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A B S T R A C T

Among several metric parameters concerning the assessment of oil and gas well production, the flowing
bottom-hole pressure (FBHP) is considered essential. Accurate prediction of FBHP is crucial for petroleum
engineering and management. Several related parameters are associated with the FBHP magnitude influence;
thus, proper inspection of those parameters is another vital concern. This research proposes a hybrid modeling
framework based on the hybridization of machine learning (ML) models (i.e., Extreme Learning Machine
(ELM), Support Vector Machine Regressor (SVR), Extreme Gradient Boosting (XGB), and Multivariate Adaptive
Regression Spline (MARS)) and nature-inspired Differential Evolutional (DE) optimization for FBHP prediction.
The adjustment of the internal parameters of the ML-based models and the input feature selection is formulated
as an incremental learning problem that is solved by the evolutionary algorithm. Problem-specific samples were
collected from the open-source literature for this investigation. Modeling results are adaptable, automatically
determining the most relevant variables for the context of the ML model. The adaptive polynomial structure
of hybridized MARS model attained the best average performance for the FBHP modeling with correlation (R
= 0.94) and minimum root mean square (RMSE = 97.88). The proposed modeling framework produces an
alternative efficient computer aid model for FBHP prediction, resulting in reliable automated technology to
assist oil and gas well management.
1. Introduction

As the global primary fuel sources, oils and gas industries have
become the world’s dominant energy industries and have a significant
role in today’s global economy [1]. Despite the adverse impacts of oils
and gas sectors, such as climate change, biodiversity, and environmen-
tal footprint, these sectors have a significant potential to contribute
to sustainable development goals (SDGs) [2]. According to Millikan
and Sidwell [3], a precise understanding of pressure, especially at the
bottom of an oil well, is the most critical in petroleum engineering.
Hence, it is essential to identify the practical methods and system
recovery. FBHP is the fundamental parameter in reservoir analysis and
oil and gas production processes. It is an indicator for evaluating the
performance of the economic design of the wells [4]. A widely engaging
problem in the petroleum industry is accurately quantifying bottom
pressure during the real-time multi-phase flow of liquids [5–8].
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The literature reports several approaches to determine FBHP de-
pending on the type and specific functions of the well [9]. The in-
stallation of pressure gauges at the bottom of the well is the most
straightforward approach to measuring FBHP. However, several as-
sociated weaknesses include calibration, risk, and frequent mainte-
nance [10]. Several researchers have proposed conventional and em-
pirical approaches to predict bottom-hole pressure in exploration and
exploitation wells, including correlation-based models. However, these
methods are mainly formulated on a laboratory scale and are subject to
error, uncertainty, and low precision [5,8]. Furthermore, the complex
nature of oil and gas production may not satisfy the assumptions of
physics-based equations for many reasons [11], such as non-ideal fluid
behavior, chaotic fluid pattern, heterogeneity, and anisotropy. Con-
sequently, conventional, mechanical, and other empirical techniques
prove insufficient in effectively managing these complex conditions.
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Machine Learning (ML) models have confirmed the potential to
simulate historical data observations of petroleum engineering [12–15].
ML models have evidenced their practical application in almost every
industry with enormous possibilities for growth and innovation [16–
18], causing ML to rise to prominence in the scientific spheres [19,20].
The attributes of ML are its capacity to acquire knowledge from raw
data, handle nonlinear tasks, accommodate defective data in a fault-
tolerant manner, and provide generalizations efficiently and accurate
predictions [21]. Modern technology includes various soft computing
models that have evidenced their potential in solving nonlinear predic-
tion related issues, such as artificial neural networks (ANN) [5,22–25],
support vector regression (SVR) [20,26–29], fuzzy logic (FL) [8,30],
and adaptive neuro-fuzzy logic (ANFIS) [28,31–33].

Previous literature indicated that empirical and ML-based models
were employed to predict FHBP in different scenarios. Nevertheless,
the former and latter were attributed to low accuracy, generalization,
or real-expert implementation. Tariq et al. [34] reported that different
scholars had proposed different ML models to mitigate problems with
data and modeling. Another unique challenge in modeling FHBP is
the input variable combination and selection approach; this is gen-
erally a problem when dealing with a large set of input variables
in the field of data modeling and simulation [35–39]. It is evident
that the correlation-based techniques mainly proposed for calculating
the FBHP [40–45], involved several mathematical assumptions, and
numerals variables that need a considerable amount of information and
perhaps debated about the failure to provide accurate results [46]. It
is worth mentioning that the recent technical literature has criticized
correlation-based input variable selection [47–51]. Hadi et al. [35]
reported that feature selection and input identification are essential
steps for any intelligent data algorithm. Evolutionary data mining
techniques are innovative approaches for detecting patterns, anomalies,
and linkages between complicated processes in massive databases,
which can be used to predict future trends. Because interactions among
parameters follow a complex process, developing new models with
high accuracy is critical. As a result, these strategies are ideally suited
to exploiting the vast volumes of real-time, multivariate data being
generated for hydrocarbon exploration systems.

Depending on their intended use, hybrid approaches could undergo
prediction or optimization [52,53]. Consequently, it is justifiable that
hybrid strategies consist of several or integrated single methodologies
and optimization algorithms that have proven to be more depend-
able and capable of exceeding single models in terms of modeling
precision [35,39,54–58], hybrid learning has proven to be not only
beneficial and superior to single models but also covers a wide range
of issues that are connected with single procedures [59].

Hence, the primary contribution of this research is to propose a
new hybrid computer aid model based on the hybridization of ML
models and an evolutionary algorithm for predicting the FHBP of oil
wells. The merit of the proposed modeling framework is the feasibility
of being automated in configuring the essential input parameters for
the prediction matrix. The expected outcome of the proposed hybrid
model is to reduce the complexity of the learning process and attain
a more reliable predictive model that can be satisfactorily implied for
oil well monitoring and management. The remainder of this research
on evolutionary machine learning with feature selection is organized
as follows. First, the dataset statistical properties are presented. Then
the computational framework is then described in depth, and feature
selection and machine learning model parameter search are shown as
optimization problems. Next, computational experiments are presented
and discussed based on performance metrics and error and uncer-
tainty analysis, highlighting the advantages and limits of the proposed
approach. Finally, further research and conclusion are given.

