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Simple Summary: Endometritis is defined as a localized inflammatory condition of the endometrium
that results in significant financial losses. This investigation used forty buffalo cows with clinical
endometritis that were infected and forty seemingly healthy buffalo cows who served as the control
group made up the two groups of buffalo cows. The expression levels and the serum characteristics
of immune and antioxidant biomarkers linked to clinical endometritis risk varied between the
investigated two categories of buffalo cows. The alteration in the profile of explored markers suggests
a potential source for uterine health indicators in buffaloes.

Abstract: Determining the gene expression and serum profile of the indicators linked to clinical
endometritis susceptibility in Egyptian buffalo cows was the aim of this investigation. The buffalo
cows that were enrolled were divided into two groups: forty infected buffalo cows with clinical
endometritis and forty seemingly healthy buffalo cows that served as the control group. For the
purposes of gene expression and biochemical analysis, ten milliliters of blood was obtained via
jugular venipuncture from each buffalo cow. TLR4, IL-8, IL-17, NFKB, SLCA11A1, NCF4, Keap1,
HMOX1, OXSR1, ST1P1, and SERP1 were manifestly expressed at much higher levels in the buffaloes
with endometritis. On the other hand, the genes that encode SOD, CAT, NDUFS6, Nrf2, and PRDX2
were down-regulated. There was a significant (p < 0.05) elevation of the serum levels of non-esterified
fatty acids (NEFAs), beta hydroxy butyric acid (BHBA), triglycerides (TGs), globulin, creatinine, and
cortisol, along with a reduction in the serum levels of glucose, cholesterol, total protein albumin,
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urea, estrogen (E2), progesterone (P4), follicle-stimulating hormone (FSH), luteinizing hormone
(LH), thyroxine (T4), prostaglandin F2 α (PGF2α), calcium, iron, and selenium, in the endometritis
group in comparison with the control. However, no significant change was observed in the values of
phosphorus, magnesium, copper, or zinc in either group. Within the selective breeding of naturally
resistant animals, the variation in the genes under study and the changes in the serum profiles of the
indicators under investigation may serve as a reference guide for reducing endometritis in Egyptian
buffalo cows.

Keywords: buffaloes; gene expression; endometritis; biochemical profile

1. Introduction

Buffaloes are the primary source of premium meat and milk in Egypt and some other
developing nations, even though they are typically kept in unfavorable conditions and
have a restricted capacity for reproduction [1]. Endometritis is defined as a localized
inflammatory condition of the endometrium that results in significant financial losses due
to the treatment and milk disposal costs associated with the use of certain antibiotics, as well
as due to reductions in the amount of milk produced by the animals affected [2,3]. Cows
with uterine illnesses may show worsening reproductive performance, which could lead to
an increase in the involuntary culling of these animals. This includes reduced pregnancy at
first AI, frequencies of pregnancy, and conception rates; a delay in the restart of ovarian
activity after calving and increased days open; and the prevalence of anovular cows, with
increased time between calving and conception [4–6]. Due in large part to inadequate
sanitation, the structure of their vulval lips, vaginal stimulation for milk letdown, and their
wallowing habits, buffalo cows have a much higher prevalence rate of uterine infection
than cows [7]. Uterine infection is also the cause of several major reproductive issues that
affect buffalo cows [8,9].

According to earlier research, Trueperella pyogenes, Escherichia coli, and Fusobac-
terium necrophorum are the primary bacterial species linked to endometritis in dairy
cows [3,6,10,11]. The incidence of uterine disorders is significantly influenced by a number
of risk factors. These risk factors can be linked to uterine injury, metabolic stress, and/or
inadequate cleanliness [12,13]. The risk factors for uterine infection include some that can
cause endometrial trauma: stillbirth, twin, male, and beef-sired calves; dystocia; cesarean
sections; and placenta retention [14]. Other factors include endocrine disorders, deficiencies
in selenium, vitamin E, vitamin A, or β-carotene, the calf failing to suckle, hypocalcemia,
and poor hygiene, which predispose cows to uterine diseases during the early postpartum
period [15]. In fact, a number of nonantimicrobial therapeutics such as meloxicam treatment
and progesterone have been studied over the past ten years, with promising outcomes for
the treatment and prevention of endometritis and metritis [16]. Meanwhile, ketoprofen, a
nonsteroidal anti-inflammatory drug (NSAID), is approved for use in dairy cows in Canada
with a zero withdrawal time for milking. In addition, ketoprofen was recently approved
for use in beef cattle and replacement dairy heifers but not for lactating cows in the US.
As an NSAID, ketoprofen has analgesic, antipyretic, and antiendotoxic effects [17]. Blood
biochemical analyses can be used to evaluate an animal’s general health since they provide
a wealth of information about the nutritional state, overall health, and well-being of an
animal [18,19]. The deviation of certain blood values from their usual ranges could be used
to determine the extent of the damage to the body’s tissues [20].

The improved health of animals could be a benefit of using advanced molecular genetic
approaches as an auxiliary to disease control [21]. It has been possible to identify a number
of genetic biomarkers for disease resistance or susceptibility in cattle [22]. This implies that
the degree of sensitivity or resistance to a disease varies throughout host genomes [23].
The biochemical, hormonal, and gene expression changes linked to endometritis in buffalo
cows are still poorly understood. Thus, the current study’s objectives were to investigate
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the gene expression of endometritis-related biomarkers in buffalo cows and evaluate the
diagnostic use of serum profiles of biochemical and hormonal markers.

