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Abstract: This research paper investigates the numerical analysis of the damped wave equation (DWE),
focusing on the properties of numerical solutions achieved via semi-discrete approximation (SDA) and
fully-discrete approximation (FDA) finite element methods (FEMs). This study established the existence
of SDA and FDA solutions. Theoretical results are validated with numerical examples conducted in one,
two, and three dimensions, demonstrating the accuracy and effectiveness of the proposed approaches.
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1 Introduction

This article examines the Cauchy problem for the semilinear wave equation as outlined in references Ball
(1978):

γtt + γt −∆γ + γ3 = 0, in Ψ× [0, T ], (1.1)

∂γ

∂ν
= 0, on ∂Ψ× [0, T ], (1.2)

γ(·, 0) = γ0
1 , γt(·, 0) = γ0

2 in Ψ. (1.3)

where Ψ is an open bounded domain in R`, ` ≥ 1 with a smooth boundary ∂Ψ, γ is the displacement of
the wave field, and ν represents the outward unit normal to ∂Ψ.

Because it models the energy dissipation in systems exposed to wave dynamics, DWE is essential to
many scientific and engineering fields. A damping factor is added to this equation, which is an extension
of the classical wave equation, to account for the gradual decrease in wave amplitude. It is important
for applications where knowledge of stability, energy loss, and the asymptotic behaviour of systems is
essential. DWE’s asymptotic behaviour, in which solutions eventually converge to heat-type equations,
is a key component of its significance. It shows how energy dissipation converts wave-like behaviour into
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diffusive dynamics in a variety of contexts, including Euclidean space Nishiyama (2015). Additionally,
the severely damped scenario reduces spectral abscissa, which is crucial for regulating spectral behaviour
under perturbations and conducting stability analyses Cox and Overton (1996).

DWE is essential in real-world applications for systems with vibrating components, including suspension
bridges, where damping prevents catastrophic resonance and stabilizes oscillations by taking energy loss
over time into account Wang and An (2011). Engineers may create boundary conditions and control
techniques that maximize energy consumption by applying this approach to radial wave equations, where
controllability becomes crucial Shubov (1998). Determining the lifespan of solutions in dynamic contexts is
impacted by DWE, which also helps to explain complicated phenomena like blow-up behaviour in nonlinear,
time-dependent scenarios Lin and Zhai (2012). It is also crucial for applications like fluid dynamics and
material sciences that need strict control over boundary conditions because of its involvement in global
stability and convergence rates Fan et al. (2013).

Researchers may simulate and comprehend wave behaviour in a variety of dampening conditions by
employing numerical solutions to the DWE. These techniques are particularly helpful for examining the
stability, oscillation, and decay rates of solutionsall of which are important for applications such as material
science, mechanical system design, and seismic wave modeling. For example, in seismic investigations,
scientists may forecast wave attenuation in various geological strata employing numerical models, which
helps with earthquake impact assessment and mitigation. Finite difference, finite element, and spectral
approaches are some common numerical techniques for resolving the DWE. While each approach has its
own merits, finite difference techniques are frequently employed due to their simple discretisation schemes,
while FEMs give more flexibility when dealing with complicated geometries and boundary conditions.
For further information on the numerical solutions for the DWE, see, for example, Larsson et al. (1991);
Mickens and Jordan (2004); Rincon and Copetti (2013). The mathematical ideas and computer methods
that enable precise and efficient numerical modeling of damped wave events are highlighted in these sources.

Many researchers have extensively studied the semilinear wave equation in the literature Karch (2000);
Ball (2004); Hosono and Ogawa (2004); Narazaki (2004), with investigations into the global existence
and other characteristics of equations (1.1)-(1.3) documented in Shang (2000); Ye (2015). Numerical
approaches to the nonlinear wave equation have also been widely explored. Numerous effective and precise
numerical methods have been developed, including continuous Galerkin methods Karaa (2011); Cohen
et al. (2001), discontinuous Galerkin methods Johnson (1993); Grote and Schötzau (2009); Karaa (2012),
and mixed finite element techniques Jenkins et al. (2002). Recently, there has been growing interest in
finite difference schemes for wave equations Dehghan (2005b, 2006a); Matsuo (2007); Holden et al. (2009).
In particular, in Dehghan (2006b, 2005a), finite difference schemes of various accuracy orders have been
presented. This study aims to examine two finite difference-based numerical schemes for the semilinear
wave equations (1.1)-(1.3).

It is important to highlight that previous numerical studies addressing the DWE did not focus on
theoretically analyzing the numerical solutions, particularly regarding solution spaces and stability bounds.
A detailed examination of the numerical approximation will be performed, which includes identifying the
numerical solution spaces.

To develop our approach, we observe that with the transformation ξ = γt + γ, the system (1.1)-(1.3)
transforms into:
(Θ) Find {γ, ξ} such that

ξt −∆γ + γ3 = 0, in Ψ× [0, T ], (1.4)

ξ = γt + γ, in Ψ× [0, T ], (1.5)

∂γ

∂ν
= 0, on ∂Ψ× [0, T ], (1.6)

γ(·, 0) = γ0
1 , ξ(·, 0) = γ0

1 + γ0
2 := ξ0, in Ψ. (1.7)
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Next, we present a weak formulation of the system (1.4) and (1.5) in the form:
(Θ) Find γ(., t), ξ(., t) ∈ H1(Ψ) such that γ(., 0) = γ0(.), ξ(., 0) = γ0

1(.) and for almostevery t ∈ (0, T ),

(ξt, µ) + (∇γ,∇µ) + (γ3, µ) = 0, in Ψ× [0, T ], (1.8)

(γt, µ) + (γ, µ) = (ξ, µ), in Ψ× [0, T ]. (1.9)

This passage describes the structure of the paper. Section 2 presents the notation employed throughout
the study. Section 3 addresses the SDA of Problem (Θ), with a focus on global existence presented in Section
3.1. FDA of Problem (Θ) is discussed in Section 4, where stability bounds are also established. Section
4.1 examines the existence of FDA. Finally, Section 5 details a numerical algorithm for implementing the
FDA of Problem (Θ) and includes numerical error calculations.

