𝑖=1
 

10-4 10-4 

F16 
𝑓(𝑥) = 4𝑥1

2 − 2.1𝑥1
2 +

1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 

 

-1 -0.9 

F17 
𝑓(𝑥) = (𝑥2 −

5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos 𝑥1 + 10 

0.45 0.4 

F18 𝑓(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2)]
× [30
+ (2𝑥1 − 3𝑥2)

2

× (18 − 32𝑥𝑖 + 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2)] 

30 30 

F19 
𝑓(𝑥) = −∑ 𝑐𝑖𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

23

𝑖=1
)

4

𝑖=1
 

-3.8 -3.8 

F20 
𝑓(𝑥) = −∑ 𝑐𝑖𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

26

𝑖=1
)

4

𝑖=1
 

-3.1 -3.2 

F21 
𝑓(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)

𝑇 + 𝑐𝑖]
−1

5

𝑖=1
 

-2 -3 
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Figure. 7 Result for test function 7 

 

 
Figure. 8 Result for test function 8 

 

 
Figure. 9 Result for test function 13 

 

 
Figure. 10 Result for test function 21 

  
Figure. 11 Illustration of clustering for a node count of 

500 

 

Figure. 12 Network lifetime analysis in terms of node 

lifetime 

 

 
Figure. 13 PDR analysis of proposed CCOA-DC data 

aggregation model 

 

alive nodes is used as a critical parameter to quantify 

the network’s operational efficiency and resilience. 

Nodes typically have limited energy resources, and as 

they deplete their energy, they may become unable to 
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communicate or perform sensing tasks. As illustrated 

in Fig. 12, the proposed Cognitive Coati 

Optimization Algorithm with Compression (CCOA-

DC) demonstrates superior performance in terms of 

node lifetime compared to other state-of-art models. 

It depicts the total number of alive nodes across 

multiple simulation rounds (1 to 500). Notably, 

CCOA exhibits a higher count of alive nodes 

compared to CCOA without compression. Without 

data compression, the CCOA is able to have a higher 

lifetime than COA with data compression even. 

Though the CCOA without DC is able to compete 

with proposed methodology yet for higher number of 

simulation rounds after 876, the nodes start to die. 

CCOA not only preserves a greater number of alive 

nodes but also strategically avoids selecting cluster 

heads with lower residual energy, thereby further 

improving the network’s longevity. The comparison 

between compression-based and non-compression 

models reveals consistent improvements in network 

lifetime for each tested scenario. Particularly, 

CCOA-DC achieves a maximum improvement of 

1.02% in terms of alive nodes compared to CCOA 

without compression. 

Furthermore, the findings extend to Fig. 13, 

where a similar positive trend is observed in the 

number of delivered packets. This curve represents 

the performance of CCOA-DC in delivering a higher 

number of packets to the base station compared to 

other optimization methods. CCOA outperforms 

other hybrid optimization methods, showcasing its 

effectiveness in packet delivery. The improvement 

achieved by CCOA-DC, using the specified objective, 

is 0.08% and 2.34% compared to CCOA and COA-

DC, respectively. It’s worth noting that, even without 

data compression, CCOA exhibits improved packet 

delivery due to its enhanced convergence capabilities 

in the exploration phase. When CCOA is coupled 

with NMF based data compression, an additional 

improvement of 0.08% over CCOA without 

compression is acheived. This improvement is 

attributed to NMF achieving a favorable compression 

ratio and reducing the reconstruction error, 

contributing to enhanced packet delivery in the 

proposed scheme. 

Analyzing the effectiveness of CCOA with DC in 

the network operation is centred around the 

assessment of residual energy in each node. Residual 

energy denotes the remaining energy in both CHs and 

Cluster Members (CMs) following a successful 

information transfer from source to destination [20]. 

The graphical representation highlights that, in 

comparison to CCOA, CCOA-DC, CA without 

CCOA, CCOA without compression, CA with 

CCOA, and CCOA, the residual energy is maximized  

 
Figure. 14 Residual energy analysis of proposed CCOA-

DC data aggregation model 

 

in the case of CCOA with compression. Specifically, 

CCOA-DC exhibits a 12.53% increase in residual 

energy compared to CCOA without compression.  

In terms of residual energy improvement, CCOA 

with compression, utilizing the proposed objective 

function, demonstrates a 12.53% and 2.61% 

enhancement compared to CCOA and COA-DC, 

respectively. Notably, when contrasted with non-

compression-based approaches, CCOA with 

compression yields significantly higher residual 

energy, as depicted in Fig. 14. This phenomenon can 

be attributed to the fact that processing uncompressed 

data demands substantial power from the nodes, 

resulting in considerable energy wastage. 

