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BST

In this work a theoretical study the cracks in curved plates with
mixed complex boundary conditions under in plane loading causes
shear, compression and combined shear and compression buckling and
low velocity impact at the edge of crack in the middie of simply
supported curved plate

Two methods of approximate analytical solution have been
carried out for determining the critical loads and the stress distribution
for curved plate which has two radius of curvature in xz and yz-planes
with surface crack in the middle of the plate, the first one is derived
from Airy stress function, equilibrium equations and large deflection
plate theory to analyze the effect of different radii of curvature in two
dimensions, buckling loads and duration time of low velocity impact
loading on the stress distribution in plate with crack, the second
method is derived from the energy method of curved plate which
modified for including the impact loading with buckling loads and
state the two dimensional stress for internal crack at the center of
plate.

The stress intensity factors (SIFs), velocity of dynamic crack
propagation with deep of crack normal to the crack face have been
calculated, using the analytical method and a numerical package result
(ANSYS-10), which based on finite elements method to investigate
the stress and the values of dynamic stress intensity factor at the crack
tip by full transient dynamic analysis in three dimensional element
(Solid 20 nodes 95).

Two kind of materials are used in the theoretical analysis of the

curved plates which are stainless steel and Aluminum,



The theoretical results have been wverified with the experimental
one that have been done by previous researches for curved panels
without crack initiation.

The results for different aspect ratios (1:1 to 1:4) have been used,
crack deep to crack length ratio (0.2- 0.8) under different impact
velocities (5-30-m/s) gives good agreement with results of finite
glement analysis for long time duration in impact loading while the
energy method is agreement with some values of time duration and
then become limited when buckling oceur.

The theoretical results obtained from classical and energy methods
have deviation in the values of the principal stresses (g & 03),
although the classical method gives good optimum results when
compared with experimental one, the difference is at the range of
(2.3 - 8.3 %) , and the percent of error in determining the dynamic
stress intensity factor of the first mode (opening mode KI) when
compare ANSYS-10 and classical method results has a percent of
error less than that in determining the second mode (shear mode K1),
the percentage of error in determining K1 is about (0.3 - 3.2 %) but in
determining the second mode K1l the error is about (0.4 - 4.1 %a).

The velocity of crack propagation in stainless steel panels greater
than of Aluminum panels which have the same dimensions, location
of crack and same loads applied so the steel panels have less safe than

Aluminum panels under the same loading and boundary conditions.
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CHAPTER ONE
INTRODUCTION

When plates subjected to the application of large in-plane loads either
compressive or shear they buckle .the phenomenon of buckling is actually
a non-linear which is characterized by disproportionate increase of the
displacements associated with the small increment of the loads; Buckling
may be due to the action of the in-plane normal forces (N; or Ny) along x
or y direction respectively ,or due to the shear forces { Niy) in the x-y
plane. Either the previous forces acting individually or as a combination .
Figure(1-1) shows the in-plane forces which can be applied, on the other
hand, plates considered under large deflection develop internal resistive in-
plane forces in addition to the transverse moments and shears, so plates do
not fail under the critical load like columns|1].

In addition to in-plane forces another forces out of this plane may apply
such as impact forces in the direction normal to xy plane.

Failure does not take place by buckling only but also by fracture caused
by crack growth.[2]
1.1 Buckling of Curved Plates

When plates subject to large in plane loads either compressive or shear
they buckle. The buckling phenomena is not linear because it characterized
by disproportional increase of the displacement associated with the small
increment of the loads,

In plates ,buckling may occur due to the action of in-plane normal forces
( Ny and N, ) along x or y direction respectively, or due to in-plane shear
forces (N, and N,,) in the x-y plane either acting individually or as a

combination.
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Unlike columns, the plate failure does not occur when the critical
buckling load is reached .Plates continue to resist the in-plane loads far in
excess to the critical load before failure ;thus the post buckling behavior of
plates plays an important role in determining the ultimate carrying capacity

3]

Figure(1-1) In plane forces act on plate.[1]

The failure of plates subjected to uniaxial compression may be due to
instability or material failure. For thin plates (i.e. large values of length io
thickness ratio) made from a typical strain hardening material with yield
stress oy, instability occurs at an average stress o, that is much less than the
vield stress, especially if the plate has no crack in it. This stress is called
elastic buckling stress. On the other hand, instability for relatively thick
plates (i.e. low fengrh to thickness ratio values), or plates with crack, may
oceur after the plate material has reached the yvield point, or has passed it
and entered the strain hardening stage at some portions of the plate, and that
is called inelastic buckling. If the plate thickness is very large, material
failure may occur before any buckling takes place.[4]

Flat and curved plates under combined shear and compression are
structures commonly found in aero engine components such as vanes. In

order to meet increasing demands to reduce the weight of such components,

2
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their thickness is constantly reduced, thus increasing the possibility of
failure due to buckling,

Extensive work has been carried out to determine expressions for the
eritical buckling loads of such structures under the elementary load cases of
shear, compression, bending and combinations of these three. These are
based either on solution of the plate/panel differential equations for a
particular set of load and boundary conditions, or the use of energy
methods. However existing solutions are based on constant stress levels
throughout the plate structure,

A few theoretical solutions or design rules exist for more complex
solutions. Analysis is therefore based in practice on selecting the section of
the structure considered to be most highly stressed, and assuming a
simplified load case which can be solved.

In addition, only simple boundary conditions such as clamped or simply
supported edges have been considered, with limited work being carried out
on structures having combinations of the two. Due to these limitations, little
confidence in calculated buckling loads exists and relatively high safety
factors must therefore be incorporated to ensure collapse is avoided. Thus
these technigues do not result in optimal designs. Finite element analysis
has therefore been proposed as an alternative to theoretical techniques.

This has the advantape of being able to handle more complex
geometries, boundary conditions and load cases. Two approaches are
possible, A linear eigen value analysis can be carried out to determine the
buckling load of a perfect structure,

Reduction factors can then be applied to account for the geometric
imperfections and plastieity.[5]

For certain types of plate problems, on solving the governing differential
equation of the plate satisfying the prescribed boundary conditions have
been illustrated using classical method, Energy methods which are based on
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energy principles are often used as alternative solution methods for a large

variety of plate problems .

Though approximate, the usefulness and efficiency of the energy
methods can be particularly appreciated in problems which cannot be either
solved by the rigorous classical methods or even if so , the procedure may
often be too cumbrous and lengthy to be discarded.

When a plate element is acted on by external loads, the internal fibers of
the material body absorb energy in the form of the potenrial energy and a
result, the body shows deformed shape externally .On removal of the loads,
the stored potential energy is converted to Kinetic energy so that the body
wholly or partially regains its original position or shape. The absorbed
potential energy of the internal forces stored within the structural body is
often termed as strain energy (SE) or U, and its magnitude is equal to the
work done due to the internal forces (in the opposite sense). The potential
of the external forces ' is defined as the work done by the external forces
(in the opposite sense) during deformation between the initial and final
position. The kinetic energy is the energy produced by the effect of the
body, for example the vibration produced in a plate target under the action
of impact hit.

1.2 Impact Loads on Plates

When an impactor hits a plate with a specific velocity there is a pressure

produced in the target as well as the impactor, the distribution of this pressure
depend on the velocity and shape of impactor and the mechanical properties
of the target and impactor.

The approach in studying the response of the isotropic materials to low

velocity impact is shown in figure(1-2) the three major steps of the approach

dare:

l. Determination of impactor-induced surface pressure and its

distribution.



