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AbstractAbstractAbstractAbstract    

       This study investigates the feasibility of using artificial neural 

network (ANN) to predict the ultimate strength of reinforced 

concrete rectangular beams subjected to pure torsion and to 

combination of torsion and bending. The fundamental and practical 

aspects of artificial neural networks are demonstrated and a view of 

their structures, topology and strengths are presented. The effects of 

the parameters, such as the number of nodes in the input layer, 

output layer and hidden layer, the pre-process (normalization) of the 

training patterns, the weight-factors initialization and the selection of 

the learning rate and momentum coefficient, on the behaviour of the 

neural network have been investigated. Due to slower convergence 

of the gradient descent (GD) backpropagation algorithm, the faster 

algorithm called "resilient propagation algorithm"(RPROP) has been 

used to improve the performance of the neural network. After 

training, the generalization of the neural network was tested by 

patterns not included in the training patterns. 
 

       Two structures of networks are worked out as follows: 
 

1. The configuration 10:25:25:1 is used to predict the ultimate 

strength of reinforced concrete beams under pure torsion. 

2. The configuration 11:8:1 is used to predict the ultimate 

strength of reinforced concrete beams under combined 

torsion and bending. 

 

       The neural network model was trained based on experimental 

results of other researches. 
 



 V

       It is found that normalizing the input and target values of 

training patterns reduces the training time. Gaussian weight-factor 

distribution with range (±1) is found to give a minimum mean square 

error (MSE). In addition, for gradient descent (GD) algorithm the 

effective values for learning rate and momentum coefficient are (0.5) 

and (0.8) respectively. Based on the ANN results, a parametric 

analysis was carried out to study the influence of parameters 

affecting the ultimate torsional strength of reinforced concrete beams 

and these results are compared with equations of ACI-318-89&05 

Code.  
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Notations 
 

Symbol Description 
1A  Area of concrete bounded by centerline of transverse hoop 

bars 
tA  Cross sectional area of transverse hoop bars 

LA  Cross sectional area of longitudinal bars 

2A  The area bounded by the lines connecting the centers of 
the corner longitudinal bars 

oA  Area bounded by the centerline of the shear flow 

oa  The depth of the equivalent compression stress block 

ohA  Gross area bounded by centerline of outermost closed 
stirrups 

b  The shorter side of cross section 
cf '  Cylinder compressive strength of concrete 

yf  Yield strength of longitudinal steel 
fr  Tensile strength of concrete 

syf  Yield strength of transverse steel 

h  The longer side of cross section 
m  The ratio of volume of longitudinal bars to volume of 

stirrups 
1p  Perimeter of the centerline of stirrups 

q  Shear flow 
1& SS  Spacing of stirrups 

t  The thickness of the wall of cross section (for hollow 
section) 

eT  Elastic torque 

pT  Plastic torque 

nT & uT  Nominal and ultimate torsional strength respectively 

cvc TT &  The torsional resistance contribution by concrete 
U  The perimeter of the area 1A  

caV  The shear stress of concrete due to flexural shear only 

uV  Ultimate shear stress due to flexural shear 
x  The shorter side of cross section 

1x  The shorter leg of stirrups 
y  The longer side of cross section 

1y  The longer leg of stirrups 
α  Coefficient given by Saint Venant's theory 

sλ  Efficiency factor 



 X

α  Angle of inclination of the concrete struts 
tα  Coefficient  

caτ  Shear stress of concrete due to torsion only 

uτ  Ultimate shear stress due to torsion 
β  Angle of cracking 
ψ  The ratio M/T 

tρ  The ratio of the total volume of reinforcement including 
longitudinal and transverse steel to the volume of concrete 
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    Chapter OneChapter OneChapter OneChapter One    

Introduction 

1.1 General: 
                          

       Reinforced concrete members are commonly subjected to bending 

moments, to transverse shears associated with those bending moments, 

and, in the case of columns, to axial forces often combined with 

bending and shear. In addition, torsional forces may act, tending to 

twist a member about longitudinal axis. Such torsional forces seldom 

act alone and are concurrent with bending moment and transverse 

shear, and some time with axial as well. The action of axial loads and 

bending, are quite well understood, and the design methods are 

essentially the same for different nations. In contrast, shear and torsion, 

are not well understood and the empirical design methods used in codes 

and specifications are very different around the world [1]. 

 

       For many years, torsion was regarded as secondary effect and was 

not considered explicitly in design. Its influence being absorbed in the 

overall factor of safety of rather conservatively designed structures. 

Current methods of analysis and design, however, have resulted in less 

conservatism, leading to somewhat smaller members that, in many 

cases, must be reinforced to increase torsional strength. In addition, 

there is an increasing use of structural members for which torsion is a 

central feature of behavior; examples include curved bridge girders, 

eccentrically loaded box beams, and helical stair way slabs. In these 

structures, torsion is considered of primary importance together with 

flexural and shear, and can not be neglected or overcome by applying 

certain safety factors to the shear design [2]. 
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1.2: Types of Torsion: 

 

       It is useful in considering torsion to distinguish between primary 

and secondary torsion in reinforced concrete structures. 

1. Primary torsion, some times called equilibrium torsion or 

statically determinate torsion, exists when the external load has 

no alternative load path but must be supported by torsion. For 

such cases, the torsion required to maintain static equilibrium can 

be uniquely determined. 

2. Secondary torsion, also called compatibility torsion or statically 

indeterminate torsion, arises from the requirements of continuity, 

i.e., compatibility of deformation between adjacent parts of a 

structure. For this case, the torsional moments can not be found 

bases on static equilibrium alone. Disregard of continuity in the 

design will often lead to extensive cracking, but generally will 

not cause collapse. An internal readjustment of forces is usually 

possible and an alternative equilibrium of forces found. An 

example of secondary torsion is found in the spandrel or edge 

beam supporting a monolithic concrete slab. 

 
1.3: Torsion in Homogeneous Members: 

 
       The problem of torsion in an elastic circular member was first 

studies by coulomb in 1784. He found that the torsional moment is 

proportional to the twisting angle. 

 

       A theoretical equation for torsion of an elastic circular member was 

derived by Navier in 1826. Three decades later and after the 
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development of the necessary mathematical tools, Fourier series and 

theory of elasticity, Saint-Venant used the semi-inverse method to 

solve the problem of pure torsion of elastic non circular members and 

predicted a precise expression for the warping of cross-section [3].       

In the elastic stage of behaviour, the torque-rotation relationship and 

the warping displacement expression have been obtained for various 

cross-sections using Saint-Venant semi-inverse method. However, such 

a relationship has been only obtained for circular and narrow 

rectangular cross section for the elastic-plastic stage of behaviour [4]. 

The fully plastic torque of the cross-sections may be easily calculated 

using the sand-heap analogy [5]. 

 

       Prandtl in 1930, as cited in Ref. [6], discovered an interesting 

analogy between the stress function in the torsion problem and the 

deflection of membrance under uniform pressure. Prandtl’s membrance 

analogy was extended to the case of plastic material when Nadai [7] 

applied the sand heap analogy to calculate the fully plastic torque of 

solid section. Sadowsky [8] extended Nadai’s sand-heap analogy to 

apply to plastic section with holes. 

 

1.4 Torsion of Plain Concrete Members 

 

       Three approaches have been developed to predict the torsional 

strength of plain concrete members. These are based on elastic theory, 

plastic theory, and skew bending. The elastic theory assumed that the 

concrete is homogeneous material and stresses distributed according to 

Saint-Venant's theory. The failure condition is considered to be reached 

when the maximum shear stress, and therefore the maximum principal 
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tensile stress, is equal to the tensile strength of concrete. The failure 

torque for a rectangular member then ( eT ) becomes [9]. 

 

                   .max

2 ... τbhkTe =                                                                    (1.1)  

            

 where; ( eT ) is the elastic torsional resistance for plain concrete 

rectangular beam,(k) is a function of (h/b), (h) is the longer side of the 

section, and (b) is the shorter side of the section. 

       Cowan [10] suggested an approximation to the value of (k), given 

by: 

                   

bh

k

/45.0

6.2
3

1

+
+

=                                                               (1.2) 

 

       Concrete in torsion exhibits plasticity. This plasticity leads to a 

redistribution of the stresses as the load approaches its ultimate value. 

Turner and Davies, as cited in Ref.  [11] draw attention to this fact in 

1934 and suggested that this effect might be allowed for in calculating 

the ultimate torque by multiplying the elastic torque by a factor of 

)
4

2.1(
bp

A

⋅
 where ; ( A ) is the cross sectional area, )( p is the periphery of 

cross section and (b) is the shorter side of the section. 

 

       Marshal and Nylander, as cited in Ref. [11] both suggested that by 

treating concrete as an ideal plastic material, more consistent results are 

obtained. At failure the shear stress will then be constant over the 

whole section and equal to the ultimate tensile strength of concrete. For 

rectangular beam, the torsional strength is given by: 

 

                   .max

2 ... τbhkT pp =                                                                  (1.3) 

 

where, )( .maxτ is the maximum torsional stress, and 
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                   )
3

1(
2

1

h

b
k p −=                                                                     (1.4) 

 

       Examining of the two formulas of (k) in equation (1.2) and )( pk in 

equation (1.4) reveals that for a wide range of depth to breadth ratios 

for rectangular sections, the value of  )( pk  is 1.66 ± 0.06 times greater 

than (k). This means that for practical rectangular beams the ultimate 

torque calculated by plastic theory is 1.66 ± 0.06 times the ultimate 

torque calculated by elastic theory. 

 

       Nadai as cited in Ref. [12] developed the plastic theory by using 

the sand heap analogy which considers the torsional resistance of cross 

section to be proportional to the volume of a sand heap over the 

section. The torsional resistance is then given as twice the volume 

confined by the surface or: 

 

                   .max

2 )
3

(
2

1
τ

b
hbTp −=                                                             (1.5) 

 

       Equation (1.5) is basically similar to equation (1.3). 

 

       Tests conducted by Hsu [9] revealed that, in the case of a 

rectangular section, cracks develop on three sides and failure proceeds 

in the form of skew bending with the neutral axis parallel to the long 

side of the section and inclined to the axis of twist as shown in figure 

(1.1). 

 

       As shown in figure (1.2) the applied torque can be resolved into 

two components acting on the failure surface. The first is the bending 

moment component )( bT which causes bending about the axis (a-a) and it 

is really the main cause of cracking, and the second component is the 
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twisting moment component )( tT which causes twisting moment about 

the axis perpendicular to the failure plane. The component )( bT  is given 

by: 

 

                   φcos.TTb =                                                                       (1.6) 

 

where, )(φ is the cracking angle of the wider face between the tensile 

crack and the axis of the beam. 

 

       The section modulus of the failure plane about the (a-a) axis [2]: 

 

                   6/csc..2 φhbz =                                                                   (1.7) 

 

       Since the beam will fail in bending, then the maximum tensile 

bending stress in the concrete can be calculated as [2]: 

 

                   
6/)csc..(

cos.
2 φ

φ

hb

T

z

T
f ub

r ==                                                        (1.8) 

 

or:            )csc.(sec
6

.2

φφru f
hb

T =                                                           (1.9) 

       To find the minimum value of torque ( uT ) to cause cracking of the 

section, equation (1.9) is to be differentiated with respect to )(φ and 

equaled to zero. 

                   0)csc.(sec
6

.2

== φφ
φφ d

d
f

hb

d

dT
r

u                                           (1.10) 

 

       This results in )45( o=φ . Substituting this value of φ  in equation 

(1.9) the minimum value of cracking torque becomes: 

 

                   ru f
hb

T
3

.2

=                                                                       (1.11) 
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       It should be noted that the value of tensile bending stress )( rf in the 

above equation should be reduced, since there are compressive stresses 

acting in a perpendicular direction to those tensile stresses, as shown in 

figure (1.2), and those compressive stresses reduce the strength of 

concrete to withstand the tensile stresses [2]. 

 

       McHenry and Karni [13] suggested a reduction factor of (0.85) to 

be applied to the tensile bending stress )( rf in equation (1.11) to 

become: 

 

                   )85.0(
3

.2

ru f
hb

T =                                                               (1.12) 

 

 

1.5: Torsional Strength of Reinforced Concrete Beams: 

 

       Many theories have been developed for calculating the torsional 

resistance of members with both longitudinal reinforcement and 

stirrups. These theories can be roughly divided into two types. The 

space truss analogy and skew bending theory. The former is the oldest 

and more commonly used in different codes, the fundamentals of this 

theory are described below first. 

 

1.5.1: Space-Truss Analogy: 

 

       The first theory to predict the ultimate strength of reinforced 

concrete members subjected to torsion was proposed by Rausch in 

1929 in the form of a Ph. D thesis [14]. In this theory a member with an 

arbitrary, bulk-cross section is assumed to act like a tube so that the 

applied torsional moment is resisted by the circulatory shear flow in the 

wall of the tube. Each straight wall-segment of the tube is assumed to 
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act like a plane truss. In this plane truss the longitudinal bars serve as 

the chord members with the hoop bars and the concrete struts act as the 

web members [14]. 

  

       After cracking the concrete is separated by 45 degrees cracks into a 

series of helical members. These helical concrete members are assumed 

to interact with longitudinal steel bars and the hoop steel bars to form a 

space truss as shown in figure (1.3). Each of the helical members is 

idealized into a series of 45 degrees short straight struts connected at 

specified joints. The compression force in the concrete struts will 

produce an outward radial force at each joint that will be resisted by 

lateral hoop reinforcement. These lateral hoop bars are also idealized as 

chains of short straight bars connected to the concrete struts at the 

joints. The chains of diagonal concrete struts and the chains of hoop 

bars thus form a mechanism that will lengthen under an infinitesimal 

external torque. This tendency to the lengthen is resisted by 

longitudinal reinforcement. Each longitudinal bar is assumed to be a 

chain of short bars connected at the joints to the diagonal struts and the 

hoop bars. In this way a space truss is formed that consists of 45 

concrete struts in compression and longitudinal and hoop bars in 

tension, this space truss is able to resist large external torque [15]. 

 

A space truss thus formed implies the following assumption: 

 

1- The space truss is made up of  45  diagonal concrete struts. 

2- Longitudinal and hoop bars are connected at the joints by hinges. 

3- A diagonal concrete member carries only axial compression; i.e.; 

the shear resistance is neglected. 

4- Longitudinal and hoop bare carry only tension; i.e.; dowel 
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resistance is neglected. 

5- For a solid section, the concrete core does not contribute to the 

ultimate torsional resistance. 

6- All the steel bars yield at the time of failure. 

 

       For a rectangular member reinforced with four longitudinal corner 

bars and closed stirrups with spacing, 1s , and by using the equilibrium 

condition of this o45  space truss model, Rausch derived the following 

expression below: 

 

                   
U

fAA

S

fAA
T

LyLsyt 1

1

1 22
==                                                    (1.13)  

where: 

T:  torsional strength of a member. 

1A : area bounded by the centerline of transverse hoop bar.  

tA : cross sectional area of transverse hoop bar. 

LA : cross sectional area of the total longitudinal bars. 

syf  and Lyf :yield strength of the stirrups and longitudinal bars                     

respectively. 

1S  : the spacing of stirrups 

U  : the perimeter of the area 1A  . 

Assuming that both longitudinal bars and stirrups have the same 

yield stress, the total area of the longitudinal bars can be obtained from 

equation (1.13) as: 

                   
1

11

1

)(2

S

yx
A

S

U
AA ttL

+
==                                               (1.14) 

where : 
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1x  and 1y : smaller and larger center to center dimensions of the   

stirrup. 