4.4 State-of-the-art comparison (SOTA) 

This comparison involves 500 nodes, and the 

outcomes are juxtaposed with the performance of the 

TCBDGA [31], HEED [30], and FEEC-IIR [32], [33] 

algorithms. Firstly, in [30], the HEED algorithm 

focuses on prolonging network lifetime and 

enhancing energy efficiency by introducing a 

protocol tailored for clustered non-uniform sensor 

networks. However, the proposed Hybrid Improved 

CCOA Algorithm goes beyond traditional clustering 

methods by integrating NMF for data compression 

CCOA for cluster head selection. The authors in [31] 

introduces the TCBDGA (Tree-Cluster-Based Data-

Gathering Algorithm) algorithm to mitigate the 

hotspot problem in WSNs with a mobile sink. While 

TCBDGA aims to balance network load and prolong 

network lifetime by introducing a novel tree-cluster-

based data-gathering approach. n [32], the FEEC-IIR 

(Adaptive Fuzzy Rule-Based Energy Efficient 

Clustering and Immune-Inspired Routing) protocol 

aims to improve energy efficiency and network 

lifetime through adaptive fuzzy rule-based clustering  
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Table 5. The state-of-the-art comparison with the proposed Data aggregation scheme 

Parameters HEED 

[30] 

TCBDGA 

[31] 

FEEC-IIR 

[32] 

POHDA-WSN 

[33] 

FTOPSIS-

HJBO 

[34] 

CCOA-

DC 

Packet Loss Ratio % 17 8 5 - - 2.8 

Packet Delivery 

Ratio % 

85 88 96 85 96 98.67 

Energy Consumption 

(joule) 

180 145 65 - - 68.01 

 

 

and immune-inspired routing. Although FEEC-IIR 

addresses cluster head selection and routing 

challenges 

Our proposed algorithm, CCOA with 

compression, exhibits enhanced results compared to 

the Hybrid LEACH and Jellyfish Algorithm (HEED), 

Tree-Cluster-Based-Data Gathering Algorithm 

(TCBDGA), and Fuzzy Rule-Based Energy-Efficient 

Clustering and Immune-Inspired Routing (FEECIIR) 

in terms of energy consumption, packet delivery ratio, 

and packet loss ratio. The packet delivery ratio 

signifies the proportion of successfully transmitted 

data to the total information sent and is inversely 

related to node density. This is why the CCOA-DC 

(CCOA with compression) achieves the highest 

packet delivery ratio among the tested algorithms 

with 500 nodes with improvement of 13.85%, 

10.81%, 2.7% compared to HEED, TCBDGA and 

FEEC-IIR respectively. In terms of energy 

consumption, CCOA-DC demonstrates minimal 

energy usage for data transmission. The formation of 

clusters mitigates communication costs and prevents 

nodes from overlapping, leading to restrained energy 

utilization in CCOA-DC. A comprehensive 

comparison is provided in Table 5 showing 62%, 

53% reduction in energy consumption compared to 

[30] [31] respectively.  

POHDA-WSN [33], FTOPSIS-HJBO [34] are 

the recent state-of-art models proposed for data 

aggregation in WSN and promote energy efficiency. 

POHDA-WSN (Power Optimization and Hybrid 

Data Aggregation) employs a careful selection 

process for CH to optimize energy consumption and 

packet delivery. This selection process ensures that 

CHs are strategically placed to manage long-distance 

communication effectively. The model in [33] 

proposes a weighted approach to identify the CH 

considering residual energy, Distance, and degree of 

mobility as the CH selection parameters. However, 

the proposed model CCOA-DC shows a 13.85% 

improved packet delivery ratio compared to 

POHDA-WSN at 500 sensor nodes over 300 seconds. 

This is because NMF-derived clusters provide 

valuable insights into the spatial distribution and 

connectivity patterns of the sensor nodes. By 

strategically placing CHs in central locations within 

their respective clusters, NMF-based clustering 

ensures efficient data aggregation and forwarding, 

further enhancing the packet delivery ratio. 

Similarly, [34] employs a Fuzzy TOPSIS-based 

Hybrid Jarratt Butterfly Optimization (FTOPSIS-

HJBO) for optimal routing from CH to BS. This 

model aims to find the shortest path for data 

transmission by optimally selecting cluster heads 

through ensemble clustering [34]. The proposed 

method returns compressed data parameters along 

with the final CH positions. This enables efficient 

data transmission and reduces the overhead 

associated with transmitting data in the network, 

leading to improved network performance and 

energy efficiency. This is why the proposed model 

shows a 2.7% improvement in PDR compared to the 

model in [34]. 