Chapter ene

2. Determination of internal stresses in the target caused by surface

pressure.
3. Determination of failure modes in the target caused by surface
pressure.
There are other assumptions will be considered for the case of

study as will be noticed in chapter three of this study.

|NPRCTOR
iy
H T
i
JALLENL mrac‘rm!ﬂm
PRESSURF IP ; ;
1 PRESSURE CANSES  STRESSLS CAUSE
|5 TIME DEPERDENT e

Figure(1-2) Essential features of the approach.|6]

1.3 Crack Modes

According to the loading condition there are three crack modes as shown
in figure (1-3).

These modes always designated by roman numbers [, IT and III, The first
is the vpening mode or tension mode .the second is shearing (in-plane) mode

, while the third mode is tearing mode (i.e. out of plane shear mode).
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Figure (1-3) Modes of loading[7].

In practical cases the majority of cracks result from loading mode L The
others do not occur individually ,but they may occur in combination with
maode I , i.e. I-1, I-I11 or I-T1T-111.

If the loading of these modes is in phase , crack will rapidly choose a
direction of growth in which they subjected to mode I only. Thus the
majority of apparent combined mode cases are reduced to mode I by nature

itself.

1.4 Dynamic Crack Growth(DCG)
The Dynamic Crack Growth{(DCG) in Structure is divided into:-
® Static growth, this state happens in equilibrium condition of crack

propagation , this growth take long time so it consider stable growth also it
has been effected by the temperature of the surrounding, this type of
growth can be controlled easily ,and the researches dealt with it at the
beginning stage , as example of this type of growth is that which take place
due to creep loads.

®Quasi-static  growth, this state happens without kinetic-energy
production, the potential energy will gradually approach zero since the

fractured pieces obviously are free of stress as the state of elastic loads.
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The time of this growth is longer than that of static growth and the
temperature has less effect. There are many examples of this type of
growth such as low velocity impact loading, sustained loads on cracked
structures....etc
e Dynamic growth, this state happens with kinetic-energy production. The
crack driving force in this state is large than that in quasi-static growth,
also it is difficult to controlled for example of this growth the fatigue

crack growth.

1.5 Objective of this Work

The objective of this work is to study the three dimensional crack

problems of curved panels under the action of direct compression, shear
and low velocity impact loading to evaluate the dynamic crack growth
using classical theory of plates, and energy method then resolve the
problem with numerical method using finite element analysis to compare
the results achieved.

To achieve the above objective the following steps are followed:

. This thesis studies analytically the propagation of crack in curved plates
under the action of direct compression, shear and low velocity impact
loading using equilibrium equations (i.e. classical theory of plates).

. Strain energy method of solution have been used also in the analytical
solution to support the results of step 1, using plane stress case of analysis.

. Using numerical computer software (ANSYS-10) based on the finite
element method to calculate the stress intensity factors, these results are
compared with the analytical solution in steps 1 & 2.

. The above calculation have been made for different low velocities of
impact (5-30 m/s),depth of crack, thickness of panel, radius of curvature of
the curved panel and the properties of plate material. The results show the

effect of these parameters on the stresses and stress intensity factors then
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on dynamic crack growth when the curved plate subjected to low velocity

impact by spherical steel impactor.

1.6 Lavout of Thesis

In order to achieve the objectives mentioned above , the current
chapters are arranged as follows:

Chapter two present the review of the previous studies which deals
with buckling, impact, dynamic erack growth and curvature effect.

Chapter three contain the theoretical analysis for direct compression,
shear and impact loading (classical method) on plates without crack to
check the derivation of the equations by making a comparison with the
values achieved experimentally by Featherstone(1998) then solving the
same problem using energy method to get the stresses and dynamic crack
growth.

Chapter four contain the finite element method nodal analysis as well
as the build of cracked panel nodes and elements using MACRO steps in
ANSYS-10 program (see Appendix C) to know how built the nodes and the
elements of this case study. This chapter also contain the steps of acting the
loads and the method of getting pictures and movies during the solution.

Chapter five contain results, discussion and comparison of the results
achieved by classical, energy and numerical methods of solution,

Chapter six present conclusion and recommendations for future work.






CHAPTER TWO
LITERATURE SURVEY

2.1 Introduction

Studies of buckling and fracture mechanics are very widely reported. In
this chapter, the literature on buckling, impact, and dynamic crack growth

will be considered .

2.2 Buckling of flat and curved plates:

There are two types of buckling (bending and shear)some scientists
studied the combined buckling of these two types of loading together on

plates.

(1) W. Jefferson Stroud et al [8](1984), examined several buckling analysis
procedures for stiffened panels, they presents accurate results for seven
stiffened panels and illustrates buckling modes with plot of buckling mode
shapes. All panels are rectangular and have stiffeners in one direction down
the length of the panel. PASCO buckling analysis include the basic VIPASA
analysis which is essentially exact for longitudinal and transverse loads, and a
smeared stiffeners solution( equivalent orthotropic plate solution) that was
added in an attempt to alleviate a shortcoming in the VIPASA analysis-
underestimation of the shear buckling load for modes having a buckling half-
wavelength equal to the panel length.

The EAL and STAGS solutions where obtained with a fine finite element

mesh and are very accurate.

(2} C A Featherstone And C Ruiz [9],(1997), made analytical work to
determine the buckling load and post buckling behavior of curved panels

under various types of loading and different boundary conditions not as
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comprehensive as that for flat plates. Only elementary loading and boundary

conditions have been analyzed .In addition to this, many of the theories
developed have not been tested experimentally. Their study outlines a series
of tests carried out to determine the accuracy of the theoretical and numerical
buckling loads. The experimental results were used to examine whether or
not finite element analysis can be used as an alternative to determine collapse
loads and post buckling behavior, especially in cases where no theoretical
solution exist.
they show that, existing analytical techniques can be used to determine
buckling loads for a structure such as curved panel under the complex
loading case of compression and shear this is done by selecting the most
highly stressed section of the panel, simplifying both the load case and the
boundary conditions and using set formulae. It is concluded that Designers
should be advised to follow simple analytical results to produce a preliminary
design and finite element analysis should be limited for checking its
adequacy.,
(1) C A Featherstome And C Ruiz [10],(1998), determined an expression
for the critical buckling loads of plates under elementary load cases of shear
«<ompression .and bending ,and combination of these three are achieved
LCollapse load predicted by theoretical ,experimental and numerical (using
finite element analysis) for rectangular flat plates under combined shear and
bending loads with different boundary conditions have been studied. They
conclude that
1. Application of existing theoretical solutions to the problem of shear
loading in rectanpular plates caused by a force applied across one end
results in an underestimation of the buckling load.
2. The boundary conditions of a plate loaded in shear and bending ,
particularly at the edge to which the force applied, are important in
calculating the critical load for all aspect ratios.

10
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3. The buckling of a plate under shear and bending is sensitive to

imperfections such as misalignment and curvature of the plate.

4. Finite element analysis can be used to provide better limits for the
buckling load of a plate due to improved modeling of boundary
conditions and distributed stresses,

2. Finite element analysis is still not able to handle more complicated
boundary conditions.

6. Eigen value analysis can only be used providing buckling occurs
within the elastic region,

(4) C.A. Featherstone et al (2000)]5], the use of finite element buckling
analysis in the stability design of thin shelled structures allows complex
geometries and load and boundary conditions been considered. Two
approaches are possible. A linear bifurcation buckling analysis were carried
out to determine the bifurcation load of the perfect structure, Reduction factor
then been applied to account for the geometric imperfections and plasticity.
Alternatively a fully non-linear analysis can be performed with deflections,
geometric imperfections and plasticity properly modeled, Their work
assesses the suitability of each of these methods to predict the buckling loads
and post-buckling behavior of two structures flat plates and curved panels
under combined shear and compression a load case commonly found in aero
engine structures such as vanes. Experimental data is also presented for

comparison,

(3) Khaled M. El-Sawy and Aly S. Nagmy|4] (July 2001), employed Finite
Element Method (FEM) to determine the elastic buckling load of uniaxial
loaded rectangular perforated plates with length & and width b. Plates with
simply supported edges, in the out-of-plane direction and subjected to

uniaxial end compression in their longitudinal direction are considered.