       Equation (1.14) which is so called equal volume principle, states 

that the volume of all longitudinal bars within the spacing 1S  should 

equal to the volume of one closed stirrup. 

 

       Although the space truss concept describes the main function of 

concrete and reinforcement in resisting torsion, Rausch's equation 

significantly overestimates the actual strength of reinforced concrete 

members [15]. Therefore, many modifications are introduced in 

Rausch's equation. 

 

       The first modification assumes that the reinforcement is only 

partially efficient. An efficiency factor, sλ  which is less than unity was 

suggested by Andersen in 1934 [16]. This is because Rausch's truss        

analogy assumed uniform stress along all the reinforcement in a 

member subjected to torsion. 

 

       This assumption of uniform stress contradicts Saint-Venant’s stress 

distribution for all types of cross section expect the circular. In the case 

of a rectangular section Saint-Venant’s stress distribution required the 

maximum stress to occur at the wider face and decreases to zero at the 

corner. Andersen suggested that the concrete also contributes to the 

total strength such as: 

 

                   
1

12

S

fAA
sTT

syt

en λ+=                                                         (1.15) 

 

where: 
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eT : the torsional resistance of plain concrete computed by Saint 

Venant's elastic theory. 

 

       The second modification to Rausch's equation was to reduce the 

area 1A , by making an arbitrary definition for the centerline of shear 

flow. Lampert and Thurliman, in 1969 [17], assumed that the perimeter 

connecting the centeroids of the corner longitudinal bars represented 

the centerline of the shear flow. 

       In this approach, the 45 degrees truss model is generated in order 

to apply also for members under combined torsion and bending. It was 

assumed that the angle of inclination of the concrete struts could 

deviate from 45 degrees and was taken as a variable, the approach 

which is adopted by the CEB-FIP model code [15]. According to this 

model the torsional strength of reinforced concrete member is given by: 

 

                   αcot2
1

2

S

fAA
TT

syt

cvn +=                                                     (1.16) 

 

where: 

 2A : the area bounded by the lines connecting the centers of the corner     

       longitudinal bars. 

α  :  angle of inclination of the concrete struts. 

cvT :  the torsional resistance contributed by concrete. 

       The third modification which was suggested by Collins and 

Mitchell [18] in 1980 assumes that the centerline of the shear flow 

coincides with the centroidal line of the equivalent compression stress 

block in the concrete struts. In determining the equivalent compression 

stress block, the concrete cover outside the centerline of a hoop bar is 
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assumed to be ineffective. Based on this assumption, the following 

expressions were proposed: 

 

                   αcot
2

1S

fAA
T

syto

n =                                                            (1.17) 

 

                   11
2

p
a

AA o

o −=                                                                  (1.18) 

 

where: 

oA : the area bounded by centerline of the shear flow. 

1p : the perimeter of the centerline of a stirrup. 

oa : the depth of the equivalent compression stress block given by: 

 

 

                   











+−−= )

tan

1
(tan

'85.0
11

2

1

1

1

1

α
α

cAf

pT

p

A
a n

o                             (1.19) 

 

 

       Although the expression for the equivalent rectangular 

compression stress block has been found using both equilibrium and 

compatibility conditions, Collins and Matchell's theory invokes the 

crude assumption of neglecting the concrete cover. Hsu and Mo [15] 

have pointed out that the depth )( oa calculated from equation (1.19) is 

too small because the standard cylinder compressive strength, f 'c, has 

been assumed for the strength of concrete struts. The concrete 

compressive strength can be substantially degraded by the presence of 

diagonal cracking. 

 
 

       Hsu and Mo in 1985 [15] found that Rausch’s theory overestimates 

the torsional strength. Therefore, Hsu and Mo proposed a new variable-

angle truss model using a reduced compressive strength for the 
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concrete struts. Based on equilibrium and compatibility, a set of eight 

equations were derived to predict the torsional strength and to 

determine the angle of twist and the strains in the steel and concrete at 

any stage of loading. These equations are solved by trail and error 

procedure. Hsu and Mo then proposed the design recommendations, 

such as design limitations, design consideration, minimum 

reinforcement, and design procedure [19]. 
 

 

1.5.2 Skew-Bending Theory: 

 

       This theory is much younger than Rauch’s theory. It has been 

widely used to determine the ultimate strength of reinforced concrete 

member under pure torsion and torsion plus bending and shear. It was 

first proposed by Lessig in 1958 [14]. The basic characteristic of the 

skew-bending theory is the assumption of a skew failure surface. The 

failure surface is initiated by a helical crack on three faces of a 

rectangular beam, while the ends of this helical crack are connected by 

a compression zone near the fourth face as shown in figure (1.4). A 

region close to the line connecting the crack ends is considered to be in 

compression and the steel in this region is neglected. All bars outside 

the compression zone are to be in tension and to be stressed to yield 

[20]. 

 

       Based on this failure surface, Lessig used two equilibrium 

equations: equilibrium of moment along the neutral axis x - x, and the 

equilibrium of forces along an axis perpendicular to the compression 

zone. By minimizing the moment equilibrium equation, it was found 

that a theoretical minimum torsional resistance occurs when the neutral 
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axis x-x is parallel to either a shorter face or a longer face. This results 

in two modes of failure. 

Mode 1 failure, in which the flexural dominates, has the compression 

zone near the top face of the beam. 

Mode 2 failure, in which the torsional moment and shear force 

dominates, the compression zone is along aside face as in figure (1.4). 

             

       Hsu [20] stated that Lessig’s theory considers both combined 

resistance of concrete and reinforcement and the redistribution of 

stresses, but despite the ability of Lessig’s theory to explain the general 

behavior of reinforced concrete beam loaded in pure torsion it 

overestimates torsional resistance, and it is dose not satisfactorily 

explain the following four observed phenomena :-  

 

1- The shorter leg of stirrups usually has only small tensile 

stresses at ultimate. Occasionally these legs are in 

compression. Lessig assumed that they yield in tension. 

2- Diagonal cracks on the wider face may turn at the corners 

and extend perpendicularly into short face. Therefore the 

cracks on the shorter face frequently form an angle much 

less than ( o45 ). 

3- The two surfaces on both sides of a crack at a corner of a 

rectangular beam are offset, indicating the presence of 

dowel action in the longitudinal corner bars. This dowel 

action was confirmed by the bending stresses measured 

from diametrically opposite sides of a longitudinal corner 

bar. However, such dowel action was not considered in the 

Lessig theory. 
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4- At ultimate torque, the cracks at the center and on the 

shorter faces are wider than those at the center of the wider 

faces. This indicates that the free body must rotate about an 

axis other than the neutral axis assumed by Lessig. 

       To overcome these discrepancies Hsu in 1968 [20] (figure (1.5)) 

proposed the failure surface to be a plane perpendicular to the wider 

face and inclined at ( o45 ) to the axis of the beam. The only difference 

between this proposed failure surface and that of Lessig in figure (1.4) 

is that the proposed surface intersects the shorter faces of the cross 

section by lines at 090  to the axis of the beam, instead of about o45  as 

assumed by Lessig. 

 

       This proposed failure surface does not intersect the shorter legs of 

the stirrups; thus it omits entirely any torsional resistance contributed 

by the stirrup forces of the shorter legs. Consequently, this failure 

surface tends to give a conservative ultimate torque, the theoretical 

minimum with respect to the angle between intersection lines on the 

shorter faces and the beam axis [20]. 

      Based on this failure surface Hsu derived this equation to calculate 

ultimate torque: 

 

                   
1

11

S

fAyx
TT

syt

tcu α+=                                                         (1.20) 

 

where:- 

uT : the ultimate torque of reinforced concrete rectangular member. 

Tc : the torsional resistance contributed by concrete. 

tα : a coefficient given by: 
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m :  the ratio of volume of longitudinal bars to volume of stirrups. 

       An experimental study by Hsu [21] revealed that, for the same 

overall dimension and reinforcement, the failure torque of solid and 

hollow rectangular beams are equal. 

 

       Therefore, the term Tc  can only be attributed to the contribution of 

shear resistance of the diagonal concrete struts [21]. 

 

       The coefficient tα  used in Hsu's equation is considerable less than 

Rausch's coefficient (2.0). Tests by Hsu [21] showed that Rausch's 

equation is unconservative.  

 

       The skew bending mechanism of the torsional failure was 

investigated by Collins, et al [22]; they had developed a theory based 

on the analysis of four idealized failure modes of rectangular beams as 

shown in figure (1.6), to predict the strength of web reinforced beams 

loaded in combined shear, bending, and torsion. The failure surface is 

assumed to be bounded on three sides and on the fourth side by a 

compression zone connecting the ends of spiral crack. 

 

       Mode 1: failure surface, where the beam subjected to bending plus 

torsion, is defined as failure surface where the compression zone is at 

the tope face.  

       Mode 2: when the beam is subjected to low shear and high torsion, 

the failure surface is defined as failure surface where the compression 

zone forms adjacent to one of the vertical sides of the beam where the 
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shear and torsional stresses are subtractive, while cracking starts on the 

other vertical side where the shear and torsional stresses are additive.  

       Mode 3: in the beams with less top reinforcement than bottom 

reinforcement, the compression zone could form adjacent to the bottom 

face in this mode.  

        Mode 4: failure surface is defined as one where the compression 

zone forms to adjacent the top corner face, when the beam is subjected 

to high shear and low torsion. 

 

1.6 Combined Bending and Torsion in Concrete Beams 

 

       Beams are rarely subjected to pure torsion, and then it is more 

practical to study beams under the combined effect of bending and 

torsion. 

       Using a similar skew bending failure plane shown in figure (1.7) 

where the beam is subjected to an additional bending moment (M). The 

equilibrium of the internal and external moments about the assumed 

failure plane, using the reduced value for the concrete tensile bending 

stress thus [2]: 

 

                   )cos/85.0(
6

.
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TM =+                                 (1.21) 

from which                                    
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where: 
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Then, 
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       To find the minimum cracking torque and angle of inclination )(β , 

equation (1.23) is to be differentiated and equaled to zero [9]. 
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For beams with     1=ψ , then o5.22=β  

                              2=ψ , then o3.13=β  

       When comparing equation (1.23) with equation (1.12) it is clearly 

noticed that the term 








+ ββψβ sincos.(cos2

1
can be considered as a 

modifying factor to include the effect of bending moment. It is also 

noticed that if the value of )(β is )45( o , then the corresponding value 

of )(ψ is zero. In other words, such indication is only expected in the 

pure torsion condition. 

 

       The above expressions define the minimum cracking torque in 

plain concrete section, while the cracking torque values for reinforced 

concrete sections are somewhat higher. This difference is overcome by 

applying certain modifying factors to the above equations. Hsu [23] 

proposed the factor )04.01( tρ+ to include the effect of reinforcement, 

accordingly: 

 

                   utcr TT )04.01( ρ+=                                                             (1.25) 
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where; )( tρ is the ratio of the total volume of reinforcement including 

longitudinal and transverse steel to the volume of concrete, expressed 

as a percent. 

 

1.7 Design for Torsion in ACI-318-Code 

 

       Until the late 1960, the development of recommended design 

process for reinforced concrete beams subjected to torsion in addition 

to bending and shear was very slow. The first recommendations by the 

ACI-Code in 1963 [24] were when it stated that torsional stress should 

be considered in the design but gave no provisions for allowable 

stresses in indeterminate structure. The first guide to designers became 

available in 1969 [25]. The ACI-Committee-438 recommended that 

torsion should be neglected if the ultimate shear stress due to torsion 

was less than ( )cf ′11.0 . This stress corresponding to about 25% of 

pure torsional strength of a member without web reinforcement. While 

for section with a shear stress greater than ( )cf ′11.0  the contribution 

of concrete for each of torsional and shear stresses was given by: 

( )2
31 uu

c
ca

v τ

τ
τ

+
=         and        

( )2
31 uu

c
ca

v

v
v

τ+
=  

where:- 

caτ   = the shear stress due to torsion, carried by concrete when the 

member is subjected to torsion only.  

cav   = the shear stress due to flexural shear, carried by concrete, when 

the member is not subjected to torsion.  

uτ   = ultimate shear stress due to torsion. 

uv   = ultimate shear stress due to flexural shear. 
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       Any additional shear stresses shall be resisted by stirrups of closed 

types since diagonal cracks due to torsion should appear on all side of 

the section. In additional further longitudinal steel reinforcement equal 

in volume to that of closed stirrup was to be distributed around the 

beam.  

 

       The ACI-Code of 1971 [26] adopted the recommendation made by 

ACI-Committee-438 and gave the value for the ultimate torsional 

shearing stress as 







=

2

3

bh

Tu
uτ  which can be applied only if the 

torsional moment  ( )Tu  is known .  

 

       The various version of the ACI-318 Code [27] used the skew 

bending theory for the design of beams under torsion and the ultimate 

strength of members subjected to torsion may be calculated by equation 

below: 

                   )
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       The new ACI-Code-318 [28] criteria adopted the space truss 

analogy. According to this, beam subjected torsion is idealized as a 

thin-walled tube with the concrete core in a solid beam neglected as 

shown in figure (1.8). Once the reinforced concrete beam has cracked 

in torsion, its torsional resistance is provided primarily by the closed 

stirrups and longitudinal bars located near the surface of the member. 

In a thin-walled tube analogy the resistance is assumed to be provided 
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by the outer skin of the cross-section roughly centered on the closed 

stirrups. Both hollow and solid sections are idealized as thin-walled 

tubes both before and after cracking.  

       In a closed thin-walled tube, the product of the shear stress τ  and 

the wall thickness t at any point in the perimeter is known as the shear 

flow, τtq = . The shear flow q due to torsion acts as shown in figure 

(1.8) and is constant at all points around the perimeter of the tube. The 

path along which it acts extends around the tube at midthickness of the 

walls of the tube. At any point along the perimeter of the tube the shear 

stress due to torsion is: 

                   
tA

T

02
=τ                                                                           (1.27) 

where: 

0A : the gross area enclosed by the shear flow bath 

t : the thickness of the wall at the point where τ  is being calculated. 

       The shear flow path follows the midthickness of the walls of the 

tube and 0A  is the area enclosed by the path of the shear flow. For a 

hollow member with continuous walls, 0A  includes the area of the hole. 

 

       It can be noted that the former elliptical interaction diagram 

between shear and torsion which was used in the former version of the 

ACI-codes [29] has been eliminated. 

      

       The ultimate torsional strength of member according to the ACI 

(318-05) is given as: 

                   
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where: 
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75.0=φ  

hA0 : gross area bounded by centerline of outermost closed stirrups. 

 

1.8 Artificial Neural Networks 

 

       In recent years, there has being a growing interest in a class of 

computing devices that operate in a manner analogous to that of 

biological nervous system. These devices, known as artificial neural 

networks (ANN), or connectionist systems. Artificial neural networks 

are finding applications in almost all branches of science and 

engineering. Recent development of neural networks offers powerful 

tool to be used in applications of civil engineering. 

 

1.9 Aim of Study: 

 

       The main objective of the present investigation is to use the 

Artificial Intelligence (AI) known Artificial Neural Network (ANN) as 

an alternative to mathematical modeling or experimental testing. The 

study represents an attempt to use ANN for quick prediction of ultimate 

strength of rectangular reinforced concrete beams subjected to pure 

torsion and to combined torsion with bending. 