2 Finite element spaces and associated results

Let =~ represent a finite element space, which is a subspace of H1(Ψ), and is defined as follows:

=~ := {ε ∈ C(Ψ) : ε|τ is linear ∀τ ∈ T ~}.

The set {κj}Jj=1 defines the standard basis functions for =~, fulfilling the condition κj(ςi) = δij for each
i, j = 1, . . . , J . Here, N ~ := {ςj}Jj=0 represents the collection of nodes associated with the partition T ~.
Moreover, we present that:

=~
≥0 := {ε ∈ =~ : ε(ςj) ≥ 0, j = 0, ..., J}
⊂ H1

≥0 := {ε ∈ H1(Ψ) : ε ≥ 0 a.e. ∈ Ψ}.
The operator π~ : C(Ψ) → =~ denotes the Lagrange interpolation operator, also known as the piecewise
linear interpolant. This operator guarantees that:

π~ε(ςj) := ε(ςj), for j = 0, ..., J.

Additionally, we define a discrete L2 inner (or semi-inner) product on =~(C(Ψ)) as follows:

(u, v)~ :=

∫
Ψ

π~(u(x)v(x))dx =

J∑
j=1

M̂jj u(ςj) v(ςj). (2.1)

where M̂jj = (κj , κj)
~ = (1, κj) > 0. By observing (2.1), it is straightforward to confirm that:

(ε1, ε2)~ = (π~ε1, ε2)~ = (π~ε1, π
~ε2)~ ∀ε1, ε2 ∈ C(Ψ). (2.2)

In the finite element space =~, several key results are well-established. The discrete semi-norm on C(Ψ)
and the norm on =~ are both denoted by | · |~, which is specified by the expression [(·, ·)~]1/2. It has been
shown that the semi-norm | · |~ is equivalent to the norm | · |0, defined as [(·, ·)]1/2. This equivalence is
expressed as:

‖ϑ‖20 ≤ |ϑ|2~ ≤ (d+ 2)‖ϑ‖20 ∀ϑ ∈ =~, d = 1, 2, 3. (2.3)

The Poincaré inequality, assuming h is sufficiently small, can be formulated as follows:

((ζ, ζ)~)
1
2 = |ζ|~ ≤ Cp(|ζ|1 + |(ζ, 1)~|). (2.4)

For any λ(u) ∈ =~, we define that

|λ~|~,ζ := (

∫
Ψ

π~{|λ(u)~|ζ}du)
1
ζ ≡ (

k∑
i=0

M̂jjλ(ui)
~|ζ)

1
ζ if 0 ≤ ζ <∞, (2.5)
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and
|λ~|~,ζ := max

0≤j≤k
|λ(uj)

~| if ζ =∞. (2.6)

Next, we review some well-known results regarding the space =~ under the assumption that T ~ constitutes
a quasi-uniform partition: For any τ ∈ T ~, ξ ∈ =~, 1 ≤ p, q ≤ ∞ and m, l ∈ {0, 1} with l ≤ m, it holds that

‖ξ‖m,p,”τ” ≤ Ch
l−m+`min(0, 1

p
− 1
q

)

”τ” ‖ξ‖l,q,”τ”, (2.7)

where the abbreviation ”τ” means ”with” or ”without” τ . The inequality above is often termed ’the inverse
inequality,’ as noted in Ern and Guermond (2013) on pages 75-77. Furthermore, it holds when substituting
‖ · ‖ with | · |, as documented in Ciarlet (2002) on pages 140-142.

For reference, we present the following inverse inequalities, which are derived based on the quasi-uniform
condition described in Theorem 3.2.6 of Ciarlet (2002)

|ξ|1,p,”τ” ≤ Ch−1
”τ”|ξ|0,p,”τ”, 1 ≤ p ≤ ∞, (2.8)

|ξ|m,p,”τ” ≤ Ch
−`( 1

q
− 1
p

)

”τ” |ξ|m,q,”τ”, 1 ≤ q ≤ p ≤ ∞, m ∈ {0, 1}. (2.9)

We additionally require the following interpolation outcomes for every ξ ∈ W 1,s(Ψ), where s belongs to
[2,∞] if d = 1, and to (d,∞] if d is either 2 or 3:

|(I − π~)ξ|m,s ≤ Ch1−m|ξ|1,s, m ∈ {0, 1}, (2.10)

lim
~→0
|(I − π~)ξ|1,s = 0. (2.11)

(see Theorem 1.103 and Corollary 1.110 in Jean-Luc Guermond (2004) respectively). We also recall the
following helpful result (see, for example, Ciavaldini (1975)): for any ξ1, ξ2 ∈ =~, it holds that

|(ξ1, ξ2)− (ξ1, ξ2)~| ≤ Ch1+m|ξ1|m,n1 |ξ2|1,n2 . (2.12)

for m ∈ {0, 1} and 1 ≤ n1, n2 ≤ ∞ with 1
n1

+ 1
n2

= 1. We additionally require the following properties
(see Ciarlet and Raviart (1972)):

‖(I − π~)ς‖0 + h|(I − π~)ς|1 ≤ Ch2|ς|2, for all ς ∈ H2(Ψ), (2.13)

‖(I − π~)ς‖0,1 ≤ Ch2|ς|2,1, ∀ ς ∈W 2,1(Ψ). (2.14)

It is helpful to present the ’inverse Laplacian Greens operator,’ denoted by G, which maps D0 to V0,
such that

(∇Gv1,∇v2) = 〈v1, v2〉, ∀ v2 ∈ H1(Ψ). (2.15)

where D0 = {v ∈ (H1(Ψ))′ : 〈v, 1〉 = 0} and V0 = {v ∈ H1(Ψ) : (v, 1) = 0} and 〈., .〉 denotes the duality
pairing between (H1(Ψ))′ and H1(Ψ) such that