11



Chapter twe
Integer plate aspect ratios, A/B=1, 2, 3 and 4, have been chosen to assess the

effect of aspect ratio on the plate buckling load.

Two perforation shapes of different sizes are considered; circular, and
rectangular with curved corners. The rectangular perforation is oriented such
that either its long or its short side is parallel to the longitudinal direction of
the plate. The center of perforation was chosen at different locations of the
plate. The study shows that the buckling load of a rectangular perforated
plate that could be divided into equal square panels is not the same as that of
the square panel that contains the perforation when treated as a separate
square plate. For rectangular plates, the study recommends not to have the
center of a circular hole placed in a critical zone defined by the end half of
the outer square panel, to try always to put the hole in an interior panel of the
plate, and to have the distance between the edge of a circular hole and the
nearest unloaded edge of the plate not less than 0.1 of the panel length. The
study concludes also that the use of a rectangular hole, with curved comers,
with its short dimension positioned along the longitudinal direction of the
plate is a better option than using a circular hole, from the plate stability point
of view.

(6) Cairns ef al.{2005) |11], presented an analytical solution for an
orthotropic plate subjected to general lateral loading. The results showed that
the analysis agrees well with the experimental data and could be used in
conjunction with failure criteria to predict damage initiation in a localized
region. The composite materials have high strength-to-weight and high
stiffness-to-weight ratios. However, they are susceptible to impact loading
because they are laminar systems with weak interfaces. Matrix cracking and
delamination are the most common damage mechanisms of low velocity
impact and is dependant on each other. In fact delaminations are generated by
matrix cracks, which are the initial damage. In the presence of delaminations,

the stiffness of the material and thus of the associated structure may be

12
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significantly reduced, which may result in a catastrophic failure of the

structure. It is therefore highly desirable to estimate the delaminations in the
composite materials, submitted to impact loading.

Many researchers have made effort to analyze the impact behavior of
composite structures. However, only some studies have so far been devoted

to the damage prediction of low velocity impact on composite laminates.

(7) I Shufrin, . Rabinovitch & M. Eisenberger (may 2008) [12],
presented semi-analytical approach to the buckling analysis of generally
supported laminated plates subjected to a general combination of in-plane
shear, compression, and tension loads.

Arbitrary out of plane and in-plane boundary conditions at the edges of
the plate are considered. The formulation is based on the variational principle
of virtual work and the multi-term extended Kantorovich method. The semi-
analytical method is used for the pre-buckling and buckling (stability)
analyses of laminated rectanpular plates with in-plane restraints under
arbitrary in-plane loads. The accuracy and convergence are examined through
a comparison with exact solutions (where available) and with finite element
analyses. The applicability of the method is demonstrated through various
numerical examples that focus on the buckling of rectangular composite
plates with a variety of boundary conditions and various combinations of the

in-plane shear, compressive, and tensile loads.

2-3 Impact Loading and Time Duration

The classification of impact loading is according to the velocity of the
impactor and the literature survey concentrate on low velocity type which is
in the scope of this study.

(1) Lengin B. Greszezuk (1981) [13], obtained the magnitude and
distribution of surface pressure in the target caused by impact can be obtained

by analytically combining the dynamic solution to the problem of impact of

13
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solids with the static solution for the pressure between two bodies in contact

;similar to the method described by Timoshenko (1934)for impact of spheres.
He conclude the following

I. Resistance to damage increase as the fiber strength increases and the fiber
modulus decreases.

2. Resistance to damage increase as the young's modulus of the matrix
decreases and the strength of the matrix increases.

5. Bidirectional layup is more efficient in resisting damage than
tridirectional or unidirectional layvup.

4. Impact can cause extensive internal damage with very little or no visible
damage on the outer surface,

5. Target curvature effects the impact parameters and failure modes.

(2) Vijay Maka and M. A. Wakab (2005) [14], represented analytical study

of damage response due to impact load on composite plates, they noted the

various parameters like fiber orientation, fiber thickness, mass of impactor,

velocity of impactor, and boundary conditions are vary effective on damage

initiation and propagation.

(3) Arman Murad (2006) [15], presented analytical study for calculating the
stress intensity factors in cracked plates under combined (buckling and
tension) loads and impact loading (static load as Hertzian contact ) for
different aspect ratios, and crack angle, by using Lagrange equation. The
analytical results compared with the numerical results using ANSYS-9.0
program,

A 3-dimensional finite element analysis and 2-dimensional analysis for
stress intensity factors (SIFs) (KI and KIT) in isotropic plates was performed
St.steel and Aluminum plates with different aspect ratios and crack angles

were considered under combined ( buckling and tension) loads which were

14
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applied to the edges of the plate. Numerical and analytical results of (KI &

KIT) had been compared .

(4) Ali Fahad Fahem (2007) [16], the effect of impact loading on dynamic
crack propagation in thin and thick isotropic plates are investigated
analytically and numerically to give a study of 3-D crack growth. The
stresses are computed using classical and energy methods . The dynamic
stress intensity factors have been obtained at different time of impact
duration under impact velocity(2-8 m/s), the crack opening displacement and
crack propagation using Dugdale theory for plane stress and plane strain are
investigated.

The major observation and conclusion from study dynamic analysis,
simply supported stainless steel and aluminum cracked plated, under various
impact velocities by cylindrical steel are listed as follow:

. The results of DSIFs and velocity of crack propagation obtained by the

building of programs by FORTRAN bower station-90, for impact loading.
These results have been obtained by two different ways. First by using
classical method, and secondly by energy method. These two ways is gives

the some results with percentage error is lowest than (15%),

-In the case of internal crack the values of dynamic stress intensity factors

(DSIFs), is depended on the depth of crack and angle of local (alpha).

. The duration of time impact is decreasing when the velocity of impact is

increasing, and when the young modulus is increasing the duration time
decreasing i.e. the duration of time depended on the properties of material.
The crack propagation activity at location when maximum DSIFs along the
crack front. Also the plastic area is large then compared with a critical plastic
area (Dugdal model).

. The wvelocity of crack propagation in steel is larger than that in aluminum

because the difference in young modulus.
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6. The velocity of crack propagation in plain stress is larger then in plain strain,

1.e. the crack velocity is decreasing when thickness of plates is increasing.

7. The velocity of crack propagation is decreasing when the aspect ratio is
increasing. In addition, increasing velocity of crack when velocity impact
increase, when deep of crack increase the crack velocity increasing. This
behavior as applied for path material and plane stress and plane strain.

8. The strain energy method is applied for all velocity impact and gives good
agreement when velocity impact increasing more than 20 m/s. Where the
percentage error for result between the airy method and energy about (13%).

9. Possibility of using the neutral frequency of plate without crack result for

plate with crack when the (‘%;}::4}.4}3 for isotropy material. Where the

percentage error is lowest than (4%).