 

       After building the proper network, the effect of various parameters 

on the behaviour of beams is to be investigated and discussed. 

 

1.10 Layout of the Thesis: 

 

       This thesis is divided into five chapters. Chapter oneChapter oneChapter oneChapter one presents a general 

introduction that deals with the behaviour of reinforced concrete members 

subjected to torsion and also describes the objectives and scope of the 

work. 
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       Chapter TwoChapter TwoChapter TwoChapter Two presents a review of the experimental studies on 

reinforced concrete members subjected to pure torsion, and in 

combination with torsion and bending. A review of application of 

artificial neural network in civil and structural engineering is also 

given. 

 

       Chapter ThreeChapter ThreeChapter ThreeChapter Three, deals with the principle of artificial neural network, 

neuron model and architectures, training of the network, back- 

propagation and back prorogation algorithm. 

 

       Chapter FourChapter FourChapter FourChapter Four, describes the development of two artificial neural 

networks, first for beams subjected to pure torsion and second for 

beams subjected to combined torsion and bending. Discussion of the 

results and observations for each network models is provided.  

 

       Finally, chapter chapter chapter chapter fivefivefivefive summarizes the conclusions drawn from this 

research. Also, suggestions for future works are given. 
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Fig. (1.1) Skewed Bending Failure of Rectangular Beam Subjected to 

Pure Torsion 

 

 
Fig. (1.2) Components of Applied Torque on the Failure Surface 
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Figure (1.4) Failure Surface of Free Body According to Lessig’s 

Theory 
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Fig. (1.7) Assumed Failure Surface in Combined Bending and Torsion  
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Figure (1.6) Idealized Failure Modes for Web Reinforced Concrete 

Beams 
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Chapter TwoChapter TwoChapter TwoChapter Two    

Literature Review 

 

2.1 Torsional Behaviour of Reinforced Concrete: 

 

       Ernst 1957 [30] tested eighteen reinforced concrete rectangular 

beams under pure torsion. The principal object of this investigation 

was to determine the quantity of the transverse steel required to 

develop the yield point in longitudinal bars placed in the corner of the 

rectangular beams. The eighteen beams were classified into three 

groups, each of which consists of six beams. The diameters of 

longitudinal bars in the four corners of cross section were varied in 

these groups. The used bars were of (10, 12, and 16 mm) diameter. 

Transverse ties (6 mm diameter) were spaced at (711, 355.6, and 

101.6) mm, and also in pairs at 101.6 mm for each groups. One beam 

in each group was without transverse reinforcement, and the normal 

compressed concrete strength of all groups was (27.6 MPa). Results 

indicated that yield strains can be developed in longitudinal corner bar 

as well as in transverse ties, resulting in either a diagonal tension type 

of fracture or hybrid failure in transverse shear and diagonal tension. 

Initial cracking corresponded to the failure of unreinforced concrete in 

torsion for all beams was at an average unit shearing stress of (2.15 

MPa). Evidence also developed supporting the concept of a transition 

from elastic to plastic state of stress as the ratio of transverse to 

longitudinal steel approaches unity. 
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       Gesund and Boston 1964 [31] tested ten rectangular concrete 

beams under combined bending moment and torsional loads. Eight 

beams were (200*200 mm) square and two beams were (150*300 

mm). The beams contained only longitudinal reinforcement. The 

concrete strength, amount of reinforcement, and moment-torque ratios 

were varied. It was found that if there is no transverse reinforcement, 

the dowel action of the longitudinal reinforcement is of paramount 

importance in resisting the torsion. 

 

       Gesund, Schuette, Buchannan, and Gray 1964 [32] tested to 

destruction twelve rectangular concrete beams under combined 

bending and torsional loads. The beams contained both longitudinal 

and transverse reinforcement. The concrete strength, amount and 

spacing of reinforcement and moment-to-torque ratios were varied. 

The main conclusion drawn from this investigation was that 

transverse reinforcement will transform torque on a reinforced 

concrete beam into additional bending. 

 

       Ramakrishnan and Vijayarangan 1965 [33] tested eighteen 

reinforced concrete beams subjected to combined bending and 

torsion. The beams were divided into four series, each series having 

the size and spacing of reinforcement as variables. The purpose of the 

experiment was to study the influence of web reinforcement on the 

ultimate torsional resistance of beams, modes and characteristics of 

failure in beams, and the torque-twist relationship. Results showed 

that inclined stirrups increases the strength of the beam considerably 

more than vertical stirrups. 
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       Hsu 1968 [9] tested ten plain concrete members of rectangular 

cross-section subjected to pure torsion. Such members were found to 

fail by bending about an axis parallel to the wider face and inclined at 

45 deg. to the longitudinal axis of the member. Based on this failure 

mechanism, new equations were proposed for the ultimate torque.  

 

       Hsu 1968 [21] studied the behaviour of rectangular concrete 

beams reinforced with both longitudinal and stirrups under pure 

torsion. Fifty-three beams were tested, involving eight major 

variables. These variables were amount of reinforcement, solid 

section versus hollow beams, ratio of volume of longitudinal bars to 

volume of stirrups, concrete strength, scale effects, depth to width 

ratio of cross-section, spacing of longitudinal bars, and spacing of 

stirrups. The behaviour before and after cracking was extensively 

studied. Provisions of different codes and theories for reinforced 

concrete design in torsion were evaluated. Design equations for 

ultimate torque, stiffness before and after cracking, angle of twist at 

ultimate torque, and at cracking torque and other provisions were 

given. 

 

       Klus 1968 [34] tested ten reinforced concrete rectangular beams 

with normal percentage of both longitudinal and transverse steel,  and 

interaction of their torsional and flexural shear capacities was 

developed. The tests were pertaining to only one cross section, one 

reinforcement arrangement, one concrete strength, and one physical 

loading condition. The first tests were in pure torsion and in pure 

flexural shear to provide the ultimate capacities in the two failure 

modes. The subsequent tests were in combination of torsion and 
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shear. The tests investigated the complete range of interaction 

between torsion and flexural shear in the reinforced concrete 

rectangular beams with stirrups, and the significance of them appears 

from the fact that the effect of variation of stirrup percentage on the 

interaction curve has no experimental support. It was found that based 

on the theory which states that the unreinforced section fails shortly 

after the first crack, the interaction curve would approach the straight-

line concept. Using this as the base, it was suggested that greater 

percentage of transverse steel would increase the curvature of the 

interaction, that was assuming that adequate longitudinal steel was 

available. 

 

       McMullen and Warwaruk 1969 [35] tested eighteen rectangular 

reinforced concrete beams to failure under various combinations of 

bending and torsion. The principal variables were the ratio of twisting 

moment to bending moment and the reinforcement configuration. 

Three different modes of failure were absorbed. Idealized failure 

surfaces were defined and expressions for the strength of the beams 

were derived using an equilibrium approach. Test results showed that 

a beam provided with less top longitudinal reinforcement than bottom 

and subjected to either pure torsion or torsion in combination with a 

small bending moment deflects upwards after cracking of the concrete 

has occurred and exhibits an upward deflection at failure. This type of 

beams exhibited a greater torsional strength when it is subjected to 

pure torsion. Results also indicated that the presence of flexure does 

not increase the torsional strength of a beam that is provided with 

equal top and bottom reinforcement. 
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       Lampert and Thurlimann 1969 [36] tested seven reinforced 

concrete beams in combined bending and torsional loads. The beams 

were (508*508 mm) square in size. All beams except one were of 

hollow sections and contained longitudinal and transverse 

reinforcement. The main variable was the ratio of torsion to bending 

for a given arrangement of reinforcement. Tests confirmed the 

validity of the space truss failure model in combined torsion and 

bending. Inclination of the diagonals depends upon the ratio of 

transverse to longitudinal steel and on the ratio of torsion to bending. 

 

         

       McMullen and Rangan 1978 [37] tested ten beams in pure 

torsion. The five beams of series A were (254 * 254 mm) square and 

the other five beams of series B were (178 * 356 mm). The principal 

variables being aspect ratio and amount of reinforcement. Results of 

tests showed that, other things beings constant, the strength decreases 

with an increase in aspect ratio. Equations were derived for ultimate 

torque and minimum reinforcement. Correlation between predicted 

and experimental strength was good, not only for the ten beams tested 

but for sixty four others available in the literature. 

 

       Ewida and McMullen 1982[38] tested twelve reinforced concrete 

rectangular beams in different combination of shear and torsion. The 

beams were divided into three categories according to the 

reinforcement provided. They were under-reinforcement, partially 

over-reinforcement, and completely over-reinforcement. Both 

longitudinal reinforcement and stirrups were provided in all beams, 

and the beams were instrumented to enable measurement of angle of 

twist, reinforcement strain and concrete strain. Vertical and torsional 
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loads were applied simultaneously and monotonically in 

predetermined increments, and the size of each increment was 

reduced in the latter stages of the test. The ratio between the vertical 

and the torsional loads was kept constant during test. The results 

obtained using the analysis presented in this study was compared to 

the test results and to the results of beam that were tested by other 

investigators. The analysis developed was found to satisfactorily 

predict the deformation at all levels of load and the length of beams 

under combined torsion and shear. 

  

       Abas 1985 [39] tested twelve reinforced concrete rectangular 

beams subjected to torsion, bending, and shear. All beams have a 

same nominal cross section and quantity of longitudinal of 

reinforcement. The effect of the amount of stirrups, torque-moment 

ratio in combined bending and torsion, and torque-to-shear in 

combined bending, shear, and torsion were examined. Using 

optimization approach, simple non-dimensional interaction equation 

representing, non-dimensional interaction surface and curves were 

developed. These equations were presented as a suggested approach 

for designing reinforced concrete beams subjected to combined 

loading. These theoretical approaches gave a reasonable prediction for 

test results, obtained from the available literature, of ultimate strength 

of reinforced concrete beams under combined loading.  

        

       Rasmussen and Baker 1995 [40] tested series of reinforced 

normal concrete (NSC) and high-strength concrete (HSC) beams 

subjected to pure torsion. The test series consisted of twelve totally 

over-reinforced beams, with the concrete strength as the only variable. 
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Therefore, the cross sectional dimensions, and strength and quantity 

of the reinforcement, were constant for all beams. The concrete 

strength was varied between (36 to 110 MPa). The test series has 

shown the advantage of using (HSC). In addition to higher cracking 

load and higher ultimate torsional capacity, using of (HSC) for a 

given torque resulted in higher torsional stiffness, lower crack width, 

and lower reinforcement stresses compared to (NSC).  

 

       Rahal and Collins 1995 [41] investigated the effect of increasing 

thickness of the concrete cover on behavior of reinforced concrete 

section subjected to combined shear and torsion. Seven large 

reinforced concrete beams with two different thicknesses of concrete 

cover were tested at different shear-to-torque ratios, and relatively 

low bending. The testing program, experimental results, and     

interaction diagrams were presented. It was shown that increasing 

thickness of the concrete cover can substantially increase the strength 

of sections subjected to pure shear, or combined shear and torsion, but 

that it resulted in an undesirable increase in crack spacing. It was also 

shown that the sections subjected to combined shear and torsion 

experience lateral curvature. 

 

       Panchacharam and Belarbi 2002 [42] investigated the behaviour 

and performance of reinforced concrete members strengthened with 

externally bonded Glass Fiber Reinforced Polymer (GFRP) sheets 

subjected to pure torsion. The variables considered in the 

experimental study included the fiber orientation, the number of beam 

faces strengthened (three or four), the effect of number of FRP plies 

used, and the influence of anchors in U-wrapped test beams. 
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Experimental results revealed that externally bonded GFRP sheets can 

significantly increase both the cracking and ultimate torsional 

capacity of reinforced concrete members.  

 

       Chaisomphob, Kritsanawonghong, and Hansapinyo 2003 [43] 

investigated the capacity of rectangular reinforced concrete beams 

with stirrups subjected to combined bi-axial shear and torsion by 

using simple test method. The two main parameters in this study were 

eccentricity of the load which represents the magnitude of torsional 

moment, and tilted angle of specimens which represents the ratio of 

bi-axial shear. From the experimental results, it was found that the 

increase in the magnitude of torsion about 69 percent drastically 

decreases bi-axial shear capacity as much as 12 to 39 percent 

according to the ratio of bi-axial shears. The experimental results 

were compared with the capacities calculated by the available current 

design codes, ACI and JSCE, and it indicated that the current design 

codes give quite conservative values of ultimate capacity. 

 

       Abdalkarim 2004 [44] investigated the influence of section aspect 

ratio of fifty-four rectangular beam on the efficiency of ACI design 

codes. 54 beams of rectangular cross section that failed under pure 

torsion were considered in this work. These have been taken from 

literature. The rise of aspect ratio was found to have no influence on 

the factor of safety in the ACI-1999 method. In contrast, the aspect 

ratio has a significant effect in the ACI-1989 in such a way that the 

factor of safety decreases as the aspect ratio rises. However, the two 

methods become close in prediction as the aspect ratio approach 2. In 

addition, thirty –one further beams were investigated theoretically by 



Chapter Two                                                                                      Literature Review  

 

 37

the two design methods: ACI-89 code (relying on the skew bending 

theory) and ACI-99 code (relying on the space truss analogy). It was 

found, in 31 theoretically tested beams, that at an aspect ratio of 1.67 

the two methods gave similar predictions for torsional strength. At 

values of aspect ratio less than 1.67 the ACI-99 method is less 

conservative in requiring less reinforcement than the ACI-89 method. 

The opposite occurs with aspect ratio values greater than 1.67. 

 

       Chiu, Fang, Young, and Shiaw 2007 [45] investigated the 

behaviour of thirteen high-strength concrete (HSC) and normal-

strength concrete (NSC) full-size beams with relatively low amount of 

torsional reinforcement. The crack patterns, the maximum crack 

widths at service load level, torsional strength, torsional ductility, and 

post-cracking reserve strength results of the experiments were 

discussed. The main parameters included the volumetric ratio of 

torsional reinforcement, the compressive strength of the concrete, and 

the aspect ratio of the cross section. It was found that the adequacy of 

the post-cracking reserve strength of the specimens with relatively 

low amounts of torsional reinforcement was primarily related to the 

ratio of the transverse to the longitudinal reinforcement factors in 

addition to the total amounts of torsional reinforcement. The 

minimum requirements of torsional reinforcement for NSC beams 

proposed by other researchers were also discussed on the base of test 

results of both HSC and NSC beams. 

 

       Ameli, Ranagh, and Dux 2007 [46] investigated behaviour of 

reinforced concrete beams strengthened with fiber reinforced plastics 

subjected to pure torsion. Twelve rectangular reinforced concrete 
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beams with cross-section (150*350 mm) were cast in two batches of 

six beams each. Beams of first batch were strengthened by carbon 

fiber (CFRP) whereas beams of second batch were strengthened by 

glass fiber (GFRP). The experimental results shown that CFRP 

materials increases the ultimate torsional strength more than GFRP. It 

was also found that the pattern of concrete cracks in the strengthened 

beams have a wider spread along the length compared to individual 

cracks formed in beams without strengthening. 