〈h, v〉 = (h, v), ∀ h ∈ L2(Ψ) and v ∈ H1(Ψ). (2.16)

The well-posedness of the operator G is established by the generalized Lax-Milgram theorem, which also
guarantees the existence of a positive constant C such that

‖Gqσ‖1,q ≤ C‖σ‖(W1,q′ (Ψ))′ , ∀σ ∈ (W 1,q′(Ψ))′. (2.17)

Furthermore, for any q ∈ (1, 2], the following holds:

‖χ‖0,q ≤ Ch−1‖Gqχ‖1,q, ∀χ ∈ =~. (2.18)
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It is also helpful to state the following result: For 1 ≤ r <∞, we have that:

|ς|2,r ≤
(∫

R

k∑
k,m

∣∣∣ ∂2ς

∂xkxm

∣∣∣rdx) 1
r ≤ 2

1
r |ς|2,r, for all ς ∈W 2,r(Ψ). (2.19)

The inverse inequalities are also presented here: For all ς ∈ =~, as seen in Ciarlet (2002), it holds that:

|ς|1,r,”τ” ≤ Ch−1
”τ”|ς|0,r,”τ”, 1 ≤ r ≤ ∞, (2.20)

‖ς‖0,r2,”τ” ≤ Ch
−d( 1

r1
− 1
r2

)

”τ” ‖ς‖0,r1,”τ”, 1 ≤ r1 ≤ r2 ≤ ∞, (2.21)

|ς|1,r2,”τ” ≤ Ch
−d( 1

r1
− 1
r2

)

”τ” |ς|1,r1,”τ”, 1 ≤ r1 ≤ r2 ≤ ∞. (2.22)

3 A semi-discrete approximation

We present the subsequent SDA for the system (1.4)-(1.7)
(Θh) Find {ξ~, γ~} ∈ =~ ×=~ such that for a.e. t ∈ (0, T )

(
∂ξ~

∂t
, µ~)~ + (∇γ~,∇µ~) + ((γ~)3, µ~)~ = 0, ∀µ~ ∈ =~, (3.1)

(
∂γ~

∂t
, µ~)~ + (γ~, µ~)~ = (ξ~, µ~)~, ∀ µ~ ∈ =~, (3.2)

γ~(., 0) = P~γ1(.) ξ~(·, 0) = P~γ0
1 + P~γ0

2 . (3.3)

3.1 Global existence

For a variety of motives it is essential to determine boundaries on solution spaces while solving partial
differential equations (PDEs) numerically. Fluid dynamics, heat transport, electromagnetic fields, and
quantum physics are just a few of the many natural and artificial systems that PDEs may simulate. There
are several advantages to establishing suitable boundaries on the solution spaces in order to comprehend
and successfully approximate complex systems. Researchers provide a framework for reliable, effective, and
precise numerical solutions by putting theoretical or empirical constraints on solution spaces. This method
improves the overall applicability and dependability of numerical PDE solvers across several disciplines in
addition to helping with problem-specific analysis.

Theorem 3.1. Consider an open, bounded, convex domain Ψ ⊂ Rd (with d ≤ 3). Let γ0 ∈ H1(Ψ). Then,
the system (3.1)-(3.3) has a solution γ~, ξ~ that satisfies:

γ~ ∈ L2(0, T ;H1(Ψ)) ∩ L2(ΨT ) ∩ L4(ΨT ) ∩ L∞(0, T ;L2(Ψ)), (3.4)

ξ~ ∈ L2(ΨT ), (3.5)

∂γ~

∂t
∈ L2(ΨT ). (3.6)

Proof : Next, we examine the following free energy expression in the form:

E(γ~, ξ~) = ‖ξ~‖20 + |γ~|21 +
1

2
‖γ~‖44. (3.7)
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By differentiating E(γ~, ξ~) with respect to t, we obtain that

∂

∂t
E(γ~, ξ~) = 2(ξ~,

∂ξ~

∂t
)~ + 2(∇γ~,∇∂γ

~

∂t
) + 2((γ~)3,

∂γ~

∂t
)~. (3.8)

Substituting µ~ = ∂γ~

∂t
into (3.1), we obtain

(
∂ξ~

∂t
,
∂γ~

∂t
)~ + (∇γ~,∇∂γ

~

∂t
) + ((γ~)3,

∂γ~

∂t
)~ = 0, (3.9)

(∇γ~,∇∂γ
~

∂t
) + ((γ~)3,

∂γ~

∂t
)~ = −(

∂ξ~

∂t
,
∂γ~

∂t
)~. (3.10)

By inserting (3.10) into (3.8), we get that

∂

∂t
E(γ~, ξ~) = 2(ξ~,

∂ξ~

∂t
)~ − 2(

∂ξ~

∂t
,
∂γ~

∂t
)~, (3.11)

Substituting µ~ = ∂ξ~

∂t
into (3.2), it follows that

(
∂γ~

∂t
,
∂ξ~

∂t
)~ = (ξ~,

∂ξ~

∂t
)~ − (γ~,

∂ξ~

∂t
)~, (3.12)

Next, by substituting (3.12) into (3.11), we arrive at

∂

∂t
E(γ~, ξ~) = 2(γ~,

∂ξ~

∂t
)~. (3.13)

By selecting µ~ = γ~ in (3.1), we conclude that

(
∂ξ~

∂t
, γ~)~ = −‖∇γ~‖20 − ‖γ~‖44. (3.14)

By substituting (3.14) into (3.13), we get

∂

∂t
E(γ~, ξ~) = −2‖∇γ~‖20 − 2‖γ~‖44 ≤ 0. (3.15)

Thus, E is a Lyapunov functional. By integrating equation (3.15) from 0 to t and considering equation
(3.3), it can be deduced that

E(γ~(t), ξ~(t)) ≤ E(P~γ0,P~ξ0). (3.16)

