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ABSTRACT

In this work a theoretical study the cracks in curved plates with

mixed complex boundary conditions under in plane loading causes

shear, compression and combined shear and compression buckling and

low velocity impact at the edge of crack in the middle of simply

supported curved plate .

Two methods of approximate anallical solution have been

carried out for determining the critical loads and the stress distribution

for curved plate which has two radius of curvature in xz and yz-planes

with surface crack in the middle of the plate, the first one is derived

from Airy stress function, equilibrium equations and large deflection

plate theory to analyze the effect of different radii of curvature in two

dimensions, buckling loads and duration time of low velocity impact

loading on the stress distribution in plate with crack, the second

method is derived from the energy method of curved plate which

modified for including the impact loading with buckling loads and

state the two dimensional stress for intemal crack at the center of

plate.

The stress intensity factors (SIFs), velocity of dynamic crack

propagation with deep of crack normal to the crack face have been

calculated, using the analytical method and a numerical package result

(ANSYS-I0), which based on finite elements method to investigate

the stress and the values of dynamic stress intensity factor at the crack

tip by fulI transient dynamic analysis in three dimensional element

(Solid 20 nodes 95).

Two kind of materials are used in the theoretical analysis of the

curved olates which are stainless steel and Aluminum.



The theoretical results have been verified with the experimental

one that have been done by previous researches for curved panels

without crack initiation.

The results for different aspect ratios (1:1 to 1:4) have been used,

crack deep to crack length ratio (0.2- 0.8) under different impact

velocities (5-30 m/t gives good agreement with results of finite

element analysis for long time duration in impact loading while the

energy method is agreement with some values of time duration and

then become limited when buckling occur.

The theoretical results obtained from classical and energy methods

have deviation in the values of the principal stresses (o1 & a2),

although the classical method gives good optimum results when

compared with experimental one, the difference is at the range of

(2.3 - 8.3 %o) , and the percent of error in determining the dynamic

stress intensity factor of the first mode (opening mode KI) when

compare ANSYS-10 and classical method results has a percent of

error less than that in determining the second mode (shear mode KII),

the percentage of error in determining KI is about (0.3 - 3 .2 %) bfi in

determining the second mode KII the error is about (0.4 - 4.1 %).

The velocity of crack propagation in stainless steel panels greater

than of Aluminum panels which have the same dimensions, location

of crack and same loads applied so the steel panels have less safe than

Aluminum panels under the same loading and boundary conditions.
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INTRODUCTION

when plates subjected to the application of large in-plane roads either
compressive or shear they buckle .the phenomenon of buckling is actually
a non-linear which is characterized by disproportionate increase of the
displacements associated with the small increment of the loads; Buckling
may be due to the action of the in-plane normal forces (N, or Nr) alongx

or y direction respectively ,or due to the shear forces ( Nrr) in the x_y
plane. Either the previous forces acting individually or as a combination .
Figure(l-l) shows the in-plane forces which can be applied, on the other
hand, plates considered under large deflection develop intemal resistive in-
plane forces in addition to the transverse moments and shears, so plates do
not fail under the critical load like columns[l].

In addition to in-plane forces another forces out of this prane may apply
such as impact forces in the direction normal to xy plane.

Failure does not take prace by buckling only but also by fracture caused
by crack growth.[2]

when plates subject to rarge in plane loads either compressive or shear
,they buckle. The buckling phenomena is not linear because ircharacterized,
by disproportional increase of the displacement associated with the small
increment of the loads.

In plates ,buckling may occur due to the action of in-plane normar forces
( \ and \ ) along x or y direction respectively. or due to in_plane shear
forces (1.{y* and Nr) in the x-y plane ,either acting individually or as a
combination.



Chanter one

Unlike columns, the plate failure does not occur when the critical

buckling load is reached .Plates continue to resist the in-plane loads far in

excess to the critical load before failure ,thus the post buckling behavior of

plates plays an important role in determining the ultimate carrying capacity

I3l.

The failure of plates subjected to uniaxial compression may be due to

instability or material failure. For thin plates (i.e. large values of length to

thiclcness ratio) made from a typical strain hardening material with yield

stress oy, instability occurs at r average stxess ocr that is much less than the

yield stress, especially if the plate has no crack in it. This stress is called

elastic buclding stress. On the other hand, instability for relatively thick

plates (i.e. low length to thiclcness ratio values), or plates with crack, may

occur after the plate material has reached the yield point, or has passed it

and entered the strain hardening stage at some portions of the plate, and that

is called inelastic buckling. If the plate thickness is very large, material

failure may occur before any buckling takes place.[4]

Flat and curved plates under combined shear and compression are

structures commonly found in aero engine components such as vanes. In

order to meet increasing demands to reduce the weight of such components,

Figure(l-l) In plane forces act on plate.[l]



Ghanter one

their thickness is constantly reduced, thus increasing the possibility of

failure due to buckling.

Extensive work has been carried out to determine expressions for the

critical buckling loads of such structures under the elementary load cases of

shear, compression, bending and combinations of these three. These are

based either on solution of the plate/panel differential equations for a

particular set of load and boundary conditions, or the use of energy

methods. However existing solutions are based on constant stress levels

throughout the plate structure.

A few theoretical solutions or design rules exist for more complex

solutions. Analysis is therefore based in practice on selecting the section of

the structure considered to be most highly stressed, and assuming a

simplified load case which can be solved.

In addition, only simple boundary conditions such as clamped or simply

supported edges have been considered, with limited work being carried out

on structures having combinations of the two. Due to these limitations, little

confidence in calculated buckling loads exists and relatively high safety

factors must therefore be incorporated to ensure collapse is avoided. Thus

these techniques do not result in optimal designs. Finite element analysis

has therefore been proposed as an altemative to theoretical techniques.

This has the advantage of being able to handle more complex

geometries, boundary conditions and load cases. Two approaches are

possible. A linear eigen value analysis can be carried out to determine the

buckling load of a perfect structure.

Reduction factors can then be applied to account for the geometric

imperfections and plasticity. [5]

For certain types of plate problems, on solving the goveming differential

equation of the plate satisffing the prescribed boundary condiiions have

been illustrated using classical method, Energy methods which are based on



energy principles are often used as altemative solution methods for a large

variety of plate problems .

Though approximate, the usefulness and effrciency of the energy

methods can be particularly appreciated in problems which cannot be either

solved by the rigorous classical methods or even if so , the procedure may

often be too cumbrous and lengthy to be discarded.

When a plate element is acted on by extemal loads, the intemal fibers of

the material body absorb energy in the form of the potential energy and, a

result, the body shows deformed shape externally .On removal of the loads,

the stored potential energy is converted to Kinetic energl so that the body

wholly or partially regains its original position or shape. The absorbed

potential energy of the intemal forces stored within the structural body is

often termed as strain energ/ (SE) or U, and its magnitude is equal to the

work done due to the internal forces (in the opposite sense). The potential

of the extemal forces Z is defined as the work done by the external forces

(in the opposite sense) during deformation between the initial and final

position. The kinetic energy is the energy produced by the effect of the

body, for example the vibration produced in a plate target under the action

of impact hit.

When an impactor hits a plate with a specific velocity there is a pressure

produced in the target as well as the impactor, the distribution of this pressure

depend on the velocity and shape of impactor and the mechanical properties

of the target and impactor.

The approach in studying the response of the isotropic materials to low

velocity impact is shown in figure(l-2) the three major steps of the approach

atei

l. Determination of impactor-induced surface pressure and its

disnibution.