 

2.2 General Application of Neural Networks in Structural 

Engineering 

  

       Most civil engineering systems are complex and are subjected to 

a wide variety of internal and external forces. Analyzing such systems 

is a difficult task and traditional tools that accurately predict and 

model the behaviour of such systems are limited in scope. As a result 

civil engineers have, in recent years, found increasing interest in 

neural network as an aid for both design and analysis. The first 

prototype application of neural networks as a tool for structural design 

was proposed by Vanluchene and Sun in 1990 [47]. The study 

demonstrated, through the use of three examples (a pattern 

recognition problem, a simple concrete beam design and analysis of a 

rectangular steel plate). 

 

       Hajela and Berke 1991 [48] used Backpropagation Neural 

Network (BPNN) to represent the force-displacement relationship in 

static structural analysis. Such models provided computational 

efficient capabilities for reanalysis and appeared to be well suited for 
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application in numerical optimum design. 

       Hajela and Berke 1992 [49] provides a broad overview of neural 

network computing applications in problems of structural analysis and 

design. Neural networks which require a supervised training approach 

were discussed, with special emphasis on their application in 

modeling functional relationships between some input and output 

quantities. 

       Szewezyk and Hajele 1994 [50] investigated the detection of 

damage in structural systems. It was formulated as an inverse problem 

and solved by neural network. Damage was modeled through 

reduction in the stiffness of structural elements, and manifests itself in 

the form of variations in observable static displacements under 

prescribed loads. A modified counter propagation neural network was 

used to develop the inverse mapping between a vector of the stiffness 

of individual structural elements and the vector of the global static 

displacements under testing loads. It was shown that the network 

functions as an associative memory device capable of static factory 

diagnostics even in the presence of noisy or incomplete 

measurements. Numerical examples involving frame and structures 

showed that the network approximations are fully acceptable from a 

practical standpoint. 

 

       Gagarin, Flood and Albrecht 1994 [51] described the application 

of neural networks to the problem of determining truck attributes 

(such as velocity, axle spacing and axle loads) purely from strain-

response reading taken from the structure over which the truck is 
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traveling. The approach was designed to remove both the need for 

tape switches on the deck of the bridge to obtain such data and 

associated problems so as to provide a convenient and viable means 

of collecting bridge loading statistics. The application and 

performance of a radial-Gaussian-based networking system with its 

own training algorithm to the truck attribute determination problem 

was detailed. The chosen approach was a two layered modular 

network structure. This solution provided a fast, accurate, and 

convenient means of determining truck attributes. 

 

            Zeng 1995 [52] mapped a structural analysis problem onto 

continuous Hopfield neural network by means of the connection 

weights represented by the coefficient of the stiffness matrix and the 

nodal loads of bar, beam and triangular elements as the inputs to the 

network. The case study was carried out for 4-bar truss, a 7-bar truss, 

a 15-bar truss, a beam structure and a planar continuous structure. The 

analysis results converged to a stable state. 

 

       Mukherjee and Anmala 1996 [53] mapped the relationship 

between the slenderness ration, the modulus of elasticity and the 

buckling load for columns. As the input was taken directly from the 

experimental results, factors affecting the buckling load of columns 

are automatically incorporated in the model to a great extent. 

 

       Tully 1997 [54]developed four neural network to predict the 

following aspects of the overall behavior of  a concrete slab load 

deflection behaviour, crack pattern at failure, concrete strain 

distribution, and reinforcing steel strain distribution. Results from 

experimental tests on thirty-four full scale slabs were utilized to 
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develop these four models, incorporating all of the parameters that 

govern their behaviour. The rationale behind and the details involved 

were explained for the setup, computer implementation and selection 

of each optimum neural network model. Results showed that the 

neural network technique can be used as a satisfactory alternative to 

experimental testing or detailed calculations to provide speedy 

predictions of all four aspects of the structural behavior of concrete 

slabs. A comprehensive spreadsheet tool was next created to 

incorporate all four the optimum neural networks. 

 

       Hajela 1998 [55] applied the binary Adaptive Resonance Theory 

(ART) neural network in the conceptual design of a structural system. 

Two distinct processes were considered. The first encompasses a class 

of structures where the structural layout was generally known and the 

load and support conditions were allowed to vary. The second class of 

problems was one where the loads and support points were assumed 

given, and the object of the design was to generate a near-optimal 

structural topology. The problem may be best understood as the use of 

ART networks to provide a memory capacity or knowledge base for 

design, from which information can be recovered upon presentation 

of relevant features. 

 

       Lu 2000 [56] used a two-layered backpropagation neural network 

to predict the local and distortional buckling behavior of cold-formed 

steel compression members. The topology of the neural network for 

the C-section without considering the effect of thickness was 

presented. Thus, the effects of the parameters, such as the number of 

nodes in the input layer, output layer and hidden layer, the pre-process 
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of the training patterns and the selection of the learning rate and 

momentum rate, on the behavior of neural network have been 

investigated. Further, the effect of thickness has been included in 

predicting the elastic local and distortional buckling behavior of cold-

formed steel C-sections. Due to the slower convergence of the back- 

propagation algorithm, the faster algorithm called "resilient 

propagation algorithm" has been used to improve the performance of 

the neural network and the training. The generalization of the neural 

network was tested by the patterns not included in the training 

patterns. With this model, the elastic local and distortional behavior 

can be predicted by taking the whole section into account instead of 

separating the section into different parts. Once the neural network 

has been trained, the local and distortional buckling stress is obtained 

very easily and efficiently. 

 

       Bohigas 2002 [57] developed two artificial neural networks to 

predict the shear strength of reinforced concrete members based on 

database available from experimental tests. First network model was 

for members without stirrups reinforcement and second was for 

members contain both longitudinal reinforcement and stirrups. Based 

on the artificial neural network results, a parametric analysis was 

carried out to study the influence of each parameter affecting the 

failure shear strength. 

  

       Yildiz 2003 [58] used ANN to obtain a solution to assess the total 

lateral thrust and its point of application on non-yielding wall due to a 

strip load. Data used to trained neural network was obtained from the 

finite element analysis. A two layered back propagation type neural 
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network was used. An artificial neural network solution was obtained, 

as a function of six parameters including the shear strength 

parameters of soil (cohesion and angle of friction). The effects of each 

parameter on lateral thrust and point of application were summarized 

and the results were compared with the conventional linear elastic 

solution. 

 

              Hadi 2003 [59] discussed the application of neural network 

in concrete structures. Two applications of neural network were used 

and backpropagation network was chosen for the proposed network. 

Beam structures were selected in this study. The first application was 

reinforced concrete beam design and cost optimization. The beam 

design aimed at the estimation of the best dimensions, depth and 

width of its cross-section, and the cross-sectional area of 

reinforcement. The second application was the optimum design of 

fiber reinforced concrete beams. It was found that neural networks 

reduced the overall time required for implementations by a significant 

amount when compared with conventional methods. 

 

       Lima, Vellasco, Andrade, and Silva 2005[60] proposed the use of 

ANN to predict the flexural resistance and initial stiffness of beam-to-

column steel joints using the back propagation supervised learning 

algorithm. Three types of steel beam-to-column joint were 

investigated: welded, endplate and polted with top, seat and double 

web angles, respectively. The neural networks results were proved to 

be consistent with experimental and design code reference values. 

 

       Hola and Schabowics 2005 [61] investigated the neural network 

identification of compressive strength of concrete on non-
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destructively determined parameters. Basic information on artificial 

neural networks and the types of ANN most suitable for the analysis 

of experimental results were given. A set of experimental data for the 

training and testing of neural network was described. The data set 

covers a concrete compressive strength ranged from 24 to 105 MPa. 

The results showed that the artificial neural networks are highly 

suitable for assessing the compressive strength of concrete. 

 

            

2.3 Summary 

        

       This chapter has reviewed the previous work related to neural 

networks in structural engineering. While it is apparent that a large 

amount and variety of applications of neural networks exists in this 

field, there is no application concerning the use of this technique to 

determine the ultimate strength of reinforced concrete members 

subjected to torsion. However, all of the previous works described 

provide significant insight into the development and modeling of a 

neural network for current investigation. 
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Neural Networks Computation 
 

 

3.1 –Introduction 

 

       Artificial neural networks (ANN) are computational networks that 

attempt to simulate the networks of nerve cells of the human or animal 

central nervous system [62]. They are collections of simple, highly 

connected processing elements that respond (or learn) according to 

sets of inputs. As such they are capable of realizing a greater variety 

of non-linear relationships of considerable complexity between input 

and output data sets [62].  

 

       Artificial neural networks can be trained to perform a particular 

function by adjusting the interconnections (weights) between neurons. 

Neural networks are trained to perform complex functions in different 

fields of application such as pattern recognition, classification, 

identification, speech, prediction, and control systems [58]. 

        

       Engineers have used various tools to perform casual modeling 

(mapping from cause to effect for estimation and prediction) and 

inverse mapping (mapping from effect to cause) which include 

statistics, regression, probability, optimization, and others. The nature 

of neural network is to map from the input patterns to output patterns. 

Therefore an artificial neural network is another tool for engineers to 

perform both causal modeling and inverse mapping [58]. 
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3.2-The Human Neural Network vs. Artificial Neural Networks 

 

       Although artificial neural network try to simulate some 

characteristics of human nervous system, their real behaviour is quite 

different. 

 

       The human brain consists of a large number of highly connected 

element called "neurons". These neurons have three principal 

components: the dendrites, cell-body, and axon as can be seen in 

figure (3.1-a) [63]. The dendrites are tree-like respective networks of 

nerve fibers that carry electrical signals into cell-body. The cell- body 

effectively sums and thresholds these incoming signals. The axon is a 

single long fiber that carries the signal from cell-body out to other 

neurons. The point of contact between an axon of one cell and a 

dendrite of another cell is called synapse. It is the arrangement of 

neurons and the strengths of the individual synapses, determined by a 

complex chemical process that establishes the function of the neural 

network [63].  

 

        An impulse, in the form of an electric signal, travels within the 

dendrites and thought the cell-body towards the pre-synaptic 

membrane of the synapse. Upon arrival at the membrane, a 

neurotransmitter (chemical) is released from the vesicles in quantities 

proportional to the strength of the incoming signal.  

   

      The neurotransmitter diffuses within the synaptic gap towards the 

post-synaptic membrane, and eventually into the dendrites of 

neighboring neurons, thus forcing them (depending on the threshold of 

the receiving neuron) to generate a new electrical signal as shown in 

figure (3.1-b) [64]. 
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Figure (3.1) a-Schematic biological neuron. b- Mechanism of signal transfer 

between two biological neurons. 

 

       The generated signal passes through the second neuron(s) in a 

manner identical to that just described. The resulting inputs can be 

either excitatory or inhibitory. If the impulse is strengthened the 

synapse is excitory; else it is inhibitory [65]. 

 

       The ability of the nervous system to adjust signals is a mechanism 

of learning, and the rate of firing an output (response) is altered by the 

activity in the nervous system. 
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       Simply, a single neuron processes information by receiving 

signals from its dendrites, and produces an output signal which is then 

transmitted to other neurons. 

       

       The brain learns online, based on experience, and normally 

without supervision. During this process, the strength of connections 

between neurons changes, and some connections added or deleted. 

Learning in artificial neural networks are based on adjusting the 

weights of previously established internal connections to satisfactorily 

reproduce a training pattern of data. The learning process is generally 

controlled by the computer user [57]. ANN does not approach the 

complexity of the brain. There are two key similarities between 

biological and artificial neural network. First, the building blocks of 

both networks are simple computational devices that are highly 

interconnected. Second, the connections between neurons determine 

the function of the network [63]. 

 

3.3-Architecture of Neural Network 

 

       The commonest type of artificial neural network consists of three 

groups or layers, of units: input layer units connected to a layer of 

hidden units which is connected to a layer of output units as shown in 

figure (3.2). The function of input layer is to receive input or 

information from the outside world, and to pass this information to the 

network for processing. These may be either sensory input or signals 

from other systems outside the one being modeled. 

 

       The function of hidden layer is to extract and remember useful 

feature and sub-feature from the input patterns to predict the outcome 
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of the network (values of output layer). This layer link input layer to 

the output layer. 

 

       The function of the output layer is to receive the processed 

information from the neural network and sends the response to an 

external receptor. 

 

 

 

 

 

 

 

 

       In figure (3.2) the bias acts on a neuron like an offset. The 

function of the bias is to provide a threshold for the activation of 

neurons.  The bias input is connected to each of the hidden and output 

neurons in a network [66]. 

In engineering problems the numbers of input and output 

parameters are generally determined by design requirements. The 

number of input parameters determines the spatial dimensions of 

network and the number of output parameters determines the number 

of solution surfaces generated by network [67, 68]. The number of 

Output 

layer 

Hidden  

layer 

Input  

layer Bias  

Fig. (3.2) Structure of a typical multilayer neural network 
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hidden layers and neurons in the hidden layer(s) depends on the 

application of the network [69]. 

The units in a network are connected by a set of connections, or 

weights ( ijw ), shown in figure (3.3). Each weight has a real value, 

typically ranged from (-∞ to +∞), although some times the range is 

limited. The value or "strength" of weight describes how much 

influence a unit has on its neighbor, a positive weight causes one unit 

to excite another, while a negative weight causes one unit to inhibit it. 

3.4- Elements of Neural Networks 

The basic component of a neural network is the neuron, also 

called “node”, or the “processing element, PE”. Nodes contain the 

mathematical processing elements which govern the operation of a 

neural network. Figure (3.3) illustrates a single node of a neural 

network, in which it can be distinguished: 

(a) Inputs and Outputs 

Inputs are represented by a1, a2, …, and an, and the output by bj. 

Just as there are many inputs to a neuron, there should be many input 

signals to the processing element (PE). The PE manipulates these 

inputs to give a single output signal. 

(b) Weighting Factors 

The values w1j, w2j, …, and wnj are weight factors associated with 

each input to the node. This is something like the varying synaptic 

strengths of biological neurons. Weights are adaptive coefficients 

within the network that determine the intensity of the input signal. 



Chapter three                                                                 Neural Networks Computation 

 51

 

 

 

 

     

 

    

 

    

 

 

       Every input (a1, a2, …, an) is multiplied by its corresponding 

weight factor (w1j, w2j, …, wnj), and the node uses this weighted input 

(w1j a1, w2j a2,  …, wnj an) to perform further calculations. If the weight 

factor is positive, then (wij ai) tends to excites the node. If the weight 

factor is negative, then (wij ai) inhibits the node. 

       In the initial setup of a neural network, weight factors may be 

chosen according to a specified statistical distribution. Then these 

weight factors are adjusted in the development of the network or 

“learning” process. 

(c) Internal Threshold 

The other input to the node is the node’s internal threshold, Tj. 

This is a randomly chosen value that governs the “activation” or total 

input of the node through the following equation [66]. 

a2 

a1 

an wnj 

w2j 

w1j 

Tj 

Threshold 

Activation 

Function  

Summing  

Function  

uj 

Synaptic  

Weight   
Inputs    

f(xj)= sigmoid 

               sine 

               tanh 

bj 

Output    
Σ

Fig. (3.3) Single node anatomy 
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Total Activation = uj = ( )∑
=
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                                       (3.1) 

The total activation depends on the magnitude of the internal 

threshold Tj. If Tj is large or positive, the node has a high internal 

threshold, thus inhibiting node-firing. If Tj is zero or negative, the 

node has a low internal threshold, which excites node-firing [66]. If no 

internal threshold is specified, a zero value is assumed. 

(d) Transfer Functions 

The node’s output is determined by using a mathematical 

operation on the total activation of the node. This operation is called a 

transfer function.  The transfer function can transform the node’s 

activation in a linear or nonlinear manner [66]. Figure (3.4) shows 

several types of commonly used transfer functions. 