2. Material and Methods
2.1. Animals and Study Design

Overall, 160 Egyptian buffalo cows were evaluated. Eighty Egyptian buffalo cows,
weighing between 550 and 650 kg (mean ± SD: 600 ± 40.82) and with an average age of
7–12 years (mean ± SD: 9.42 ± 1.8), were used in this study because laboratory biochemical
analysis and determining the gene expression patterns of their antioxidant and immune
transcript levels were time-consuming and expensive. The experiment was conducted
at the Institute for Animal Reproduction Research. The animals were kept in barns and
fed grass and given water ad lib. Each buffalo cow received around 3 kg of commercial
concentrate per day. The buffalo cows under investigation underwent clinical examination,
which including taking their temperature, heart rate, and respiration rate [24]. The forty
buffalo cows in the control group were in good health and had typical postpartum and
calving conditions (regular body temperature, regular feed consumption, and no uterine
discharge), while the clinical endometritis group consisted of forty buffalo cows suffering
from the disease. At 28–33 DIM, a diagnosis of purulent vaginal discharge was evaluated
by palpation to check their vaginal discharge. More than 21 days after calving, 40 buffalo
cows were enrolled; these cows were characterized by the presence of purulent (>50% pus)
uterine discharge detectable in the vagina and muco-purulent (>50% pus–50% mucus)
uterine discharge detectable in the vagina more than 26 days after calving [25]. The buffalo
cows were synchronized at 45–50 DIM using the Ovisynch protocol in the manner described
as follows: The buffalo cows were given 100 µg of GnRH in the form of gonadorelin
(Gonavet®, Veyx, Schwarzenborn, Germany) on day zero. On day seven, the same cows
were given 500 µg of PGF2α in the form of cloprostenol (PGF Veyx Forte®, Veyx, Germany).
Finally, on day nine, the same cows were given an injection of 100 µg of GnRH (Gonavet®,
Veyx, Schwarzenborn, Germany).

2.2. Blood Sampling

At 10:00 in the morning, 28–33 days after calving, each buffalo cow underwent a
jugular venipuncture to extract ten milliliters of its blood. For serum and whole blood,
respectively, the drawn blood was added to plain tubes (i.e., devoid of anticoagulants)
and others that included EDTA. Following cooling on crushed ice, all the samples were
sent to the lab right away for additional processing. For the extraction of RNA, the tubes
containing whole blood were utilized, while that in plain tubes was kept undisturbed for
15–30 min at room temperature and centrifuged at 3000 rpm for 15 min. The resulting
supernatant is designated as serum. Following centrifugation, it is important to imme-
diately transfer the liquid component (serum) into a clean microcentrifuge tube using a
pipette. The samples should be maintained at 2–8 ◦C while being handled. If the serum is
not analyzed immediately, it should be stored and transported at −20 ◦C or lower for sub-
sequent biochemical analyses of energetic and oxidative stress markers. It is important to
avoid multiple freeze–thaw cycles because this is detrimental to many serum components.
Samples that are hemolyzed, icteric, or lipemic can invalidate certain tests.

2.3. Transcript Levels of Immune and Antioxidant Genes

All of the RNA from the blood samples obtained from the buffaloes under examination
was extracted using Trizol solution (RNeasy Mini Ki, 74104, Product No.), in accordance
with the manufacturer’s instructions. The amount of RNA that was isolated was measured
and verified through the use of a NanoDrop® ND-1000 spectrophotometer. The producer’s
method was used to make the complementary nucleic acid for each sample (Waltham,
MA, USA: Thermo Fisher, Product No. EP0441). Using SYBR Green PCR Master Mix and
quantitative PCR (2× SensiFastTM SYBR, Bio-line, CAT No. Bio-98002, London, UK), the
expression profiles of the immunological (TLR4, IL-8, IL-17, NFKB, SLCA11A1, and NCF4)
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and antioxidant (SOD, CAT, NDUFS6, Nrf2, Keap1, PRDX2, HMOX1, OXSR1, ST1P1, and
SERP1) genes were assessed. Each sample’s relative amount of mRNA was measured using
the Quantitect SYBR Green PCR reagent (Toronto, ON, Canada; Catalogue No. 204141).

Primers with sense and antisense sequences were created using the PubMed genome of
Bubalus bubalis (Table 1). The ß-actin gene served as the constitutive normalization reference.
In all, 3 µL of total RNA, 4 µL of 5× Trans Amp buffer, 0.25 µL reverse transcriptase,
0.25 µL of each primer, 12.5 µL 2× Quantitect SYBR green PCR master mix, and 4.75 µL
RNase free water made up the 25 µL reaction mixture. The completed reaction mixture
was then subjected to the subsequent processes in a heater cycler: use of the primer
binding temperatures as indicated in Table 1 with a 1 min extension at 72 ◦C, preliminary
denaturation for 8 min at 95 ◦C, reverse transcription for 30 min at 55 ◦C, and 40 cycles
of 15 s at 95 ◦C. A melting curve study was performed after the amplified product was
amplified to demonstrate its specificity. The differences in each gene’s expression were
investigated using the 2−∆∆Ct method, which compared the mRNA level of each marker in
the test sample to that of the ß-actin gene [26,27].

Table 1. Real-time forward and reverse PCR primers made of oligonucleotides for immune, metabolic,
and antioxidant genes under study.