2. Determination of intemal stresses in the target caused by surface

pressure.

3. Determination of failure modes in the target caused by surface

. pressure.

There are other assumptions will be considered for the case of

study as willbe noticed in chapter three ofthis study.

Figure(l-2) Essential features of the approach.[6]

According to the loading condition there are three crack modes as shown

in figure (l-3).

These modes always designated by roman numbers I, II and IIL The first

is the opening mode or tension mode ,the second is shearing (in-plane) mode

, while the third mode is tearing mode (i.e. out of plane shear mode).
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Figure (1-3) Modes of loading[7].

In practical cases the majority of cracks result from loading mode I. The

others do not occur individually ,but they may occur in combination with

mode I , i.e. I-II, I-III or I-II-III.

If the loading of these modes is in phase , crack will rapidly choose a

direction of growth in which they subjected to mode I only. Thus the

maj ority of apparent combined mode cases are reduced to mode I by nature

itself.

The Dynamic Crack Growth(DCG) in Structure is divided into:-

. Static growth, this state happens in equilibrium condition of crack

propagation , this growth take long time so it consider stable growth also it

has been effected by the temperature of the surrounding, this type of

growth can be controlled easily ,and the researches dealt with it at the

beginning stage , as example of this type of growth is that which take place

due to creep loads.

cQuasi-static growth, this state happens without kinetic-energy

production, the potential energy will gradually approach zero since the

fractured pieces obviously are free of stress as the state of elastic loads.
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The time of this growth is longer than that of static growth and the

temperature has less effect. There are many examples of this type of

growth such as low velocity impact loading, sustained loads on cracked

structures. . . .etc

oDynamic growth, this state happens with kinetic-energy production. The

crack driving force in this state is large than that in quasi-static growth,

also it is difficult to controlled for example of this growth the fatigue

crack grollth.

1.5 Obiective of this Work

The objective of this work is to study the three dimensional crack

problems of curved panels under the action of direct compression, shear

and low velocity impact loading to evaluate the dynamic crack growth

using classical theory of plates, and energy method then resolve the

problem with numerical method using finite element analysis to compare

the results achieved.

To achieve the above objective the following steps are followed:

This thesis studies analytically the propagation of crack in curved plates

under the action of direct compression, shear and low velocity impact

loading using equilibrium equations (i.e. classical theory ofplates).

Strain energy method of solution have been used also in the analltical

solution to support the results of step 1, using plane stress case of analysis.

Using numerical computer software (ANSYS-l0) based on the finite

element method to calculate the stress intensity factors, these results are

compared with the analytical solution in steps I & 2.

The above calculation have been made for different low velocities of

impact (5-30 m/s),depth ofcrack, thickness ofpanel, radius ofcurvature of

the curved panel and the properties of plate material. The results show the

effect of these parameters on the stresses and stress intensity factors then



on dynamic crack growth when the curved plate subjected to low velocity

impact by spherical steel impactor.

1.6 Lavout of Thesis

In order to achieve the objectives mentioned above , the current

chapters are arranged as follows:

Chapter two present the review of the previous studies which deals

with buckling, impact, dynamic crack growth and curvature effect.

Chapter three contain the theoretical analysis for direct compression,

shear and impact loading (classical method) on plates without crack to

check the derivation of the equations by making a comparison with the

values achieved experimentally by Featherstone(l998) then solving the

same problem using energy method to get the stresses and dynamic crack

growth.

Chapter four contain the finite element method nodal analysis as well

as the build of cracked panel nodes and elements using MACRO steps in

ANSYS-l0 program (see Appendix C) to know how built the nodes and the

elements of this case study. This chapter also contain the steps of acting the

loads and the method of getting pictures and movies during the solution.

Chapter five contain results, discussion and comparison of the results

achieved by classical, energy and numerical methods of solution.

Chapter slx present conclusion and recommendations for future work.
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2.1 Introduction

Studies of buckling and fracture mechanics are very widely reported. In
this chapter, the literature on buckling, impact, and dynamic crack growth

will be considered .

There are two types of buckling (bending and shear)some scientists
studied the combined buckling of these two t)?es of loading together on
plates.

(1) llt Jefferson stroud et ol [8!(1984),examined several buckling analysis
procedures for stiffened panels, they presents accurate results for seven
stiffened panels and illustrates buckling modes with plot of buckling mode
shapes. A11 panels are rectangular and have stiffeners in one direction down
the length of the panel. PASCO buckling analysis include the basic vIpASA
analysis which is essentially exact for longitudinal and transverse loads. and a
smeared stiffeners solution( equivalent orthotropic plate solution) that was
added in an attempt to alleviate a shortcoming in the vIpASA analysis-
underestimation of the shear buckling load for modes having a buckling half-
wavelength equal to the panel length.

The EAL and STAGS solutions where obtained with a fine frnite element
mesh and are very accurate.

(2) C A Featherstone And C RuiT [9],(1997), made analytical work to
determine the buckling load and post buckling behavior of curved panels

under various types of loading and different boundary conditions not as



comprehensive as that for flat plates. Only elementary loading and boundary

conditions have been analyzed, .In addition to this, many of the theories

developed have not been tested experimentally. Their study outlines a series

oftests carried out to determine the accuracy of the theoretical and numerical

buckling loads. The experimental results were used to examine whether or

not finite element analysis can be used as an altemative to determine collapse

loads and post buckling behavior, especially in cases where no theoretical

solution exist.

they show that, existing analltical techniques can be used to determine

buckling loads for a structure such as curved panel under the complex

loading case of compression and shear this is done by selecting the most

highly stressed section of the panel, simplifring both the load case and the

boundary conditions and using set formulae. It is concluded that Designers

should be advised to follow simple analytical results to produce a preliminary

design and finite element analysis should be limited for checking its

adequacy.

(3) C A Featherstone And C Raiz ll0l,(1998), determined an expression

for the critical buckling loads ofplates under elementary load cases ofshear

,compression ,and bending ,and combination of these three are achieved

.Collapse load predicted by theoretical ,experimental and numerical (using

finite element analysis) for rectangular flat plates under combined shear and

bending loads with different boundary conditions have been studied. They

conclude that

l. Application of existing theoretical solutions to the problem of shear

loading in rectangular plates caused by a force applied across one end

results in an underestimation of the buckling load.

2. The boundary conditions of a plate loaded in shear and bending ,

particularly at the edge to which the force applied, are important in

calculating the critical load for all aspect ratios.



3. The buckling of a plate under shear and bending is sensitive to
imperfections such as misalignment and curvature of the plate.

4. Finite element analysis can be used to provide better limits for the
buckling load of a plate due to improved modeling of boundary
conditions and distributed stresses.

5. Finite element analysis is still not able to handle more comolicated
boundary conditions.

6. Eigen value analysis can only be used providing buckring occurs
within the elastic region.

(4) c.A. Featherstone et aI (2000)pl, the use of finite element buckling
analysis in the stability design of thin shelled structures allows complex
geometries and load and boundary conditions been considered. Two
approaches are possible. A linear bifurcation buckling analysis were carried
out to determine the bifurcation load of the perfect structure. Reduction factor
then been applied to account for the geometric imperfections and plasticity.
Altematively a fully nonlinear analysis can be performed with deflections,
geometric imperfections and plasticity properly modeled. Their work
assesses the suitability ofeach ofthese methods to predict the buckling loads
and post-buckling behavior of two structures flat plates and curved panels
under combined shear and compression a load case commonly fo'nd in aero
engine structures such as vanes. Experimental data is also presented for
comparison.

