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 Sulfa drugs were chemical compounds used to treat and prevent bacterial 
infections in humans. This study includes designing and producing a new 
series of amide derivatives from various sulfa drugs with fenofibrate assessed 
as antioxidants and anticancer agents in vitro. Their structures were 
definitively confirmed by the study of spectroscopic data, including Infrared 
spectroscopy (IR), 1H-NMR, 13C-NMR, 2D-NMR, and elemental analysis. All 
products were screened in vitro against cell lines MDA-MB-231. The 
cytotoxicity assay results revealed that derivatives 5d-5f exhibited good 
inhibition for MDA-MB-231 with IC50 values 117.15, 79.09, and 98.72 µg/mL, 
respectively. A molecular docking study of the synthetic compounds 
confirmed the cytotoxicity test results. In addition, the DPPH investigation 
revealed good antioxidant activity for the derivatives 5a, 5d, and 5e with 
inhibition percentages of 97.91, 94.53, and 95.26%, respectively, compared to 
ascorbic acid. 
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Introduction  

The sulfonamide group, a pharmaceutical 

compound with a wide range of biologically 

active properties, has been widely utilized as a 

precursor for bioactive compound synthesis in 

the last decade, with its applications in medicinal 

chemistry [1]. In our previous work, many 

substituted amides derived from sulfa drugs 

were synthesized, and according to studies, 

amide bonds are extremely common and 

interesting couplings in both organic synthesis 

and nature [2-7]. Some of them possess a wide 

range of biological activities such as anticancer 

[8], [9], antimicrobial [10-12], anti-inflammatory 

[13-15], antibacterial [16-18], antioxidant [19], 

and antifungal activity [20,21]. On the other 

hand, there are several different biological 

actions for fenofibrate, including its use in 

treating severe hypertriglyceridemia and mixed 

dyslipidemia in patients who have not shown 

improvement with non-pharmacological 

treatments [22]. Fenofibrate is furthermore 

effective in reducing levels of uric acid in the 

blood and is used as a complementary therapy 

for gout [23]. It also has pleiotropic effects, 

including anti-inflammatory, antioxidant, anti-

atherogenic, and antiviral properties [24-26]. 

Here, we reported synthesized new pro-drugs as 

sulfa drugs and fenofibrate derivatives; some 

tested as anti-breast cancer, and the anti-oxidant 

tested for all. These activities were studied 

theoretically via molecular docking and in vitro 

studies. 

Materials and Methods 

General information 

Merck and Aldrich provide all chemicals; 

Fourier transform varian spectrometer is used 

for obtaining the 1H-NMR, 13C-NMR, and 2D-NMR 

spectra, which operate at a frequency of 300 

MHz. The spectra are recorded using a standard 

internal reference in DMSO-d6 solvent. The FTIR 

8400S Shimadzu spectrophotometer (Japan) was 

employed to record FT-IR spectra throughout the 

400-4000 cm-1 wavelength range. We used a 

micro analytical unit of the EA 300 C.H.N element 

analyzer to determine the elemental analyses 

(C.H.N.). The Gallenkamp MFB-600 melting point 

stuart apparatus was used to ascertain the 

melting points. 

Preparation method of fenofibric acid  

A sodium hydroxide solution in water was 

combined with fenofibrate 1 in ethanol, refluxed 

at 84 °C for 3 hours, and monitored using thin-

layer chromatography (TLC). The mixture was 

cooled, concentrated, and cooled to room 

temperature. A residue was obtained, which was 

then acidified with dilute hydrochloric acid. The 

solid product 2 was separated by filtration and 

dried to form a white solid. The yield of the 

substance was 92%, with a melting point of 180 

°C [27]. 

Preparation method of acid chloride 

In a fume hood, a round bottom flask of 100 mL, 

an excess of thionyl chloride was added to (4 g) 

of fenofibric acid 2. The combination was heated 

at 60 °C, ranging from 1 and 30 minutes to 2 

hours. After the thionyl chloride was evaporated 

at low pressure, acid chloride 3 was obtained and 

used immediately in the subsequent process 

[28]. 

General procedures for synthesis of amides (5a-5f) 

The amine 4 (1 equivalent) was dissolved in 15 

mL of anhydrous dichloromethane. If the amine 

did not dissolve, 0.5 mL of DMF was added. 