Given equations (2.1) and (2.3), along with the assumption that γ0, ξ0 ∈ H1(Ψ), it follows that

E(P~γ0,P~ξ0) ≤
∫

Ψ

[‖P~ξ0‖20 + |P~∇γ0|2 +
1

2
‖P~γ0‖44]dx

≤ ‖ξ0‖2~ + |γ0|21 +
1

2
‖γ0‖4~ ≤ C. (3.17)

From the above results and (3.16), it can be concluded that

E(γ~(t), ξ~(t)) ≤ C. (3.18)

Next, by replacing equation (3.7) into (3.18), it follows that

‖ξ~‖20 + |γ~|21 +
1

2
‖γ~‖44 ≤ C, (3.19)
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which leads to

‖ξ~‖L2(ΨT ) ≤ C, ‖γ~‖L2(0,T ;H1(Ψ)) ≤ C, ‖γ~‖L4(ΨT ) ≤ C. (3.20)

Now, by substituting µ~ = γ~ into equation (3.2), it can be concluded that

d

2dt
‖γ~‖20 + ‖γ~‖20 ≤ (γ~, ξ~)~. (3.21)

By applying Young’s inequality, it can be stated that

d

2dt
‖γ~‖20 +

1

2
‖γ~‖20 ≤

1

2
‖ξ~‖20. (3.22)

Upon integrating both sides of equation (3.22) from 0 to t, the outcome is

‖γ~(T )‖20 +

∫ T

0

‖γ~‖20dt ≤
∫ T

0

‖ξ~‖20 + ‖γ~(0)‖20. (3.23)

Based on equations (3.20) and (3.23), and under the assumption that γ0
1 ∈ H1(Ψ), we find that

‖γ~‖L∞(0,T ;L2(Ψ)) ≤ C, ‖γ~‖L2(ΨT ) ≤ C. (3.24)

By selecting µ~ = ∂γ~

∂t
in equation (3.2), it follows that

‖∂γ
~

∂t
‖20 +

d

2dt
‖γ~‖20 = (ξ~,

∂γ~

∂t
)~. (3.25)

By utilizing Young’s inequality, it can be represented that

1

2
‖∂γ

~

∂t
‖20 +

d

2dt
‖γ~‖20 ≤

1

2
‖ξ~‖20. (3.26)

By integrating equation (3.26) over the interval (0,T) and applying equation (3.20), it can be deduced that∫ T

0

‖∂γ
~

∂t
‖20dt+ ‖γ~(T )‖20 ≤

∫ T

0

‖ξ~‖20dt+ ‖γ~(0)‖20. (3.27)

Based on equation (3.28) and under the assumption that γ0
1 belongs to H1(Ψ), it follows that

‖∂γ
~

∂t
‖L2(ΨT ) ≤ C. (3.28)

2

4 A fully-discrete approximation

Let L be a positive integer, and define the time step as ∆t := T
L

. We now consider the following FDA for
the system described by equations (1.4)-(1.7):
(Θ~,∆t) Find Ξ`(., t),Γ`(., t) ∈ =~ ×=~ such that ∀ Σ ∈ =~(Ξ` − Ξ`−1

∆t
,Σ
)~

+ (∇Γ`,∇Σ) + ((Γ`)3,Σ)~ = 0 ∀Σ ∈ =~, (4.1)(Γ` − Γ`−1

∆t
,Σ
)~

+ (Γ`,Σ)~ = (Ξ`,Σ)~ ∀Σ ∈ =~, (4.2)

Γ0 = P ~γ0
1 , Ξ0 = P ~γ0

1 + P ~γ0
2 = P ~ξ0. (4.3)

For future reference, it is important to keep the following points in mind:

2a(a− b) = a2 + (a− b)2 − b2, ∀a, b ∈ R. (4.4)
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Theorem 4.1. Let Ψ and T ~ be such that assumption (A) is satisfied, and let γ0 ∈ H1(Ψ) ∩ L4(Ψ) and
ξ0 ∈ L2(Ψ). Then, for every ∆t > 0, there exists a solution {Ξ`,Γ`}L`=1 to (Θ~,∆t). The following stability
bounds are then valid:

max
=1,...,L

[|Γ|2h] +

∑
`=1

[∆t|Ξ`−Ξ`−1|2~ + ∆t‖∇(Γ`−Γ`−1)‖20 + |Γ`−Γ`−1|2h] +

∑
`=1

∆t[|Γ`|21 + |Γ`|4h,4 +
1

2
|Ξ`|2h]

≤ C2∆t|Ψ|. (4.5)

Proof : By selecting Σ = Γ` −Γ`−1 in equation (4.1) and Σ = Ξ` −Ξ`−1 in equation (4.2) and Σ = Γ`

in equation (4.2), we derive the following results:

1

∆t
(Ξ` − Ξ`−1,Γ` − Γ`−1)~ + (∇Γ`,∇(Γ` − Γ`−1)) + ((Γ`)3,Γ` − Γ`−1)~ = 0, (4.6)

1

∆t
(Γ` − Γ`−1,Ξ` − Ξ`−1)~ + (Γ`,Ξ` − Ξ`−1)~ = (Ξ`,Ξ` − Ξ`−1)~, (4.7)

1

∆t
(Γ` − Γ`−1,Γ`)~ + (Γ`,Γ`)~ = (Ξ`,Γ`)~, (4.8)

From equations (4.6) and (4.7), it follows that:

1

∆t
(Γ` − Γ`−1,Γ`)~ + (∇Γ`,∇(Γ` − Γ`−1)) + ((Γ`)3,Γ` − Γ`−1)~ + (Ξ`,Ξ` − Ξ`−1)~ + (Γ`,Γ`)~

= (Γ`,Ξ` − Ξ`−1)~ + (Ξ`,Γ`)~. (4.9)

Applying Taylor’s theorem and Young’s inequality (2.3) to equation (4), we obtain the following:

1

2∆t
|Γ`|2h+

1

2∆t
|Γ`−Γ`−1|2h−

1

2∆t
|Γ`−1|2h+

1

2
‖∇Γ`‖20+

1

2
‖∇(Γ`−Γ`−1)‖20−

1

2
‖∇Γ`−1‖20+

1

3
|Γ`|4~,4−

1

3
|Γ`−1|4~,4

+
1

2
|Ξ`|2~ +

1

2
|Ξ` − Ξ`−1|2~ −

1

2
|Ξ`−1|2~ + |Γ`|2~

≤ 2|Γ`|2~ +
1

4
|Ξ` − Ξ`−1|2~ +

1

4
|Ξ`|2~

≤ C2|Ψ|+ 1

6
|Γ`|4~ +

1

4
|Ξ` − Ξ`−1|2~ +

1

4
|Ξ`|2~. (4.10)

Thus, it follows that

1

2∆t
|Γ`|2h +

1

2∆t
|Γ` − Γ`−1|2h +

1

2
‖∇Γ`‖20 +

1

2
‖∇(Γ` − Γ`−1)‖20 +

1

2
|Γ`|4~,4 +

1

4
|Ξ`|2~ +

3

4
|Ξ` − Ξ`−1|2~

≤ C2|Ψ|+ 1

2
‖∇Γ`−1‖20 +

1

3
|Γ`−1|4~,4 +

1

2
|Ξ`−1|2~ +

1

2∆t
|Γ`−1|2h. (4.11)

By adding the equation above for ` = 1, . . . ,  with  ≤ L, multiplying the outcome by ∆t, and applying
the assumptions regarding the initial conditions, it follows that

max
=1,...,L

[|Γ|2h] +

∑
`=1

[∆t|Ξ` −Ξ`−1|2~ + ∆t‖∇(Γ` − Γ`−1)‖20 + |Γ` − Γ`−1|2h] +

∑
`=1

∆t[|Γ`|21 + |Γ`|4h,4 +
1

2
|Ξ`|2h]

≤ C2∆t|Ψ|+ |Γ0|2h + |Γ0|21 + |Γ0|4~,4 + |Ξ0|2~ ≤ C2∆t|Ψ|. (4.12)

2
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4.1 Existence of fully-discrete approximation

To confirm the accuracy and suitability of numerical techniques in capturing the behaviour of intricate
physical systems, it is crucial to investigate the existence of FDA for solving PDEs. FDA is frequently
employed to approximate PDE approximations, particularly in disciplines like economics, physics, and
engineering. The precision, consistency, and interpretability of these answers are supported by the presence
of a FEA. Any meaningful numerical solution requires that the problem be well-posed, which means that
it has a solution, and that solution must be distinct and continuously dependent on the input data. The
first of these requirements is satisfied by the presence of a FDA, which confirms that the selected finite-
dimensional function space has an approximate solution. Without this guarantee, calculations can provide
inaccurate or non-physical outcomes.

Our goal while researching FDA is to make sure that the numerical solution converges to the actual
solution of the PDE as the mesh is refined, that is, as the elements grow smaller or the function space gets
richer. The availability of a FDA helps confirm that as the resolution grows, the technique will approach
the correct solution, which is important for both theoretical analysis and practical implementation. To sum
up, confirming that finite element techniques yield dependable, stable, and convergent solutions requires
first examining the presence of FDA. This theoretical foundation encourages the development of more
advanced techniques that can manage complicated and high-dimensional PDEs in addition to boosting
confidence in the utilise of FDA for a variety of applications.

Employing a methodology similar to that outlined in Hashim and Harfash (2021, 2022a,b,c); Hassan
and Harfash (2022c,a, 2023); Al-Juaifri and Harfash (2023); Hassan and Harfash (2022b); Al-Musawi and
Harfash (2024a,b); Hashim and Harfash (2024a,b), we define the functions as follows: AΞ : =~ ×=~ → =~

and AΓ : =~ ×=~ → =~, such that for every Σ ∈ =~:

(AΞ(Ξ,Γ), Σ)~ = (Ξ− Ξ`−1, Σ)~ + ∆t(∇Γ, ∇Σ) + ∆t(Γ3, Σ)~, (4.13)

(AΓ(Ξ,Γ), Σ)~ = (Γ− Γ`−1, Σ)~ + ∆t(Γ, Σ)~ −∆t(Ξ, Σ)~. (4.14)

respectively. We begin by noting that the continuous piecewise linear functions AΞ and AΓ can be uniquely
determined from their values at the nodal points N~. This uniqueness is clear when we set Σ ≡ κj , where
j = 0, . . . , J , in (4.13) and (4.14). This leads to the derivation of solvable systems of square matrices as
follows:

MAΞ(Ξ,Γ) = S1, MAΓ(Ξ,Γ) = S2.

Here, the matrix M represents the lumped mass matrix, while S1 and S2 are vectors expressed in terms
of the nodal values of Ξ, Γ, Ξ`−1, and Γ`−1. As a result, the functions AΞ and AΓ are properly defined.

By examining (4.13) and (4.14), the problem (Θ~,∆t) can be restated as:
For given {Ξ0,Γ0} ∈ =~ ×=~, find {Ξ`,Γ`} ∈ =~ ×=~, ` ≥ 1, such that

AΞ(Ξ,Γ) = 0, AΓ(Ξ,Γ) = 0. (4.15)

Lemma 4.2. For any β > 0, the functions AΞ : [=~]2β → =~ and AΓ : [=~]2β → =~ demonstrate continuity
in the following way:

[=~]2β =

{
{Υ1,Υ2} ∈ =~ ×=~ : |Υ1|2~ + |Υ2|2~ ≤ β2

}
.