(5) Khaled M. El-Sawy and Aly S. Nazmyl4l (Jaly 2001), employed Finite
Element Method (FEM) to determine the elastic buckling load of uniaxial
loaded rectangular perforated plates with length a and width 6. plates with
simply supported edges, in the out-of-plane direction and subjected to
uniaxial end compression in their longitudinal direction are.considered.

LL
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Integer plate aspect ratios, AIB:1,2,3 and 4,have been chosen to assess the

effect ofaspect ratio on the plate buckling load.

Two perforation shapes of different sizes are considered; circular, and

rectangular with curved comers. The rectangular perforation is oriented such

that either its long or its short side is parallel to the longitudinal direction of

the plate. The center of perforation was chosen at different locations of the

plate. The study shows that the buckling load of a rectangular perforated

plate that could be divided into equal square panels is not the same as that of

the square panel that contains the perforation when treated as a separate

square plate. For rectangular plates, the study recommends not to have the

center of a circular hole placed in a critical zone defined by the end half of

the outer square panel, to try always to put the hole in an interior panel ofthe

plate, and to have the distance between the edge of a circular hole and the

nearest unloaded edge ofthe plate not less than 0.1 ofthe panel length. The

study concludes also that the use ofa rectangular hole, with curved corners,

with its short dimension positioned along the longitudinal direction of the

plate is a better option than using a circular hole, from the plate stability point

of view.

(6) Cairns et al.(2005) [11], presented an analytical solution for an

orthotropic plate subjected to general lateral loading. The results showed that

the analysis agrees well with the experimental data and could be used in

conjunction with failure criteria to predict damage initiation in a localized

region. The composite materials have high strength-to-weight and high

stiffrress-to-weight ratios. However, they are susceptible to impact loading

because they are laminar systems with weak interfaces. Matrix cracking and

delamination are the most common damage mechanisms of low velocity

impact and is dependant on each other. In fact delaminations are generated by

matrix cracks, which are the initial damage. In the presence of delaminations,

the stiffness of the material and thus of the associated structure may be
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significantly reduced, which may result in a catastrophic failure of the

structure. It is therefore highly desirable to estimate the delaminations in the

composite materials, submitted to impact loading.

Many researchers have made effort to analyze the impact behavior of

composite structures. However, only some studies have so far been devoted

to the damage prediction of low velocity impact on composite laminates.

(7) I. Shafrin, O. Rabinovitch & M. Eisenberger (may 2008) ll2l,

presented semi-analytical approach to the buckling analysis of generally

supported laminated plates subjected to a general combination of in-plane

shear, compression, and tension loads.

Arbitrary out of plane and in-plane boundary conditions at the edges of

the plate are considered. The formulation is based on the variational principle

of virtual work and the multi-term extended Kantorovich method. The semi-

analytical method is used for the pre-buckling and buckling (stability)

analyses of laminated rectangular plates with in-plane restraints under

arbitrary in-plane loads. The accuracy and convergence are examined through

a comparison with exact solutions (where available) and with finite element

analyses. The applicability of the method is demonstrated through various

numerical examples that focus on the buckling of rectangular composite

plates with a variety of boundary conditions and various combinations of the

in-plane shear, compressive, and tensile loads.

2-3Impact Loadine and Time Duration

The classification of impact loading is according to the velocity of the
impactor and the literature survey concentrate on low velocity type which is
in the scope ofthis study.

(1) Longin B. Greszczuk (1981) [13]' obtained the magnitude and

distribution of surface pressure in the target caused by impact can be obtained

by analytically combining the dynamic solution to the problem of impact of

t3



,similar to the method described by Timoshenko (1934)for impact of spheres.

He conclude the following

1. Resistance to damage increase as the fiber strength increases and the fiber

modulus decreases.

2. Resistance to damage increase as the young's modulus of the matrix

decreases and the strength ofthe matrix increases.

3. Bidirectional layup is more efficient in resisting damage than

tridirectional or unidirectional la1up.

4. Impact can cause extensive internal damage with very little or no visible

damage on the outer surface.

5. Target curvature effects the impact parameters and failure modes.

(2) Vijay Muka and M, A. Wahab (2005) Il4l, represented analytical study

of damage response due to impact load on composite plates, they noted the

various parameters like fiber orientation, fiber thickness, mass of impactor,

velocity ofimpactor, and boundary conditions are vary effective on damage

initiation and propagation.

(3) Arman Murad (2006) Il5l, presented analyical study for calculating the

stress intensity factors in cracked plates under combined (buckling and

tension) loads and impact loading (static load as Hertzian contact ) for

different aspect ratios, and crack angle, by using Lagrange equation. The

analyical results compared with the numerical results using ANSyS-9.0

program.

A 3-dimensional finite element analysis and 2-dimensional analysis for

stress intensity factors (SIFs) (I(I and I(II) in isotropic plates was performed

St.steel and Aluminum plates with different aspect ratios and crack angles

were considered under combined ( buckling and tension) loads which were

t4
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applied to the edges of the plate. Numerical and analytical results of (KI &

KII) had been compared .

(4) AIi Fahad Fahem Q007) 116l, the effect of impact loading on dynamic

crack propagation in thin and thick isotropic plates are investigated

analltically and numerically to give a study of 3-D crack growth. The

stresses are computed using classical and energy methods . The dynamic

stress intensity factors have been obtained at different time of impact

duration under impact velocity(2-8 m/s), the crack opening displacement and

crack propagation using Dugdale theory for plane stress and plane strain are

investigated.

The major observation and conclusion from study dynamic analysis,
simply supported stainless steel and aluminum cracked plated, under various
impact velocities by cylindrical steel are listed as follow:

1.The results of DSIFs and velocity of crack propagation obtained by the

building of programs by FORTRAN bower station-90, for impact loading.

These results have been obtained by two different ways. First by using

classical method, and secondly by energy method. These two ways is gives

the some results with percentage error is lowest than (15%).

2. In the case of intemal crack the values of dynamic stress intensity factors

(DSIFs), is depended on the depth ofcrack and angle oflocal (alpha).

3. The duration of time impact is decreasing when the velocity of impact is

increasing, and when the young modulus is increasing the duration time

decreasing i.e. the duration of time depended on the properties of material.

4. The crack propagation activity at location when maximum DSIFs along the

crack front. Also the plastic area is large then compared with a critical plastic

area (Dugdal model).

5. The velocity of crack propagation in steel is larger than that in aluminum

because the difference in young modulus.

15
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6. The velocity of crack propagation in plain stress is larger then in plain strain,

i.e. the crack velocity is decreasing when thickness ofplates is increasing.

7. The velocity of crack propagation is decreasing when the aspect ratio is

increasing. In addition, increasing velocity of crack when velocity impact

increase, when deep of crack increase the crack velocity increasing. This

behavior as applied for path material and plane stress and plane strain.

8. The strain energy method is applied for all velocity impact and gives good

agreement when velocity impact increasing more than 20 m/s. Where the

percentage error for result between the airy method and energy about (13%).

9. Possibility of using the neutral frequency of plate without crack result for

plate with crack when the l'"/o)<0.03 for isotropy material. Where the

percentage error is lowest than (4%).

l0.The dynamic normalized stress intensity factor is depended on the geometry

of model and dimension of crack. Also when the deep of crack is increasing

the factor is increasing this meaning the crack growth possibility effective.

(5) Z.Y. Zhang and M.O.W. Richardson(2007)ll7l, investigated low

velocity impact induced non-penetration damage in pultruded glass fiber

reinforced polyester (GRP) composite materials using an instrumented falling

weight impact test machine with a chisel shaped impactor. The characteristics

of the impact event, force/time and force/deflection traces were determined.