Additionally, 2 equivalents of triethylamine were 

added. After cooling the mixture to 0 °C, the acid 

chloride 3 (1 eq) solution in DCM was gradually 

added. The ice bath was removed after the 

addition. The reaction mixture underwent 

stirring for a period of 2 to 5 hours. It was 
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thereafter treated with a 15 mL solution of 

hydrochloric acid with a concentration of 0.5 N, 

followed by a water wash. The resulting mixture 

was then dried using anhydrous MgSO4. The 

solvent was removed by vacuum evaporation to 

form a solid, which was then refined using 

recrystallization from ethanol to get the desired 

end result 5a-5f (Figure S1) [29]. 

N-(4-(N-Acetylsulfamoyl) phenyl)-2-(4-(4-

chlorobenzoyl) phenoxy)-2-methylpropanamide 

(5a) 

Light brown crystals, yield 84%. FT-IR (cm−1): ν 

3358 (Amid N-H), 3035(Ar C-H), 2870 (C-H 

aliphatic), 1647 (Carbonyl O=CNH), and 1500 

(Aromatic C=C). 1H-NMR (DMSO-d6, 400 MHz) δ 

12.03 (s, 1H), 10.53 (s, 1H), 7.98-7.60 (m, 4H), 

6.97 (dd, J = 41.3, 8.5 Hz, 2H), 1.89 (s, 3H), 1.65 

(s, 6H). Analytical analysis of C25H23ClN2O6S: C, 

59.21; H, 5.17; Cl, 7.54; N, 5.81; O, 17.48; and S, 

7.12, m.p.: 122-124 °C. 

2-(4-(4-Chlorobenzene) phenoxy)-2-methyl-N-(4-

(N-(pyridine-2-yl) sulfamoyl) phenyl) 

propenamide (5b) 

Off-white crystals, yield 87%. FT-IR (cm−1): ν 

3383 (amid N-H), 3051 (Ar C-H), 2981 (C-H 

aliphatic), 1645 (carbonyl O=CNH), and 1498 

(aromatic C=C). 1H-NMR (DMSO-d6, 400 MHz) δ 

10.38 (s, 1H), 7.72-7.66 (m, 13H), 6.92 (d, J = 6.9 

Hz, 4H), and 1.62 (s, 6H).13C- NMR (101 MHz, 

DMSO) δ 193.76, 174.93, 159.99, 142.25, 140.73, 

137.52, 136.69, 133.00, 132.32, 131.64, 130.54, 

129.75, 129.04, 127.94, 120.54, 118.66, 117.49, 

115.80, 114.05, 79.36, 40.45, 40.24, 40.03, 39.82, 

39.61, 39.41, 39.20, and 25.53. Analytical analysis 

of C28H24ClN3O5S: C, 61.96; H, 5.32; Cl, 7.26; N, 

7.90; O, 13.89; and S, 6.45, m.p.: 122-124 °C. 

2-(4-(4-Chlorobenzoyl) phenoxy)-2-methyl-N-(4-

(N-(pyrimidin-2-yl) sulfamoyl) phenyl) 

propenamide (5c) 

Brown crystals, yield 86%. FT-IR (cm−1): ν 3375 

(amid N-H), 3039 (Ar C-H), 2943 (C-H aliphatic), 

1631 (carbonyl O=CNH), 1502 (aromatic C=C). 

1H-NMR (DMSO-d6, 400 MHz) δ 10.24 (s, 1H), 

8.26 (s, 1H), 7.48 (td, J = 9.9, 6.1 Hz, 10H), 6.91-

6.72 (m, 4H), and 1.40 (d, J = 12.6 Hz, 6H). 13C-

NMR (101 MHz, DMSO) δ 193.67, 174.94, 160.02, 

158.80, 157.38, 142.91, 137.50, 136.72, 136.54, 

135.31, 132.32, 131.95, 130.57, 129.73, 129.04, 

120.30, 118.67, 117.48, 116.24, 79.38, 40.54, 

40.33, 40.12, 39.92, 39.71, 39.50, 39.29, and 

25.56. Analytical analysis of C27H23ClN4O5S: C, 

59.72; H, 5.06; Cl, 7.37; N, 11.22; O, 13.78; S, 6.22, 

m.p.: 122-124°C. 