5. Conclusion 

This study addresses the challenges of energy 

efficiency and excessive data generation in large-

scale applications, particularly in IoT based 

heterogeneous WSN network with 500 sensor nodes. 

Non-Negative Matrix Factorization (NMF) is applied 

for the clustering process, resulting in the generation 

of 5 clusters. The proposed novel Cognitive Coati 

Optimization Algorithm with Data Compression 

(CCOA-DC) demonstrates improved capability of 

handling nonlinear functions than conventional COA. 

CCOA-DC achieves improvement of 1.02% in terms 

of alive nodes compared to CCOA without 

compression. This shows that CCOA-DC 

strategically avoids selecting CH with lower residual 

energy, further improving the network’s longevity. 

Further, the PDR improvement achieved by CCOA-

DC is 0.08% and 2.34% compared to CCOA and 

COA-DC, respectively. Thus, the objective of 

improving the network performance along with 

reducing the redundant data is achieved. CCOA-DC 

achieves a 12.53% increase in residual energy 

compared to CCOA without compression. In terms of 

residual energy improvement, CCOA-DC 



Received:  February 7, 2024.     Revised: March 19, 2024.                                                                                               442 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.34 

 

outperforms CCOA and COA-DC by 12.53% and 

2.61%, respectively. Thus, the proposed novel 

optimization with compression shows that energy 

consumption is optimized with optimal selection of 

CH. Moreover, comparative analysis with state-of-

the-art models, including TCBDGA, HEED, and 

FEEC-IIR, demonstrates the superiority of CCOA-

DC in terms of packet loss ratio (2.8%), packet 

delivery ratio (98.67%), and energy consumption 

(68.01%). In conclusion, CCOA-DC is successful in 

tackling the issues of load balancing, energy 

economy, and data redundancy in large-scale WSNs, 

particularly in situations that resemble IoT 

applications. The results emphasize the accelerated 

rate at which it converges, the extended lifespan of 

the network, and the greater performance it exhibits 

in comparison to current optimization methods. The 

latest comparison confirms that CCOA-DC is highly 

effective in attaining energy efficiency and reliability 

in data aggregation in WSNs compared. 

 

Notations: 

𝑁 Number of coatis 

𝑚 Number of decision variables 

𝑋𝑖 Location of the 𝑖𝑡ℎ coati in the search 

space 

𝑙𝑏𝑗 and  

𝑢𝑏𝑗 

Lower bound and upper bound for the 

𝑗𝑡ℎ  decision variable 

𝑟 Random real integer between 0 and 1 

𝑌 Matrix representing sensor nodes in the 

WSN 

𝑋 Population matrix of coatis 

𝐹 Objective function values 

𝑋𝑛𝑙 Non-negative matrix factor of X 

𝐼𝑙𝑜 Non-negative matrix factor of I 

𝐹𝑖 Objective function value of the 𝑖𝑡ℎ coati 

𝐾 Position of the iguana in the search 

space 

𝐾𝑗 Position of the iguana in the 𝑗𝑡ℎ 

dimension 

𝐹𝑖
𝑃1 and  

𝐹𝑖
𝑃2  

Objective function value of the 𝑖𝑡ℎ coati 

in phase 1 and 2 respectively  

𝑡 Iteration counter 

𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙  and   

𝑢𝑏𝑗
𝑙𝑜𝑐𝑎𝑙  

Relative lower bound and upper bound 

for the 𝑗𝑡ℎ decision variable and  

𝑋𝑖
𝑃1 and  

𝑋𝑖
𝑃2 

Updated position of the 𝑖𝑡ℎ coati in 

phase 1 and phase 2 

𝜂1 and  

𝜂2 

Update coefficient for 𝑋 and 𝐼 

𝑁𝑠𝑒𝑛𝑠𝑜𝑟  Number of sensor nodes 

𝐾 Cluster index 

𝜇𝑙𝑜𝑎𝑑   Mean load on cluster heads 

𝐶𝐻𝑚𝑎𝑥   Cluster Head with maximum load 

𝐿𝑜𝑎𝑑(𝐶𝐻𝑞) Load on a cluster head 

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  Initial energy of a cluster head 

𝐸𝑟𝑒𝑚𝑎𝑖𝑛  Remaining energy of a cluster head 

𝐸𝑇 Energy consumption function 

∈𝑓𝑠 Free space energy parameter 

∈𝑚𝑝 Multipath channel energy parameter 

𝐶𝐶𝑂𝐴 Cognitive Coati Optimization 

Algorithm 

𝑓1 Fitness function for load balancing 

𝑓2 Fitness function for energy 

consumption 

𝑓3 Fitness function for energy 

consumption at CH 
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