2. Material and methods

This section provides context for the evolutionary feature and model
selection approaches proposed in this paper. The details on the ML
2

models are described in Appendix
2.1. Flowing bottom hole flowing pressure dataset

A multi-phase flow dataset from vertical wells consisting of 206
samples was obtained from open resources [60]. The wells where
the data was collected flowed with artificial lifting processes. Down-
hole flow pressure is recorded during measurements using downhole
pressure gauges just above the boreholes. The target variable to be
predicted is the downhole flow pressure (FBHP), represented by the
dependent variable Pwf (psia), modeled using nine production-related
variables: oil flow (Qo (bbl/day)), inside diameter of the production
pipeline (ID (inches)), gas flow (Qg (Mscf/ day)), water flow (Qw
(bbl/day)), oil density (Api), well-drilling depth (Depth (ft)), downhole
temperature (Bt (F)), temperature of the surface (ST (F)), and wellhead
pressure (Pwh (psia)). The output is the flowing bottom-hole pressure
(Pwf (psia)). The main motivation for adopting a computer aid model
for FBHP prediction is to provide reliable alternative technology for oil
and gas wells management and operation.

The dataset was divided into a training set consisting of 165 samples
and a test set of 41 samples. Tables 1 and 2 show the basic statistics for
the training and test sets. The datasets are available at https://github.
com/LGoliatt/fbhp_hybrid.

Fig. 1 shows the correlation coefficients among input variables and
the relationship between the input variables and the floating bottom
hole pressure (Pwf). The coefficient ranges between +1 and −1, where
+1 represents a direct correlation between the variables and −1 an indi-
rect relationship between the two variables. In Fig. 1, one can observe a
strong correlation between the oil flow (Qo) and the gas flow (Qg). This
strong positive correlation (0.92) is expected because the flow is multi-
phase. In addition, a strong positive correlation is observed between
oil density (Api) and surface temperature (St) because the density of
drilling fluids, particularly oil-based fluids, varies with pressure and
temperature [61]. As seen in the last line of the correlation matrix
in Fig. 1, the drilling depth and water flow coefficients are moderate,
0.62 and 0.5, respectively. Besides, a low positive correlation of FBHP
with wellhead pressure (0.37) and oil density (0.33) is observed. The
remaining input variables have a weak correlation with the FBHP value.

2.2. Computational model for the hybrid approach

The Differential Evolution (DE) algorithm [62] was used to find
the best parameters for the ELM, SVM, XGB, and MARS predictors.
DE is a population-based stochastic evolutionary algorithm for solv-
ing global optimization problems. Using the difference between two
randomly generated vectors, the technique causes a disturbance in the
solutions [63]. In this approach, each individual in the population
encodes a candidate solution (an ML model) to model FBHP.

After initializing the population, the selection operator chooses the
parents according to a mix of criteria combining their fitness and a
random component. Then, new candidate solutions are generated using
operators such as mutation, recombination, and fitness evaluation are
carried out sequentially. At the end of each generation, the fittest indi-
viduals are selected for the next generation. Following is a description
of the DE algorithm in depth. First, an initial population of candidate
solutions {𝜃𝑖,𝐺 ∣ 𝑖 = 1, 2,… , 𝑁𝑃 } is created at random. Then, the DE
teratively performs the operations [64]:

• Selection: for each 𝜃𝑖, select three parents 𝑟1, 𝑟2, and 𝑟3 at random
in the population.

• Mutation: generate a new candidate mutated solution 𝑣𝑖,𝐺+1 =
𝜃𝑟1,𝐺 + 𝐹 (𝜃𝑟2,𝐺 − 𝜃𝑟3,𝐺) where 𝐹 ∈ (0, 2) is a scaling parameter.

• Crossover: generates a vector

𝜇𝑗𝑖,𝐺+1 =

{

𝑣𝑗𝑖,𝐺+1, if 𝑟𝑎𝑛𝑑 𝑏(𝑗) ≤ 𝐶𝑅 or 𝑗 = 𝑟𝑛𝑏𝑟(𝑖),
𝑥𝑗𝑖,𝐺 , if 𝑟𝑎𝑛𝑑 𝑏(𝑗) > 𝐶𝑅 or 𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑖),

where 𝑟𝑎𝑛𝑑 𝑏(𝑗) ∈ [0, 1] ∀𝑗. CR ∈ [0, 1] is the crossover probability,
and 𝑟𝑛𝑏𝑟(𝑖) ∈ 1, 2,… , 𝐷 ensures 𝜇𝑖,𝐺+1 is a different candidate

solution from 𝑣𝑖,𝐺+1.

https://github.com/LGoliatt/fbhp_hybrid
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Fig. 1. Correlation coefficient among input variables and floating bottom hole pressure (Pwf).
Table 1
Training set (165 samples) basic statistics. The first column identifies all variables in the prediction problem. The target
variable is the flowing bottom-hole pressure, indicated in the last line (Pwf (psia)). The second column (mean) shows the
average value of the variable, the third column (std) is the associated standard deviation, and the fourth column presents
its minimum observed value (min). Interquartile values are shown in the fifth, sixth, and seventh columns, respectively. The
upper bound of the first interquartile range is identified in column 25%, the value of the second interquartile range, or
median, is shown in column 50%, and the upper bound of the third interquartile range is shown in column 75%. The last
column shows the maximum observed value for the respective variable in the dataset..

Variable Mean Std Min 25% 50% 75% Max

Qo (bbl/day) 6257.36 5031.25 280.00 2350.00 4700.00 9600.00 19618.00
Qg (mscf/day) 3364.90 3049.08 33.60 1012.30 2448.75 4949.02 13562.20
Qw (bbl/day) 2621.88 2744.54 0.00 1.00 1794.00 4600.00 11000.00
Id (inches) 3.81 0.43 2.00 3.81 3.96 3.96 4.00
Depth (ft) 6382.23 541.47 4550.00 6317.00 6518.00 6709.00 7100.00
Api 33.88 2.31 30.00 32.60 32.60 36.50 37.00
St (f) 118.79 31.15 76.00 90.00 97.00 155.00 160.00
Bt (f) 204.02 16.40 157.00 208.00 212.00 212.00 215.00
Pwh (psia) 320.81 153.62 80.00 210.00 280.00 390.00 960.00

Pwf (psia) 2500.98 305.17 1227.00 2296.00 2505.00 2710.00 3217.00
Table 2
Test set (41 samples) basic statistics. The first column identifies all variables in the prediction problem. The target variable
is the flowing bottom-hole pressure, indicated in the last line (Pwf (psia)). The second column (mean) shows the average
value of the variable, the third column (std) is the associated standard deviation, and the fourth column presents its minimum
observed value (min). Interquartile values are shown in the fifth, sixth, and seventh columns, respectively. The upper bound
of the first interquartile range is identified in column 25%, the value of the second interquartile range, or median, is shown
in column 50%, and the upper bound of the third interquartile range is shown in column 75%. The last column shows the
maximum observed value for the respective variable in the dataset..