Proof : Let Ξ1,Γ1 and Ξ2,Γ2 ∈ [=~]2. From (4.13), for every Σ ∈ =~, it follows that:

(AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2), Σ)~ = (Ξ1 − Ξ2, Σ)~ + ∆t(∇Γ1 −∇Γ2, ∇Σ) + ∆t((Γ1)3 − (Γ2)3, Σ)~. (4.16)

By selecting Σ = AΓ(Ξ1,Γ1) − AΓ(Ξ2,Γ2) in (4.16), and applying the Cauchy-Schwarz inequality, along
with (2.20) and (2.3), it follows that:

|AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2)|2~ = (Ξ1 − Ξ2, AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2))~
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+∆t(∇Γ1 −∇Γ2, ∇(AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2))) + ∆t((Γ1)3 − (Γ2)3, AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2))~

≤ |Ξ1 − Ξ2|~|AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2|~ + ∆t|Γ1 − Γ2|1|AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2)|1
+∆t|(Γ1)3 − (Γ2)3|~|AΓ(Ξ1,Γ1)−AΞ(Ξ2,Γ2)|~

≤ |Ξ1 − Ξ2|~|AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2|~ + ∆tCh−1|Γ1 − Γ2|~|AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2)|~
+∆t|(Γ1)3 − (Γ2)3|~|AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2)|~. (4.17)

The Cauchy-Schwarz inequality implies that

∆t|Γ3
1 − Γ3

2|~ ≤ C∆t(|Γ1|2~,∞ + |Γ2|2~,∞)|Γ1 − Γ2|~ ≤ C∆t|Γ1 − Γ2|~. (4.18)

From the above results and (4.18), it follows that:

|AΓ(Ξ1,Γ1)−AΓ(Ξ2,Γ2)|2~ ≤ C(h−1,∆t)(|Ξ1 − Ξ2|~ + |Γ1 − Γ2|~). (4.19)

From (4.14), we can deduce, for every Σ ∈ =~, that

(AΞ(Ξ1,Γ1)−AΞ(Ξ2,Γ2), Σ)~ = (Γ1 − Γ2, Σ)~ + ∆t(Γ1 − Γ2, Σ)~ −∆t(Ξ1 − Ξ2, Σ)~. (4.20)

Let Σ = AΞ(Ξ1,Γ1)−AΞ(Ξ2,Γ2), and by applying the Cauchy-Schwarz inequality, it follows that

|AΞ(Ξ1,Γ1)−AΞ(Ξ2,Γ2)|2~ ≤ |Γ1 − Γ2|~|AΞ(Ξ1,Γ1)−AΞ(Ξ2,Γ2)|~

+∆t|Γ1 − Γ2|~|AΞ(Ξ1,Γ1)−AΞ(Ξ2,Γ2)|~ + ∆t|Ξ1 − Ξ2|~|AΞ(Ξ1,Γ1)−AΞ(Ξ2,Γ2)|~.
By utilizing equation (2.3), it can be concluded that

|AΞ(Ξ1,Γ1)−AΞ(Ξ2,Γ2)|~ ≤ |Γ1 − Γ2|~ + ∆t|Γ1 − Γ2|~ + ∆t|Ξ1 − Ξ2|~.

Therefore, it follows that

|AΞ(Ξ1,Γ1)−AΞ(Ξ2,Γ2)|~ ≤ C∆t(|Γ1 − Γ2|~ + |Ξ1 − Ξ2|~). (4.21)

The results in (4.19) and (4.21) show that AΞ and AΓ are, respectively, Lipschitz continuous. 2

Theorem 4.3. Assume that Γ`−1 and Ξ`−1 ∈ =~ constitute a solution to the (` − 1)-th step of (Θ~,∆t)
for some ` = 1, 2, . . . , L. Then, for every h > 0, there exists a solution {Ξ,Γ} ∈ [=~]2Ψ to the `-th step of
(Θ~,∆t).

Proof : Assume β > 0 and consider the case where there is no pair {Ξ,Γ} ∈ =~ × =~ such that
AΞ(Ξ,Γ) = AΓ(Ξ,Γ) = 0. Given the continuity of the functions AΞ(Ξ,Γ) and AΓ(Ξ,Γ) on [=~]2β , we can
define the continuous function G : [=~]2β → [=~]2β as

G(Ξ,Γ) = (GΞ(Ξ,Γ),GΓ(Ξ,Γ)),

Here, the functions GΞ(Ξ,Γ) and GΓ(Ξ,Γ) are given by:

GΞ(Ξ,Γ) :=
−βAΞ(Ξ,Γ)

|(AΞ(Ξ,Γ), AΓ(Ξ,Γ))|=~×=~
,

GΓ(Ξ,Γ) :=
−βAΓ(Ξ,Γ)

|(AΞ(Ξ,Γ), AΓ(Ξ,Γ))|=~×=~
.

(4.22)

Where |(., .)|[=~]2
β

denotes the standard norm on [=~]2β , defined by

|(Υ1,Υ2)|=~×=~ = (

2∑
i=1

|Υi|2~)
1
2 .
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The continuity of the function G follows from the continuity of AΞ and AΓ, as shown in Lemma 4.2. Since
[=~]2β is a convex and compact subset of =~×=~, Schauder’s fixed-point theorem guarantees the existence
of Ξ,Γ ∈ [=~]2β that are fixed points of G, of the form

G(Ξ,Γ) = (GΞ(Ξ,Γ),GΓ(Ξ,Γ)) = (Ξ,Γ).