The intemal damage was visualized and quantified by Electronic Speckle

Pattern Interferometry @SPI) in terms of the thickness, density and

uniformity degradations of fringe pattems. There is a linear relationship

between the impact energy and the identihed damage areas. The post impact

structural integrity of impacted specimens was evaluated by three point

bending tests. It reveals that there is a significant reduction in flexural

properties due to the impact-induced damage and that the residual flexural

strength is more susceptible to damage than residual modulus.
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(1) Alan T. Zehnder, et aL( 1999) Il8l, studied Anall'tically in shell

structures subjected to very complex stress states. Using small deflection

Kirchoffplate theory to calculate stress at the crack tip and crack growth to

compare with (F.E.M.) and experimental results, they showed that crack

growth is not dependent on mode I only, but depend on a combination of

parameters. The shear loads induces a great deal ofcontact and friction on the

crack surfaces dramatically reducing crack growth rate.

(2) M. J. Maleski et al (2002) [9], They represented experimental technique

for measuring crack tip and Dyramic Stress Intensity Factors (DSIFs) and

compared with numerical and analytical solutions. The method exploits

optimal positioning of stAcked strain gage rosette near the crack tip, the

method is demonstrated for quasi-static, low velocity impact loading

condition and two values of crack length to plate width ratio. They noted that

experimental results are good agreement with those obtained from numerical

simulations.

(3) Yung-Tze Chen,(2003)1201, studied the crack propagation of linear

elastic cracked plates .An analytical solution for crack propagation of the

cracked plates subjected to uniform static loading with simply supported

boundary conditions is developed by means of Galerkin method coupled with

integral transform method.

Results for this analyses are used to draw conclusion regarding the ability

of relating crack speed ratios to aspect ratio, to crack length ratio, and the

stress intensity factor.

The rational approach for crack propagation of an elastic ,isotropic,

homogeneous rectangular plate with full in depth crack has been proposed

with success by means of Galerkin method coupled with integral transform

method. He conclude that ,the stress intensity factor ratios decrease in

L7
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sinusoidal fashion with increasing crack length ratios and inversely decrease

as crack-speed ratios are increased.

(4) Seung Io Kim, Nam Seo Goo & Tue lYon Kim, (1997)I2,ll, investigated

the dynamic behavior and impact-induced damage of laminated composite

structures. Special attention is given to curved structures, which have been

widely used in various aerospace applications. A three-dimensional finite-

element code is developed that can describe dynamic and impact behavior

and predict the impact-induced damage of shell-shaped structures.

Incompatible eight-nodded brick elements with Taylor's modification and a

successive coordinate transformation scheme are adopted. A modified

Hertzian contact law is utilized to compute the contact force for an isotropic

sphere on a cylindrical composite shell. The goveming equation is integrated

in time by the Newmark-method. A scheme of detection of impact-induced

damage is proposed for determining damage patterns resulting from low-

velocity impact.

The parametric study of the dynamic behavior of cylindrical composite

shells with various curyatures and stacking sequences is presented. The

results are compared with those of plates of the same dimensions and

stacking sequences. As the curvafure increases, the maximum impact force

becomes higher for the same impact velocity. Although the delamination

pattems of the cylindrical shell have a similar tendency to those of the plates,

the delaminated area widens as the curvature increases

At this study curved plate analyses of deflection, stress and dynamic

crack growth analytically derived using classical method and by both energy

and classical methods as well as the finite element method of analyzing using

ANSYS1O program under the action of direct compression in x-direction

,shear force in the plane of the panel and low velocity impact with different

18



velocities located at the center of the panel, FORTRAN90 programming
language has been used to find the values of the equations derived in this
study, ANSYS10 finite erement program and other methods ( classical and
energy ) are used to analyze the same problem to compare the results
achieved by them.

The stresses ,deflection and dynamic crack growth can be calculated for
different thickness, velocities, time duration of impact ,and various radii of
curvature in x-z and y-z planes, different aspect ratios and variable values of
direct compression and shear force can be apply using the same program also
another location of impact canbe analyzed.
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INI,YTIGIL $OI,UTION

This study will concentr ate on analyzing deflection, principal stresses, in-

plane stress intensity factors(Kl and KII) using different methods (classical,

energy and finite element using ANSYS 10 program ).

The panel will considered as curved type i.e. has initial deflection with

magnitude depend on the radius of curvature and the plane at which it lies. The

panel subjected to in-plane forces(direct compression and shear) and out of

plane load (low velocity impact by spherical impactor).

Figure(3-l) shows the general shape of the panel under the action of all

loads under consideration. All edges of the panel will be consider as simply

supported.

U.f,l"Shear

U"S"direcl
c(}rnFresslon

IowvelocitY
impact
--+"-

rack \

$Pherical

imPactor

Figure(3-l) Shape ofpanel under loading system (case study).
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3-2 Assumptions

To get the analytical solution using plate theory the following assumptions

will be considered:

l-The material of plate is elastic, homogeneous & isotropic.

2- The plate has initial curvature i.e. initial deflection (wo), as shown in

Figure (3-2).

3- The deflection of the mid-plane is small compared with thickness of

the plate ,so the square ofthe slope can be neglected.

4- The straight lines initially normal to the mid-plane stay straight and

normal during deformation.

5-The stress normal to the mid-plane oz is small compared with the

other stress component and may be neglected .

6-The middle surface remain unstrained after bending (i.e. neutral axis

coincide with the mid plane.

For low velocity impact the vibration effect can be safely neglected,[22] and

the following assumption will be considered:

7-The target and the impactor are linear elastic.

8-Impact duration is long compared to stress-wave transient time in the

impactor or target of finite thickness.
9-The impact is normal to the target mid plane of the panel.

' , . , . , , . . , . ' - , , ' , ' , . . . . , , . , ' . , . , . . -
.  . , . , , , , , , , i : , , , . , . , , : - , ? l ;

- , , :., ' '..r!: r,!!- _ii,.!l,o

Figure( 3-2) Shape of curved panel type elliptical poraboloid .l3l
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3-3 Boundarv Conditions:

For all edges simply supported we have
-  y v  = 0 l r = o . a

w = 0 | ,=s,6

^ f02w 02w\M . = - D  l - +  u J l : 0--  \ox" oy", /

M y = - D ( # . u ? ) = o

Where

D = 
#n= 

the lateratr ig id. i ty  of  theplate. . . . . . . (3.1)

And

h: the plate thickness.

E: Modulus of elasticity.

The general governing equation for deflection of plates in Cartesian

coordinate subjected to lateral load (p) can be written as,[3]:

a n Dv ' w  = i  . . . . . . . . . . . . . . . . . . . ( 3 . 2 )

Where

p is the lateral force(i.e. the pressure due to impact).

and

V 4 (  )  =  
} a w  

*  
| a w  

* , a w
1 x a  0 x 2 0 y z  a y a  " " " " " " " ( 3 ' 3 )

And for lateral and in-plane forces the general equation will be, [7] :.
'  1  a 2 " '  

, r r  0 2 w  ,  ^ ,  0 2 w . ,v*w =;(n + N, ;  + zNxy#+ N,  u i ) . . . . . . . . . . . . . . . (  3 .4)

p: poisons ratio.



Where

p <he lateral load (impact load).

N, = direct compression/tension force in x-direction'

Ny = direct compression/tension force in y-direction.

Nry = shear force in xy-plane.