       The pure linear activation function is shown in figure (3.4-a).In 

the pure linear case, the function is simply f(x) =x .This function is not 

used very often because it is not very powerful: multiple layers of 

linear units can be collapsed into a single layer with the same 

functionality [70]. 

       Sigmoid functions on the other hand have the advantages of non- 

linearity, continuity, and differentiability, enabling a multi layered 

network to compute any arbitrary real-valued function. Multilayer 

networks often used sigmoid transfer function that generates outputs 

between 0 and 1 as the neurons net input goes from a negative to 

positive infinity (figure (3.4-b)). This can be described in the 

following equation:   
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       Alternatively, multilayer network may use the hyperbolic tangent 

transfer function shown in figure (3.4-c)that generates outputs 

between -1 and +1 as the neurons net input goes from negative to 

positive infinity as is described in the following equation 
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The hyperbolic tangent function is preferred over the sigmoid 

function for the following reasons [66]: 

a) A pure linear transfer 
function 

x
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y  

b) A sigmoid transfer 
function 

1.0  

0 

1.0 

-1.0  
 

x  

y  

x 

Figure (3.4) commonly used transfer function 

c) A hyperbolic tangent transfer function 
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1. The output varies from -1 to +1 for the hyperbolic tangent and                                    

only 0 to 1 for the sigmoid function. This means that the hyperbolic 

tangent function has a negative response for a negative input value 

and a positive response for a positive input value, while the 

sigmoid function always has a positive response. 

2. The slope of the hyperbolic tangent is much greater than the slope 

of the sigmoid function. This means that the hyperbolic tangent 

function is more sensitive to small changes in input 

        The output, bj, is found by performing one of these functions on 

the total of activation, xi. 

3.5 Topology of a Neural Network 

There are several general external arrangements for neural 

networks: single-input and single-output (SISO), multiple-input and 

single-output (MISO), and multiple-input and multiple-output 

(MIMO). The fourth arrangement, single-input and multiple-output 

(SIMO), is not generally used, because data for a single input are not 

sufficient to predict the behavior of several output variables. Any of 

these arrangements may have one or multiple hidden layers [71]. 

The most complex network arrangement is the MIMO network.  

In this type of network, input data for multiple variables are used to 

predict the values of multiple output variables. The MIMO network is 

particularly convenient for on-line applications (such as CNC machine 

and robot), as it can predict the values of several variables that may be 

of interest in the process with only a single pass of input data through 

the network. Figure (3.5) illustrates a MIMO network [71]. 
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Most neural networks contain one to three hidden layers [72]. 

The function of the hidden layer is to intervene between the external 

input and the network output. The feedforward network of figure (3.5) 

is formed by cascading a group of single layers; the output of one 

layer provides the input to the subsequent layer. Large and more 

complex networks generally offer greater computational capabilities. 

These multilayer networks have greater representational power than 

single-layer networks if nonlinearity is introduced. 

3.6-Data Selection of Neural Network 

       In order to ensure that the network has properly mapped input 

training data to the target output, it is essential that the set of patterns 

presented to the network is appropriately selected to cover a good 

sample of the training domain. A well trained network is one which is 

able to respond to any unseen pattern within an appropriate domain. 

At present neural networks are not good at extrapolating information 

outside the training domain [67]. 

Input layer Hidden layer Output layer 

Fig. (3.5) Example of a MIMO feedforward network with three 

inputs, three outputs, and one hidden layer with three 

nodes  



Chapter three                                                                 Neural Networks Computation 

 56

 

       The selection of an adequate number of training patterns is 

therefore, an extremely important issue. There are no acceptable 

generalized rules to determine the size of the training data for suitable 

training. Patterns chosen for training must cover upper and lower 

boundaries and a sufficient number of samples representing particular 

features over the entire training domain. Usually, data selection for 

neural network may be divided into two types: training set and testing 

set or validating set. The validating set of data should be contains 

approximately 15% of the total database [57]. The training phase 

needs to produce a neural network that is both stable and convergent. 

Therefore, selection what data to use for training a network is one of 

the most important steps in building a neural network model. 

 

3.6.1 Training the Network 

Training can be defined as the modification of the connection 

strength (weight) of the network by a specified learning rule to reach 

the desired solution. Training of the network required a set of data 

consists of input and output. The best “learning” possible, needs a 

large and robust set of historical input/output data. 

 

3.6.2-Learning Modes 

 

       There are a number of approaches to training neural network. 

Most fall into one of two modes. 

(a)(a)(a)(a)    Supervised learningSupervised learningSupervised learningSupervised learning: in this mode the learning rule is provided   with a 

set of examples (the training set) of proper network 

behavior: ),)...(,(),,( 2211 nn txtxtx , where nx  is an input to the network, and 

nt  is the corresponding correct output (target). As the inputs are 
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applied to the network, the network outputs are compared to these 

targets. The learning rule is then used to adjust the weights and biases 

of the network in order to move the network outputs closer to the 

targets in the next epoch .This paradigm can be applied to many types 

of networks, such as feedforward and current networks. 

 

(b)(b)(b)(b)    Unsupervised learningUnsupervised learningUnsupervised learningUnsupervised learning: In this mode the weights and biases are 

modified in response to network input only. There are no target output 

variables. Most of these algorithms perform clustering operations. 

They categorize the input patterns into a finite number of classes [73]. 

Such self-organizing networks can be used for compressing, 

clustering, quantized, classification, or mapping input data. 

 

       In a feedforward network, the direction of the signals flow is 

from the input layer through to the output layer via unidirectional 

connections. The interconnection between layers is from one layer to 

the next; no connection is there within the same layer. 

       In this work, a multi –layer perceptron (MLP) network (which is 

an example of feedforward neural network) is used. 

 

3.7 Multi-layer Perceptron 

 

       The most used neural network is the multilayered perceptron 

(MLP). That is a feedforward model based on layers of neurons. It has 

been shown that almost any function can be represented by three layer 

neural networks [74]. 

 

       The input to the network is referred as the input layer and units in 

the input layer are used as points in which input are applied to the 

network. Signals are prorogated forward from input layer through one 
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or more hidden layer(s) of units, to the output layer of nodes (figure 

(3.6)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.6) MLP General Architecture 

 

3.8 Training Multi-layer Perceptron (Backpropagation) 

  

       As it has been mentioned before, multi-layer perceptrons are 

trained with supervised learning rules. Hopefully, a network that 

produces the right output for a particular input will be obtained. The 

most widely used supervised learning algorithm for neural networks is 

the backpropogation, also known as Error Backpropagation or 

Generalized Delta Rule. Training is implemented by adjusting the 

weights according to the error (the distance between the target and the 
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actual output vector) in the output layer that is measured by the 

following performance function usually called the mean-square error 

[70]: 
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                                                     (3.4) 

where p is the number of pairs of the input activation vectors x
p
 and 

the target activation vectors t
p
, the corresponding output vector is y

p

 

and m is the number of units in the output layer. 

 

       Errors in the output layer are "backpropagated" to the hidden 

layer, and weights are adjusted in the direction in which the 

performance function decreases most rapidly (the negative of the 

gradient). A small constant called the learning rate (α) is used to 

control the magnitude of weight modifications. Finding a good value 

for the learning rate is very important, if the value is too small, 

learning takes forever; but if the value is too large, learning disrupts 

all the previous knowledge. Unfortunately, there is no analytical 

method for finding the optimal learning rate; it is usually optimized 

empirically, through simple trying different values. The training 

algorithm can be realized via the following steps [74]. 

 

Step 0: all weights are initialized to small random values. 

Step 1: while stopping condition is false step (2) to (9) should be 

done. 

Step 2: for each training pair (input x and target t) step (3) to (8) 

should be done. 

Step 3: each input unit ),...,2,1,( Nixi =  receives an input signal and 

broadcasts this signal to all the units, in the hidden layer. 
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Step 4: each hidden unit ),...,2,1,( Pjz j =  sums its weighted input 

signals  
 

              ∑
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                                                                   (3.5)  

 

where ojv  is the weight of the link from the bias unit to the unit jz  and 

ijv  is the weight of the link of the unit ix  to the unit jz . Then each 

hidden unit computes its output using some hyperbolic activation 

functions: 
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              )( injj zfz =                                                                            (3.7) 

 

and send this signal to all units in the layer above (the output layer). 

Step 5: each output unit ( Mky k ,...,2,1, = ) sums its weighted input 
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                                                               (3.8) 

 

where okw  is the weight of the link from the bias unit to the unit ky . 

okw  is the weight of the link from unit jz  to the unit ky  . 

Then each output unit computes its output  
 

 

              )( inkk yfy =                                                                           (3.9)  

 

Step 6: each output unit ( Mky k ,...,2,1, = ) receives target pattern 

),...,2,1,( Mktk = corresponding to the input training pattern and 

computes its error information term: 
 

              )(')( inkkkk yfyt −=δ                                                             (3.10) 
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where f ' is the derivative of activation function, then it calculates its 

weight correction jkw∆ , which is used to update the weight jkw , 

 

              jkjk zw αδ=∆                                                                        (3.11) 

where α  is a learning rate which is in the range (0-1) and bias 

correction term okw∆  

 
[  
              kokw αδ=∆                                                                          (3.12) 

 

and sends kδ  to units in the layer below (hidden layer). 

Step 7: Each hidden unit ( Pjz j ,...,2,1, = ) sums its delta input (from 

units in the layer above). 
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and computes its error information term: 
 

              )(' injinjj zfδδ =                                                                (3.14) 

 

Then it calculates its weight correction term: 
 

              
ijij xv αδ=∆                                                                     (3.15) 

 

and bias correction term (used to update ojv  ) 

 

              jojv αδ=∆                                                                     (3.16) 

 

Step 8: each output ( Mkyk ,...,2,1, = ) updates its bias and weights 

(j=0, 1, 2… P) as shown below 
 

              jkjkjk woldwneww ∆+= )()(                                             (3.17) 

 

each hidden unit ),...,2,1,0,( Pjz j = updates its bias and weights (i=0, 

1, 2… N) as shown below 
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              ijijij voldvnewv ∆+= )()(                                                    (3.18) 

 

Step 9: if the stopping conditions are satisfied either by reducing the 

error to an acceptable value or reaching to the predefined number of 

cycles, the training process is terminated; else the steps from (2) to (8) 

would be repeated. 

 

       There are, generally speaking, two different modes of training an 

artificial neural network using the backpropagation algorithm: batch 

learning (offline) and online learning. In the batch mode, a single error 

is computed when the entire set of training data is presented to the 

network and the weights in the network are updated according to that 

error. 

 

        In the alternative online or "pattern" mode, the weights are 

updated immediately after reading each data point. 

  

       There is no general rule for choosing any of these two training 

modes. The batch mode requires less weight updates and hence may 

be faster to train, but it is also more likely to become trapped in local 

optima. Rafiq et al. [67] suggested training the network using batch 

mode to start with and testing and analysing the network output. If the 

level of error after testing the network with unseen data was not 

satisfactory then a pattern mode should be used.  
 

3.9 Neurocomputing and Optimization 

There are several different backpropagation training algorithms. 

They have a variety of different computation and storage requirements 
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and no one algorithm is best suited to all locations [63]. The resilient 

backpropagaton algorithm is used in this work. 

 

       Multilayer networks typically use sigmoid transfer functions in 

the hidden layers. These functions are often called "squashing" 

functions, since they compress an infinite input range into a finite 

output range. Sigmoid functions are characterized by the fact that their 

slope must approach zero, as the input gets large. This causes a 

problem when using steepest descent to train a multilayer network 

with sigmoid functions, since the gradient can have a very small 

magnitude; and therefore, cause small changes in the weights and 

biases, even though the weights and biases are far from their optimal 

values [63]. 

 

       The aim of the resilient backpropagation (RPROP) training 

algorithm is to eliminate these harmful effects of the magnitudes of 

the partial derivatives. Only the sign of the derivative is used to 

determine the direction of the weight update: the magnitude of 

derivative has no effect on the weight update [63]. 

 

      RPROP is generally much faster than the standard steepest descent 

algorithm. It also has the nice property that it requires only a modest 

increase in memory requirements, as it needs to store the update 

values for each weight and bias, which is equivalent to storage of the 

gradient. 

 

       RPROP performs a direct adaptation of the weight step based on 

local gradient information. For each weight jkw , its individual update 

value jk∆ , which solely determines the size of the weight update, is 

introduced. This adaptive update value evolves during the learning 
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process based on its local sight on the error function E, according to 

the following learning rule: 
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                ),1( −∆ tjk                           else 

               where 0 <<<< −η  <  <  <  <  1 <  <  <  < +η           

       Every time the partial derivative of the corresponding weight 

)( jkw changes its sign, which indicates that the last update was too big 

and that the algorithm has jumped over a local minimum, the update 

value jk∆  is decreased by the factor −η . If the derivative retains its sign, 

the update value is slightly increasing in order to accelerate the 

convergence in shallow regions. 
 

       The update value for each weight update itself follows a very 

simple rule. If the derivative is positive (increasing error), the weight 

is decreased by its update value. If the derivative is negative, the 

update value is added: 
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0 else 
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              )()()1( twtwtw jkjkjk ∆+=+                                                    (3.21) 

              

       However, there is one exception: if the partial derivative changes 

sign, i.e., the previous step was too large, and the minimum was 

missed, the previous weight update is reverted: 
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       The update values and weights are changed every time the whole 

pattern set has presented once to the network (batch training) [75].  

 

3.10 Validation of the Network 
 

       After the training is completed, usually, the network error is 

minimized and the network output shows reasonable similarities with 

the target output, and before a neural network can be used with any 

degree of confidence, there is a need to establish the validity of the 

results it generates. Network could provide almost perfect answers to 

the set of problems with which it was trained, but fail to produce 

meaningful answers to other examples. Usually, validation involves 

evaluating network performance on a set of test problem that were not 

used for training. Generalization testing is so named because it 

measures how well the network can generalize what it has learned and 

form rules with which to make decisions about data it has not 

previously seen. The error between the actual and predicted outputs of 

generalization testing and training testing converges upon the same 

point corresponding to the best set of weight factors for the network. 

If the network is learning an accurate generalized solution to the 
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problem, the average error curve for the test patterns decreases at a 

rate approaching that of the training patterns. 

 

3.11 Practical Aspects of Neural Computing 

 

There are many neural network parameters that control the 

network’s performance and prediction capability [69]. Figure (3.7) 

illustrates these parameters that control the network's performance.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

     

 

     

 3.11.1 Selection of Number of Hidden Layer 

 

      The function of hidden layer is to extract and remember useful features 

and sub-features from the input patterns to predict the outcome of the 

network [67]. 

 
 

1- Selecting the number of hidden layers 

2- Normalizing input and output data sets 

3- Initializing the weight-factor 

distribution 

4- Setting the learning rate and 

momentum coefficient 

5- Selecting the proper 

transfer function 

6- Generating a 

network learning 

curve 

Fig. (3.7) Neural network parameters that control the network's 

performance and prediction capability (Ref.69) 
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       The number of hidden layers are not straightforward. No rules are 

available to determine the number exactly [56]. The choice of the number 

of hidden layers and the nodes in the hidden layer(s) depends on the 

network application [69]. Flood [68] suggests that two hidden layers 

provide the greater flexibility necessary to model complex-shaped solution 

surface, and are thus recommended as a starting point when developing a 

layered feedward network of sigmoid neurons. Rafiq [67] suggests that for 

continuous functions a single hidden layer with a sufficient number of 

neurons will be suitable while a second layer will be needed for 

discontinuous problems. 