From (4.22), we also observe that the fixed point {Ξ,Γ} satisfies the condition that

|Ξ|2~ + |Γ|2~ = |GΞ(Ξ,Γ)|2~ + |GΓ(Ξ,Γ)|2~ = β2. (4.23)

By selecting Σ ≡ Γ− Γ`−1 in (4.13) and Σ ≡ Ξ− Ξ`−1 in (4.14), we can conclude that(
AΓ(Ξ,Γ),Γ− Γ`−1)~ =

(
Ξ− Ξ`−1,Γ− Γ`−1)~ + ∆t

(
∇Γ, ∇(Γ− Γ`−1)

)
+ ∆t

(
Γ3,Γ− Γ`−1)~, (4.24)(

AΞ(Ξ,Γ),Ξ− Ξ`−1)~ = (Γ− Γ`−1, Ξ− Ξ`−1)~ + ∆t(Γ, Ξ− Ξ`−1)~ −∆t(Ξ, Ξ− Ξ`−1)~. (4.25)

It follows from (4.4) that

(∇Γ, ∇(Γ− Γ`−1))~ ≥ 1

2

(
|∇Γ|2~ − |∇Γ`−1|2~

)
, (4.26)

(Ξ, Ξ− Ξ`−1)~ =
1

2
(|Ξ|2~ + |Ξ− Ξ`−1|2~ − |Ξ`−1|2~

)
, (4.27)

(Γ3,Γ− Γ`−1)~ ≥ 1

3

(
|Γ|4~,4 − |Γ`−1|4~,4

)
. (4.28)

By combining (4.24) and (4.25), along with observing (4.26), (4.27), and (4.28), and applying Young’s
inequality, it follows that for sufficiently large β(

AΓ(Ξ,Γ),Γ− Γ`−1)~ − (AΞ(Ξ,Γ),Ξ− Ξ`−1)~
≥ ∆t

2

(
|∇Γ|2~ − |∇Γ`−1|2~

)
+

∆t

2
(|Ξ|2~ + |Ξ− Ξ`−1|2~ − |Ξ`−1|2~

)
+

∆t

3

(
|Γ|4~,4 − |Γ`−1|4~,4

)
+∆t(Γ, Ξ− Ξ`−1)~

≥ ∆t

2

(
|∇Γ|2~ − |∇Γ`−1|2~

)
+

∆t

2
(|Ξ|2~ + |Ξ− Ξ`−1|2~ − |Ξ`−1|2~

)
+

∆t

3

(
|Γ|4~,4 − |Γ`−1|4~,4

)
−∆t

2
|Γ|2~ −

∆t

2
|Ξ− Ξ`−1|2~

≥ ∆t

2

(
|∇Γ|2~ − |∇Γ`−1|2~

)
+

∆t

2
(|Ξ|2~ + |Ξ− Ξ`−1|2~ − |Ξ`−1|2~

)
+

∆t

3

(
|Γ|4~,4 − |Γ`−1|4~,4

)
−C(|Ψ|,∆t)− ∆t

3
|Γ|4~,4 −

∆t

2
|Ξ− Ξ`−1|2~

≥ β2 − C(|Ψ|,∆t,Ξ`−1,Γ`−1) ≥ 0. (4.29)

Given that Ξ,Γ is a fixed point of the function G, and taking into account (4.22) and (4.1), we deduce that
for sufficiently large values of β, the following holds:

(Γ, Γ− Γ`−1)~ − (Ξ,Ξ− Ξ`−1)~ =
−β[(AΞ(Ξ,Γ),Γ− Γ`−1)~ − (AΓ(Ξ,Γ),Ξ− Ξ`−1)~]

|((AΞ(Ξ,Γ)), (AΓ(Ξ,Γ))|=~×=~
< 0. (4.30)

It follows from (4.23) that

(Γ, Γ− Γ`−1)~ − (Ξ,Ξ− Ξ`−1)~ ≥ |Γ|2~ − |Γ`−1|2~ + |Ξ|2~ − |Ξ`−1|2~

= β2 − C(Ξ`−1,Γ`−1) ≥ 0. (4.31)

It is evident that (4.1) contradicts (4.30). This contradiction ensures the existence of {Ξ,Γ} ∈ =~ × =~

such that AΞ(Ξ,Γ) = AΓ(Ξ,Γ) = 0. Consequently, this implies the existence of a solution, denoted by
{Ξ,Γ}, for the `-th time step of the problem (Θ~,∆t). 2
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5 Numerical results

This section focuses on the numerical analysis of the wave equation. An iterative method has been
developed to solve the nonlinear system of equations arising from the problem (Θ~,∆t). Furthermore, it
presents and analyzes the numerical error results for the Dirichlet non-homogeneous boundary conditions
applied to the wave equation in one, two, and three dimensions.

5.1 Numerical algorithm

We begin by outlining a practical algorithm intended to solve the nonlinear algebraic system arising from
the approximate problem (Θ~,∆t) at each time step:
(Θ~,∆t

ı ): Given {Ξ`,0,Γ`,0} ∈ [=~]2, then for ı ≥ 1 find {Ξ`,ı,Γ`,ı} ∈ [=~]2 such that for all Υ ∈ =~

(
Ξ`,ı − Ξ`−1

∆t
, Υ

)~

+ (∇Γ`,ı, ∇Υ) + ((Γ`,ı)3,Υ)~ = 0, (5.1)

(
Γ`,ı − Γ`−1

∆t
, Υ

)~

+ (Γ`,ı, Υ)~ = (Ξ`,ı, Υ)~. (5.2)

Starting with Ξ0 ≡ π~ξ0 and Γ0 ≡ π~γ0, for ` ≥ 1, we initialize Ξ`,0 ≡ Ξ`−1 and Γ`,0 ≡ Γ`−1. Equations
(5.1) and (5.2) can be reformulated into a system of 2× (J + 1)d linear equations by testing (5.1) and (5.2)
against the basis functions ϕj , where j = 0, . . . , J . For the numerical simulations, we set a tolerance of
TOL = 10−7 and define the stopping criteria based on this tolerance:

max
{
|Ξ`,ı − Ξ`,ı−1|0,∞, |Γ`,ı − Γ`,ı−1|0,∞

}
< TOL, (5.3)

i.e. for ı fulfilling (5.3) we set Ξ` ≡ Ξ`,ı,Γ` ≡ Γ`,ı.

The programs were implemented in Matlab, and the resulting linear systems were solved employing the
Gauss-Seidel iteration method. While a formal proof of the convergence of Ξ`,ı,Γ`,ı to Ξ`,Γ` for a fixed n
has not been established, empirical results indicate favorable convergence behaviour. It was observed that
the iterative method reliably achieved excellent convergence, typically requiring only a few iterations to
fulfill the stopping criteria at each time step.