Investigated
Marker Primer Product

Size (bp)

Annealing
Temperature

(◦C)

GenBank
Isolate Origin

TLR4 F5′-CCTGCATTGAAGCTCAGTTCTC-3
R5′-GGTTTTCTAGTTGATTTCCGCC-3′ 244 58 MT424002.1

Present
Research

IL-8 F5′-TCTCTGCAGCTCTGTGTGAA-3
R5′-GGGTGGAAAGGTGTGGAATGT-3′ 94 60 NM_001290920.1

IL-17 F5′-GGACTCTCCACCGCAATGAG-3′

R5′-CCTAAGCCAAATGGCGGACA-3′ 249 58 OQ730437.1

NFKB F5′-CGAAAGCGAATCTCTCCTGGT-3′

R5′-TGACTGGGCCTAAGGAATGG-3′ 182 58 XM_006046119.4

SLC11A1 F5′-TCATGTCAGGTGACACAGGC-3′

R5′-CCAGCCTGAAGATCCGACTC-3′ 247 58 XM_006046401.3

NCF4 F5′-TCAGCCAACATCGCTGACAT-3′

R5′-TCCAGCTTGCTCTGTAAGGC-3′ 143 60 XM_006056976.4

SOD F5′-GTCCCAGGTGCTCGACTCT-3′

R5′-ATCTCCTGCCAGATCTCCGT-3′ 160 60 XM_006041479.4

CAT F5′-CTGAGTGGCGGAGTCTGAAG-3′

R5′-CTGGATTACCGCCTCCAGTG-3′ 200 60 XM_044929272.2

NDUFS6 F5′-GGGAGTCGGGTGATATCGTG-3′

R5′-GTCCCCGTCTTCGTTTCCTT-3′ 92 60 XM_006051698.4

Nrf2 F5′-GTCAGGGAGAAGCGAGTTCC-3′

R5′-TACCTCTCGACTTACCCCGA-3′ 241 60 XM_006051425.4

Keap1 F5′-AATCACGACTTCTTCCCCGC-3′

R5′-CTCCCGCCTAACTTTCGCTA-3′ 196 60 XM_006068351.4

PRDX2 F5′-ATGAGCATGGGGAAGTCTGC-3′

R5′-GAGCAGGTCTGGCATTTCCT-3′ 193 60 XM_006041572.4

HMOX1 F5′-CAAGCGCTATGTTCAGCGAC-3′

R5′-GCTTGAACTTGGTGGCACTG-3′ 206 58 XM_045165381.1

OXSR1 F5′-GATGAGCTGTGGCTCGTCAT-3′

R5′-GTGGTTGGTGTTAGCAAGGC-3′ 125 60 XM_025272781.3

ST1P1 F5′-AGCTGGAGCCAACCTTCATC-3′

R5′-CATCATGCAGCGCTGGTAAC-3′ 155 58 XM_006050858.3
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Table 1. Cont.

Investigated
Marker Primer Product

Size (bp)

Annealing
Temperature

(◦C)

GenBank
Isolate Origin

SERP1 F5′-TATGGCCAACGAGAAGCACA-3′

R5′-GGTCCTACAGACGCCTTCTC-3′ 147 58 XM_006048532.4
Present

Researchß. actin F5′-GGAATCCTGCGGTATTCACGA-3′

R5′-CCGCCAATCCACACAGAGTA-3′ 222 58 NM_001290932.1

TLR4 = Toll-like receptor 4; IL-8 = interleukin-8; IL-17 = interleukin-17; NFKB = nuclear factor kappa B;
SLC11A1 = solute carrier family 11 member 1; NCF4; neutrophil cytosolic factor 4; SOD = superoxide dismutase;
CAT = catalase; NDUFS5 = NADH: ubiquinone oxidoreductase subunit S5; Nrf2 = nuclear factor erythroid 2-related
factor 2; Keap1 = Kelch-like ECH-associated protein 1; PRDX2= peroxiredoxin 2; HMOX1 = heme oxygenase-
1; OXSR1 = oxidative stress-responsive kinase 1; ST1P1 = stress-induced phosphoprotein 1; SERP1 = stress-
associated endoplasmic reticulum protein 1.

2.4. Biochemical Analysis

Commercial kits were used according to the standard protocol of the suppliers to
quantify each of the following: serum non-esterified fatty acid (NEFA), luteinizing hor-
mone (LH), cortisol, follicle-stimulating hormone (FSH), progesterone, estradiol, albumen,
thyroxine (T4), beta hydroxy butyric acid, prostaglandin F2α (PGF2α), total protein, cal-
cium, creatinine, glucose, and triglycerides (MyBioSource ELISA kits, Southern California,
San Diego, CA, USA; catalog nos. MBS748204, MBS700951, MBS701325, MBS705623,
MBS704979, MBS700251, MBS9310864, MBS702370, MBS705232, MBS027214, MBS9310577,
MBS754453, MBS745220, MBS7220981, and MBS031328, respectively). Cholesterol (Gamma
Trade Company, Giza, Egypt); phosphorus, magnesium, and selenium (Bio-Diagnostic,
Giza, Egypt); and urea (Spectrum Company, Cairo, Egypt) were measured on a selective
chemistry analyzer (Apple 302, Cupertino, CA, USA), and globulin was calculated by
subtracting the albumin values from the total serum protein values. The kit for Cu was
from SIGMA-ALDRICH Co., Saint Louis, MO, USA, while that for Zn was from Abnova
Co., Taipei City, Taiwan, and that for iron (Fe) was from Abcam Co., Cambridge, UK.