Variable Mean Std Min 25% 50% 75% Max

Qo (bbl/day) 6579.71 3993.18 840.00 3700.00 5600.00 9293.00 14800.00
Qg (mscf/day) 3622.02 3175.20 75.20 1413.09 2904.80 4730.14 12580.00
Qw (bbl/day) 3014.41 2995.32 0.00 10.00 2288.00 5496.00 10500.00
Id (inches) 3.93 0.07 3.81 3.81 3.96 3.96 4.00
Depth (ft) 6269.88 656.49 4550.00 6245.00 6406.00 6722.00 7079.00
Api 33.34 2.35 30.00 32.60 32.60 36.50 37.00
St (f) 113.46 29.28 90.00 90.00 90.00 153.00 159.00
Bt (f) 202.12 19.17 161.00 208.00 212.00 212.00 215.00
Pwh (psia) 322.15 155.24 130.00 210.00 275.00 400.00 800.00

Pwf (psia) 2440.98 288.36 1906.00 2190.00 2444.00 2679.00 2984.00
• Replacement: if the new generated candidate solution 𝜇𝑖,𝐺+1
is fittest than 𝜃𝑖,𝐺, then 𝜇𝑖,𝐺+1 replaces 𝜃𝑖,𝐺+1 and 𝜃𝑖,𝐺 is kept
otherwise.
3

Searching for the optimal parameters includes selecting the model’s
performance-enhancing characteristics. This phase was implemented by
enabling and disabling binary representation features. Each candidate
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Table 3
Encoding of internal parameters of candidate solutions. The description of the
mathematical model of the ML models can be found in Appendix.

Model 𝜽𝑴𝑺 Description Range/Set

ELM 𝜃1 Regularization parameter, 𝐶 [1, 10000]
𝜃2 Regularization strategy, 𝛾 0: 𝐿1, 1: 𝐿2

SVR 𝜃1 Regularization parameter, 𝐶 [1, 10000]
𝜃2 Bandwidth parameter, 𝛾 [10−5, 1000]
𝜃3 Kernel, 𝜙 0: linear, 1: RBF, 2: sigmoid

XGB 𝜃1 No. predictors [10, 300]
𝜃2 Learning rate [10−6, 1]
𝜃3 L2 weight regularization (𝜆) [0, 1]
𝜃4 L1 weight regularization (𝛼) [0, 1]

MARS 𝜃1 Degree of polynomials, 𝑞 [0,3]
𝜃2 Penalty factor, 𝛾 [1, 9]
𝜃3 Number of terms, 𝑀 [1, 500]

solution 𝜽 = (𝜽𝑭𝑺 ,𝜽𝑴𝑺 ) encodes an ML model and a subset of features,
s shown in Table 3. The available ML models are described in Ap-
endix. Let the 𝜽𝑭𝑺 vector be the set of features as shown in Tables 1
nd 2. The binary representation consists of each entry being set to 0
r 1, referring respectively to the inactive and activated features. As an
xample, a vector of features

Qo (bbl/day),Qg (bbl/day),Api ,Bt (f)]

s represented as 𝜽𝑭𝑺 = [1, 1, 0, 0, 0, 1, 0, 1, 0].
The vector 𝜽𝑭𝑺 corresponds to the internal model parameters,

hich are specified as follows:

• Extreme Learning Machine (ELM): 𝜽𝑴𝑺 = (𝜃1, 𝜃2), where 𝜃1
corresponds to the regularization parameter C and 𝜃2 sets the
regularization approach (𝐿1 or 𝐿2).

• Support Vector Machine Regression (SVR): 𝜽𝑴𝑺 = (𝜃1, 𝜃2, 𝜃3). The
first parameter corresponds to the regularization parameter C, the
second parameter corresponds to the bandwidth parameters 𝛾,
and the last one represents the kernel identification.

• Extreme Gradient Boosting (XGB): 𝜽𝑴𝑺 = (𝜃1, 𝜃2, 𝜃3, 𝜃4), where 𝜃1
symbolizes the number of predictors, 𝜃2 is the learning rate, 𝜃3
and 𝜃4 are the 𝐿1 and 𝐿2 penalty regularization term, respectively

• Multivariate Adaptive Regression Spline (MARS): 𝜽𝑴𝑺 =
(𝜃1, 𝜃2, 𝜃3), where 𝜃1 is the maximum degree of the piecewise
polynomials, 𝜃2 encodes the penalty factor and (𝜃3) corresponds
the maximum number of terms in the polynomial model.

The objective of the Differential Evolution (DE) strategy lies in
he fine-tuning of internal parameters within the predictor and the
dentification of a subset of features that yield computed outcomes
onsistent with the actual results derived from the training data. A
implified diagram of the approach presented in this paper is displayed
n Fig. 2.

. Application results and analysis

This section presents the results obtained of the proposed model-
ng framework for gathered dataset from the available literature. The
erformance results of the hybrid model without the feature selection
rocess and the comparison with others with similar strategies are
resented in Section 3.1. The evolutionary feature selection strategy
s evaluated in Section 3.2. The following packages were used to
mplement the framework: pandas [65], NumPy [66], statsmodels [67],
cikit-learn framework [68], adaptations of the source codes provided
y Friedman [69] and Virtanen et al. [70]. The experiments were
onducted on a computer with the following specifications: CPU Intel
7-9700F Opteron (4500 Mhz, eight cores of 12.00 GHz, and cache
emory of 2 MB), RAM of 32 GB under operating system Linux Ubuntu
8.04.1.
4

Table 4
Performance metrics.

Name Expression

R2
𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2∕

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦̄)

MAE 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦̂|

RMSE

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦̂)2

MAPE 100
𝑁

𝑁
∑
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|

|

|

|

𝑦𝑖 − 𝑦̂
𝑦𝑖

|

|

|

|

In ML-based model development, statistical assessment is usually
adopted to determine the performance of models. The assessment can
be done with the help of metrics that allow you to quantify and
compare performance. Table 4 describes the metrics used to assess
the model’s performance. These metrics were chosen because they can
capture different characteristics of the models’ behavior and allow
comprehensive comparisons.

3.1. Performance of the hybrid approach without model selection

According to Table 5, the proposal presented in this study yielded
consistent results across all criteria. The metrics showed that the mod-
eling performance was significantly enhanced by utilizing feature selec-
tion. It is also clear from comparing the MARS model’s best-averaged
values (in boldface) to the averages obtained by the other models
that the MARS model consistently showed accurate results across the
separate runs.