2-(4-(4-Chlorobenzoyl) phenoxy)-2-methyl-N-(4-

(N-(4-methylpyrimidin-2-yl) sulfamoyl) phenyl) 

propenamide (5d) 

 Yellow crystals, yield 91%. FT-IR (cm−1): ν 3344 

(amid N-H), 3074 (Ar C-H), 2873 (C-H aliphatic), 

1651 (carbonyl O=CNH), and 1562 (aromatic 

C=C). 1H-NMR (DMSO-d6, 400 MHz) δ 10.43 (s, 

1H), 8.30 (d, J = 5.2 Hz, 1H), 7.72–7.54 (m, 11H), 

7.05-6.88 (m, 4H), 2.29 (s, 3H), and 1.59 (s, 6H). 
13C-NMR (101 MHz, DMSO) δ 193.69, 174.91, 

162.78, 159.99, 159.37, 156.99, 142.77, 136.73, 

136.56, 135.48, 132.37, 132.34, 131.66, 130.57, 

129.77, 129.22, 129.06, 120.18, 118.69, 117.49, 

79.35, 40.56, 40.35, 40.14, 39.94, 39.73, 39.52, 

39.31, 25.55, and 25.16. Anal. Analysis for 

C28H25ClN4O5S: C, 60.17; H, 5.19; Cl, 7.08; N, 

10.64; O, 13.78; and S, 6.48, m.p.: 122-124 °C. 

2-(4-(4-Chlorobenzoyl) phenoxy)-2-methyl-N-(4-

(N-(5-methylisoxazol-3-yl) sulfamoyl) phenyl) 

propenamide (5e) 

Orange crystals, yield 88%. FT-IR (cm−1): ν 3390 

(amid N-H), 3151 (Ar C-H), 2985 (C-H aliphatic), 

1651 (carbonyl O=CNH), 1516 (aromatic C=C). 1H 

NMR (DMSO-d6, 400 MHz) δ 11.38 (s, 1H), 10.50 

(s, 1H), 7.91 – 7.63 (m, 13H), 6.13 (s, 1H), 2.27 (s, 

3H), and 1.63 (s, 6H). 13C-NMR (101 MHz, DMSO) 

δ 193.71, 174.92, 170.76, 162.78, 159.99, 159.34, 
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157.98, 143.28, 137.57, 136.72, 136.55, 134.30, 

132.34, 131.66, 130.61, 129.76, 129.05, 128.24, 

120.76, 118.68, 117.48, 95.81, 79.34, 40.55, 

40.34, 40.13, 39.92, 39.71, 39.50, 39.29, 25.54, 

and 12.50. Analytical analysis of C27H24ClN3O6S: 

C, 59.62; H, 5.27; Cl, 5.27; N, 7.14; O, 16.43; and S, 

6.22, m.p.: 122-124 °C. 

2-(4-(4-Chlorobenzoyl) phenoxy)-2-methyl-N-(4-

(N-(thiazol-2-yl) sulfamoyl) phenyl) propenamide 

(5f) 

Light yellow crystals, yield 93%. FT-IR (cm−1): ν 

3350 (amid N-H), 3095 (Ar C-H), 2989 (C-H 

aliphatic), 1645 (carbonyl O=CNH), 1527 

(aromatic C=C). 1H NMR (DMSO-d6, 400 MHz) δ 

10.41 (s, 1H), 7.77-7.66 (m, 13H), and 7.05-6.95 

(m, 3H), 1.63 (s, 6H). 13C-NMR (101 MHz, DMSO) 

δ 193.70, 172.86, 169.25, 160.23, 142.11, 137.47, 

136.77, 132.28, 131.64, 130.54, 129.53, 129.04, 

127.14, 125.25, 120.50, 118.65, 117.45, 108.56, 

79.63, 40.54, 40.33, 40.12, 39.91, 39.71, 39.50, 

39.29, and 25.47. Analytical analysis of for 

C26H22ClN3O5S2: C, 55.88; H, 4.57; Cl, 7.19; N, 8.08; 

O, 13.41; and S, 10.21, m.p.: 122-124 °C.  

Antioxidant assay 

Blois approach was used to determine the 

presence of antioxidants in a sample. A DPPH 

solution was prepared, dissolving in methanol as 

a control and ascorbic acid as a standard. Various 

concentrations of compound solutions were 

generated, and 2 mL of DPPH solution was 

poured onto these samples; the solution was 

placed in a light-restricted area and allowed to 

incubate for 2 hours. The sample's absorbance 

was quantified at a wavelength of 517 nm using a 

UV-Vis Shimadzu spectrophotometer [30]. The 

quantification of the free radical scavenging 

activity was determined by calculating the 

percentage of inhibition using a specific Equation 

1: 

Inhibition% 

=𝐴(𝑐𝑜𝑛𝑡𝑟𝑜𝑙)−𝐴(𝑠𝑎𝑚𝑝𝑙𝑒)/𝐴(𝑐𝑜𝑛𝑡𝑟𝑜𝑙)×100         (1) 

A (control): Absorption of DPPH + solvent 

(MeOH) 

A (sample): Absorption of DPPH + sample 

(sample test/standard) 

Measurement of in vitro anticancer activity 

Cell lines and culture 

The MDA-MB-231 cell line was used to culture 

human breast cancer cells from Iranian national 

cell bank. The cells were grown in RPMI 1640 

medium supplemented with FBS and antibiotics, 

maintained at 37 °C in a humidified atmosphere 

with 5% CO2 [31,32]. 