10.The dynamic normalized stress intensity factor is depended on the geometry
of model and dimension of crack. Also when the deep of crack is increasing
the factor is increasing this meaning the crack growth possibility effective.
(3) LY. Zhang and M.O.W. Richardson(2007)[17], investigated low
velocity impact induced non-penetration damage in pultruded glass fiber
reinforced polyester (GRP) composite materials using an instrumented falling
weight impact test machine with a chisel shaped impactor. The characteristics
of the impact event, force/time and force/deflection traces were determined.
The internal damage was visualized and guantified by Electronic Speckle
Pattern Interferometry (ESPI}) in terms of the thickness, density and
uniformity degradations of fringe patterns. There is a linear relationship
between the impact energy and the identified damage areas. The post impact
structural integrity of impacted specimens was evaluated by three point
bending tests. It reveals that there is a significant reduction in flexural
properties due to the impact-induced damage and that the residual flexural

strength is more susceptible to damage than residual modulus.
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2-4 Dynamic Crack Growth(DCG):
(1) Alan T. Zehnder, et al.( 1999) [18], studied Analytically in shell

structures subjected to very complex stress states. Using small deflection

Kirchoff plate theory to calculate stress at the crack tip and crack growth to
compare with (F'EM.) and experimental results, they showed that crack
growth is not dependent on mode I only, but depend on a comhination of
parameters. The shear loads induces a great deal of contact and friction on the
crack surfaces dramatically reducing crack growth rate.

(2) M. J. Maleski et al (2002) [19], They represented experimental technique
for measuring crack tip and Dynamic Stress Intensity Factors (DSIFs) and
compared with numerical and analytical solutions. The method exploits
optimal positioning of stacked strain gage rosette near the crack tip, the
method is demonstrated for quasi-static, low velocity impact loading
condition and two values of crack length to plate width ratio. They noted that
experimental results are good agreement with those obtained from numerical
simulations.

(3} Yung-Tze Chen,(2003)[20], studied the crack propagation of linear
elastic cracked plates .An analytical solution for crack propagation of the
cracked plates subjected to uniform static loading with simply supported
boundary conditions is developed by means of Galerkin method coupled with
integral transform method.

Results for this analyses are used to draw conclusion regarding the ability
of relating crack speed ratios to aspect ratio, to crack lenpgth ratio, and the
stress intensity factor,

The rational approach for crack propagation of an elastic ,isotropic,
homogeneous rectangular plate with full in depth crack has been proposed
with success by means of Galerkin method coupled with integral transform

method. He conclude that the stress intensity factor ratios decrease in
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sinusoidal fashion with increasing crack length ratios and inversely decrease

as crack-speed ratios are increased.

(4) Seung Jo Kim, Nam Seo Goo & Tae Won Kim, (1997)[21], investigated
the dynamic behavior and impact-induced damage of laminated composite
structures. Special atiention is given 10 curved structures, which have been
widely used in various aerospace applications. A three-dimensional finite-
element code is developed that can describe dynamic and impact behavior
and predict the impact-induced damage of shell-shaped structures,
Incompatible eight-nodded brick elements with Taylor's modification and a
successive coordinate transformation scheme are adopted. A modified
Hertzian contact faw is utilized to compute the contact force for an isotropic
sphere on a cylindrical composite shell. The governing equation is integrated
in time by the Newmark method. A scheme of detection of impact-induced
damage is proposed for determining damage patterns resulting from low-
velocity impact.

The parametric study of the dynamic behavior of cylindrical composite
shells with various curvatures and stacking sequences is presented. The
results are compared with those of plates of the same dimensions and
stacking sequences. As the curvature increases, the maximum impact force
becomes higher for the same impact velocity. Although the delamination
patterns of the cylindrical shell have a similar tendency to those of the plates,

the delaminated area widens as the curvature increases

At this study curved plate analyses of deflection, stress and dynamic
crack growth analytically derived using classical method and by both energy
and classical methods as well as the finite element method of analyzing using
ANSYSI10 program under the action of direct compression in x-direction

,shear force in the plane of the panel and low velocity impact with different

18
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velocities located at the center of the panel, FORTRANS0 programming

language has been used to find the values of the equations derived in this
study, ANSYS10 finite element program and other methods ( classical and
energy ) are used to analyze the same problem to compare the results
achieved by them.,

The stresses .deflection and dynamic crack growth can be calculated for
different thickness, velocities, time duration of impact ,and various radii of
curvature in x-z and y-z planes, different aspect ratios and variable values of
direct compression and shear force can be apply using the same program also

another location of impact can be analyzed,
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CHPTER THREE
ANLYTICAL SOLUTION

3-1 Introduction

Thig study will concentrate on analyzing deflection. principal stresses, in-
plane stress intensity factors(KI and KII) using different methods (classical,
energy and finite element using ANSYS 10 program ),

The panel will considered as curved type i.e. has initial deflection with
magnitude depend on the radius of curvature and the plane at which it lies. The
panel subjected to in-plane forces(direct compression and shear) and out of
plane load (low veloeity impact by spherical impactor).

Figure(3-1) shows the general shape of the panel under the action of all
loads under consideration. All edges of the panel will be consider as simply

supported.

U.D.Shear

s

-
low velocity
impact ;
Er:i:(h‘\‘ I_I '
spherical |

U.D.direct impactor

compression

. -

Figure(3-1) Shape of panel under loading system (case study).
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3-2 Assumptions
To get the analytical solution using plate theory the following assumptions
will be considered:
1-The material of plate is elastic, homogeneous & isotropic.
2- The plate has initial curvature i.e. initial deflection (w,), as shown in
Figure (3-2).
3- The deflection of the mid-plane is small compared with thickness of
the plate ,s0 the square of the slope can be neglected.
4- The straight lines initially normal to the mid-plane stay straight and
normal during deformation.
5-The stress normal to the mid-plane oz is small compared with the
other stress component and may be neglected
6-The middle surface remain unstrained after bending (i.e. neutral axis
coincide with the mid plane.
For low velocity impact the vibration effect can be safely neglected,|22] and
the following assumption will be considered:
7-The target and the impactor are linear elastic.,
8-Impact duration is long compared to stress-wave transient time in the

impactor or target of finite thickness,
5-The impact is normal to the target mid plane of the panel.

Figure( 3-2) Shape of curved panel type elliptical paraboloid .|3|
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3-3 Boundary Conditions:

For all edges simply supported we have

w=0 |.1'II:L:|:

w=10|y_4p

z ai
s HugE) =0

—u[ =0

Where

En?
1Z{1—pt)

= the lateral rigidity of the plate .......(3.1)

And
h: the plate thickness.
E: Modulus of elasticity.

W: poisons ratio,

3-4 Governing Equation for Deflection of Plates in Cartesian Coordinate:

The general governing equation for deflection of plates in Cartesian

coordinate subjected to lateral load (p) can be written as, [3];

i = P
Viw = D treeteseersssssasesiisesssseseinins o (3.2)
Where
P 1is the lateral force(i.e. the pressure due to impact).
and
O SE i T L D0 it (B33)

dxtayt ayps
And for lateral and in-plane forces the general equation will be, [7] :

aEw 82w

Viw =—@+Nxaz+zﬂx}.aa +N—'-"EF" ............... (3.4)
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l'ilnll'l-E'“E'l"E-'

p =the lateral load (impact load).

N, = direct compression/tension force in x-direction.
Ny, = direct compression/tension force in y-direction.
Nﬁ, = ghear force in xy-plane.