The XGB model is compatible with the MARS model in terms of per-
formance, considering all metrics. In contrast, ELM and SVM had poor
performance and great variability in the final predictions, as evidenced
by their standard deviations (shown in parenthesis). Considering the
comparison with the results in the literature, the available results only
present the correlation coefficient value shown in the first column.
Orkiszewski [71] compares several empirical models while Sami and
Ibrahim [11] implemented a the neural network to predict FBHP. The
results present the best models reported by the authors. It can be
observed that the models developed in this research outperform (in
average performance) the best models found in the literature for the
same problem.

The models presented in Table 5 use all input variables collected in
the field. The input variables are described in Tables 1 and 2. These
models’ attributes are critical in cases where sensor failures can occur,
in addition to helping construct simplified models that can potentially
be less susceptible to noise when reading the data. A practical research
point is finding models with fewer variables, less complexity, and
similar predictive power to those with all available input variables.
The evolutionary process model is presented in the next section to
accomplish this task.

3.2. Evolutionary model and feature selection approach

The automatic feature determination process was evaluated to iden-
tify a subset of pertinent features for inclusion in model construction.
Evolutionary algorithms are powerful tools that can identify a few
features most useful in predicting the target variable. The advantage
of using evolutionary algorithms for feature selection is that they can
handle a large number of features and can find a suitable solution even
if the search space is highly nonlinear.

Table 6 shows the models’ performance metrics with the evolu-
tionary feature selection framework. The suffix -FS indicates that the
feature selection procedure was used to execute the models. The values
in bold indicate the model that obtained the best performance in

average values in the analyzed metrics. The results demonstrate that
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Fig. 2. Schematic representation of the evolutionary feature and model selection framework. The data collected from the wellbore composes the input parameters 𝜽𝐹𝑆 while the
ML internal parameters are encoded into the vector 𝜽𝑀𝑆 . A binary mask is used to select the input variables: an entry equal to 1 indicates the input variable is chosen to build
the ML model, and 0 otherwise. The vector 𝜽 = (𝜽𝐹𝑆 ,𝜽𝑀𝑆 ) encodes a candidate solution for the problem. The problem is formulated as an incremental learning problem (where
what must be learned are the input variables and the internal parameters of the ML model). An intelligent search algorithm then solves the learning problem. The differential of
the proposal is to determine the most relevant variables as the fittest solution in an evolutionary process, where the best solutions result in the most accurate models.
Table 5
Averaged results for performance metrics. In this experiment, the nine variables are frozen, and the models use all of them to
predict the FBHP. The values between parentheses indicate the standard deviation in 50 independent runs. Entries in boldface
indicate the best averaged values.

ML Model R R2 RMSE (psia) MAE (psia) MAPE (%)

ELM 0.883 (0.136) 0.588 (1.35) 141.53 (115.67) 92.13 (21.63) 3.88 (1.01)
MARS 0.940 (0.016) 0.879 (0.031) 98.21 (12.19) 75.26 (10.19) 3.13 (0.428)
SVR 0.768 (0.044) 0.197 (0.432) 247.43 (62.89) 205.28 (58.57) 8.66 (2.41)
XGB 0.925 (0.010) 0.852 (0.019) 109.22 (6.80) 84.29 (6.39) 3.53 (0.257)
N/Aa 0.902 (–) – – – < 10
RFb 0.83 (–) – – – –
KNNb 0.86 (–) – – – –
ANNb 0.93 (–) – – – –

aReported by Orkiszewski [71]
bReported by Sami and Ibrahim [11]
Table 6
Averaged results for the evolutionary feature selection framework to predict the FBHP values in the test set. The values within
parentheses indicate the standard deviation in 50 independent runs. Entries highlighted in bold indicate the best averaged
values.

ML Model R R2 RMSE (psia) MAE (psia) MAPE (%)

ELM-FS 0.913 (0.021) 0.828 (0.042) 117.50 (13.46) 88.97 (11.03) 3.74 (0.462)
MARS-FS 0.931 (0.019) 0.862 (0.039) 104.87 (14.31) 80.29 (11.85) 3.35 (0.493)
SVR-FS 0.805 (0.019) 0.377 (0.323) 218.85 (51.23) 184.09 (48.02) 7.81 (1.96)
XGB-FS 0.922 (0.018) 0.847 (0.032) 110.74 (11.15) 85.09 (9.46) 3.57 (0.393)
the MARS-FS is superior to other models across all criteria. MARS-FS
showed more prominent predictability due to its modeling flexibility,
as described in Appendix A.4. Its multivariate adaptive spline modeling
flexibility allowed for achieving the best performances for all metrics,
even with an internal evolutionary process that reduces the number of
input variables.

Table 7 presents the computing time (CPU time) obtained for the
proposed hybrid approach. The SVR model (without feature selection)
produced the lowest averaged CPU times, followed by ELM, XGB, and
MARS. The mathematical formulation of the SVR using the kernel to
express the internal products in large dimensions saves computational
resources resulting in a shorter CPU execution time. On the other hand,
the CPU time of the ELM model depends on the number of neurons
in the hidden layer, which requires more operations to perform the
5

training when compared to SVR. The XGB uses an additive model-
ing formulation using decision trees, while the MARS model employs
an additive mathematical formulation with high-order polynomials
that results in higher CPU processing. The feature selection procedure
implemented in ELM-FS, SVR-FS, XGB-FS and MARS-FS does not signifi-
cantly affect CPU time. Although the proposed approach allows training
the model with fewer variables, there were no significant variations in
the CPU times, as observed in Table 7.

Comparing the results presented in Tables 5 and 6, we also observed
that the performance was slightly lower than the model that used all the
input variables. This degradation in performance is expected because
less information was used to build the models. However, comparing
the MARS-FS model and the MARS model, this average performance
decay was 0.96% for the R metric and 1.98% for the R2 metric, 6.35%
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Table 7
Averaged CPU time in seconds with standard deviations (calculated on
50 independent runs). Computer specifications: Intel i7-9700F Opteron
CPU (4500 Mhz, eight 12.00 GHz cores and 2 MB cache memory),
32 GB RAM under Linux Ubuntu 18.04.1 operating system.