2.5. Statistical Analysis

A statistical software package (SPSS, ver. 20, Inc., Chicago, IL, USA) was used to
perform the statistical analyses. We ran descriptive statistics for every parameter. To
examine the data, Student’s t-test was employed. At p < 0.05, the results were deemed
statistically significant. The sample size used in this study was determined using the
sample size determination formula as follows:

Sample(N) =
(Z1 − α/2)2P(1 − P)

d2

where Z1 − α/2 = the standard normal variant at 5% type I error (p < 0.05); P = expected
prevalence based on a previous study [28]; and d = absolute error or precision (which is 5%).
The two groups of buffalo cows that were examined—the healthy and the endometritis
buffalo cows—were the fixed effects in our model. The biochemical parameters (serum
levels of glucose, cholesterol, triglycerides, globulin, creatinine, NEFA, BHBA, total protein
albumin, urea, estrogen, progesterone, FSH, LH, T4, PGF2α, calcium, iron, selenium,
cortisol, phosphorus, magnesium, copper, and zinc) and the immunological and antioxidant
transcript levels (TLR4, IL-8, IL-17, NFKB, SLCA11A1, NCF4, Keap1, HMOX1, OXSR1,
ST1P1, and SERP1, SOD, CAT, NDUFS6, Nrf2, and PRDX2) in the healthy buffalo cows and
those with endometritis were the random effects in our model.
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3. Results
3.1. Patterns of Immune and Antioxidant Marker mRNA Levels

The immunological and antioxidant transcript levels in healthy buffaloes and buf-
faloes with endometritis are displayed in Figures 1 and 2, respectively. The buffaloes
with endometritis had considerably higher expression levels of TLR4, IL-8, IL-17, NFKB,
SLCA11A1, NCF4, Keap1, HMOX1, OXSR1, ST1P1, and SERP1. Conversely, there was a
down-regulation of the genes that encode SOD, CAT, NDUFS6, Nrf2, and PRDX2. For the
buffaloes with endometritis, TLR4 had the highest possible quantity of mRNA (2.62 ± 0.16)
while CAT had the lowest amount (0.52 ± 0.13 mRNA) for each gene. Out of all the
genes examined in the healthy buffaloes, SOD had the highest potential level of mRNA
(2.46 ± 0.14), while OXSR1 had the lowest amount (0.32 ± 0.09).
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Figure 1. Immune gene transcript levels in normal buffaloes and those with endometritis. The asterisk
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3.2. The Biochemical Profile

Biochemically, the present study showed significantly (p < 0.05) low values for the
serum levels of glucose, cholesterol, total protein albumin, urea, estrogen, progesterone,
FSH, LH, T4, PGF2α, calcium, iron, and selenium (46 ± 0.5 mg/dL, 77.6 ± 9.2 mg/dL,
4.5 ± 0.2 g/dL, 3.3 ± 0.05 gm/dL, 56 ±.1.1 mg/dL, 69 ± 3.5 pg/mL, 0.5 ± 0.04 ng/mL,
3.7 ± 0.01 mU/mL, 2.7 ± 0.1 mU/mL, 4.7 ± 0.3 ng/mL, 34 ± 1.1 pg/mL, 5.4 ± 0.1 mg/dL,
115 ± 0.5 Ug/dL, and 2.8 ± 0.05 Ug/dL, respectively) in the endometritis group com-
pared with the healthy buffaloes. Conversely, there was a noteworthy (p < 0.05) rise
in the serum concentrations of triglycerides, globulin, creatinine, NEFA, BHBA, and
cortisol (67 ± 4.6 mg/dL, 0.7 ± 0.05 g/dL, 0. 5 ± 0.02 mg/dL, 0.3 ± 0.008 mmol/L,
1.4 ± 0.05 mmol/L, and 27 ± 1.1 ng/mL, respectively) in the buffalo cows with endometri-
tis compared to the healthy group. However, no significant change was observed in the
values of phosphorus, magnesium, copper, or zinc in either group (Table 2).
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Table 2. Metabolic and hormonal biomarkers (mean ± SE) in control and buffaloes with endometritis.

Parameters Unit Control Endometritis p-Value Reference Interval

Glucose (mg/dL) 57.3 ± 0.8 46 ± 0.5 0.004 22.3–97.4 [29]
NEFA (mmol/L) 0.1 ± 0.01 0.3 ± 0.008 0.001 0.2–0.29 [30]
BHBA (mmol/L) 0.5 ± 0.05 1.4 ± 0.05 0. 001 0.35–0.67 [30]

Cholesterol (mg/dL) 77.6 ± 9.2 56.6 ± 3.5 0.02 80–120 [29]
Triglycerides (mg/dL) 43 ± 2.6 67 ± 4.6 0.01 10.3–59.3 [29]
Total protein (g/dL) 5.7 ± 0.08 4.5 ± 0.2 0.005 5.4–9.3 [29]

Albumin (g/dL) 4.4 ± 0.05 3.3 ± 0.05 0.001 2.2–4.6 [29]
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Table 2. Cont.