Let now consider a plate with an initial deflection we (i.e. curved plate ) .It is

assumed that : ws is small compared with the plate dimensions .If the plate is

subject to in plane and lateral loads then an additional deflection w1 occurs and

the total deflection is,[7]:

w  = w o * w 1  . . . . . . . . . . . . ( 3 . 5 )

Here w1 is the solution of eq.(3.2). If beside the lateral load , the direct

forces are also applied to an initially curved plate, then these forces produce

bending , which depends not only on w1 but also on wo , in order to determine

the total deflection w let introduce eq.(3.5) in to the right hand of eq.(3.4)'

The left-hand side of this equation takes into account a change in curvature

from the initial curved state due to a given lateral load . Therefore w1 has to be

substituted for (w) on the left-hand side of equation (3.4), for the initially

curved plate the goveming equation will be of the following form,[7]:

v4w1 = i@ *,. ry + zN,yWD * u" u#).....r :.ol
As mentioned previously , the influence of the initial curvature on the total

deflection of the plate is equivalent to the influence of some fictitious lateral

load of intensity pr expressed as,[7]:

pr = N,#+ Nr#+zN,v# .(3.7)

For the case under study the lateral load will be the impact load which is a

function of time and the coordinate of the contact region.
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3-5 Geometrv of the Curved Plate

Curved plates have an initial deflection depend on the radius of curvature

and the type of the curved plate. The case ofstudy has double curvature panel,

this type named elliptical paraboloid , the trigonometric relations gives the

value of that initial deflection,[3].

When there are more than one radius of curvature as in the case under study

which has a double curved shape (i.e. in x-z plane and y-z plane) as shown in

Figure(3.2) which refers clearly to that: The total initial deflection is the sum of

the initial deflection ofthe first plane and that ofthe second one.

The length of the arc is known according to the dimension of the plate under

study, so

p1<p:length of arc.

where

pr:radius of curvature in plane l(i.e. curuature in xz plane).

<p:centric angle of the arc in that plane.

The initial deflection (wo) will be

(wo)pn 
" t  

-  pr ( l -  . " t  ( : ) ) (  3.8)

By the same way for the other Plane

(wo)pmnez = Pz( t -  * ' ( : ) )

where

- p2:radius ofcurvature in plane 2(i.e. curvature in yz plane).

B:centric angle ofthe arc in that plane.

The total initial deflection will be

w o  =  ( w o )  p n  
" t  

*  ( w o ) p n n e z  . . . . . . . . ' . . ' . . . . . . . . . . . . . . . . ( 3 .  I 0 )

( 3.e)
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ure Parame

When the radius of curvature varies the mode of loading and the stresses

i nduce in thep la tea l sochanged , t hec r i t i ca l s t r esses (bend ing&shea r )and

buckling load also change .The method of fixing the ends of the panel play

great effect , the shear and compressive buckling parameters also changed

(many books gives the relation between shear and compressive parameters and

the curvature Parameter )'

The curvature parameter represented as [9]:

"r"= #(1 
- rt ' ) (3 .1  1 )

Where:

B :Length of the shorter side of the plate'

Forthecaseunderstudytherearetworadiusesofcurvatureandtheeffective

curvature parameter can be calculated as [23] :

- rLp = 7-T\:7-^
Yr*1-YZoz)

Where zpr

Z^t

.(3.r2)

= curyature parameter of first curved (i'e' x-z plane)'

= curvature parameter of second curved (i'e' y-z plane)'

3-7 Buckline of Plates:

Whenplatessubjecttolargeinplaneloadseithercompressiveorshear,they

buck le 'Thebuck l ingphenomenaisnot l inearbecausei tcharacter izedby

d i sp ropo r t i ona l i nc reaseo f t hed i sp l acemen tassoc ia tedw i t h t hesma l l

increment of the loads'[3]'

In plates ,buckling may be due to the action of in-plane normal forces ( Nx

and Ny ) along x and y direction respectively or due to shear forces ( Nxy ) in

the.r7 plane, either acting individually or as a combination'
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Unlike columns, the plate failure does not occur when the critical buckling

load is reached .Plates continue to resist the in-plane loads far in excess to the

critical load before failure ,thus the post buckling behavior of plates plays an

important role in determining the ultimate carrying capaciry,lz4l'

consider a rectangular infinite small element dxxdy has been bent under the

in-plane forces Nli ,Ny ,Nxy ,Nyx , and transverse forces/moment Mx 'My

,Mxy ,Myx ,Qx ,Qy will be as shown in Figure (3-3).

Figure(3-3) External loads can applied on a panel'[3]'

Let the intemal resistive force appears as in-plane forces applied on the

element (per unit length of the side on which they act) ,remembering that for

large deflection ofplates there are in-plane forces in addition to the transverse

moments and shear.

For transverse moments and shear

Vaw -- o
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. t  /  Azt, , , . \  |  . ,  At  az(w) J_ t t  0r(*r)  \  r  a t  qrvawr= ; ( r+ ru ,  #+2N,y i#  tN t i . -  )  . " - \ r ' L r )

Where

wt =total deflection:w1 * wo

For the case under study N5o

p: is the impact load.

N"r:Shear force applied in xy Plane.

Buckling parameter is one of the most useful values because it describe the

buckling behavior and it calculated analytically or by empirical formulas, these

parameters achieved by equating the in-plane forces to zero except one then

substitute the suggested equation of deflection in eq.(3.13) to find that load then

derive the expression and equate the derivative to zero to find the smallest

critical buckling load,(for more information see [3] and[ 22]).

For bending buckling produced by direct compression the values of

buckling parameter for all edges simply supported with different aspect ratios

are given in Table(3-l). When a panel subjects to direct compression only, the

critical buckling load can be determined with a given mode & geometry asl2?l:

Kh f t 'E  . n -  1
6-- = ---:---------- l-l'ut 72(7-l tz) \B'

Where:

Ka =Bending buckling stress parameter.

For other tlpe ofboundary conditions such as clamped endjust the values

of the bending buckling parameter will change'[2S].

. (3.14)

Table(3-l) Bending buckling parameter with aspect ratio of all edges
stm rted curved plate.[9

A/B 0.5 0.6 0.667 0.75 0.8 0.9 1 . 0 1 .5 2.0

Kb 25.6 24.1 23.9 24.1 24.4 25.6 25.6 a A  I 23.9
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For the case ofshear force only (i.e. shear buckling ), Table (3-2) shows the

shear buckling parameter for all edges simply supported curved plate with

different aspect ratios, and the critical shear buckling stress will be [9]:
Krnz E rh-r2rr,  = 

f f i i l i )"  . . . .(3.15)

Where:

(=Shear buckling stress parameter.

Table(3-2) Values of shear buckling parameter (K") of all edges simply
, )

ATB I 1.2 1.4 1.5 t.6 1.8 2 2.5 3 4

Ks 9.34 8.0 7.3 7.1 7.0 6.8 6.6 6.1 5.9

When both bending and shear are applied on a plate, or there is also lateral

load the principal stress (o1) can be used with rable(3-l) since there is no shear

in the plane of principal stresses, S. P. Timoshenko l22l calculate the buckling

parameter for combined shear and bending stresses according to the ratio of (9),

the critical buckling stress will be:

o,, -W#(X)' (3.16)

Where

(ro-6 =buckling parameter for combined shear and direct Compression.