 

       The number of neurons in the hidden layer will be defined by a 

process of trial and error. A large number of hidden neurons well lead 

to over fitting at intermediate points. In addition a large number of 

hidden neurons can slow down the operation of neural network, both 

during training and in use. On the other hand, if too few processing 

units are considered then the artificial network will not be able to learn 

satisfactorily and the response of the network to unseen data will be 

poor [67].  Eberhart et al [76] recommended the number of hidden-

layer nodes be at least greater than the square root of the sum of the 

number of components in the input and output vectors. Carpenter and 

Barthelemy [77] suggested that the number of nodes in the hidden 

layer be between the sum and the average of the number of nodes in 

the input and output layers. Moreover, Hajela [48] suggested the 

number of hidden-layer neurons in one hidden layer network to be 

between the average of the input and output layer neurons and the sum 

of these two-layer neurons. 
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       Although using a single hidden layer is sufficient for solving 

many functional approximation problems, some problems may be 

easier to solve with a two-hidden-layer configuration.  

 

3.11.2 Pre-process and post-process of the training patterns 
 

       The training patterns should be normalized before they are 

applied to the neural network so as to limit the input and output values 

within a specified range. This is due to the large difference in the 

values of the data provided to the neural network. Besides, the 

activation function used in the backpropagation neural network is a 

sigmoid function. The lower and upper limits of the function are 0 and 

1, respectively. But hyperbolic tangent function generates limits 

between (-1 and +1). The following formula is used to pre-process the 

input data sets whose values are between −1 and 1. 
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where: 

.,normix  is the normalized variable. 

.min,ix  the minimum value of variable xi (input) 

.max,ix  the maximum value of variable xi (input) 

     Since the output value of the sigmoid function is between 0 and 1, 

the following function might be used. 
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where: 

min,it :the minimum value of variable it (output) 

max,it : the maximum value of variable it (output) 



Chapter three                                                                 Neural Networks Computation 

 69

       However, using this formula, the normalized value of the output 

usually approaches 0 and 1. This makes the training process more 

difficult. Even the generalization of the neural network will be 

affected. Therefore, the following formula suggested by Rafiq et al 

[67] is used: 
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where C is a constant between –0.25 and 0.25 to ensure that the output 

values are in the range of 0.2 to 0.8, and n is a constant that reduces y 

to a number between 0 and 1. In this analysis, n=4 and c =0.2 are 

used. 

 

3.11.3 Initializing the Weight-Factor Distribution 

Initialization of network involves assigning initial values for 

weights and thresholds (biases) of all connections links. Weights 

initialization can have an effect on network convergence. The weights 

initialization has a significant effect on both convergence and final 

network architecture by reducing the error in the output. Typically, 

weights and thresholds are initialized uniformly in a relatively small 

range with zero-mean random numbers. The choice of small numbers 

is essentially to reduce the likelihood of premature neurons saturation. 

       However, when using a very large data set or complex network 

architecture, the weight- factor distribution must be set to coincide 

with the normalized input and output variables.  
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3.11.4 Setting the Learning Rate and Momentum Coefficient 

There are two very important parameters that are used in more 

complex backpropagation algorithms: the learning rate and the 

momentum coefficient.  The use of more complex algorithm leads to 

significantly faster training times and also better results.  

 

       Selection of value of the learning rate parameter (α) has a 

significant effect on the network performance. The learning rate is a 

positive parameter that regulates the relative magnitude of weight 

changes during learning. This is accomplished by multiplying the 

learning rate by the change in weight factor from the previous 

iteration in order to determine the new weight factors (Eq.3.11). 
 

The momentum coefficient is a parameter of what has been 

termed “gradient-descent learning”. In gradient-descent learning, the 

momentum coefficient is used to allow the network to avoid settling in 

local minima of the error (mean-squares error, MSE). Local minima in 

the MSE error do not represent the best set of weight factors and the 

global minimum does. Figure (3.8) illustrates the problems associated 

with network training. 

The momentum coefficient is used to promote stability of weight 

adaptation in a learning rule, and it tends to accelerate descent in a 

steady downhill direction. Momentum coefficient can be added to 

backpropagation learning by making weight changes equal to the sum 

of a fraction of the last weight change and the new change suggested 

by backpropogation rule. Momentum allows the network to ignore 

small features in the error surface. Without momentum a network may 

get "stuck" in a shallow local minimum. 
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3.11.5 Selecting the Proper Transfer Function 

    The transfer (activation) function is necessary to transform the 

weighted sum of all signals impinging onto a neuron so as to 

determine its firing intensity [64]. A transfer function is chosen based 

on the function of the network being used. The hyperbolic tangent and 

sigmoid functions are appropriate for most types of networks, 

especially prediction problems [66].  

3.11.6 Generating a Network Learning Curve 

       To visualize how well a network performs recall and 

generalization steps, a learning curve is generated, which represents 

the average error for both the recall of training data sets and the 

generalization of the testing sets. The error between the actual and 

Local  

Minimum 

Global   

Minimum 

Weight 

Objective 

Function 

Fig. (3.8) Problems associated with network training (local and 

global minimum)  
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predicted outputs of generalization testing and training testing should 

converge upon the same point corresponding to the best set of weight 

factors for the network. If the network is learning an accurate 

generalized solution to the problem, the average error curve for the 

test patterns decrease at a rate approaching that of the training patterns 

as shown in figure (3.9) . 
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Fig.(4.1) Learning curve for the training and generalization sets patterns
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Results and Discussion 

 

 
4.1 Introduction 

 

       The computer program “MATLAB version 7.0 Neural Network 

Toolbox” is employed for the neural network models in this study. 

The advantage of using this program is that many types of networks 

are included in the program and many training algorithms with 

different properties can be used for a specific network model. 

 

       This technique is used to investigate the ultimate resistance of 

reinforced concrete beams subjected to torsion. The results of these 

investigations are presented and discussed through selected case 

studies to show the performance of the neural network model in 

dealing with this problem. It is proposed to find the relationship 

between input parameters and output parameters using a feedforward 

back propagation type neural network. The configuration and 

training of neural networks is a trial-and-error process due to such 

undetermined parameters as the number of nodes in the hidden layer, 

the learning parameter, and the number of training patterns. 

       Two case studies are considered in this work: 

(1) The prediction of ultimate resistance of reinforced concrete 

rectangular beams subjected to pure torsion. 

(2) The prediction of ultimate resistance of reinforced concrete 

rectangular beams subjected to combined torsion and bending 

moment. 
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4.2 Case Study (1): Artificial Neural Network for Members 

Subjected to Pure Torsion: 

       An artificial neural network was developed to predict the 

ultimate strength of rectangular reinforced concrete beams under 

pure torsion. This section describes the data selection for training 

and testing patterns, the topology of the constructed network, the 

training process and the verification of the neural network results. 

Finally, a parametric study is carried out which is based on the 

artificial neural network predictions. 
 

4.2.1 Selection of the Training and Testing Patterns  

       The experimental data that are used to train the neural network 

as training data are obtained from literature [21, 30, 37, 40, and 78] 

as shown in (appendix A). The data used to build the neural network 

model should be divided into two subsets: training set and validating 

or testing set. The validating set contains approximately 15% from 

total database. The training phase is needed to produce a neural 

network that is both stable and convergent. Therefore, selection of 

what data to use for training a network is one of most important 

steps in building a neural network model. The total number of (100) 

test beams were utilized. The training set contained (85) beams and 

the testing set comprised of (15) beams. 

 

       Neural networks interpolate data very well. Therefore, patterns 

chosen for training set must cover upper and lower boundaries and a 

sufficient number of samples representing particular features over 

the entire training domain [67]. 
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       An important aspect of developing neural networks is 

determining how well the network performs once training is 

complete. The performance of a trained network is checked by 

involving two main criteria: 

(1) How well the neural network recalls the predicted response from 

data sets used to train the network (called the recall step). A well 

trained network should be able to produce an output that 

deviates very little from desired value. 

(2) How well the network predicts responses from data sets that were 

not used in the training (called the generalization step). 

Generalization is affected by three factors: the size and the 

efficiency of the training data set, the architecture of the 

network, and the physical complexity of the problem. A well 

generalized network should be able to sensible the new input 

patterns. 

       To effectively visualize how well a network performs recall and 

generalization steps, the learning curve is generated which represents 

the mean square error (MSE) for both the recall of training data sets 

and generalization of testing set with the number of iteration or 

epoch. The error between the training data sets and the 

generalization of testing sets should converge upon the same point 

corresponding to the best set of weight factors for the network.                             

       In figure (4.1), the network provides an accurate generalized 

solution to the problem, the average error curve for the test patterns 

decreases at a rate approaching that of the training patterns. 
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 4.2.2 Model Development and Optimization  

In developing a neural network model for application in this 

study, the performance of the model developed was tried to 

maximize speed of convergence and accuracy of prediction by 

investigating the network characteristics before experimenting with 

any future tests. 

4.2.2.1 Input and Output Layer 

The nodes in the input layer and output layer are usually 

determined by the nature of the problem. In this study the parameters 

which may be introduced as the components of the input vector 

consist of the total depth of beam cross section (h), the width of 

beam cross section (b), the concrete compressive strength (f'c), the 

ratio of longitudinal reinforcement (pl), yield stress of longitudinal 

steel (fy), the ratio of transverse steel (pw), yield stress of transverse 

steel (fsy), longer and shorter leg of stirrups (y1,x1) respectively, 

and spacing of stirrups (s). The output vector is the ultimate torsional 

strength of beams (Tu). Table (4.1) summarizes the ranges of each 

different variable. 

4.2.2.2 Weight Initialization  

The first step in the neural network computations, prior to 

training a neural network, is to initialize the weight factors between 

the nodes of the different layers (input to hidden layer, hidden to 

output layer)[69]. Since no prior information about the system being 

modeled is available, so in this study it is first tried to use random 

numbers to initialize the weight factors of the neural network.  
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       Table (4.1) range of parameters in the database 

Parameters Ranges  

Width of beam (b)
 

150-254 mm 

Total depth of beam (h) 250-508 mm 

Compressive strength of concrete (f'c) 14.6-105 MPa 

Longitudinal reinforcement (pl) 0.4-3.86 % 

Yield strength of longitudinal steel (fy) 283-460 MPa 

Transverse reinforcement (pw) 0-3.2 % 

Yield strength of Transverse steel (fsy) 275-672 MPa 

Longer leg of stirrups(y1) no stirrups & 216-470 mm 

Shorter leg of stirrups (x1) no stirrups &110 -222 mm 

Spacing of stirrups (s) no stirrups & 42 -711 mm 

Torsional strength of beam (Tu) 1.3-75 kN.m 

       

       This selection is found to generate a different MSE error at any 

time the neural program is executed. Therefore, the Gaussian 

distribution at specific range is used to overcome this phenomenon. 

In this study Gaussian weight-factor distribution at range between (-

1 to +1) is used. 

4.2.2.3 Normalizing Input and Output Data Sets  

       Normalization (scaling down) of input and output data sets 

within a uniform range before they are applied to the neural network 

are essential to prevent larger numbers from overriding smaller ones, 

and to prevent premature saturation of hidden nodes, which impedes 

the learning process. 

       The limitation of input and output values within a specified 

range are due to the large difference in the values of the data 
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provided to the neural network. Besides, the activation function used 

in the backpropagation neural network is a hyperbolic tangent 

function, the lower and upper limits of this function are -1 and +1 

respectively. 

 In this study equation (3.23) of the previous chapter is used to 

normalize the input and output parameters. That equation gives the 

required results with a certain mean square error. 

4.2.2.4 Number of Hidden Layers and Nodes in Each hidden 

Layer: 

       The number of hidden layers and the number of nodes in one 

hidden layer are not straightforward to ascertain. No rules are 

available to determine the exact number. However, the choice of the 

number of hidden layer and number of nodes in the hidden layer 

depends on the network application [69]. Although using a single 

hidden layer is sufficient in solving many functional approximation 

problems, some problems may be easier to solve with a two hidden 

layer configurations [69]. 

The number of nodes in the hidden layer will be selected 

according to the following rules [56]: 

(1) The maximum error of the output network parameters should be 

as small as possible for both training patterns and testing 

patterns. 

(2) The training epochs (number of iteration) should be as few as 

possible. 
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     The network is tested with one and two hidden layer 

configurations with an increasing number of nodes in each hidden 

layer(s). Figure (4.2) illustrates the network response as the number 

of nodes in one-and two-hidden layer networks increases. The 

results show that the two-hidden layer network performs 

significantly better than the one-hidden layer network. The optimal 

configurations of two-hidden layer networks with minimum mean 

square error (MSE) are 25:25 (25 nodes in the first hidden layer and 

25 nodes in the second hidden layer). This configuration will be used 

in this case study.  

       Figure (4.3) shows the effect of the node number in the hidden 

layers on the required number of epochs for which the neural 

network converges. In this figure, a node number of 50 (25:25) 

corresponds to the smallest number of epochs (number of iterations). 

 The optimal configuration of the neural network is depicted in 

Figure (4.4). The hyperbolic tangent transfer function will be used in 

this case study. 

4.2.2.5 Selection of the Learning Rate and Momentum 

Coefficient:  

The learning rate and momentum coefficient are two important 

parameters that control the effectiveness of the training algorithm. 

Using the steepest descent algorithm (Gradient Descent, GD) with 

momentum, the network performance can be improved by finding 

optimal values for learning rate (α ) and the momentum coefficient 

( µ ).The neural network is trained with different learning rates 
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values and momentum coefficients. The effective values for both the 

learning rate and momentum coefficient are 0.5 and 0.8 respectively. 

These values give the least mean square error. 

The performance for training and generalization (test) sets are 

simulated using gradient descent algorithm, as shown in Fig. (4.5). 

The network was trained for 4000 epoch to check if the performance 

(MSE) for either training or testing sets might diverge. 

The results of MSE appear reasonable in terms of generalizing 

the neural network for new test sets. In order to confirm these 

results, the actual values are compared with those produced by the 

neural network for the training and generalizing patterns, as shown 

in Figures. (4.6) and (4.7). 

       Figures (4.6) and (4.7) show the regression analysis between the 

output of the neural network and the corresponding targets. 

 

        This has been performed using the routine ‘postreg’ in 

MATLAB ver. (7.0). The format of this routine is [m, b, r] =postreg 

(a, t), where m and b correspond to the slope and the intercept of the 

best linear regression that relates the targets to the network outputs. 

If the fit is perfect (outputs exactly equal to targets), the slope would 

be 1, and the intercept with the y-axis would be 0. The third variable, 

r, is the correlation coefficient between the outputs and targets. It is a 

measure of how well the variation in the output is explained by the 

targets. If this number is equal to 1, then there is perfect correlation 

between targets and outputs. 
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       Figure (4.6) and (4.7) shows that the gradient descent (GD) with 

momentum backpropagation algorithm gives accepted but low 

correlation coefficient. Therefore, another algorithm called the 

resilient backpropagation (RPROP) algorithm is explored to train the 

neural network. 