Parameters Unit Control Endometritis p-Value Reference Interval

Globulin (g/dL) 0.4 ± 0.02 0.7 ± 0.05 0.004 3.9–4.1 [31]
Blood urea nitrogen (mg/dL) 68.6 ± 0.1.4 56 ±.1.1 0.002 13.2–64.1 [29]

Creatinine (mg/dL) 0.1 ± 0.04 0. 5 ± 0.02 0.002 1.07–2.52 [29]
Estrogen (pg/mL) 90 ± 1.1 69 ± 3.5 0. 005 50–90 [32]

Progesterone (ng/mL) 1 ± 0.06 0.5 ± 0.04 0. 004 0.9–1.3 [32]
FSH (mU/mL) 5.6 ± 0.08 3.7 ± 0.01 0.001 3.5–6 [32]
LH (mU/mL) 3.8 ± 0.06 2.7 ± 0.1 0.001 3.2–5 [32]
T4 (ng/mL) 8.8 ± 0. 5 4.7 ± 0.3 0.004 8.6–9.2 [33]

Cortisol (ng/mL) 18 ± 0.5 27 ± 1.1 0.002 17.5–20 [34]
PGF2α (pg/mL) 51 ± 1.5 34 ± 1.1 0.001 53.67 ± 2.4 [35]

Calcium (mg/dL) 6.6 ± 0.08 5.4 ± 0.1 0.001 6.4–12.8 [29]
Phosphorus (mg/dL) 3.5 ± 0.04 3.7 ± 0.05 0.06 3.2–3.9 [36]
Magnesium (mg/dL) 2.4 ± 0.05 2.3 ± 0.02 0.3 2.20–3.93 [29]

Iron (Ug/dL) 132.6 ± 1.4 115 ± 0.5 0.001 60.1–187.4 [29]
Selenium (Ug/dL) 3.9 ± 0.08 2.8 ± 0.05 0.001 3.6–4.1 [33]
Copper (Ug/dL) 84.6 ± 1.4 84.6 ± 2 1 51–151.1 [29]

Zinc (Ug/dL) 67 ± 1.1 67.6 ± 0.8 0.6 52.2–130.9 [29]

4. Discussion

The purpose of the study was to prove that the serum profiles of metabolic and
hormonal markers and gene expression patterns may be utilized as diagnostic standards
for clinical endometritis in Egyptian buffalo cows. According to [9], one of the most
important diseases that affects cows is postpartum uterine infection. Because of its negative
effects on reproductive function, which include decreased chances of conception, higher
numbers of services required for each conception, a longer time between calving and first
service, and decreased rates of pregnancy, there are considerable financial losses [37].

An intriguing aspect of this experiment was analyzing the mRNA expression of im-
munological, metabolic, and antioxidant genes in both normal buffaloes and those with
clinical endometritis. We suggested that genetic variation in the buffaloes’ transcriptional
response to the development of the disorder may have an impact on the course of post-
partum endometritis. The following genes were assessed for their expression levels using
real-time PCR in both the normal and endometritis-affected buffaloes: immune (TLR4, IL-8,
IL-17, NFKB, SLCA11A1, and NCF4) and antioxidant (SOD, CAT, NDUFS6, Nrf2, Keap1,
PRDX2, HMOX1, OXSR1, ST1P1, and SERP1). Our findings showed that the buffaloes
with endometritis had significantly higher TLR4, IL-8, IL-17, NFKB, SLCA11A1, NCF4,
Keap1, HMOX1, OXSR1, ST1P1, and SERP1 expression levels. On the other hand, the genes
encoding PRDX2, NDUFS6, Nrf2, SOD, and CAT were down-regulated. This study looks
at these indicators’ mRNA levels and how they relate to the prevalence of postpartum
endometritis in buffaloes for the first time. To examine the processes controlling the investi-
gated gene regulations in both normal and endometritis-affected buffaloes, we employed
gene expression.

Regarding the gene expression profiles of immunological and antioxidant markers
in the buffaloes, the expression levels of the following genes were significantly higher
in the buffaloes affected by endometritis than in the resistant ones: A2M, ADAMTS20,
KCNT2, MAP3K4, MAPK14, FKBP5, FCAMR, TLR2, IRAK3, CCl2, EPHA4, and iNOS. In
the buffaloes affected by endometritis, the expression levels of the RXFP1, NDUFS5, TGF-
β, SOD3, CAT, and GPX genes were significantly reduced [38]. In the buffaloes with
endometritis, the cytokine gene expression in the uteri of Bubalus bubalis associated with
endometritis infection was shown to be higher than that in the control animals. Conversely,
TNF-α and IL-10 mRNA expression was 0.4- and 0.2-fold lower, respectively, than in the
infected buffaloes [39]. According to [40], buffaloes with postparturient endometritis
exhibited considerably higher expression levels of the immunological genes IKBKG, LGALS,
IL1B, CCL2, RANTES, MASP2, HMGB1, and S-LZ.



Vet. Sci. 2024, 11, 340 9 of 17

Compared to resistant cows, endometritis-affected cows produced considerably more
of the genes TLR4, LITAF, TNF-α, TKT, RPIA, TLR7, TNF-α, TKT, and AMPD1. Meanwhile,
the expression of the IL10, ATOX1, and GST genes significantly decreased [41]. According
to [42], postpartum sheep showed noticeably higher amounts of mRNA for IL1-ß, TNF
alpha, IL5, IL6, TLR4, and Tollip. On the other hand, their SOD and CAT gene levels were
much reduced. The levels of the PRLR, LTF, CLA-DRB3.2, beta defensin, TLR2, TLR4,
and CCL5 genes were significantly up-regulated in postparturient goats with endometritis
compared to tolerant ones, while the GPX4, GST, SOD3, CAT, and ATOX1 gene patterns
demonstrated the opposite tendency [43].