Table(3-3) below shows the buckling parameter for combined shear and

direct compression with (aspect ratio:l)

Table ( 3-3) Buckling parameter of combined shear and direct
com ratio=I.122

!
T

0.0 0.5 1 . 0 1 .5 2.0

Kcomn 14.71 7.09 4.5 3.24 2 .51

ression" with aspect rati

For other aspect ratios see theory ofelastic stability by Timoshenkol22l.
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Let the initial deflection reoresented
.  , , . , .x ,  n^v

wo = dmnL*L;  SIna-SLn;

qmni The initial deflection at the center of the plate.

The deflection due to apply of extemal force will be

wt = w^,}fr\ff stnffstnfr (3.17B)

w*n:The mode shape of deflection

Also the deflection due to direct compression only according to Navier's

solution is

wt = Aclf.lff stnffsinff (3 .18 )

Where

Ic = Collstdnt.

n & m: number of half sine waves of the panel shape in x and y directions

resp.

Substituting in Eq.(3.6) pfiting Nrn,p

wc -?;znLff sinffsinff

by the form,[7]:

(3.17A)

qnd Ny equal to zero givesl22l'.

(3.1e)

(3.20)

(3.2r)

where

wc:deflection due to direct compression onlv.
Nr-4;i4;

Now, to find the deflection due to shear only put N,p and N., in Equaton

(3.13 ) equal to zero, using

w, = A,XfrXf sinY!!sinff

Where

4s = constant.

The expression for the deflection equation under shear only will be :
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ws - d^,rnzrl1.+

w,, =Lfr);1 o*nlh+ 
[r 

+

srnff sinffl.......13.22)

Where

ws = The deflection due to shear only.

For more information appendix (A) contain the derivative of

equations(3. 1 9) e. Q.22).

For the case of combined shear and direct compression' by adding (3. 19)and

(3.22) gives

.(3.23)

Where

wr. : Deflection due to shear and direct compression.

Attention should be taken that super position method can not apply if there is

out of olane force.

Let m1, and v1,,'' be the mass and velocity of the impactor respectively ,and

the mass and velocity of the target be m2 and v2 respectively .The rate change of

velocity during impact for the impactor and target will be according to

Newton's second low as :

lTli"- -:? = f' - a t and

Let the distance of approach of the impactor and the target because of the

local compression due to impact be a 'then the velocity of approach is

a = vi^ * v2 ...(3.2.5)

According to Hertzian contact, [6] :
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31t(kL+k2)

1
P = rlcq,

And nc

Where

.(3.26)

(3.27)

Ri = Radius of aspherical imPactor

.  r -u? t -pZ
It-r = ---- d; E2 = -

ttEt - ItEz
(3.28)

E and p refer to modulus of elasticity and Poisson's ratio respectively. and

the subscript | & 2 rcfet to impactor and the target respectively'

Differentiate (3.25) afi combine with (3.24) gives,[6]:

3

i i  =  n rMcq2  . . . . . . . . . . . - ( 3 . 29 )

Where

M . =  
'  +  

t
" Tlltm TlL2

"' Multiply both side of (3.29) by d and integrate to

q2 - v2 =, - lMrnol

5 v !

(3.30)

Where

ri:approach velocity at the begiruring of the impact.

Maximum deformation 4r occurs when ci :0 and

c , , .  2  2

ar  =  ( f f i  )s  . . . . . . . . . . . .  . . . . . . . . . . . . . (3 .31)

Let the impactor velocity be vi^,the energy balance becomes

} ^ r ^u r^ t  -  f f ' pda  . . . . . . . . . . . . . . . . . (3 '32 )

Substitute p from (3.26) andintegrate to get

) * r ^u r^ '  
-? r ro t / '  " . . " . " " " " " (3 '33 )

Let v1 = vi^ and M, - ;;,substitute 
eq.(3.3 l) in to eq.(3.26) gives

z  /  _ .svz  . ,s  l -
P  =  f l c  ' ' l& l  ' '

3X

(3.34)



impact will be

r , = l T ( h + k ) R i l :

Where

rc =radius of patch due to impact.

Substitute p from eq. (3.34) in to eq. (3.35) gives:

r-  -  (R, \ ; f " !  
' ) ;  

. . . . . . (3.36)
"  

- , ,  - 4 M c f t c .

It has been shown by (Hertz 1881) and Timoshenko (1934) that; the pressure

distribution over the area of contact is[6]

4 2  
" ' 2  

|

-  - - - l t
- 2  n 2 r

(3.35)

Px,y = Poll

Where ps

and

(3.37)

is the maximum pressure (i.e. the pressure at the center of contact)

P O - a r r  2
(3.38)

For flexible plate type target , the surface pressure, area of contact and

impact duration will be a function of the parameters (mass and velocity of

impactor & elastic properties of the impactor and target) as well as plate

bending stiffness (D) and boundary condition. For a given impact velocity the

magnitude of dynamic force p will decrease as the target flexibility increase

(or decrease the target thickness ) , increase in target flexibility will also

increase contact duration time and decrease the area of contact,[6].

The time duration calculated by Timoshenko (1934) from the problem of

impact of two bodies as,[6]:

q 2 - v 2 - - ! M " r " o r l

Or
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a - (vzn - 4/5(Mn,aLs/2 ))o's .(3.40)
dxSubstitute q = A and solving for (dt) gives
at

(3.41)

Integrate to get

s - \ [ !  o '  ,, .u 
7t-rr/r.i 

"Q'42)

Where
d

X = -
d1

The total impact duration (to) is obtained by integration between the limit

(x:0) and (x:1),[6].

to = 2'94( s r i
4Mfr*)E ""(3'43)

The variation of surface pressure (p) , radius ofthe area of contact (rr) *rd

surface pressure distribution (pr,y) with time can be determined by first

numerically integrating (3.42) anddetermine ( i ) ur a function of time ( | ).'  ' d t '  ' t o

The resultant plot of this solution is shown in Fig(3-4), the curve can be

approximated fairly accurately by an equation:
. ltt

e  =  d r s i n :  . . . . . . . . .  . . . . . . ( 3 . 4 4 )
so

Figure(3-4) Generalized pressure-time relationship of low velocity impact.[6]
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Substitute ( fe )from (3.43) gives

d = er t " f f i  . . . . . . . . . . . . . . . . (3 .45)

From (3.26) one can get

3 n s . . n t ! _ \ |  . . G . 4 6 )P\t) = 
B"z"^, ldfLnT6*or-

The oressure distribution at the contact region will be'[6]:

p (uo,uo,,) =n{O (r -#-5) .. ....(3.47)

Where (uo and. vo) is the width and length of the patch area produced by

impact.

Substitute (3.46) in (3.47) gives

p(u'u't) = ffi 1a,snffi): U - a - ;) ........r2.+tr

Target curvature effects both magnitude and distribution ofsurface pressure

caused by impact as well as the shape of the area of contact. The influence of

target curvature noted by Greszcuk and Chao (1975) are' [13]:

l-Area of contact is elliptical and approach circle as the radius of curvature

increase.

2-The area of contact decrease with decreasing radius of curvature.

3-Maximum load resulting from impact decreases with decreasing radius

of curvature.

4-Maximum surface pressure increase with decreasing radius of

curvature.

5-Contact duration time increase with decreasing radius of curvature'

In the case of study there are two culvatures of the curved plate so fhe

general contact relation should be used. Hertz showed that the intensity of

pressure between the contacting surfaces could be represented by the elliptical



( or, rather, semi ellipsoid) construction shown in Fig( 3-5 ). The total contact

load is given by the volume of the semi-ellipsoid,[23].
2

p = in.Atspo ..'.(3.49)

Wh...

ts:the length of minor axis of the elliptical patch.

"4:the length of major axis of the elliptical patch.

p o:the maximum pressure of contact.