Let now consider a plate with an initial deflection wy (i.e. curved plate ) It is
assumed that : wy is small compared with the plate dimensions .If the plate is
subject to in plane and lateral loads then an additional deflection wy occurs and
the total deflection is,]7]:

W W i e R S s (3.5)

Here w; is the solution of eq.(3.2). If beside the lateral load , the direct
forces are also applied to an initially curved plate, then these forces produce
bending , which depends not only on w, but also on w,, , in order to determing
the total deflection w let introduce eq.(3.5) in to the right hand of eq.(3.4).

The left-hand side of this equation takes into account a change in curvature
from the initial corved state due to a given lateral load . Therefore wy has to be
substituted for (w) on the left-hand side of equation (3.4), for the initially
curved plate the governing equation will be of the following form,[7]:

A% {wey +wo ) )
= )

& (g +wg)

axdy A 3.6)

Viwy =2(p+N, 23 oy, + Ny

As mentioned previously , the influence of the initial curvature on the total

deflection of the plate is equivalent to the influence of some fictitious lateral

load of intensity p, expressed as,[7]:

1

a%w a2w o
Flf = NI o : +N}. ﬂ: 1':" +2H:}r-ﬂ-'fa:}" ...................................... {Jq?}

For the case under study the lateral load will be the impact load which is a

function of time and the coordinate of the contact region,
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3-5 Geometry of the Curved Plate

Curved plates have an initial deflection depend on the radius of curvature
and the type of the curved plate. The case of study has double curvature panel,
this type named elliptical paraboloid , the trigonometric relations gives the
value of that initial deflection,|3].

When there are more than one radius of curvature as in the case under study
which has a double curved shape (i.e. in x-z plane and y-z plane) as shown in
Figure(3.2) which refers clearly to that: The total initial deflection is the sum of

the initial deflection of the first plane and that of the second one.

The length of the are is known according to the dimension of the plate under
study, so
pp=length of arc.
where
p,=radius of curvature in plane I(i.e. curvature in xz plane).
gp=centric angle of the arc in that plane.

The initial deflection (w, ) will be

(Wo)pianer = M1 (1 — cos (%)} .......................... (3.8)

By the same way for the other plane

Wdpiamer =Pa (T =0051F)) oeosisiiiciiiinioniss (3.9)

where

pr=radius of curvature in plane 2(i.e. curvature in yz plane).
B=centric angle of the arc in that plane.

The total initial deflection will be

W,-_-,. = [wﬂJP!ﬂ"EI + {Wﬂ]plﬂﬂﬂl ............................ {3.1{}]
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3-6 Curvature Parameter (Zp):

When the radius of curvature varies the mode of loading and the stresses

induce in the plate also changed .the critical stresses (bending & shear) and
buckling load also change The method of fixing the ends of the panel play
great effect , the shear and compressive buckling parameters also changed
(many books gives the relation between shear and compressive parameters and
the curvature parameter ).

The curvature parameter represented as 19]:

Where:
B :Length of the shorter side of the plate.
For the case under study there are two radiuses of curvature and the effective

curvature parameter can be calculated as [23] :
1

2= — e e e R
TS

Where 2,5, = curvature parameter of first curved (i.e. x-z plane).

Zyz = curvature parameter of second curved (i.e. y-z plane).

3-7 Buckling of Plates:

When plates subject to large in plane loads either compressive or shear they
buckle. The buckling phenomena is not linear because it characterized by
disproportional increase of the displacement associated with the small
increment of the loads,[3].

In plates ,buckling may be due to the action of in-plane normal forces  ( NX
and Ny ) along x and y direction respectively or due to shear forces ( Nxy ) in

the xy plane, either acting individually or as a combination.
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Unlike columns, the plate failure does not occur when the critical buckling

load is reached .Plates continue to resist the in-plane loads far in excess to the
critical load before failure thus the post buckling behavior of plates plays an
important role in determining the ultimate carrying capacity, [24].

Consider a rectangular infinite small element dxxdy has been bent under the
in-plane forces Nx Ny Nxy ,Nyx , and transverse forces/moment Mx My

Mzxy Myx ,Ox Gy will be as shown in Figure (3-3).

J
d",. Ir:

Figure(3-3) External loads can applied on a panel,[3].

Let the internal resistive force appears as in-plane forces applied on the
element (per unit length of the side on which they act) ,remembering that for

large deflection of plates there are in-plane forces in addition to the transverse

moments and shear.,

For transverse moments and shear

L3
Fw=0
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The equilibrium differential equation due to lateral and in-plane will be as,[7]:
% (we)

1 8% (we) % (wre)
Vhwy =5 (p+ Ne SR04 2N 500+, 55 ) (313)

Where
w, =total deflection=w; + w,

For the case under study Ny=o

p: is the impact load.

Ny :Shear force applied in xy plane.

Buckling parameter is one of the most useful values because it describe the
buckling behavior and it calculated analytically or by empirical formulas, these
parameters achieved by eguating the in-plane forces to zero except one then
substitute the suggested equation of deflection in eq.(3.13) to find that load then
derive the expression and equate the derivative to zero to find the smallest
eritical buckling load,(for more information see [3] and| 22]).

For bending buckling produced by direct compression the values of
buckling parameter for all edges simply supported with different aspect ratios
are given in Table(3-1). When a panel subjects to direct compression only, the
critical buckling load can be determined with a given mode & geometry as[22] :
o = &%(ﬁ]? R - -0
Where :

K =Bending buckling stress parameter.

Table(3-1) Bending buckling parameter with aspect ratio of all edges
simply supported curved plate.|9]

AB |05 0.6 0.667 (075 |0.8 0.9 1.0 1.5 2.0

K, [256 |24.1 |239 24.1 (244 256 |256 |[24.1 |239

J

For other type of boundary conditions such as clamped end just the values
of the bending buckling parameter will change,[235].
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For the case of shear force only (i.e. shear buckling ), Table (3-2) shows the

shear buckling parameter for all edges simply supported curved plate with
different aspect ratios, and the critical shear buckling stress will be [9];

o HS‘.IIE
T 12(1-u%) B

Where:
K.—Shear buckling stress parameter,

o e e

Table(3-2) Values of shear buckling parameter (K,) of all edges simply
supported plate, [22]
AB |1 1.2 |14 (15 |16 (1.8 |2 (25 [3 |4 |

|
K, [934 |80 (73 |71 |70 |68 [6.6 [61 |59 [57

When both bending and shear are applied on a plate, or there is also lateral
load the principal stress (g, ) can be used with Table(3-1) since there is no shear
in the plane of principal stresses, 8. P. Timoshenko [22] calculate the buckling

parameter for combined shear and bending stresses according to the ratio of {‘:—},

the critical buckling stress will be:

E h
o _-_!:Zﬂtﬂq 7 SR e g G S (3.16)
Where

Keomp =buckling parameter for combined shear and direct Compressian.
Table(3-3) below shows the buckling parameter for combined shear and

direct compression with (aspect ratio=1)

Table ( 3-3) Buckling parameter of combined shear and direct
compression, with aspeet ratio=1.[22]

a 0.0 0.5 1.0 1.5 2.0

T
_ Keoms |1471 [709 |45  [324 |251 |

For other aspect ratios see theory of elastic stability by Timoshenko|22].
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3-8 Deflection and Stresses in Curved Plate

Let the initial deflection represented by the form,[7]:

Wo, B e LR D SR SINT ieccrinsianni (3.17A)

@nn The initial deflection at the center of the plate,

The deflection due to apply of external force will be

pprhre

Wy = Winn 2on ot ST J .E'fﬂ% .................. (3.17B)

Wi ¢ The mode shape of deflection

Also the deflection due to direct compression only according to Navier's

solution i3

Wy = AcEﬁﬂﬁsinm—:fsm% T e (3.18)
Where
A, = constant.

n & m: number of half sine waves of the panel shape in x and y directions
resp.
Substituting in Eq.(3.6) putting N,.,,, p and N,, equal to zero gives[22]:

& e e M Ry
wC :ll—rt.;EmEn EiHTSi?lT ..................... {319}

where

we=deflection due to direct compression only.
N
g=ros b
Now, to find the deflection due to shear only put N, p and N,, in Equaton
(3.13 ) equal to zero, using

. FT . T
we = A; ¥ X sin J‘tﬂcsnﬂrﬂ—ﬂE PRNEPEIR B 11 1.4 I
Where

A; = constant,

The expression for the deflection equation under shear only will be :
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ﬂﬂ:’ g S g Fi s
= = =] H.JI
W = e e d L — {S!H"—Sfrt—}.......{E.zz::l
i { T i B[4
Where

w, = The deflection due to shear only,

For more information appendix (A) contain the derivative of
equations{3.19) & (3.22).