ML Model CPU Time (s)

ELM 6.406 ± 0.549
ELM-FS 6.630 ± 0.768
MARS 9.036 ± 1.477
MARS-FS 9.258 ± 1.376
SVR 6.056 ± 0.620
SVR-FS 6.277 ± 0.811
XGB 8.142 ± 0.619
XGB-FS 8.062 ± 0.644

for the RMSE, 6.26% for the MAE, while a 6.75% percentage decrease
was computed for the mean error percentage (MAPE). For comparison
purposes, it is noted that the performance decrease was smaller for
the XGB model (−0.33% for R, −0.59% for R2, −1.37% for RMSE,

0.94% and −1.12% for MAPE). However, the model achieved a worse
erformance compared to the MARS model. Therefore, a slight drop in
he percentual difference is expected as the performance improves.

Fig. 3 shows the distribution of variables active in the final models
fter 50 independent runs. The input variable occurrences strongly
ndicate the importance of the variable in the context of the model
ithin the evolutionary feature selection process. It can be seen that

he set of input variables (Depth, Pwh, Qw) appears in all models (EN,
VR, XGB, and MARS) in all independent runs. This result indicates
hat, regardless of the ML model, the set, as mentioned earlier, of
ariables is fundamental in the modeling process. Specifically for the
ARS-FS model, the variable Id is essential in predicting the FBHP.
he pipeline’s inside diameter (Id) is an important design parameter
hat affects the fluid’s flow rate and bottom pressure. Increasing the
ipeline Id reduces friction losses and increases the flow rate. The Id is
ecreased to increase the bottom pressure. Additionally, for the MARS-
S model, the input variables Qw proved to be equally important, and
he variable Qw is also representative since they were selected in 46
ut of 50 runs.

Similarly, based on previous outcomes, the model MARS-FS was
hosen for further analysis of the distribution of features. After model
volution, the final models’ results were evaluated, and the variables
elected by the evolutionary procedure were stored and presented in
able 8. The purpose of the table is to show the distribution of the
ccurrence of the groups of variables, the number of input variables
n the final models, and the number of times they occurred during
ndependent runs. The first column shows the input variables used
o model the FBHP output, while the second column displays the
ount of input variables in the model. The third column indicates the
umber of occurrences of the input variables set in 50 independent
uns. The remaining columns present the averaged performance metrics
ssociated with each model. The standard deviation values indicated
ith (–) were not displayed as they occurred only once and did not
llow computation. The table rows were arranged from the highest
verage performing model to the lowest average performing model.

Considering the number of input variables in the models, the most
ffective models have between seven and eight variables. It can be
oticed that among the most accurate models, the variables Api and St
o not appear among the selected ones. Fig. 3 supports this observation,
howing that these two variables were the least likely to be chosen in
ifferent runs of the evolutionary feature selection model. Interestingly,
he model with nine variables occurred more times in 50 runs (6 out
f 50), indicating that the feature selection process led to the original
odel without feature selection. On the other hand, this 9-variable
odel was not the best performer, indicating that a reduction in input

ariables can improve FBHP predictions.
Fig. 4 displays the Taylor diagram for the models MARS, XGB,
6

ARS-FS and XGB-FS. The results of all 50 final models are displayed.
The Taylor diagram was constructed based on predicted and measured
FBHP values in the test set. Taylor’s diagram visually depicts how
well predictions and measured values match based on the correlation
coefficient (R), the centered root mean square deviation (RMSD), and
the standard deviation. The diagram shows that models XGB and MARS
generated results close to the observed data, with higher R and lower
RMSD values. In contrast, the agreement quality with the observed data
decreases for XGB-FS and MARS-FS.

4. Discussion

The knowledge acquired using the feature selection is used in
Section 4.1 to freeze some variables and propose simpler models. An
error analysis is performed in the 4.2 section, while in 4.3 section,
an uncertainty analysis on the developed models is performed. Finally,
Section 4.4 discusses the strengths and limitations of the model.

4.1. Performance of hybrid approach freezing input variables

The proposed approach allows the freezing of some variables during
the search process. This approach works as the insertion of domain-
specific knowledge by the specialist, ensuring that a group of variables
are always present in the prediction model [72]. In contrast, spe-
cific variables are deliberately discarded from the modeling process.
This flexibility of the computational framework allows searching for a
specific group of variables while some remain unsearchable [59].

An advantage of the evolutionary feature selection process is that it
allows learning about the most important input variables for the model
and data being analyzed. This knowledge can build simpler models
with similar or superior precision to previously determined models.
In freezing variables, it is important to determine which ones will be
inserted and which ones will be included in the modeling process. A
group of specialists can determine this criterion by considering the
production conditions or the costs involved. Alternatively, in this study,
we chose the six most frequent variables of the MARS model. This
choice is based on Fig. 3, where the six most frequent variables are
(Qw, Id, Depth, Pwh, Qo, Bt).

Table 9 shows the results obtained with three different groups of
variables. The V4 group is formed by the six most frequent variables
in Fig. 3, the V3 group by the five most frequent variables, and the V1
group by the four most frequent variables. The objective is to evaluate
how the MARS model behaves in predictive capacity with a gradual
reduction of information available in the input variables. The average
results in Table 9 show a decrease in performance with the reduction in
the number of input variables. This result is expected because the model
produces worse predictions as relevant input variables are excluded.
On the other hand, when comparing the results in Tables 5 and 9, it is
noted that the MARS-V4 model effectively fitted to the data, allowing
an improvement in the average performance for the analyzed metrics.

Fig. 5 shows the scatter plot of the best MARS-V4 model with
the variable set (Qw, Id, Depth, Pwh, Qo, Bt). This result shows that
including the most relevant variables benefits the FBHP modeling,
allowing the model to use the predictive capacity to adjust to the most
relevant information. Furthermore, including more variables may not
increase the prediction performance because the model has to deal
with more potentially irrelevant information. We emphasize that the
final model results from a search process, so non-informative variables
can include noise in the search and make the evolutionary algorithm
more challenging to produce reasonable solutions. This problem can be
overcome by increasing the number of generations of the evolutionary
algorithms, but with it also comes an increase in computational cost

and complexity to find a solution.



Fuel 350 (2023) 128623L. Goliatt et al.

b
m
g

p

Table 8
Summary of results for MARS model simulations with evolutionary feature selection over 50 independent runs. Column Set represents the variables present in
the final model. Column No. Var. shows the number of input variables, and column Occur. displays the number of occurrences of the variable set out of 50 runs.
The remaining columns display the performance metrics R, R2, RMSE, MAE, and MAPE, respectively.