Previous reports have linked the examined immunological and antioxidant markers
to economically significant infectious illnesses in cattle. For example, the mRNA levels of
the NFkB gene were significantly greater in Holstein and Montbéliarde dairy cows with
mastitis than in healthy cows [44]. In comparison to healthy dairy cows, mastitic Holstein
and Brown Swiss dairy cows had significantly lower levels of SOD1, CAT, GPX1, and
AhpC/TSA gene expression [45]. The expression of the TLR4, OXSR1, SERP2, and ST1P1
genes was substantially higher in mastitic camels (p < 0.05). The CAT, SOD3, PRDX6, and
NDUFS6 genes, on the other hand, produced a different pattern [46]. The genes CD-14,
CCL2, β defensin, SPP1, BP1, A2M, TLR7, and TLR8 are significantly more expressed
in mastitis-affected goats than in resistant goats; on the other hand, the genes ATP1A1,
SOD1, CAT, AhpC/TSA, PRDX2, PRDX4, NQO1, and Nrf2 are significantly less expressed in
mastitis-affected goats than in resistant goats [47]. Pneumonic goats had much higher levels
of SLC11A1 gene mRNA than healthy goats did [48]. Compared to resistant Holstein dairy
calves, diarrheal calves had significantly higher expression levels of Keap1 and HMOX1.
On the other hand, a different pattern formed for the Nrf2 and PRDX2 genes [49].

TLRs trigger both innate and acquired immune responses and improve neutrophil
recruitment by controlling the synthesis of various chemokines and pro-inflammatory
cytokines [50]. Pattern recognition receptor (PRR) SNPs can influence how the body
reacts to an infection, as well as an individual’s capacity to ward off disease or build
resistance to it [51]. TLR4 recognizes lipopolysaccharides (LPSs) from Gram-negative
bacteria like Escherichia coli [52]. Cytokines and NF-κB function as indirect markers in
inflammatory conditions [53]. NF-κB plays a role in the control of inflammasomes and
stimulates the expression of certain pro-inflammatory genes, such as those that code for
cytokines and chemokines. Furthermore, NF-κB is essential for controlling the prolifer-
ation, differentiation, and survival of inflammatory T cells and innate immune cells. As
such, the dysregulated activation of NF-κB plays a role in the pathogenic mechanisms of
many inflammatory diseases [54]. One of the most well-known likely candidate genes
for innate immunity against a variety of intracellular pathogens is the trans-membrane
protein SLC11A1 [55]. Cattle mastitis appears to be related to and influenced by the innate
immunity gene neutrophil cytosolic factor 4 (NCF4) [56,57].

By preventing reactive oxygen species (ROS) from entering the environment, limiting
their synthesis, or protecting transition metals, which are required to create ROS, antiox-
idants provide defense [58]. The body’s own enzymatic and non-enzymatic antioxidant
defenses, such as catalase (CAT) and superoxide dismutase (SOD), are examples of endoge-
nous antioxidant markers that are engaged in these processes [58]. The NADH:ubiquinone
oxidoreductase subunit S6 (NDUFS6) gene encodes the first enzyme complex in the mito-
chondrial electron transport chain, known as NADH:ubiquinone oxidoreductase (complex
I) [59]. Electrons from NADH are transferred to the respiratory chain by this complex.
This gene is altered, resulting in mitochondrial complex I impairment, which can afflict
neonates and adults with neurological diseases [59]. The BTA20 region of the genome,
where the NDUFS6 gene is found in cattle, has a quantitative trait locus for somatic cell
score (SCS) [60,61].

The main inducible defense against oxidative stress is the Keap1-Nrf2 stress response
system, which controls the expression of cytoprotective genes [62]. Under typical cir-
cumstances, Keap1 serves as a substrate adaptor for the cullin-based E3 ubiquitin ligase,
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which ubiquitinates and degrades Nrf2 to prevent its transcriptional activity [63]. This
could account for the different expression patterns of the Keap1 and Nrf2 genes shown
during our study. Because of a conserved ionized thiol, the peroxiredoxin (PRDX) family
of antioxidant enzyme oxidoreductase proteins can catalyze hydrogen peroxide (H2O2).
Thiol-specific peroxidase serves as a sensor for signaling events brought on by hydrogen
peroxide and supports cell defense against oxidative stress by detoxifying peroxides and
radicals containing sulfur [64].

In the heme catabolic pathway, heme oxygenase (HMOX) is the enzyme that limits the
rate at which heme is broken down into equimolar amounts of free iron, biliverdin, and
carbon monoxide (CO) [65]. It is also known to be a stress-responsive protein, and because
of its anti-inflammatory, anti-apoptotic, anti-coagulation, anti-proliferative, and vasodilator
properties, it is believed to play a variety of protective roles against various stresses [66].