MTT cell viability assay  

In this study, the MTT test was used to measure 

cellular proliferation and viability. The cells were 

collected, standardized, and placed in 96-well 

plates. After 24 hours, they were exposed to 

substances at varying concentrations for 24 

hours at 37 °C in a CO2-free environment. After 

24 hours, 100 µl of MTT solution was introduced, 

and the plates were incubated for an additional 4 

hours. The cells were then shaken until the 

crystals were fully dissolved. Cell viability was 

assessed using an ELISA reader, and the 

concentration of compounds causing 50% cell 

death was determined. 

Docking studies analysis 

Five synthesized compounds were subjected to 

molecular docking analyses to find putative 

binding interactions with placental aromatase 

cytochrome P450, specifically with the ID 3EQM 

retrieved from the PDB website at 

https://www.rcsb.org/. The chosen derivatives 

were shown in a two-dimensional format and 

then transformed into a three-dimensional 

representation using molecular mechanics. These 

three-dimensional structures were then used as 

ligands. The MOE 2015.10 software was used to 
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calculate the docking analysis results, namely the 

binding energy and the configuration of the 

receptor in the form of 2D interaction poses [34]. 

Results and Discussion 

The derivatives were synthesized by reacting 

several amino derivatives with acid chloride 3 in 

the presence of triethylamine and CH2Cl2 as a 

reaction medium, then stirring the mixture for 2 

hours at room temperature until the end of the 

reaction after following it up using TLC, as 

displayed in Scheme 1. 

Insilco biological activity 

Program MOE 2015 was employed to analyze 

the capacity of compounds to inhibit breast 

cancer by coupling them with a single protein 

(PDB: 3eqm). Table 1 shows that the prepared 

compounds showed good activity against the 

studied protein, and the best of them 

(highlighted in yellow) were selected for in vitro 

study. Figure 2 depicts the method of binding 

protein to these prepared derivatives. 

Cytotoxicity of synthesized compounds 

The anticancer effects of 5d–5f derivatives 

against breast cancer were evaluated in vitro 

using the conventional MTT technique. A cell line 

obtained from breast cancer tissue MDA-MB-

231cell line MDA-MB-231. The percentages of 

cell viability of compounds 5d–5f are illustrated 

in Figure 3. 

 

 

Scheme 1. Synthesis steps of compounds 5a-5f. 
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Table 1. Molecular docking for anti-cancer of prepared derivatives 

C
o

m
p

o
u

n
d

 

(L
ig

a
n

d
s

) 

Target protein: Oxidoreductase (3EQM) 

E Binding 

Kcal/mol 
RMSD 

Position of interaction 
Interaction 

Distance 

(Å) 

E 

(Kcal/mol) Ligand Receptor 

5a -9.9499 1.3358 N (22)  

O (45) 

Cl (1) 

O (45) 

6-ring 

SD (MET 311)  

SG (CYS 437) 

NH2 (ARG 375)  

SG (CYS 437) 

CG2 (VAL 370) 

H-donor 

H-donor 

H-acceptor 

H-acceptor 

pi-H 

3.38  

3.29 

3.37 

3.29 

3.75 

-3.2 

-0.9 

-0.9 

-1.2 

-0.8 

5b -11.0126 2.0121 Cl (1) 

O (49) 

6-ring 

6-ring 

O (ALA 306) 

NH2 (ARG 115) 

N (ALA 438) 

CA (GLY 439) 

H-donor 

H-acceptor 

pi-H 

pi-H 

3.29 

2.78 

4.36 

4.20 

-1.7 

-0.8 

-0.8 

-0.6 

5c -10.0721 2.1287 C (27) 

Cl (1) 

O (42) 

6-ring 

SG (CYS 437) 

NH2 (ARG 375) 

N (GLY 439) 

CA (GLY 439) 

H-donor 

H-acceptor 

H-acceptor 

pi-H 

4.05 

3.14 

2.90 

4.57 

-0.9 

-1.0 

-1.0 

-0.8 

5d -11.5999 1.3101 N (44) 