Set No. Var. Occur. R R2 RMSE (psia) MAE (psia) MAPE (%)

Api, Bt, Depth, Id, Pwh, Qg, Qw 7 1 0.951 (–) 0.900 (–) 90.12 (–) 72.39 (–) 2.98 (–)
Api, Bt, Depth, Id, Pwh, Qg, Qw, St 8 1 0.951 (–) 0.905 (–) 87.99 (–) 70.70 (–) 2.93 (–)
Api, Bt, Depth, Id, Pwh, Qo, Qw, St 8 2 0.949 (0.00) 0.895 (0.003) 92.40 (1.48) 66.33 (3.45) 2.79 (0.155)
Bt, Depth, Id, Pwh, Qg, Qo, Qw, St 8 5 0.948 (0.013) 0.893 (0.025) 92.48 (10.59) 73.44 (8.10) 3.07 (0.338)
Bt, Depth, Id, Pwh, Qg, Qo, Qw 7 1 0.946 (–) 0.896 (–) 92.04 (–) 64.50 (–) 2.74 (–)
Bt, Depth, Id, Pwh, Qo, Qw, St 7 1 0.946 (–) 0.894 (–) 92.95 (–) 63.72 (–) 2.69 (–)
Api, Bt, Depth, Id, Pwh, Qo, Qw 7 4 0.938 (0.024) 0.877 (0.046) 98.69 (17.65) 78.18 (13.90) 3.21 (0.610)
Bt, Depth, Id, Pwh, Qg, Qw, St 7 1 0.936 (–) 0.876 (–) 100.41 (–) 78.57 (–) 3.30 (–)
Api, Bt, Depth, Id, Pwh, Qg, Qo, Qw 8 4 0.935 (0.009) 0.873 (0.016) 101.26 (6.32) 75.10 (6.79) 3.12 (0.268)
Api, Depth, Id, Pwh, Qo, Qw 6 2 0.930 (0.003) 0.860 (0.005) 106.45 (1.86) 79.12 (1.25) 3.38 (0.054)
Api, Bt, Depth, Id, Pwh, Qg, Qo, Qw, St 9 6 0.928 (0.028) 0.856 (0.059) 106.49 (20.35) 78.28 (14.75) 3.26 (0.609)
Bt, Depth, Id, Pwh, Qo, Qw 6 6 0.927 (0.019) 0.855 (0.039) 107.47 (14.83) 83.16 (12.95) 3.47 (0.542)
Api, Depth, Id, Pwh, Qg, Qw 6 3 0.927 (0.015) 0.854 (0.034) 108.49 (12.91) 87.79 (9.68) 3.68 (0.435)
Depth, Id, Pwh, Qg, Qo, Qw 6 1 0.924 (–) 0.850 (–) 110.20 (–) 85.85 (–) 3.60 (–)
Depth, Id, Pwh, Qg, Qo, Qw, St 7 3 0.922 (0.017) 0.842 (0.032) 112.69 (11.22) 81.78 (12.13) 3.41 (0.461)
Depth, Id, Pwh, Qo, Qw 5 2 0.917 (0.033) 0.838 (0.064) 113.62 (22.79) 89.86 (17.04) 3.79 (0.732)
Api, Depth, Id, Pwh, Qo, Qw, St 7 1 0.916 (–) 0.836 (–) 115.30 (–) 92.07 (–) 3.87 (–)
Api, Depth, Id, Pwh, Qg, Qo, Qw, St 8 5 0.914 (0.012) 0.828 (0.024) 117.79 (7.80) 91.16 (7.11) 3.77 (0.302)
Api, Depth, Id, Pwh, Qg, Qo, Qw 7 1 0.894 (–) 0.788 (–) 131.26 (–) 102.51 (–) 4.24 (–)
Table 9
Results for freezing variables strategy during the search process.

ML Model Var. Set No. Var. R R2 RMSE (psia) MAE (psia) MAPE (%)

MARS V1 4 0.849 (0.007) 0.691 (0.015) 158.20 (3.77) 122.07 (2.32) 5.21 (0.100)
MARS V3 5 0.913 (0.022) 0.825 (0.050) 118.16 (15.89) 89.90 (9.82) 3.77 (0.402)
MARS V4 6 0.940 (0.016) 0.880 (0.032) 97.88 (12.43) 74.69 (10.52) 3.12 (0.442)

Variable sets:
V1: (Qw, Id, Depth, Pwh)
V3: (Qw, Id, Depth, Pwh, Qo)
V4: (Qw, Id, Depth, Pwh, Qo, Bt).
Table 10
Error analysis for MARS, XGB, MARS-FS, XGB-FS machine learning models. MARS
freezing variables were also included in the comparison.

Input Mean Width of 95% confidence
ML Model variable prediction uncertainty prediction error

set error (psia) band (psia) interval (psia)

MARS All −0.00 ±0.014 0.939 to 1.07
XGB All +0.002 ±0.018 0.918 to 1.08
MARS-FS – +0.002 ±0.015 0.930 to 1.07
XGB-FS – +0.002 ±0.017 0.921 to 1.07
MARS V1 +0.009 ±0.027 0.867 to 1.11
MARS V3 +0.002 ±0.017 0.922 to 1.08
MARS V4 +0.00 ±0.013 0.942 to 1.06

4.2. Error analysis

An error analysis was conducted to assess the models’ ability to
predict FBHP outcomes. The error 𝑒𝑗 for the sample 𝑗 is the difference
etween the FBHP value measured and the FBHP predicted by the ML
odels. The 95% confidence band around the predicted FBHP values is

iven by (𝑒 − 1.96𝑆𝑒, 𝑒 + 1.96𝑆𝑒), where 𝑒 =
∑𝑁

𝑗=1 𝑒𝑗 is the mean of the

rediction and 𝑆𝑒 =
√

∑𝑁
𝑘=1(𝑒 − 𝑒𝑘)2∕(𝑁 − 1) is the standard deviation.

The error analysis is displayed in Table 10. The results show that the
models produced similar mean prediction errors (in the 3rd column),
indicating that the evolutionary feature selection does not change the
optimized XGB and MARS behavior. In addition, one can observe that
except for model MARS-V1, all models produced similar uncertainty
widths, as seen in the last column. MARS-V1 uses four input variables,
which are reflected negatively in the model error analysis.

4.3. Uncertainty analysis

The uncertainty analysis is a method that can quantify the degree
to which the output varies as a result of changes to the input. The
7

calculation of statistical measures such as the median, mean, and
population quantiles are typically used to carry out the analysis [73].