Figure(3-5) Pressure distribution between two curved bodies in contact.[23]

The maximum pressure Po will be

3D
6 - ------.:-

Po - 
zo.Ats

(3.s0)

. Where
<j 

mm and nn are constants.

a= f  t r  -  p imzl  +EhlL-  pto,g" tz l  " . . . . . . . . . . . . (3.53)

,--;I ;*#* i , .# ..  .  . . . . . . . . . . . .(3.s4)
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Ri,Rrm =maximum and minimum radiuses of impactor respectively in

unloaded contact in two perpendicular planes=R; '

pr, pz = maximum and minimum radiuses of target(plate) respectively

in unloaded contact in two perpendicular planes'

Let

y = cos-I(L) (3.5s)

Where

^  = : ( ; - ; ) ' (3.56)

Introduce two constants (mm and nn) they are also functions of the geometry

of the contact surfaces and their values are shown in table(3-4) for various

values of y.

3-13 Conversion of Elliptical Patch to Rectaneular :

In finite element analysis stress modeling of circular area is much difficult

than from the rectangular one. According to Timoshenko[2s]o acicular and a

square loaded area are equivalent with respect to the bending moments they

produce at the center ofthe area ,if :

" ,  
l f  

"a4= \e i - l  : 0 .57uo  o r  uo=0 '88*2d4 (3.s7)

Tahle (3-4 Values of constants for contact of im 23

v
degrees

20 30 35 40 45 )U ) )

mm 3.778 2.731 2.397 2.136 t.926 t .754 1 . 6 1 1

nn 0.408 0.493 0.530 0.567 0.604 0.641 0.678

* mm and nn are constants.



..1-W777
"L7/f4-

q ( x ,  y ) = q o  I

ct

Figure(3-6) Conversion of eliptical contact patch to rectangular.[15]

u o  =  0 . 8 8  * 2 t s  . . . . . . . . .  . . . . . . . . . . . . . . . . . . ( 3 . 5 g )
Where (uo and vo) is the width and length of the patch area produced by

r
J
H
H ;*1 .o

L-

I

The deflection due to impact only can be expresses
mI1C , nfi1t

as,[7land,p2l:

(3.5e)wi -Wznzr'^"""i:T'#
2 ^ 2It6D mn[:i+];++-:=t2

A.  Bz '

Where:

s-,,  = 5inIn( sinf sinIISe sinffJ . . . . . . . . . . . . .(3.60)

Where

( & 11 the coordinates of impact location in x and y direction respectively.
tto & vo the dimensions ofrectangular contact patch in x and y direction

respectively.

For the case of impact and direct compression (i.e. lateral and in_plane
forces) the deflection can be express ed as,p4l:
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*," -##l,frl,r . fwtx , n7t1t
smnsln-- ^ sln--*

2 - 2 (3.61)^"1ffi+!s'+ffqLS,t
The positive sign in front of the direct compression(N") will be negative

because the above equation for tensile and impact, and the tensile try to reduce

deflection while the direct compression increase deflection, so rewrite

Eq.(3.61)as:

*,, -+#unur .(3.62)

Now ,adding the shear effect to this equation using eq.(3.6) and put

(p,N* and Nrn) not equal to zero and substitute (w, and wo) from eq.(3.17)

and eq.(3.18) respectively to get,[27]:

.(3.63)

Pu( N, = 0) in the above equation to get

w* =!#xfixr (3.64)

The direction in shear force and hence shear stress has no effect but the use of
negative sign here because shear force try to increase the initial deflection (i.e.
the initial deflection has no possibility to decrease),the effect ofpressure here is
determined as uniform distributed pressure over all the plate but in the case of
study the pressure due to impact is function of time, also there is an elliptical
contact patch converted to patch of dimensions (uo * vo)as shown in

Fig.(3-5),also there is an initial deflection which will be increase or decrease
according to the direction of impact, the initial deflection from eq.(3.17) also
used, the final equation of representing the deflection in case of study will
be:(see appendix A)

. lnEX , fLlt1t
SmnSLn=-sLn;-ffi- 

N.-nmn11V+-"5,-jffi)'\

o""^"111_1*1#)]r+#.m*,ffi

wics=wo+#znzr'ff i (3.65)



_/.+\  _ 3nS /  - .  - , -_ ntv \+
P\L) = 

s"zr^, ldlsLn;;;A)z

Now substitute wo from eq.(3.17) in eq.(3.65) to get:

w  k ,  =  l d  m n +  s ; #  x f ;  x r  
f f i 1  

6 n  f f  s  i n r y "  )

"  " " " " ' (3 '67 )

3-15 Stresses Due to Impact. Shear and Direct Compression
Stresses are function of the deflection and the following form.rlas catr b"

used

o"-ft,t#*u?r)

",-&{#*ufti
Ez , 02w -,txr - 

ffitffil (3.68C)

6t* 
= lul '1n -.  16P(t) \ '@ \ 'co

d X z  \ A t  L * m n  ,  
r o D  / . m  Z . n

1 / mTx nTv--| ( sln - s|?1......:- )
f  A  B '

(3.6e)
ot* 

= (nn\2r n -r- 16P(t) s"o r,-
6y2  \B)  L*mn '  

T6D Z/m / .n ^t<#**s,Y(#j-'Hg; l
(3.70)

a2w ,mn ,  ) .  76D( t \- =  I  - t T .  |  / . ' ,  - ! : j j : : : j - \ l e \ a @

dxdy  \AB t ' "  Lqmn  '  
t 6D  / . n  z /n

sin# sinryo s i"ff'tnff

^ tq *t" s" -ry1t5' - rH (T) j
MEX NEY.

11cos - cos -;)

Maximum stresses induced at the surface 
"r,n"ot " 

*n'**"OO'!'ir, 
".

,  EH - rt f t . . ' ,z rf t t2- _ox = 7r' z1t _ ,1t\fl 
+ pld j[q^n r

_jI+ sinffsin!ffsinff

(3.66)

. . . . . . . . . . (3.68,{)

.(3.688)

^"u#*,4s,YCL)"-'#e^)

76p(t) 
\ 'co sco

n6D Lrm L,.n ^a$*!s,-ff(#)'-'#(H) j Gin! ! !snf f )  . . . . (3.72)



oY = 'lt2 E H - rrTxz rrm' 2

,1t -6t1;1 + P() j[a^n t

76p(t) yco yoo
n6D Ltm Lln

sinTsinffsiffstff

*"1$*{s, -ff (#)' -X#(T) t
. . m f i x . n n v ,
lsln- ^ sin-:) ......(3.73)

A  B '  -

^ E H m nr'Y ='tr" 
rc + tDtABlI""^n*

16.,( t\ sintt( sinnlls;4^'!o sin'olorvP\L / f  
\ !oo  \ roo  

- " '  
a  u  -1  i r

-6n t-/m /-.n I @osffco'ffi .....{z.t+)n6D

Substitute p(t) from eq.(3.66), the above stresses equations can be written

- n.s ot" !
-t (- , 6ffi;(arsinffilz
J \6mn T -  

" "D

r "#;'"T:'"E1ry, I j (sinffsinff) ................(3.7s)' *a1S*fi>, -ff(#)' -#(H) i' """"

6y = ir2 ffiz Z te)' * r(t)'j{o*, +ffi!@-

. - o.2 EH x. \, rDZr r^ , 
effi{atstn#);

LxY - tL 
;G+DL L tABj l&*n*------- ; ;D

, 
sin* .inruo sinTYstn# Tt r-^^mrx -^^nn!_\- 

ar11!ia! iz -\ * ( ̂ \'-r!!te!--:--\ ,J 
j lcos - cos -)

""'t\A2 ' 
Bzt D \tt i l  

-.EF\AB) 
J

as:

0x= tr2ffiZ Z

The principal stresses can be calculated for various times:

{r)' + pft)'

(3.76)
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o*+o.,
ot = -T= *

op =!arctun#i
- \---;-)

(3.78C)

Where (0i angle of principal stress.