For the case of combined shear and direct compression, by adding (3.19)and
(3.22) gives

]H!E
R e : o o= TTIEX nwy
— = n
WSG Ei‘ﬂ Eﬂ Em”’ [1—19 + 1 + rl'zl:..!:!+[id1 g mf_ L 2”:_1' ]Szn A Sf g
A tam A [ 7 D
.................... (3.23)

Where
w,. = Deflection due to shear and direct compression.
Attention should be taken that super position method can not apply if there is

out of plane force.

3-9 Pressure Distribution Due to Impact:

Let my, and v, be the mass and velocity of the impactor respectively ,and
the mass and velocity of the target be m; and v, respectively . The rate change of
velocity during impact for the impactor and target will be according to

Newton's second low as :

M= F  and My =F i (3.24)

Let the distance of approach of the impactor and the target because of the

local compression due to impact be @ .then the velocity of approach is

According to Hertzian contact, [6]:



i T R (3.26)
. i L

And g Bty st stiice: (3.27)

Where

R; = Radius of aspherical impactor

_ 1-#] _ 1-ui
kl = #El kz — -"_'Ez r-.-lpdll..-|-r—-|-r-JLJLJJLllr|1l|1{3-EE.}

E and u refer to modulus of elasticity and Poisson's ratio respectively. and
the subseript 1 & 2 refer to impactor and the target respectively.
Differentiate (3.25) and combine with (3.24) gives,[6]:

e B (3.29)

Where

ME:L_FL

My Mgz

Multiply both side of (3.29) by ¢ and integrate to get

ol —p? = — %Minai ................................. (3.30)

Where
dr:approach velocity at the beginning of the impact.

Maximum deformation @, occurs when & =0 and

5'-:'[1-’1;2 E

ot IR (3.31)

iy =

Let the impactor velocity be vy, the energy balance becomes

1

=M Vi = |- R o el (3.32)
Substitute p from (3.26) and integrate to get

imimu,[mz = Enfﬂfwz .................................. (3.33)

Let v, = vy, and M. = ;:— substitute eq.(3.31) into eq.(3.26) gives

im

2y Sp® 3
p=n. 1557
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The relation between radius of hertzian contact and the pressure due to

impact will be
1
= [H‘TFUH S P e S e T {3.35)

Where
r. =radius of patch due to impact.

Substitute p from eq. (3.34) in to eq. (3.35) gives:

T = {HI.}%[E"WE}% ,,,,,, e V. I EN (3.36)

aMn,

It has been shown by (Hertz 1881) and Timoshenko (1934) that; the pressure

distribution over the area of contact is[6]

i 2.1

Pro =Boll= S =5 cisiiniinnniins (3.37)

et
Where p, is the maximum pressure (i.e. the pressure at the center of contact)

and

2 (3.38)

-Fln T zﬂ-].-ci ------------------------------------------

3-10 Impact Response of Flexible Target:
For flexible plate type target , the surface pressure. area of contact and

impact duration will be a function of the parameters (mass and velocity of
impactor & elastic properties of the impactor and target) as well as plate
bending stiffness (D) and boundary condition. For a given impact velocity the
magnitude of dynamic force p will decrease as the target flexibility increase
(or decrease the target thickness ) , increase in target flexibility will also

increase contact duration time and decrease the area of contact,[6].
3-11 Impact Time Duration :
The time duration caleulated by Timoshenko (1934) from the problem of

impact of two bodies as,[6]:

-]

" —p?=— EMc?Lfaii .................................. {3.39)

a

Or
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@ = (vl —4/5( Maga; 32 )95, oo, (3.40)

Substitute & = '::—r and solving for (dt) gives

T T S W AL (3.41)
(v*-2Mnadyt
Integrate to get
2ay X di
B e e L M S S e e 42
v -rlil {1--.1-5-“3}% (3.42)
Where
T
X=—
L

The total impact duration (£, ) is obtained by integration between the limit
(3x=0) and (x=1),]6].

&

t = 2.94( = o (3.43)

The variation of surface pressure (p) , radius of the area of contact (7;.) and
surface pressure distribution (p,,) with time can be determined by first
numerically integrating (3.42) and determine [.::li] as a function of time ( i].

The resultant plot of this solution is shown in Fig(3-4), the curve can be

approximated fairly accurately by an equation:

i
o=y sEnr ................................................. (3.44)
¥

LT

Fs
—
ay
T = TIME
Wom EMITIAL ".i:FLqEI-'I"ﬁ OF APPROADH, .
Ry = MARIMUMDEPTH OF FENETRATION
Wom OEFTH FE FENETRATION AT TikE, w1
tg = FEEE = = TOTAL CORTA&CT
DLURATION
g Y
L A
4 | I |
B 6,76 0. 78

Figure(3-4) Generalized pressure-time relntmnshlp of low velocity im pm:r [6]
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Substitute ( t; Jfrom (3,43) gives

4 miy
0= ly Sl it e (3.45)

From (3.26) one can get

ing RN B
p(t) = el (s 5in T FE yr e sere e kAN ARES R (3.46)
The pressure distribution at the contact region will be,|6]:
T %
Plugsn) = P(B) (1 — ) nn347)

Where (1, and v,) is the width and length of the patch area produced by
impact,

Substitute (3.46) in (3.47) gives

. 3ngs o Sfs _ uet Wt
p{Hn,l’n.tj ~ BmZymer (@ sin Fre IE (1 5 &1) cieasssl 348)

3-12 Influence of Target Curvature :

Target curvature effects both magnitude and distribution of surface pressure

caused by impact as well as the shape of the area of contact. The influence of
target curvature noted by Greszcuk and Chao (1975) are, [13]:
1-Area of contact is elliptical and approach circle as the radius of curvature
increase.
2-The area of contact decrease with decreasing radius of curvature.
3-Maximum load resulting from impact decreases with decreasing radius
of curvature.
4-Maximum surface pressure increase with decreasing radius of
curvature,
5-Contact duration time increase with decreasing radius of curvature.
In the case of study there are two curvatures of the curved plate so the
general contact relation should be used. Hertz showed that the intensity of

pressure between the contacting surfaces could be represented by the elliptical
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( or, rather, semi ellipsoid) construction shown in Fig( 3-5 ). The total contact

load is given by the volume of the semi-ellipsoid,[23].

Where
B= the length of minor axis of the elliptical patch.
A=the length of major axis of the elliptical patch.

p,=the maximum pressure of contact.