Uniform distributions were used to model the variations of input pa-
rameters. The maximum and minimum values for each input parameter
are shown in Table 3. The Mean Absolute Deviation (MAD)

MAD = 1
𝑁𝑀𝐶

𝑁𝑀𝐶
∑

𝑖=1
|FBHP𝑝𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(FBHP𝑝)| (1)

is used to provide an output’s uncertainty that is calculated as

Uncertainty % = 100 × MAD
𝑚𝑒𝑑𝑖𝑎𝑛(FBHP𝑝)

(2)

where 𝑁𝑀𝐶 = 250000 and FBHP𝑝𝑖 is the flow bottom-hole pressure
predicted for the 𝑖th sample. The study by Sattar and Gharabaghi [74]
provides more information on the Monte Carlo approach.

Uncertainty analysis for FBHP modeling is shown in Table 11. The
results demonstrate that the XGB model exhibited the lowest uncer-
tainty when utilizing all input variables, while the MARS model yielded
the highest uncertainty. This disparity may suggest the potential over-
fitting of the MARS model. Considering models that use evolutionary
feature selection, the uncertainty of the XGB-FS model is smaller than
the MARS-FS model. The XGB is an ensemble model that combines
multiple simple models (weak learners) with error control strategies,
resulting in a more robust model with reduced uncertainty. Conversely,
the MARS model, which combines polynomials of varying degrees,
displayed higher susceptibility to input data variations. Notably, the
MARS-V1, MARS-V3, and MARS-V4 models, which selectively froze
certain variables and utilized only the most informative ones, exhib-
ited lower uncertainty values, reinforcing the importance of properly
selecting input variables.

Fig. 6 illustrates the graphical comparison concerning RMSE and un-
certainty. The figure reveals that the employment of MARS models re-
sulted in higher uncertainty and lower RMSE values, while XGB models
exhibited lower uncertainty but higher RMSE values. Specifically, the
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Fig. 3. Evolutionary feature selection: distribution of the input variables active in the final models after 50 independent runs.
Table 11
Uncertainty predicts for MARS, XGB, MARS-FS, XGB-FS machine learning models. MARS freezing variables were also included
in the comparison.

ML Model Var. Set. No. features Median (psia) MAD (psia) Uncertainty (%) RMSE (psia)

MARS All 9 3344.291 1741.008 52.059 78.002
XGB All 9 2491.751 134.891 5.413 95.931
MARS-FS – 8 2650.413 275.819 10.407 81.262
XGB-FS – 8 2483.031 151.678 6.109 93.358
MARS V1 4 2616.948 212.913 8.136 153.485
MARS V3 5 2734.173 268.818 9.832 91.973
MARS V4 6 2377.138 368.138 15.487 72.572
8
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Fig. 4. Taylor diagram for MARS and XGB, including the evolutionary feature selection models.
Fig. 5. Predictions of the best MARS-V4 model with the variable set (Qw, Id, Depth,
Pwh, Qo, Bt).

MARS-V4 model outperformed other models regarding RMSE, whereas
XGB models demonstrated superior performance regarding uncertainty.
In the region where the models presented the best performance, a trade-
off is observed between the RMSE values and uncertainties of gradient
boosting-based models (XGB) and spline-based models (MARS). How-
ever, model MARS-V4 achieved similar uncertainty and lower RMSE
with reduced complexity considering the number of variables.

4.4. Model strengths, limitations, and future developments

Recently, it has become common practice to combine meta-
heuristics and machine learning models [75–78]. Although there are
additional well-established feature selection techniques, they are typi-
cally used offline, either before or after the ML model is constructed.
9

This approach can be interpreted as an incremental learning process
that blends learning with an evolutionary algorithm [79]. A procedure
for improving potential solutions is incorporated into the evolutionary
model’s framework. While internal parameters are being changed, the
most important characteristics are chosen simultaneously, resulting in
continuous model improvement throughout the evolutionary process.

The primary strength of the model lies in its capability to automati-
cally identify the most relevant variables through the feature selection
process and to determine the internal parameters of ML models. Instead
of focusing on the model’s parameters or deciding which variables to
employ to model the input–output relationship, specialists can focus on
the decision-making process. [80].

The current proposal also offers the flexibility to interchange ML
models and optimization techniques. Different evolutionary algorithms
can be integrated with island-based approaches [81], which can make
use of the potential of diverse algorithms to produce valuable solu-
tions. Since the model formulation and the internal parameters the
evolutionary algorithm needs to explore are already known, integrating
additional ML models into the framework is straightforward.

Over the past two decades, the applications of ML models have
been adopted noticeably for the domain of oil and gas field related
issues [82]. However, ML models developed for particular predic-
tion/prediction situations can be implemented in online learning ma-
chine technology [83]. The development of modern technology for
predicting oil wells FHBP using cutting-edge federated learning tech-
nology should be the focus of the next generation. FHBP detection
‘‘quantification’’ can be functionalized based on the viability and po-
tential of the recently found federated learning technology. The key
building blocks of the anticipated system are a distributed network
architecture, smart Internet of Things (IoT) sensors, edge servers, and
a centralized federated learning aggregation hub, as shown in Fig. 7.
The primary phase of this intelligence system is field data, or ‘‘sensors’’,
where the related data are collected. The second phase consists of the
edge servers, in which all those related data from the first data are
transmitted to the predictive model where this research was developed.
The third phase accommodates the federated learning process that is
communicated, and the learning process results in a centralized cloud.
At the final stage, the updated cloud delivers the final prediction
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Fig. 6. Top: Graphical comparison concerning RMSE and uncertainty for all models
shown in Table 11. Bottom: Detailed view of best-performing models.

results of the FHBP. The planned federated learning technology can be
practically implemented, where decision-makers can benefit from this
methodology for oil and gas management and sustainability.

5. Conclusion

This research contributes to developing a hybrid model integrating
a feature selection algorithm with an ML-based tool for FBHP pre-
diction. The computational framework is adaptive to different input
data, allowing for automatic feature selection and internal ML model
parameters. Four ML models were hybridized with nature-inspired
differential evolution algorithms to model the flow bottom pressure.
To demonstrate the effectiveness of the proposed modeling frame-
work, standard ML models were developed. To ensure the stability
and robustness of the proposal, 30 independent runs were performed,
and error performance and uncertainty analyses were adopted. The
modeling results indicated that MARS and XGB models produced the
best results without a feature selection algorithm. The evolutionary
MARS and XGB without feature selection outperformed ELM and SVR,
as well as empirical and mathematical models from the literature.
The evolutionary feature selection algorithm reduced the number of
variables in the MARS model from 9 to 6. In addition, the MARS model
produced the best averaged performance metrics (R = 0.94, R2 = 0.88,
10
RMSE = 97.88, MAE = 74.69 e MAPE = 3.12%). Including evolutionary
feature selection, MARS, and XGB models become less complex since
the number of input variables has been reduced, maintaining their error
level. The proposed approach has the advantage of generating several
alternative models with different sets of input variables, which allows
for their practical use when some information from the wellbore cannot
be retrieved due to sensor failure or communication malfunction.
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Appendix. Machine learning models