The oxidative stress-responsive kinase 1 (OXSR1) gene encodes the serine/threonine
protein kinase (OSR1), which controls downstream kinases in response to environmental
stressors [67]. The OXSR1 expression profile throughout the periparturient period was
significantly up-regulated in dromedary camels at (−14) and (+14) compared to partu-
rition, when the lowest levels occurred [68]. The accumulation of unfolded proteins in
the endoplasmic reticulum (ER stress) is connected with protein-coding genes known as
stress-associated endoplasmic reticulum proteins (SERPs). It is possible that SERPs assist
in proper glycosylation and prevent unfolded target protein degradation [69]. HSP70 and
HSP90′s functions in protein folding are regulated and coordinated by the adaptor protein
stress-induced phosphoprotein (STIP1) [70]. Furthermore, STIP1 is expressed in response
to cellular physiological stresses caused by many factors, such as high temperatures [71].

In dairy cattle, multi-pathogen bacterial infections of the vaginal tract occur after urina-
tion [72]. An inflammatory response is triggered by the release of chemokines and cytokines
due to an endometrial bacterial infection. Complement fragments and inflammatory cy-
tokines have been shown to interfere with leucocyte recruitment during inflammation [73].
Unchecked, protracted inflammation associated with tissue damage is another feature
of endometritis. This inflammation is linked to the release of molecular forms that ac-
company injury, worsening it further and ensuring its persistence [38]. Then, excessive
ROS70 accumulation results in oxidative stress. The increased expression of molecules
involved in tissue remodeling, acute-phase response, and LPS signaling is also linked to
these alterations [74]. The previously described factors may be responsible for the notable
change in the expression patterns of the antioxidant (SOD, CAT, NDUFS6, Nrf2, Keap1,
PRDX2, HMOX1, OXSR1, ST1P1, and SERP1) and immunological (TLR4, IL-8, IL-17, NFKB,
SLCA11A1, and NCF4) indicators in the buffaloes with endometritis. Therefore, we believe
that bovine endometritis in the buffaloes in this study had an infectious etiology. Our
real-time PCR data demonstrated a significant inflammatory response in the buffaloes
affected by endometritis. Normal gene expression governs most physiological mechanisms,
while the disruption of gene expression can be utilized to characterize typical pathological
processes [75,76].

The innate immune response is disrupted by poor metabolic status and negative
energy balance (NEB) during the postpartum period, which, in turn, contributes to the
development of clinical endometritis. The current study’s findings demonstrated the value
of glucose, BHBA, and NEFA as biomarkers for endometritis identification. In the current
investigation, the buffaloes with clinical endometritis had significantly lower blood glucose
levels and higher serum values of NEFA and BHBA. This result was in line with earlier
research [36,77]. Previous research has shown a negative correlation between prepartum
blood glucose concentrations and the incidence of clinical endometritis [77] and persistent
postpartum bacterial infection [78].

A lack of energy, particularly hypoglycemia, causes the blood levels of BHBA and
NEFA to rise. This can lead to hazardous levels and impair immunological responses,
which raises the possibility of developing clinical endometritis [79]. Hypoglycemia, as
seen in transition cows, reduces immune cell function and raises the risk of infection [80].
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Immune cell function (proliferation and differentiation) is glucose-dependent [81]. Maternal
hypoglycemia is caused by the reduced consumption of dry matter and blood glucose being
partitioned towards the gravid uterus during late pregnancy and the mammary glands
during lactation [82].

In contrast to healthy buffaloes, the endometritis-affected buffalo cows in the current
study had markedly higher serum TG contents and much lower cholesterol levels. Ref. [83]
reported similar results. Our hypothesis was that with a postpartum NEB status, body
fat will have continuously been used as an energy source, leading to TG buildup in the
hepatocytes and impairing liver function [84]. Since the majority of the cholesterol in the
endometritis group will have come from the cows’ intestines, a decrease in feed intake
may have been the cause of the group’s declining cholesterol levels [85]. As part of
lipoproteins, which make up the lipid makeup of cell membranes, cholesterol is regarded
as a negative acute-phase reactant. Measuring cholesterol aids in determining how well the
liver functions [86]. All of these results amply demonstrated how metabolic imbalance and
NEB both enhance the risk of endometritis, and vice versa.

The current study found that in the buffalo cows with endometritis, their metabolic
indices, such as total protein and albumen, dramatically dropped, while globulin declined.
Our findings concurred with those of previous studies [36,87,88] but differed from the find-
ings reported by [77], who showed that the serum total protein levels were higher in cows
with uterine infections than in healthy ones. The drop in the serum albumin concentrations
in the diseased animals was attributed to a corresponding decrease in their serum total pro-
tein concentrations. As a negative acute-phase protein, serum albumin’s concentration falls
during acute inflammations. When compared to healthy buffaloes, endometritis-affected
buffaloes have significantly lower serum albumin concentrations because endometritis is
an acute inflammation of the endometrium. This hypothesis is consistent with [89,90]’s
findings. Due to an increase in immunoglobulins in the bloodstream as a result of the
illness, the affected buffaloes’ serum globulin levels were significantly increased [88].

A significant risk factor for chronic postpartum bacterial infection has also been
linked to lower serum urea nitrogen, similar to glucose [91,92]. In the current study,
the endometritis-affected buffaloes showed a notable rise in their creatinine levels and a
significant decline in their serum blood urea nitrogen content when compared to the healthy
buffaloes. Comparable outcomes were reported by [36]. Furthermore, [93] discovered a
negative relationship between urea concentrations and the expression of genes related to
innate immunity and inflammation in cow uteri. On the other hand, [12] found no variations
in urea concentrations between normal and clinical endometritis groups. According to [94],
creatinine can be changed by the kidneys without reabsorption and represents mobilization
of the skeletal muscle.