6-ring 

6-ring 

SD (MET 311) 

CB (ALA 306) 

CB (THR 310) 

H-donor 

pi-H 

pi-H 

3.61 

4.31 

4.06 

-0.9 

-0.6 

-0.6 

5e -11.6912 1.3803 O (43) 

O (49) 

6-ring 

6-ring 

SG (CYS 437) 

N (ALA 438) 

CB (ALA 306) 

CA (PHE 430) 

H-donor 

H-acceptor 

pi-H 

pi-H 

3.62 

2.66 

4.13 

4.82 

-0.9 

-2.3 

-0.9 

-0.7 

5f -11.1241 1.5871 O (41) 

5-ring 

NH2 (ARG 115) 

CA (VAL 373) 

H-acceptor 

pi-H 

2.89 

4.52 

-1.2 

-1.5 

Table 2. The cytotoxicity results for compounds 5d-5f against the MDA-MB-231 cancer cell line 

5d: IC50= 177.15 µg/mL 

Concentration (μg/mL) 7.4 22.22 66.66 200 600 

Absorption at 57 nm 0.673 0.680 0.652 0.672 0.576 0.673 0.680 0.652 0.672 0.576 

Viability (%) 90.95 91.89 88.11 90.81 77.84 75.68 48.78 51.76 22.97 20.27 

Average Viability (%) 91.42 89.46 76.76 50.27 21.62 

Standard Deviation (±) 0.67 1.91 1.53 2.10 1.91 

5e: IC50= 79.09 µg/mL 

Concentration (μg/mL) 7.4 22.22 66.66 200 600 

Absorption at 57 nm 0.633 0.738 0.651 0.651 0.462 0.499 0.122 0.115 0.052 0.057 

Viability (%) 85.54 99.73 87.97 87.97 62.43 67.43 16.49 15.54 7.03 7.70 

Average viability (%) 92.64 87.97 64.93 16.01 7.36 

Standard deviation (±) 10.03 0.00 3.54 0.67 0.48 

5f: IC50= 98.72 µg/mL 

Concentration (μg/mL) 7.4 22.22 66.66 200 600 

Absorption at 57 nm 0.713 0.713 0.705 0.708 0.550 0.585 0.135 0.146 0.060 0.055 

Viability (%) 96.35 96.35 95.27 95.68 74.32 79.05 18.24 19.73 8.11 7.43 

Average viability (%) 96.35 95.47 76.69 18.99 7.77 

Standard deviation (±) 0.00 0.29 3.34 1.05 0.48 
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Figure 2. The interaction mode of compounds 5d-5f with active site amino acids of the protein (PDB 3EQM). 

 

Figure 3. Cell viability percentage of compounds 5d-5f against cancer cell line MDA-MB-231. 

Table 3. DPPH radical scavenging activity of the synthesized compound 

Compounds 
% RSA (radical scavenging activity) at seven different concentrations (µg/mL) 

1000 800 750 400 200 50 12.4 

5a 97.91 74.42 67.44 58.14 46.51 39.53 30.23 

5b 70.07 61.65 54.12 42.88 27.19 17.56 16.82 

5c 85.11 79.27 70.87 64.88 52.54 48.25 40.92 

5d 94.53 88.11 84.39 81.76 73.20 66.68 52.61 

5e 95.26 89.73 75.86 67.48 60.24 54.64 42.33 

5f 77.63 74.45 62.66 51.76 35.87 28.83 18.49 

Ascorbic acid 99.77 98.72 97.33 95.14 93.67 92.35 91.12 
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Antioxidant activity 

The DPPH test, a widely used method for 

assessing antioxidant activity, was used to 

evaluate synthesized compounds. The test 

measures the ability of the samples to quench 

DPPH radicals by donating hydrogen. Antioxidant 

drugs convert DPPH into a stable diamagnetic 

molecule, with a change in color indicating 

increased radical scavenging activity. Based on 

Table 3, all of the synthesized compounds 

exhibited significant antioxidant activity 

compared to the standard ascorbic acid. 

Conclusion 

 To summarize, a group of compounds including 

fenofibrate and sulfa drugs were synthesized as 

amide derivatives. The purification, structural 

characterization, and in vitro biological 

evaluation of these compounds as anticancer and 

antioxidant agents were conducted. The 

cytotoxicity test findings suggest that compounds 

5d-5f have the potential to be used as 

antiproliferative agents against MDA-MB-231 cell 

lines. The findings obtained from the DPPH test 

demonstrated significant antioxidant activity of 

these novel amide derivatives. 
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