£ 4

Maximum  eontact
pressure  p,

ContocT pressure distriburion
n algng x =0 oOxis ;

¥

Figure(3-5) Pressure distribution between two curved bodies in contact.[23]

The maximum pressure p, will be

__2
Do = 5o ceeeeeesrnrieeessinee s (3.50)
—i.T
A= MM (3.51)
_ P
B=nnf 25 v, (3.52)
Where
mm and nn are constants.
1
A=[1- ] + o = liraii®] it (3.53)
ek g X oL b
¥ [R' + e + - + pll .................................. (3.54)
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R;. Ry =maximum and minimum radiuses of impactor respectively in

unloaded contact in two perpendicular planes=R; .
Py, Pz = maximum and minimum radiuses of target(plate) respectively

in unloaded contact in two perpendicular planes.

Let
¥ =co5" ;:i} .............. e e U (3.55)
Where
Sl s
*’L—z(‘; sz) e s e e e LIE)

Introduce two constants (mm and nn) they are also functions of the geometry

of the contact surfaces and their values are shown in table(3-4) for vanous

values of y .
Table (3-4) Values of constants for contact of impact.[23]
| ¥ 20 30 | 35 40 45 50 | 55
degrees -
mim | 3.778 2731 1397 2.136 1926 | 1754 1.611
nn (.408 0.493 0.530 0.567 0.604 0.641 0.678
E 5 60 63 70 75 80 85 90
degrees
mm 1486 | 1.378 | 1.284 | 1.202 | 1.128 | 1.061 | 1.00
nn 0717 | 0.759 | 0.802 | 0.846 | 0.893 | 0.944 | 1.00
I

* mm and nn are constants.

3-13 Conversion of Elliptical Patch to Rectangular :

In finite element analysis stress modeling of circular area is much difficult

than from the rectangular one, According to Timoshenko]25], acicular and a
square loaded area are equivalent with respect to the bending moments they

produce at the center of the area ,if :

T 4
ﬂ—ﬁeu =0.5Tu, or U, =088*2A ..oovviiininn (3.57)
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Figure(3-6) Conversion of elliptical contact patch to recta ngular.|15]

Eo=UBBe 2B i T (3.58)

Where (1, and v,) is the width and length of the patch area produced by
impact.
3-14 Deflection Due to Impact, Shear, and Direct Compression

The deflection due to impact only can be expresses as,[Tland,[22]:

iap(n) -'3":'r|:|1.~'-|"1:ﬂm_'.rms‘--"-ﬂ
|.'|."'|| ':'F'D_Eﬁz‘:j _g FI.] EB LR ---a-r-.rr---u.-...-...-.[].sg}
mﬂ{i:!+ﬂ—!]
Where:
_.mnﬁ.mrq.mrruu_nm.ru
Smn = SiN 2 Sim==sin=—-= sin = | Wil (3.60)

Where
(&n the coordinates of impact location in x and ¥ direction respectively.
Up & v, the dimensions of rectangular contact patch in x and v direction
respectively,
For the case of impact and direct compression (i.e. lateral and in-plane

forces) the deflection can be expressed as, [24):

37



Chapter thrae

 MIX Ry
SmnSi——sin—=
B s (3.61)

Z p N, L
mn {5 + o))

163,01
Wi, = _:;.ﬂTE}E: ErT

The positive sign in front of the direct compression(NV,) will be negative
because the above equation for tensile and impact, and the tensile try to reduce

deflection while the direct compression increase deflection, so rewrite

Eq.(3.61)as:

S i) T,y
—_ 19D
Wi === in

MR
Smn Sin——5in—=

8
e (3.62)
G+ =5 )

Now adding the shear effect to this equation using eq.(3.6) and put
(p.N; and N, ) not equal to zero and substitute (wy and w,) from eq.(3.17)

and eq.(3.18) respectively to get, [27] :

i i T e B vl 3.63)

x ARt N S e
& b4 {15 Nt Iy
Dtann g{?)*(i’)} 22 DA Tnipat inToag

Put{ Ny = 0} in the above equation to get

IIIl"ll?‘l“l:ﬂ

TTE "Ry

_ 16p,(t) Sinn Sin——5in—
Wiae S = ek e — . gt e (3.64)
mnl Gt g ) 25 ) )

miD
The direction in shear force and hence shear stress has no effect but the use of

negative sign here because shear force try to increase the initial deflection (i.e,
the initial deflection has no possibility to decrease),the effect of pressure here is
determined as uniform distributed pressure over all the plate but in the case of
study the pressure due to impact is function of time, also there is an elliptical
contact patch converted to patch of dimensions (u, + v,)as shown in

Fig.(3-5).also there is an initial deflection which will be increase or decrease
according to the direction of impact, the initial deflection from eq.(3.17) also
used, the final equation of representing the deflection in case of study will

be:(see appendix A)
LEP(t) oo msin—m;: an“—;-‘—'sfn——"":l“"sfn“E_“f'_smH‘;Eﬁﬂ?
Wize =W, + TR m e i ceeeenea| 3,65)
== 2‘_1[_]2_2"5&("__} ]
mal ) =5 o
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The pressure due to impact can be expressed as, [6]:

p(t) =

({Il sin

Fils
B, m 2944

Now substitute w, from eq.(3.17) in eq.(3.65) to get;

slnm sEI'J—rislfn--—----e!mE
] {sin == gin 2=

“”{[:T*Eﬂ’ _J:Hrﬁj —nggli ag) | ! #
(3.67)

14 ft}
Wics = [nmn P EmEm

3-15 Stresses Due to Impact, Shear and Direct Compression
Stresses are function of the deflection and the following formulas can be

used

g, = ﬁ%{?{—{‘: + u":—‘: ......................... rereneenesnnn(3.68A)

Oy = s (i F RIS} i e (3.68B)

T, = “’_"fu} {;:;‘;} .............. T U W) (3.68C)

B o ()2 + 12D gy ST SR ey

g "_*'"!':'I "_{ﬁl;a,]' a7 | ;
SSRGS L . )

t ﬂ FEfiEn
a® a*w 15“{} ﬂﬂﬂﬂ T —, T
2 = ()2, + 120y e AR ] (stn D ggn 1)

- )
....,.,,.........(3-?01

- B
SRR i T '““_-:m'“'”

i M 16p(r) —— mTE

= = ot ey, + ———Fen= s - 4 ] (cos — o5 Lt

R A CHER i m“-.["'!'*-z:'“ ﬁ{n} ~15(5a) .
.................... (3.71)

Maximum stresses induced at the surface of the plate where (z = E:-}, g0

o=t g () +4(G) Nem +

M T
SInEEE gjn T i THO

s [Ei SN ; y
p It g a b zd ] Sin X gin MY A 3.72)
mﬂ{.{":""—f]; |"||'_r :I l: A B
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5 EH a2 2
=" =5 () +4 () N+
sinmﬂslr-"m'

i ._;Eq-"ﬂ#ﬂ
Lepit) P — i " Wit ]{sm Zsint> vavasalai 7 )

i mnf(+25)2 Ay _ ey mny 3

= e EH {mn ( 4
o =T A T ) A Fma
1'5F'ft:3 = ELHm—Tﬂ: Sfﬂ%smm':u _-:m“m —
ImZn {cus—rms— (379

E- m
I mnf(Ir e a2 m—f{

Substitute pit) from eq.(3.66), the above stresses equations can be written

a5,
E_HFE_{ Zy5in: i :'é
= 2 ™ RZptner 2.0
O =T T FIJE z {( ) +F( ] Hetpn +—F =50 :
Einy—x L LT i
A} (sin==sin=2) ... (3.75)

"T“ff‘r‘—zl'*—a( 2 ~2p(m) ) 2

1
ey sin—= o )2

T zzu pzjz z {() _|,.|u(_..) H@mn + ﬂmrnﬁn

ﬂhlm:; oy o D P

r'I::I'I-'J.-'

e i — s —=sin=") ...............(3.76)
malCr g - () 25 (5E) )
EH £ {aIsmnﬂﬁ
2 rr.l"r_.m r 24y
Tay = 2014u) E E [‘g,g } '[":r?'rlil'l L e
s Ml T, .. TR n:Ta.'u-
sin T A AL L
e 1} (cos=Zcos ™) ............ GI7)

e g - ) ) )

The principal stresses can be calculated for various times:
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o =224 J{%}ﬂ oy (3.784)

g, =20 J{@}H R (3.78B)
1 T ﬁ

By, = Sarctan ﬁ*;”} .......................................... (3.78C)

Where  (8,) angle of principal stress.