Establishment of a fracture control plan requires knowledge of two

obj ectives namely to determine:

-The effect ofcracks on streneth
-The crack growth as a function of time.

The effect of crack size on strength can be shown in Fig(3-7).

In fracture mechanics crack size is generally denoted as a, the strength is

expressed in terms of the load (p). suppose a structure has no significant defects

(a:0) then the strength of the structure (P") the ultimate design strength load.

Figure(3-7) Effect ofcrack length on the fracture load.{21

6-+O-
o z = -  z = -

(3.78A)

.(3.78B)t9!-o*\z t- -z( ? ) '  "xy

4t



Strength under the presence of crack is generally referred to as the

(residual strength) (Pr""); the diagram in fig(3-6) is called the residual strength

diagram .

The whole process of stable- unstable fracture may take place in a fraction of

second, Ifthe load (P = Pr"r), service loading continuing at loads at or below

(Pr"r) , the crack will continue to grow not by fracture but by cracking

mechanisms such as fatigue , stress-corrosion or creep.

Due to continual growth the crack becomes longer , the residual strength

less, the safety factor lower, and probability of fracture higher .

Starting at some crack size (ao) the crack grows in size during time . the

permissible crack(ap) following from figure above can be plotted on the curve

of crack-time variation shown in Fig(3-8) the time (H) in this figure is the safe

operation time and can be determined (i.e. until (ar) is reached).

I

Figure(3-8) Dynamic crack growth curve (schematically).[2]

The residual strength and crack growth diagrams are essentially different,

not only in shape but also in significance. Crack growth occurs slowly while

fracture taking place very rapidly, also the mechanism of crack growth and

fracture are different, there are five main type of crack growth mechanism

which are:

a
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a-fatigue due to cyclic loading.

b-stress corrosion due to sustained loading'

c-creep.

d-hydrogen induced cracking.

e-liquid metal induced cracking.

Many readers have no idea about the term dynamic crack growth, they

consider that growth take place only with dynamic loading, but actually any

variation of crack length during any period of time can be consider as dynamic

crack growth, the periods may months or till years as in creep crack growth.

There are two basic aspects of dynamic crack growth :

K Finite velocities of crack propagation.

S Crackbranching.

Dynamic crack growth may be considered in terms of energy balance. This

can be shown with the help of Fig(3-9).After the initiation of unstable crack

extension there is an excess energy which increases during crack growth, when

the crack length reaches a length ai the total excess energy represented

approximately by the shaded area, actually (G) does not increase linearly with

increasing crack length. Nor is it necessarily valid that (R) remains constant

during crack growth. But this approximation adequate for analysis to indicate

that crack velocities are finite.

3-18 Crack Growth(Classical Method
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Figure(3-9) G,R-a diagram showing the excess in energy some time
initiation of unstable crack extension.[11

The excess energy can be expressed as

u, - I: tG - R)da - -R(ai - q) + I::+d" .... . . . .(3.7e)

For plane strain (E - E /(7 - tf\ and fi, is given by

R  - " " , * o (3.80)
E

Substitute in eq.(3.79) to get
- - 2 '  .  Eo2  ,  . >  , \uo=- ' f f  (a i -a )+ f t (a i  -a i l  . . . (3 .81)

U  o  =  
*  ( a i  -  a ) '  ( a i  *  a o  -  2 )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 . 8 2 )

"Mott [l]argued that for a propagating crack the excess energy is stored as

kinetic energy, a simple expression for the stored kinetic energy is obtainable

from the opening displacement ofthe crack flank as

, =f J@V - *,)
Since (x) is a function

v ='f r[aff c)
Where

,, = 2'[(14
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Since both (ai &o) are functions of time thus the derivative of (3.83) W.R. to

time sives
d v  .  h ,

A = Y  
= V l o a t +  a 9 ) (3.86)

The kinetic energy in the displaced material ls:1 f: $ 1 for a material of

density (D) per unit thickness

T - !D. area.v' - ID I I g,) axay (3.87)

Substitute (i ) from eq.(3.86) to get

I  -  - . ?
r  - ;E  I  I f f a " -  ao )2  dxdy  . . . . . . . . . . . . . . . . . . . ( 3 .88 )

Equating the strain energy with the kinetic energy gives:

l t o z  .  \ r .  t  c ?  . . .

f r  (a t -  a)2(at r  do-2)  - ;E; l  I@o-  r io) 'zdxdy. . . . (3 .8e)

All the Cartesian stresses (o*o, andrrn) is functions of (x, y and t) so

when consider only the time is variable (to find the derivative of stresses

W.R.to time) these stresses can be written as:

o* = tnr(ttnffi)o't

o, - cnr(sin#,lo't

, r r a l r , \ n <
T-" ,  = C^-" ,1SI^r, a^t \ 2,94dr'

(3.e0c)

Where

cg,cgy and cgry are constants depend on (x, y, m, n, A, B, q.mn,'tto,vo,

mc,s,Nx,Nxy,n",zp) and the mechanical properties of the material of the plate

( i . e . E & p ) .

when derive the stresses W.R.to time to set:

(3.e0A)

.(3.e0B)

'  - l  ^  rnu im ' t  cos  ( f f i )
, -----=l;:-

^ 2 a^ '2.94d.{ (sinji:i44.)o.s_  \_  _ ._2 .94d1 .

^^^  r f r t v im ,
a 1. - r  f tvim,,

t  2  v t ' 2 .94d , ' r " i - j : j : ! 2 l r o . s' \ ' " " 2 . 9 + d l

(3.e1)

(3.e2)
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, I t tV in .
' ^ ' ' - l

.  1  /T tv im\  
- - -  \2 ,94da '

Lxy 
2"gxy\Z.g4d1/ ( <inntuim\o.s-  \ _ _ . _ 2 . 9 4 d a ,

(3.e3)

^ 1 n -.'lz-ap =,arcnnry

Now the principal stresses variation with the time can be determined as:

, 6x+6y
ot = -- 

z: + (3.e4A)

. 6x+61t
oz = --T- - (3.e48)

The angle of the principal stresses variation with time will be:

(3.e4C)

Recall eq.(3.89), and simpliff the right side to get

f i  fo , -  a) ' (a i*  ao-D =:D9l  I (a 'o ' -2aoao + d2o2) dxdv

Since (a and a)are not tunction 
"; " ";;; "; 

:^ o'; ,:r'::t'.,ro u',
. , ., mftX , ,nfiY,will be of order (sin2 'ff sin'ff) ^a the integration of them W'R.to x and y

.  AB_ . ,is equal to( =, ) the final result after simplifiing in terms of maximum principal

stress will be as :

4no2E ,

f f (a t -  ao )z (a i *  ao -Z )  =  (d2az  -2qoao  +  d2o2)  ' . . . . . (3 .96 )

Solving to get (a) as:

.  o  ^  l nE  .&t = Qoz + z 
I *(at 

- ao)z (ar t ao - 2) " " " " " "" " " " " "(3'97A)

2 -L +2|  .xy,dv-dr',
t - 2  J

tffy'+ttr,