Similarly, the training and testing sets are treated with the 

resilient backpropagation algorithm as in the gradient descent 

backpropagation. Compared to the gradient descent 

backpropagation, the resilient backpropagation algorithm produced a 

smaller MSE for the two phases of training and testing. Figure (4.8) 

shows that, the resulting MSE error for the resilient backpropagation 

training algorithm is less than that for the gradient descent 

algorithm. From figures (4.8) and (4.5), it is found that the resilient 

backpropagation with line search backpropagation is an order of 

magnitude faster (low number of epochs) than the gradient descent 

backpropagation. The resilient backpropagation with line search 

required exactly 262 epochs for MSE (for training set) to drop to a 

value of (0.0015), compared to (4000) epochs required to reach a 

value of (0.010) MSE for gradient descent backpropagation method. 

The comparison between the results of both algorithms relating to 

the performance of neural network is shown in Fig (4.9). 

    The network performance with resilient backpropagation training 

algorithm have been tested for training and generalizing patterns, as 

shown in figures (4.10) and (4.11). An excellent agreement has been 

noted in the predicting values compared with the actual (targets) 

values. 
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Based on the above analysis, the optimal network architecture 

(25:25 hidden layers) is recommended for this case study. The neural 

network is based on a backpropagation algorithm using the resilient 

backpropagation training algorithm and the hyperbolic transfer 

function. 

4.2.3 Parametric Analyses based on Artificial Neural Network 

       Once the artificial neural network has been trained, a parametric 

analysis was used to study the influence of the various parameters on 

the ultimate torsional strength of members. 

4.2.3.1 Influence of Concrete Compressive Strength 

       Figures (4.12), (4.13) and (4.14) show the effect of concrete 

compressive strength on ultimate torsional strength of reinforced 

concrete beams. It can be seen from the three diagrams that as the 

concrete compressive strength increases, the ultimate torsional 

strength increases. 

       ACI-89 code (equation 1.26), gives a reasonable agreement with 

the values predicted by using neural network, but ACI-05 code 

(equation 1.28), does not take into account the compressive strength 

of concrete influence. 

4.2.3.2 Influence of Ratio of Web Reinforcement 

       The amount of web reinforcement has a very important 

influence on the torsional strength of beams. The ACI-89 Code 

limits the torsional reinforcement in a member by requiring ST  not to 

exceed CT4 . This requirement is equivalent to limiting nT  to CT5 . This 
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is because, as long as ST  does not exceed CT4 , torsional failures are 

ductile, i.e., the stirrups and the longitudinal steel yield before the 

concrete crushes [79].  

       The artificial neural network predicts a non-linear response of 

beams with the amount of web reinforcement. However, the ACI-89 

and ACI-05 codes give a linear response as it can be seen in figures 

(4.15), (4.16), and (4.17). The results obtained from the neural 

network show that the effectiveness of stirrups becomes less as the 

ratio of this type of steel increases. 

4.2.3.3 Influence of Ratio of Longitudinal Reinforcement 

 

       The chief functions of longitudinal steel reinforcement are [79]: 

1. It anchors the stirrups, particularly at the corners, which enables 

them to develop their full yield strength. 

2. It provides at least some resisting torque because of dowel 

forces which develop where the bars cross torsional cracks. 

3. After cracking, member subject to torsion tend to lengthen as 

the spiral cracks widen and become more pronounced. 

Longitudinal reinforcement counteracts this tendency and 

control crack width. 

 

       The influence of the amount of longitudinal reinforcement as 

predicted by artificial neural network results is analysed here and 

compared with the ACI-89 and ACI-05 code equations. 

 

       Figures (4.18), (4.19), and (4.20) show that the increase of 

amount of longitudinal reinforcement leads to increase in the 
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ultimate torsional strength. However, the ACI-code equations do not 

reveal this effect for the longitudinal reinforcement. 

4.2.3.4 Size effect, Influence of the Beam Depth 
 

       In figure (4.21), the ultimate torsional strength of reinforced 

concrete beams is plotted versus the total depth of beam (h mm). It 

can be seen from the figure that the increase in depth of beam leads 

the ultimate torsional strength to increase. A reasonable agreement 

between the results of ACI-equations and those of the neural 

network is achieved. 

 

4.2.3.5 Influence of Stirrups Spacing 
 

       The effect of the spacing of stirrups is depicted in figure (4.22). 

In this figure, it can be seen that the increase of spacing of stirrups, 

while keeping the volume percentage of stirrups for these beams 

identical, results in a decrease in the torsional strength. ACI-code 

equations do not take into account the influence of stirrups spacing 

but they limit the maximum stirrups spacing to (
4

11 yx +
 or 300 mm 

whichever is smaller) to assure that every 45-deg.crack on the wider 

face of the beam should be crossed by at least two stirrups. In figure 

(4.22), (s =175 mm) corresponds to the maximum spacing of ACI-

code. 

4.2.3.6 Influence of Yield Point of Stirrups 

       In figure (4.23) the ultimate torsional strength of beams is 

plotted versus the yield stress (fsy MPa) of stirrups. In this figure, it 

can be seen that as fsy increases, the ultimate torsional strength is 

increased. A reasonable agreement between the results of ACI-code 

equations and artificial neural network is obtained. 
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4.3 Case Study (2): Artificial Neural Network for Members 

Subject to Combined Torsion and Bending  

 

       The complete database for members subjected to combined 

torsion and bending moment which is described in appendix B was 

used to develop the neural network model. These data represent the 

experimental results obtained by Refs. [21, 31, 32, 39, 80 and 81]. 

Therefore, a total number of 54 test beams was utilized. These data 

were divided into two sets: a training set containing 45 beams and a 

validating set comprised of 9 beams.   

       The input parameters used were the total depth of beam cross 

section (h), the width of beam cross section (b), the concrete 

compressive strength (f'c), the amount of longitudinal reinforcement 

(pl), yield stress of longitudinal steel (fy), the amount of transverse 

steel (pw), yield stress of transverse steel (fsy), longer and shorter 

leg of stirrups (y1, x1) respectively, spacing of stirrups (s), and 

bending moment to torsion ratio (m/t). The output vector is the 

ultimate torsional strength of beams (Tu). Table (4.2) summarizes 

the range of each different variable. 

       The optimum solution was obtained after (262) epochs with a 

neural network topology as (11:8:1) units, as shown in figure (4.24). 

       The resilient backpropagation training algorithm and sigmoid 

activation function for the hidden layer and purelinear for output 

layer are used in the network for the training and testing sets and the 

results are shown in figure (4.25).  
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Table (4.2) range of parameters in the database 

Parameters Ranges  

Width of beam (b)
 

100-254 mm 

Total depth of beam (h) 203-381 mm 

Compressive strength of concrete (f'c) 16.3-42 MPa 

Longitudinal reinforcement (pl) 0.44-3.2 % 

Yield strength of longitudinal steel (fy) 316-540 MPa 

Transverse reinforcement (pw) 0-3.2 % 

Yield strength of Transverse steel (fsy) 275-358 MPa 

Longer leg of stirrups(y1) no stirrups & 127-343 mm 

Shorter leg of stirrups (x1) no stirrups & 63.5-216 mm 

Spacing of stirrups (s)         no stirrups & 40.6 -216 mm 

Ratio of bending moment to torsion (m/t) 0-4.33 

Torsional strength of beam (Tu) 4.2-62.9 kN.m 

 

       The suitability of neural network model is checked by plotting 

the predicted values of ultimate torsional strength (the output of 

neural network) versus the experimental results (the target or actual 

values) for the training and testing sets as shown in figures (4.26), 

and (4.27). As can be seen the correlation factor, r, for both sets is 

quite high, which proves the high accuracy of training neural 

network model. 

       The ultimate strength of the reinforced concrete members under 

combined torsion and bending are greatly influenced by the member 

cross section, the amount and distribution of steel, and the torque-to-

bending moment ratio [82]. 

       Figure (4.28) shows the interaction diagram for beams subjected 

to combined torsion and bending moment. This figure contains 



Chapter Four                                                                                                  Results and Discussion 

 

different types of interaction curves. Curve (1) represents a quarter 

circular curve which is suggested by McMullen and WarWaruk [39], 

curve (2) represents a tri-linear interaction curve which has been 

suggested by Zia and Cardenas [82], curve (3) suggested by Abas 

[39] represents a parabola interaction curve, curve (4) represents a 

linear interaction curve which suggested by Mirza [82], and curve 

(5) shows the predicted interaction diagram between torsion and 

bending moment by using neural network model adopted in the 

present study. 

        In curve (5) it can be seen that a small amount of bending 

moment will reduce the torque capacity by a small amount. On the 

other hand when the 
0T

T
≤  0.5 there is a little effect on bending 

capacity and the torsion effect may be neglected, where 

oT :the ultimate torque capacity in pure torsion(kN.m), and can be 

calculated by eq.(1.28). 

T :the ultimate applied torque(kN.m) 

oM :the ultimate bending capacity in pure bending (kN.m), and can 

be   calculated according to the ACI-Code equation as below. 









−=

)2
(.0

a
dfyAsM φ ,  

=As area of tension reinforcement(sq.mm). 

=d distance from extreme compression fiber to centeroid of tension 

reinforcement (mm). 
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bcf

fyAs
a

⋅

⋅
=

'85.0
, where =b the width of compression face. 

M :the ultimate  applied bending (kN.m) 

4.4 Computer Program for Backpropagation Neural Network   

The computer program that is coded in MATLAB (7.0) 

languages realizes the training and generalization processes of the 

backpropagation neural network. The structure of the computer 

program is shown in Fig. (4.29). The main variables are stored using 

the cell arrays. The cell arrays in MATLAB are multidimensional 

arrays whose elements are copies of other arrays. 

4.4.1 Pseudo-Codes of the Program for BPNN 

 

The pseudo-code of the program for training and testing the 

neural network is listed below: 

 (i) Training program 

input the parameters of the network  

initialize the weight matrix 

input the training pattern 

pre-process the training pattern set key=0, epoch=0 

set initial value of ∆w = 0 

while (key ≠1) & epoch < given epoch number, epochNum) 

        i = 1 

       while (i ≤  number of training pattern, pNum) 

              calculate the error for one training pattern 

              calculate the error which back-propagate to each layer 
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              calculate the weight changing 

              calculate the changed weight 

i = i + 1 

      end 

      if the error sum is less than the required error 

      set key=-1 and finish training 

      otherwise epoch=epoch+1; 

end 

(ii) Testing program 

load the weight values for the trained neural network 

 provide the input for the neural network 

pre-process the input data 

calculate the output of the neural network 

 post-process the calculating results 

4.4.2 Pseudo-Code of the Program for RPROP 

       The neural network is trained in off-line mode. In the program, 

the calculation of the value of 
ijw

E

∂

∂
 (t) is performed with the same 

code as in the program for the BPNN algorithm. The update of the 

weight is performed by the procedure shown below. 
 

input the training patterns and pre-process these data 

input initial values of these parameters such as 0∆ , min∆ , max∆ , +η and 
−η  

calculating the value of 
ijw

E

∂

∂
(t) 

according to the sign of 
ijw

E

∂

∂
 (t) 

ijw

E

∂

∂
 (t −1)  and

ijw

E

∂

∂
 (t), changing 

the weight value 
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save the weight value for the trained network 
 

 

if (
ijw

E

∂

∂
 (t) 

ijw

E

∂

∂
 (t −1)  >0) then { 

 

 

ij∆ (t)=min ( ij∆ (t-1). +η , max∆ ) 

ijw∆ (t)= - sign (
ijw

E

∂

∂
(t)). ij∆ (t) 

ijw (t+1)= ijw (t) + ijw (t-1) 

} 

else if (
ijw

E

∂

∂
 (t) 

ijw

E

∂

∂
 (t −1) >0) then { 

 

ij∆ (t)=min ( ij∆ (t-1). −η , min∆ ) 

ijw (t+1)= ijw (t) - ijw (t-1) 

ijw

E

∂

∂
(t)= 0 

} 

else { 

ijw∆ (t)= - sign (
ijw

E

∂

∂
(t)). ij∆ (t) 

ijw (t+1)= ijw (t) + ijw (t-1) 

} 
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Figure (4.6)Comparison between NN results and target results for training 
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Chapter fiveChapter fiveChapter fiveChapter five    

Conclusions and Recommendations for Future 

Researches 

 

5.1 Conclusions 

 

       This study investigates the feasibility of using the artificial 

neural network to evaluate the ultimate strength of reinforced 

concrete rectangular beams under pure torsion and combined torsion 

and bending. The neural network is particularly usefulness for 

evaluating systems with multitude of variables. The backpropagation 

neural network, which is a multi-layered feedforward neural 

network, has been proved to accurate in predicting the ultimate 

torsional strength of reinforced concrete beams. 
 

       The most important conclusions that can be drawn from the 

present study are the followings: 
 

1. Neural network model has been very effective in predicting 

the ultimate strength of reinforced beams under pure torsion 

and combined torsion and bending. 

2. In the process of training the neural network, the values of 

input patterns has a large influence on the training time (No. of 

epoch) of the neural network as a result of the activation 

function. Normalizing the input and target values of the 

training patterns seems to greatly reduce the training time.  
 

3. The initial values of the weight factor and biases have greatly           

influenced the performance mean square error (MSE) of neural 
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network model. The Gaussian weight-factor distribution with 

range ±1 is found to give a minimum mean square error 

(MSE). 

4. For gradient descent (GD) algorithm the convergence of the 

training becomes faster when the learning rate and momentum 

coefficient are 0.5 and 0.8 respectively. 

5. The neural network trained with the resilient backpropagation 

(RPROP) algorithm exhibited better behaviour than that 

trained with the gradient descent (GD) algorithm. This was 

found from the reduced training time (No. of epoch) and better 

mapping of the neural network for the training patterns and 

generalization for the test patterns. 

6. Influence of the amount of web reinforcement was non-

linearly proportional to the ultimate torsional strength of 

beams under pure torsion. 

7. The increasing of amount of longitudinal reinforced steel leads 

to increases of ultimate torsional strength. 

8. The influence of concrete compressive strength predicted by 

neural network was in agreement with ACI-89 code. 

9. Neural networks can be used as a reliable alternative to costly 

experimental testing as well as lengthy empirical calculations 

for predicting ultimate strength of concrete beams. 

10. The results obtained from the neural network confirms the     

provision of ACI-89-Code which states that the distribution of 

stirrups should no be longer than four times the contribution of 

concrete. 

 



Chapter Five                                                          Conclusions and Recommendations      

 

 5.2 Recommendations for Future Researches 

 
 

The following recommendations are suggested for future works: 
 

1. Using ANN model to predict the ultimate strength of 

reinforced concrete rectangular beams under combined 

torsion, shear and bending moment. 

2. Using ANN model to predict the ultimate torsional strength 

of flanged beams. 

3. Using ANN model to predict the ultimate torsional strength 

of spandrel beams. 

4. Using ANN model to predict the ultimate torsional strength 

of fiber reinforced concrete beams. 