The endocrinological profiles showed that compared to the normal, unaffected animals,
the endometriotic animals had considerably higher cortisol levels and decreased levels of
FSH, LH, E2, P4, PGF2α, and T4. Our findings concurred with previous studies [32,95]. For
ovarian cycles to resume after giving birth, normal pituitary and hypothalamus activity is
essential. The follicle-stimulating hormone (FSH) concentrations in animals with uterine
infections are unaltered, and ovarian follicular waves occur in the initial weeks following
parturition [96]. However, in endometriotic or metritis-affected cows, it has been reported
that endotoxins derived from E. coli suppress the release of GnRH and LH from the hy-
pothalamus and the pituitary gland, respectively, as well as the pituitary gland’s sensitivity
to gonadotrophin-releasing hormone. This reduces the ability of the dominant follicle
to ovulate [97]. Moreover, endotoxins suppress the pituitary’s sensitivity to GnRH [98],
which may have an impact on luteal development and ovulation. It has been reported that
postpartum ovarian follicular growth and function are disrupted due to the suppression of
pituitary LH secretion caused by bacterial loads in the uterus, bacterial metabolic products,
and the concomitant inflammation of the uterine layers [99]. Reduced LH pulse frequencies
in dairy cattle are mostly caused by metabolic stress, which is typically caused by a negative
energy balance [93]. Bacterial contamination of the postpartum uterus has also been linked
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to decreased plasma P4 concentrations, in addition to smaller CLs in the first postpartum
estrous cycle [100]. Ovarian activity is adversely affected by uterine infections. When
compared to healthy cows, the first postpartum dominant follicle in cows with significant
bacterial uterine contamination was smaller and secreted less estrogen [100]. In comparison
to healthy cows, these cows also had smaller CLs and lower plasma P4 concentrations [100].
Furthermore, because the endometrial epithelial cells of animals affected by uterine disease
secrete PGE2 instead of PGF2α, luteolysis is disrupted due to the change from PGF2α
(luteolytic) to PGE2 (anti-inflammatory). This leads to infertility and longer luteal phases.
According to reports, diseases related to uterine function are typically linked to disrupted
steroidogenesis. This is because the impaired endometrium fails to produce the appropriate
amount of PGF2α, which is necessary to control CL function and ultimately synthesize
progesterone [101].

According to [102], cortisol may also hinder follicular growth and ovulation in ru-
minants, perhaps exacerbating the animals’ deficiency in reproduction. Mainly, cortisol
suppresses the immune system [103]. Increased cortisol levels may be a factor in the overall
greater incidence of endometritis in cows. A notable difference was noted between healthy
and meteoritic-damaged cows [104], but plasma estradiol peaks immediately after calving
and rapidly declines after calving [105]. The endometriotic-affected cows ultimately had al-
tered peripheral plasma concentrations of FSH, LH, E2, P4, and prostaglandin metabolites.

When comparing the serum calcium concentrations of the endometriotic buffalo cows
to those of healthy ones, we observed a drop, but we saw no effect on the concentrations
of magnesium or phosphorus. Previous studies have shown that cows with endometritis,
either clinical or subclinical, had lower serum calcium levels than cows without uterine
illnesses [36,83,85]. In relation to reduced circulating neutrophil counts, a diminished
potential for neutrophil oxidative burst, complement activation, and a heightened risk of
uterine infection [106], a decrease in calcium concentrations may be linked to immunologi-
cal function impairment [107]. Uterine involution is delayed by subclinical hypocalcemia,
which affects myometrial contraction [108]. Magnesium is a crucial mineral for maintaining
calcium homeostasis; hypocalcemia can result from a drop in magnesium content [109].
Magnesium also plays a role in opsonization processes [110]. However, there have been
conflicting results regarding the involvement of magnesium in the development of clinical
endometritis [111]. According to [107], cows with clinical endometritis had lower calcium
concentrations than cows without the condition but had higher magnesium concentrations.
Conversely, a study that did not distinguish between cows with subclinical and clinical
endometritis found that the magnesium levels were lower in endometritis-affected cows
than in normal ones, but calcium concentrations were not linked to endometritis [112]. On
the other hand, there are not many reports on how phosphorus levels change over the
course of clinical endometritis development.

This study showed that compared to healthy animals, the endometritis-affected ani-
mals had lower serum concentrations of iron and selenium. Indeed, [101] reported similar
outcomes. The lower blood selenium levels in the endometritis-affected buffalo cows may
have been caused by oxidative stress, whereas their lower serum iron levels may have been
related to regenerative anemia.

5. Conclusions

Our results emphasize the importance of immunological (TLR4, IL-8, IL-17, NFKB,
SLCA11A1, and NCF4) and antioxidant (TLR4, IL-8, IL-17, NFKB, SLCA11A1, and NCF4)
gene diversity as a surrogate indicator for the disease under study in Egyptian buffalo
cows. The findings also present strong evidence of significant biochemical and hormonal
changes linked to endometritis in Egyptian buffalo cows, specifically in relation to blood
sugar, cholesterol, total protein albumin, urea, estrogen, progesterone, FSH, LH, T4, PGF2α,
calcium, iron, and selenium. The fluctuating patterns of expression in buffalo cows that
are resistant or not resistant to endometritis may serve as biomarkers and references for
monitoring the health of these animals. These findings present a viable way to reduce
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endometritis in Egyptian buffalo cows by selectively breeding animals according to genetic
markers linked to innate immunity to infection.
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