A.1. Extreme learning machine

The Extreme Learning Machine is a single-layer neural network with
randomly chosen hidden input connection weights [84]. Its structure
is simple, with fast convergence. Using a least squares formulation,
the weights in the output layer are calculated by the inverse of the
generalized Moore–Penrose inverse matrix multiplied by the outputs of
activation functions in the output layer. The ELM output is written as

𝑦̂ =
𝐿
∑

𝑖=1
𝛽𝑖𝐺(𝛼𝑖𝐱 + 𝑏𝑖) (A.1)

where {(𝑥𝑖, 𝑦𝑖), 𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ 𝑅1, 𝑖 = 1, 2,… , 𝑁} are the training samples,
{𝛼𝑖, 𝑖 = 1, 2,… , 𝑁} is the weight vector, {𝛽𝑖, 𝑖 = 1, 2,… , 𝑁} output
weights, 𝐿 the number of neurons, 𝑏𝑖 is the bias for the 𝑖th hidden node,
𝐺(⋅, ⋅, ⋅) the neuron’s activation function, and 𝑦̂ is the model output.

Eq. (A.1) can be formulated as 𝐇𝛽 = 𝐓 where 𝐻𝑖𝑗 = 𝐺(𝜶𝑗 , 𝑏𝑗 , 𝐱𝑖) and
𝑇𝑖 = 𝑦𝑖. The least-squares method is used to minimize the objective
quadratic function ∑𝑁

𝑖=1 ‖𝑦̂𝑖 − 𝑦𝑖‖ = 0 and determine output weight
vector 𝛽 = (𝐇𝑇𝐇)−1𝐇𝑇𝐓.

A.2. Support vector machines

Support Vector Regression (SVR) [85] is a regression model that
uses linear or nonlinear using kernel functions to approximate the
samples in the dataset. Given a dataset (𝑥1, 𝑦1),… , (𝑥𝑙 , 𝑦𝑙), the SVR
solution is obtained by solving the optimization problem

min 1
2
(𝜶 − 𝜶∗)𝑇𝐾(𝐱𝑖, 𝐱𝑗 )(𝜶 − 𝜶∗) +

𝑙
∑

𝑖=1
(𝑦𝑖 + 𝜀)(𝛼𝑖 − 𝛼∗𝑖 ) (A.2)

subject to

𝑒𝑇 (𝜶 − 𝜶∗) = 0,
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𝑦

Fig. 7. The proposed intelligence system based on online federated learning technology for FHBP prediction.
0 ≤ 𝛼𝑖, 𝛼
∗
𝑖 ≤ 𝐶, 𝑖 = 1,… , 𝑙.

where 𝑥𝑖 ∈ 𝑅𝑛 is the input vector (data samples), 𝑦𝑖 ∈ 𝑅1 is the output
vector, 𝐾(𝐱𝑖, 𝐱𝑗 ) = 𝜙(𝐱𝑖)𝑇𝜙(𝐱𝑗 ), 𝜙(⋅) is the kernel function. The model
parameters are 𝜖 > 0 and 𝐶 > 0. Eq. (A.2) can be solved to obtain
the parameters for constructing the SVR approximation. The following
equation provides a prediction based on

𝑦𝑖 = 𝜀
𝑙

∑

𝑖=1
(𝛼𝑖 − 𝛼∗𝑖 )𝐾(𝐱, 𝐱𝑖) + 𝑏.

A.3. Extreme gradient boosting

Extreme Gradient Boosting (XGB) is a version of gradient boosting
that is more effective in supervised learning. Ibrahem Ahmed Osman
et al. [86]. The following steps are performed. Adopting a dataset with
𝑚 features and a 𝑛 number of samples (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛), the predicted
output of XGB is

𝜙(𝑥𝑖) =
𝐾
∑

𝑘=1
𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ F (A.3)

where 𝑥𝑖 ∈ R𝑛, 𝑦𝑖 ∈ R, 𝑖 = 0,… , 𝑛, 𝐾 indicates the number of decision
trees, 𝑓𝑘 is the model of the 𝑘th decision tree, and the depth of 𝑓𝑘 is
represented by 𝑚𝑑𝑒𝑝𝑡ℎ. To generate the XGB approximation is required
to minimize the regularized loss function

𝐿(𝜙) =
∑

𝑖
𝑙(𝑦𝑖, 𝜙(𝑥𝑖)) +

1
2
‖𝑤‖

2, 𝑙 = ‖𝑦̂𝑖 − 𝑦𝑖‖ (A.4)

where 𝑦̂𝑖 and 𝑦𝑖 are the predicted and true output, respectively, and 𝑤
is the weight of the leaf.

A.4. Multivariate adaptive regression spline

First proposed by [69], Multivariate Adaptive Regression Splines
(MARS) is a piecewise polynomial model [87]

̂(𝑥) = 𝐹𝑚(𝑥) = 𝑐0 +
𝑀
∑

𝑐𝑚𝐵
𝐾
𝑚 (𝑥) (A.5)
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𝑚=1
where 𝐵𝐾
𝑚 (𝑥) is the basis function (BF), 𝑀 is the number of BF, 𝑐0 is a

constant, 𝑐𝑚 the coefficients of the 𝑚th basis function 𝐵𝐾
𝑚 (𝑥) given by

𝐵𝐾
𝑚 (𝑥) =

𝐾
∏

𝑘=1
[±(𝑥 − 𝑡)]𝑞+, (A.6)

where 𝐾 number of piecewise polynomials and 𝑞 is the polynomial’s
degree.

The piecewise polynomial is represented by

[−(𝑥 − 𝑡)]𝑞+ =
{

(𝑡 − 𝑥)𝑞 if 𝑥 < 𝑡
0 otherwise ,

[+(𝑥 − 𝑡)]𝑞+ =
{

(𝑥 − 𝑡)𝑞 if 𝑥 ≥ 𝑡
0 otherwise

(A.7)

where 𝑡 are the polynomial knots (points connected by the polynomial).
The Generalized Cross-Validation (GCV) [88] is minimized and its
solution gives the set of coefficients

GCV =
∑𝑁

𝑖=1(𝑦̂𝑖(𝑥) − 𝑦𝑖)2

𝑁
(

1 − (𝑀+1)+𝛾𝑀
𝑁

)2
, (A.8)

where 𝛾 is a penalization coefficient.
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