5. Using Fuzzy-Neural network model to predict the ultimate 

torsional strength of reinforced concrete beams. 
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 I 

Appendix A: Experimental Database for Beams under Pure Torsion 
 

 

Author ID ANN b, mm h,mm f'c,Mpa pl% fy Mpa pw% fsy Mpa S mm x1 mm y1 mm Tu kN.m 

A T 150 250 46.9 0.734 401 1.3 

B T 150 250 47.9 1.33 428 1.54 

C T 150 250 48.3 2.066 445 1.9 

D V 150 250 48.6 2.066 445 1.1 

G T 150 250 46.9 2.066 445 

No stirrups 

1.53 

Aw T 150 250 46.9 2.066 445 0.802 297 70 110 210 4.51 

BW T 150 250 47.2 2.066 445 0.551 297 100 110 210 3.73 

CW T 150 250 47.6 2.066 445 0.551 297 100 110 210 3.71 

Dw T 150 250 47.6 2.066 445 0.368 297 150 110 210 3.71 

EW T 150 250 46.2 2.066 445 0.84 288 150 110 210 4.27 

Youssef 

,M.A.R 

And 

Bishara 

,A.G 

[78] 

FW V 150 250 46.5 2.066 445 0.575 288 220 110 210 3.35 

3TR-0 T 152.4 304.8 27.5 0.62 370 No stirrups 4.25 

3TR-1#2 T 152.4 304.8 27.5 0.62 370 0.071 383 711 114.3 254 3.95 

3TR-3#2 T 152.4 304.8 27.5 0.62 370 0.141 383 356 114.3 254 3.9 

3TR-7#2 T 152.4 304.8 27.5 0.62 370 0.282 383 178 114.3 254 5.65 

3TR-15#2 T 152.4 304.8 27.5 0.62 370 0.494 383 89 114.3 254 6.97 

3TR-30#2 V 152.4 304.8 27.5 0.62 370 0.985 383 89 114.3 254 8.6 

4TR-0 T 152.4 304.8 27.5 1.1 283 No stirrups 3.88 

4TR-1#2 T 152.4 304.8 27.5 1.1 283 0.071 383 711 114.3 254 3.63 

4TR-3#2 T 152.4 304.8 27.5 1.1 283 0.141 383 356 114.3 254 4 

4TR-7#2 T 152.4 304.8 27.5 1.1 283 0.282 383 178 114.3 254 6.2 

4TR-15#2 T 152.4 304.8 27.5 1.1 283 0.494 383 89 114.3 254 8.36 

Ernst, G.C 

[30] 

4TR-30#2 V 152.4 304.8 27.5 1.1 283 0.985 383 89 114.3 254 9.6 
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 II 

5TR-0 T 152.4 304.8 27.5 1.7 335 No stirrups 3.82 

5TR-1#2 T 152.4 304.8 27.5 1.7 335 0.071 383 711 114.3 254 3.77 

5TR-3#2 T 152.4 304.8 27.5 1.7 335 0.141 383 356 114.3 254 4.85 

5TR-7#2 V 152.4 304.8 27.5 1.7 335 0.282 383 178 114.3 254 6.8 

5TR-15#2 T 152.4 304.8 27.5 1.7 335 0.494 383 89 114.3 254 8.64 

5TR-30#2 T 152.4 304.8 27.5 1.7 335 0.985 383 89 114.3 254 10.5 

B30.1 T 180 275 41.7 3.86 640 1.345 665 90 150 245 16.62 

B30.2 T 180 275 38.2 3.86 638 1.345 669 90 150 245 15.29 

B30.3 T 180 275 36.3 3.86 605 1.345 672 90 150 245 15.25 

B50.1 T 180 275 61.8 3.86 612 1.345 665 90 150 245 19.95 

B50.2 T 180 275 57.1 3.86 614 1.345 665 90 150 245 18.46 

B50.3 T 180 275 61.7 3.86 612 1.345 665 90 150 245 19.13 

B70.1 V 180 275 77.3 3.86 617 1.345 658 90 150 245 20.06 

B70.2 T 180 275 76.9 3.86 614 1.345 656 90 150 245 20.74 

B70.3 T 180 275 76.2 3.86 617 1.345 663 90 150 245 20.96 

B110.1 V 180 275 109.8 3.86 618 1.345 655 90 150 245 24.72 

B110.2 T 180 275 105 3.86 634 1.345 660 90 150 245 23.62 

Rasmussen, 

L.J and 

Baker, G 

[40] 

B110.3 T 180 275 105 3.86 629 1.345 655 90 150 245 24.77 

B3 T 175 353 38.6 1.23 352 1.26 360 82.5 143 321 25.3 

B4 T 175 353 38.5 1.77 352 1.52 360 60 143 321 31.8 

B1 T 178 356 39.9 0.44 360 0.58 285 82.5 146 324 12.8 

B1R T 178 356 36.3 0.44 360 0.58 285 82.5 146 324 12.3 

B2 V 178 356 39.6 0.44 380 1.08 285 44.5 146 324 20.8 

A3 T 251 251 39.4 1.23 352 1.21 360 80 219 219 27.8 

A4 V 251 251 39.2 1.77 352 1.69 360 57 219 219 34.5 

A1 T 254 254 39.6 0.44 360 0.56 285 80 222 222 13.1 

McMullen, 

A.E and 

Rangan, 

B.V 

[37] 

A1R T 254 254 36.9 0.44 360 0.56 285 80 222 222 12.5 
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 III 

A2 T 254 254 38.2 0.78 380 1.08 285 42 222 222 22.6 

N1 T 254 254 27.6 0.44 348 0.44 348 216 216 216 11.52 

N1a T 254 254 27 0.8 341 0.802 352 117 216 216 15.55 

N2a T 254 254 27.4 1.24 337 1.24 336 140 216 216 20.4 

N3 T 254 254 27.7 1.76 343 1.76 334 99 216 216 25.8 

N4 V 254 254 27.8 2.4 335 2.36 336 73 216 216 30.3 

K2  T 254 254 28.1 3.16 322 3.2 334 54 216 216 34.9 

K3 T 254 381 28.1 0.534 320 0.537 348 152.4 216 343 22.7 

C1 T 254 381 29 0.827 316 0.823 326 181 216 343 29.8 

C2 T 254 381 28.6 1.17 334 1.17 326 127 216 343 38.24 

C3 T 254 381 31 1.6 326 1.61 330 92 216 343 48.27 

C4 T 254 381 29.6 2.11 339 2.13 328 70 216 343 57.25 

C5 V 254 381 29.4 2.67 338 2.61 329 57 216 343 62.9 

C6 T 254 381 26.5 0.534 326 1.17 325 123 216 343 27.42 

B1 T 254 381 27.3 0.534 328 2.61 326 57 216 343 33.18 

B2 T 254 381 29.4 1.17 325 0.537 349 152.4 216 343 30.4 

B3 T 254 381 27 2.67 341 0.537 349 152.4 216 343 35 

B4 T 254 381 30.4 0.827 333 0.549 360 150 216 343 31 

B5 T 254 381 31 1.17 335 0.781 364 105 216 343 41.36 

B6 V 254 381 27.3 1.6 328 1.07 333 140 216 343 44.7 

B7 T 254 381 27 2.11 325 1.42 333 105 216 343 50.6 

B8 T 254 381 28.5 2.67 342 1.81 337 83 216 343 56.8 

B9 T 254 381 22.91 3.16 324 2.13 347 70 216 343 61.3 

B10 T 254 381 46 0.827 332 0.832 356 99 216 343 36.75 

M1 T 254 381 45.6 1.17 350 1.17 340 127 216 343 46.54 

M2 T 254 381 45.8 1.6 321 1.61 333 92 216 343 59.2 

Hsu, T.T.C 

[21] 

M3 T 254 381 45.9 2.11 316 2.13 332 70 216 343 72 
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 IV 

M4 V 254 381 46.6 2.67 332 2.61 335 57 216 343 78.2 

M5 T 254 381 14.6 0.534 334 0.537 353 152.4 216 343 21.89 

M6 T 254 381 14.8 0.827 326 0.832 347 99 216 343 29.72 

I1 T 254 381 17.2 1.17 345 1.17 344 127 216 343 35.94 

I2 T 254 381 17 1.6 330 1.61 338 92 216 343 41.47 

I3 T 254 381 27.1 0.534 339 0.537 344 152.4 216 343 22.7 

I4 V 254 381 26.1 0.827 329 0.823 337 181 216 343 28.25 

I5 T 254 381 29 1.17 348 1.17 339 127 216 343 39.9 

I6 T 254 381 31.2 1.6 337 1.61 339 92 216 343 48.8 

J1 T 152.4 309 30 0.611 359 0.622 348 92 130 283 9.27 

J2 T 152.4 309 29.2 0.611 353 0.622 352 92 130 283 9.17 

J3 T 152.4 309 31 1.11 337 1.13 344 51 130 283 14.75 

J4 V 152.4 309 29 1.11 340 1.1 368 114 130 283 13.48 

D1 T 152.4 309 27.8 0.916 358 0.903 358 64 130 283 12.4 

D2 T 152.4 309 27.8 1.42 350 1.42 350 89 130 283 16 

D3 T 152.4 495 31.2 1.025 342 1.027 344 105 114.3 457 24.19 

D4 T 152.4 495 29.6 1.59 322 1.58 329 124 114.3 457 29 

G1 T 254 508 30.4 0.4 328 0.402 346 187 216 470 27.3 

G2 V 254 508 31.5 0.62 329 0.626 340 121 216 470 24.13 

G3 T 254 508 27.4 0.88 345 0.882 334 156 216 470 50.57 

G4 T 254 508 28.8 1.2 332 1.2 328 114 216 470 66.12 

G5 T 254 508 27.4 1.58 337 1.6 334 86 216 470 73.38 

G6 T 254 508 30.5 0.6 328 0.594 356 127 216 470 39.9 

G7 T 254 508 31.6 0.93 325 0.938 329 146 216 470 53.68 

G8 T 254 508 28.9 1.32 358 1.31 335 105 216 470 75 
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Appendix B: Experimental Database for Beams under Combination of Bending Moment and Torsion 
 

Author ID ANN b, mm h,mm f'c,Mpa pl% fy Mpa pw% fsy Mpa S mm x1 mm y1 mm m/t 
Tu, 
kN.m 

A-1 T 100 210 42 1.55 540 1.024 330 75 72 180 0.04 4.8 

A-2 T 100 210 42 1.55 540 1.024 330 75 72 180 1.25 5.6 

Zararis, P.D 
and Penelis, 
G.Gr [80] 
  
  A-3 V 100 208 40 1.57 540 1.024 330 75 72 180 4.33 4.2 

1 T 203 203 30.8 0.69 352 0 4.15 

2 T 203 203 30.8 1.25 358.5 0 4.5 

3 T 203 203 30.6 0.68 352 1 6.68 

4 T 203 203 30.6 1.565 358.5 1 5.53 

5 T 203 203 16.3 1.565 358.5 2 4.95 

6 T 203 203 16.3 1.565 358.5 3 4.15 

7 T 203 203 39.3 1.565 358.5 3 6.8 

8 T 203 203 39.3 1.565 358.5 4 5.64 

9 V 152.4 304.8 33 1.944 358.5 2 4.84 

Gesund, H. and 
Boston, L.A 
[31] 
  
  
  
  
  
  
  
  
  10 T 152.4 304.8 19.7 1.39 358.5 

No stirrups 

4 4.5 

1 T 203.2 203.2 35.4 1.562 358.5 0.688 351.5 127 127 127 1 9.1 

2 T 203.2 203.2 37.3 1.562 358.5 1.72 351.5 50.8 127 127 1 11.75 

3 V 203.2 203.2 37.33 1.562 358.5 0.688 351.5 127 127 127 2 7.03 

4 T 203.2 203.2 33 1.562 358.5 1.72 351.5 50.8 127 127 2 7.72 

5 T 203.2 203.2 29.8 1.562 358.5 0.688 351.5 127 127 127 3 5.64 

6 T 203.2 203.2 28.5 1.562 358.5 1.72 351.5 50.8 127 127 3 6.45 

7 T 203.2 203.2 37.1 1.562 358.5 0.688 351.5 127 127 127 4 4.95 

8 V 203.2 203.2 40.3 1.562 358.5 1.72 351.5 50.8 127 127 4 5.07 

9 T 152.4 304.8 34.2 1.39 358.5 0.401 351.5 203.2 63.5 203.2 2 6.9 

10 T 152.4 304.8 27.4 1.39 358.5 0.401 351.5 203.2 63.5 203.2 4 5.07 

11 T 152.4 304.8 34.2 1.39 358.5 0.802 351.5 101.6 63.5 203.2 2 7.83 

Gesund, 
H.,Schette, 
F.J,Buchanan, 
G.R.and Gray, 
A. [32] 
  
  
  
  
  
  
  
  
  
  
  12 V 152.4 304.8 27.4 1.39 358.5 0.802 351.5 101.6 63.5 203.2 4 6.11 

Abas, M.S [39] RB1 T 152 310 34.8 1.2 460.3 0.935 350.3 50 120 270 1.33 12.78 
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  RB2 T 152 310 31.5 1.2 460.3 0.468 350.3 100 120 270 1.33 11.28 

RB3 T 152 310 29.8 1.2 460.3 0.334 350.3 140 120 270 1.33 10.24 

RB4 T 152 310 32.25 1.2 460.3 0.468 350.3 100 120 270 2 10.26 

RB5 T 152 310 34.61 1.2 460.3 0.468 350.3 100 120 270 4 8.99 

  
  
  
  

RB11 T 152 310 29.14 1.2 460.3 0.468 350.3 100 120 270 0 10.46 

A5 V 127 203.2 33.75 2.07 404 0.899 370 71 89 165 5.42 5.44 

B5 T 127 203.2 30.4 2.38 426 1.575 370 40.6 89 165 3.4 5.48 

C5 T 127 203.2 36 3.64 454 1.832 370 35 89 165 4.81 7.55 

D5 T 127 203.2 34.3 1.51 442 1.18 370 54 89 165 1.17 5.01 

E5 T 127 203.2 35.2 0.9 420 0.899 370 80 89 165 0.88 3.66 

F V 127 203.2 30.2 0.4 470 No stirrups 7 2.22 

G T 127 203.2 29.3 1.106 420 0.806 370 80 89 165 1.895 3.63 

H T 127 203.2 29 1.106 420 0.806 370 80 89 165 2.443 4.42 

I T 127 203.2 29.5 1.464 420 1.185 370 40.6 89 165 1.633 4.5 

Iyengar, K.T.S 
and 
Ramprakash, 
N.[81] 
  
  
  
  
  
  
  
  
  J T 127 203.2 29.5 1.96 420 1.68 370 38.1 89 165 1.076 5.37 

C1 T 254 254 27.6 0.44 348 0.44 348 216 216 216 0 11.52 

C2 T 254 254 27 0.8 341 0.802 352 117 216 216 0 15.55 

C3 T 254 254 27.4 1.24 337 1.24 336 140 216 216 0 20.4 

C4 T 254 254 27.7 1.76 343 1.76 334 99 216 216 0 25.8 

C5 V 254 254 27.8 2.4 335 2.36 336 73 216 216 0 30.3 

C6 T 254 254 28.1 3.16 322 3.2 334 54 216 216 0 34.9 

B1 T 254 381 28.1 0.534 320 0.537 348 153 216 343 0 33.7 

B2 T 254 381 29 0.827 316 0.823 326 181 216 343 0 29.8 

B3 T 254 381 28.6 1.17 334 1.17 326 127 216 343 0 38.24 

B4 T 254 381 31 1.6 326 1.61 330 92 216 343 0 48.27 

B5 V 254 381 29.6 2.11 339 2.13 328 70 216 343 0 57.25 

Hsu, T.T.C [21] 
  
  
  
  
  
  
  
  
  
  
  B6 T 254 381 29.4 2.67 338 2.16 329 57 216 343 0 62.9 

                                          

                                          V    beams used for the verification process of the ANN 

                                          T    beams used for the training process of the ANN 
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