3-16 Fracture Control:
Establishment of a fracture control plan requires knowledge of two

objectives namely to determine:
-The effect of cracks on strength.
-The crack growth as a function of time.
The effect of crack size on strength can be shown in Fig(3-7).
In fracture mechanics crack size is generally denoted as a, the strength is
expressed in terms of the load (p). suppose a structure has no significant defects

(a=0) then the strength of the structure (Pu) the ultimate design strength load.

Pas
LA
‘s

CRACH SIZE (a8

Figure(3-7) Effect of crack length on the fracture load.[2]
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Strength under the presence of crack is generally referred to as the

(residual strength) (F..¢): the diagram in fig(3-6) is called the residual strength

diagram .

The whole process of stable- unstable fracture may take place in a fraction of
second, If the load (P = F..;) , service loading continuing at loads at or below
{Fes) + the crack will continue to grow not by fracture but by cracking
mechanisms such as fatigue , stress-corrosion or creep.

Due to continual growth the crack becomes longer , the residual strength
less, the safety factor lower, and probability of fracture higher .

Starting at some crack size (ap) the crack grows in size during time . the
permissible crack{a,) following from figure above can be plotted on the curve
of crack-time variation shown in Fig(3-8) the time (H) in this figure is the safe

operation time and can be determined (i.e. until (@t} is reached).

i
|
I
|
I
i
|
Ll
II H ms

Figure(3-8) Dynamie crack growth curve (sehematically).[2]

3-17 Dynamic¢ Crack Growth and Fracture;

The residual strength and crack growth diagrams are essentially different,
not only in shape but also in significance. Crack growth occurs slowly while
fracture taking place very rapidly, also the mechanism of crack growth and
fracture are different, there are five main type of e¢rack growth mechanism

which are:
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a-fatigue due to cyclic loading.

b-stress corrosion due to sustained loading.
c-creep.

d-hydrogen induced cracking.

e-liquid metal induced cracking.

3-18 Crack Growth(Classical Method)

Many readers have no idea about the term dynamic crack growth, they

consider that growth take place only with dynamic loading, but actually any

variation of crack length during any period of time can be consider as dynamic

crack growth, the periods may menths or till years as in creep crack growth.
There are two basic aspects of dynamic crack growth :

B Finite velocities of crack propagation.

B Crack branching.

Dynamic crack growth may be considered in terms of energy balance, This
can be shown with the help of Fig(3-9).After the initiation of unstable crack
extension there is an excess energy which increases during crack growth, when
the crack length reaches a length a; the total excess energy represented
approximately by the shaded area, actually (G) does not increase linearly with
increasing crack length. Nor is it necessarily valid that (R) remains constant
during crack growth. But this approximation adequate for analysis to indicate

that crack velocities are finite.



EXCESS ENERGY OWING TO
UNETABLE CRACKE GROMWTH

ﬁa& T

=

N

oy
TOTAL CRACK LENGTH, a

Figure(3-9) G,R-a diagram showing the excess in energy some time
imitiation of unstable erack extension.|[1]

The excess energy can be expressed as

Up = [ (G - R)da = —R(a; - a,) + [ " da. ....... (3.79)
For plane strain (E = E/(1 — 4*)) and R is given by
s O SN N OO e (3.80)

substitute in eq.(3.79) to get

:I'EF::' () )

Uy=- (a; —a;) + {a 3 ) T (3.81)
I, = ’;;;2 () = B Y35 F By = 2] ercrmreerrrensrsmssnsmeminns (3.82)

"Mott [1]argued that for a propagating crack the excess energy is stored as
kinetic energy, a simple expression for the stored kinetic energy is obtainable

from the opening displacement of the crack flank as
e T TR . (3.83)

Since (x) is a function of (&) thus x can be written as (x = c¢a) for (0O<e<1) then

v="2JaZ(l-c2) =¢ - R (3.84)
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Since both (a; & ) are functions of time thus the derivative of (3.83) W.R. to

time gives

%{- =Vv== {r.mg i 7 o SO S e S (3.80)

=

The kinetic energy in the displaced material is:[ T="2— ] for a material of
density () per unit thickness
T==2D.area.V:==D[ [ dxdy  ..covimviiianmonin (3.87)
Substitute (v ) from eq.(3.86) to get
T=1D[ [D(Ga—ao1dRY ovrorersiinrvnrisiossassssnss (388)
Equating the strain energy with the kinetic energy gives:

b &
E‘TE— (a; —a,)(a; +a,—2) = %B%j’f{c’rﬂ — fig)* dxdy....(3.89)

All the Cartesian stresses (g, 0, and 7., ) is functions of (x, y and t) so

when consider only the time is variable (to find the derivative of stresses

W.R.to time) these stresses can be written as:

g=ic; {$1n29$}”5 .............................................. (3.904)
Oy —cw{smz;‘r}“-" e S e b (3.90B)
Tyy = Coxy(SiN ::;"}“5 ........................................... (3.90C)

Where

Cgx: Cgy AN €y are constants depend on (X, ¥, m, 0, A, B, ayy, U,
M, 5, Ny, Ny, 1, 25, ) and the mechanical properties of the material of the plate
(ie. E& p ).

when derive the stresses W.R.to time to get:
08 (Tt

ey T 2,541 |
g, = 3 EQI{E.BM }l:slrlnv'“)” ................................... (3.91)
'?T!'ll‘!m
v 1 {ﬂﬁm ) COS ':.awn] (3.92)
y =3 Cay o [sm i s e e S L Pl pa e o



?E'h.l':m
oy L iyl . (3.93)
Ty 2 “@x¥ g gug, [ffﬂ:::_h}“ ............................... :

MNow the principal stresses variation with the time can be determined as:

Fetdr A
= =*23'+J{1’2 T SO WO (3.94A)
& =“5’*;f’- J{%E R i (3.94B)

The angle of the principal stresses variation with time will be:

6]9 = %arctﬂn Ufﬂx ..................... R {3-94(:]

L

Recall eq.(3.89), and simplify the right side to get

z z
% (a; —a,)*(a; +a,—2) = %B;—;f‘r{ﬁzﬂz — 2daoad + a*e®) dxdy

Since (@ and a) are not function of x and y and both (62,60 and &%)

will be of order (sin® m:I sin® "Ey ) and the integration of them W.R.to xand y

iz equal tof %} the final result after simplifying in terms of maximum principal
stress will be as :

4]'I':FEE ] 2 . e ig 9

e (@i = ag)*(a +a, = ) = (6%a® — 2a0ad + d%a?) ...... {3.96)

Solving to get (d) as:

. & g
b = ay=+2 u%?':ﬂf — @ PG By =B civisaieviceiminavionsds (3.97A)
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