5.2 Error computations

To assess the error, we make a small modification to the problem (Θ) by adding source terms f(x, t) and
h(x, t). This change alters the system described by equations (1.4) and (1.5) into the following form: (Θ)
Find {ξ, γ} such that

∂tξ −∆γ + γ3 = f(x, t), (5.4)

∂tγ + γ − ξ = h(x, t). (5.5)

We therefore propose the following fully discrete FEA for (Θ~,∆t
ı ):

(Θ~∆t
ı ): Given {Ξ`,0,Γ`,0} ∈ [=~]2, for ı ≥ 1, find {Ξ`,ı,Γ`,ı} ∈ [=~]2 such that for all Υ ∈ =~, the following

holds: (
Ξ`,ı − Ξ`−1

∆t
, Υ

)~

+ (∇Γ`,ı, ∇Υ) + ((Γ`,ı)3,Υ)~ = (f(x, tn), Υ), (5.6)

(
Γ`,ı − Γ`−1

∆t
, Υ

)~

+ (Γ`,ı, Υ)~ − (Ξ`,ı, Υ)~ = (h(x, tn), Υ). (5.7)
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J L1 L2 L∞

100 1.02E-02 3.69E-03 1.41E-02
200 2.39E-03 5.99E-04 3.60E-03
250 1.52E-03 3.38E-04 2.29E-03
400 5.78E-04 1.02E-04 8.87E-04
500 3.66E-04 5.76E-05 5.64E-04
600 8.73E-05 9.70E-06 1.36E-04

Table 1: Discrete L1, L2, L∞-norms error

J L1 L2 L∞

100 1.02E-02 1.34E-03 1.96E-02
200 2.46E-03 1.55E-04 5.58E-03
250 1.57E-03 7.77E-05 3.57E-03
400 5.96E-04 1.85E-05 1.40E-03
500 3.78E-04 9.36E-06 8.96E-04
600 9.35E-05 1.15E-06 2.26E-04

Table 2: Discrete L1, L2, L∞-norms error

5.2.1 One-dimensional error

This section presents two numerical examples that solve the system described by equations (5.6) and
(5.7) under homogeneous Dirichlet boundary conditions and specified initial conditions. For simplicity, all
examples are conducted with the spatial domain Ψ = [0, 1] and a time period of T = 1. The initial and
boundary conditions, as well as the source terms f(x, t) and h(x, t), are chosen according to the specific
exact solution for each case. Initially, the domain Ψ = [0, 1] is uniformly divided into J intervals to form
a square mesh. The mesh size for each element is represented as h = 1/J , and ∆t = 10−4. The exact
solutions are given by:

γ(x, t) = sin(2πx) exp(−2t).

The errors in the L1, L2, and L∞ norms are presented in Table 1.

5.2.2 Two-dimensional error

In a two-dimensional scenario governed by the system described by equations (5.6) and (5.7) with Dirichlet
boundary conditions and an initial condition, the spatial domain is confined to Ψ = [0, 1] × [0, 1]. The
time interval is specified as [0, T ] = [0, 1] for simplicity in analysis. The initial and boundary conditions,
together with the source terms f(x, y, t) and h(x, y, t), should be selected to align with the specific exact
solution relevant to each case. The chosen time step for the simulations is ∆t = 10−4. The exact solution
is:

γ(x, y, t) = sin(2πx) sin(2πy) exp(−2t)

The errors in the L1, L2, and L∞-norms for this simulations are listed in Table 2.
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J L1 L2  L∞

100 2.39E-03 1.15E-04 6.41E-03
200 3.49E-04 5.48E-06 1.19E-03
250 2.05E-04 2.26E-06 7.05E-04
400 6.83E-05 3.73E-07 2.48E-04
500 4.11E-05 1.60E-07 1.51E-04
600 7.41E-06 1.02E-08 2.82E-05

Table 3: Discrete L1, L2, L∞-norms error

5.2.3 Three-dimensional error

In this section, we present a three-dimensional example, considering the system described by (5.6) and
(5.7) with Dirichlet boundary and initial conditions. For this numerical example, we simplify the spatial
domain to Ψ = [0, 1]× [0, 1]× [0, 1], with the time interval set to [0, T ] = [0, 1]. The initial and boundary
conditions, as well as the source terms f(x, y, z, t) and h(x, y, z, t), will be defined according to the specific
exact solution for each case. The time step is selected as ∆t = 10−4. The exact solution is given by:

γ(x, y, z, t) = sin(2πx) sin(2πy) sin(2πz) exp(−2t).

The errors in the L1, L2, and L∞-norms for this simulations are provided in Table 3.

6 Numerical simulations

6.1 One-dimensional simulations

This section is dedicated to the approximated solution of the DWE with Neumann boundary conditions
in a one-dimensional space.

Example 6.1. We solve the one-dimensional wave equation with the following initial conditions:

γ(x, 0) = sin(2πx), γt(x, 0) = 0.5 sin(2πx), x ∈ [0, 1]. (6.1)

The approximated solution to this equation was computed employing ∆t = 0.00001 and J = 200.
Figure 1 shows the approximated solutions at various time instances.

6.2 Two-dimensional simulations

In this section, we focus on the approximated solution of the DWE with Neumann boundary conditions in
two-dimensional space.

Example 6.2. We investigate the two-dimensional wave equation with the following initial conditions:

γ(x, y, 0) = sin(2πx) sin(2πy), γt(x, y, 0) = 0.5 sin(2πx) sin(2πy), (x, y) ∈ [0, 1]× [0, 1]. (6.2)

We solve this model with t = 0.000001 and J = 20. Figure 2 shows the plot of the approximated
solution γ(x, y) at T = 0.1.
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Figure 1: Numerical solution at T = 3, with ∆t = 0.00001 and J = 200 .
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Figure 2: Numerical solution at T = 0.1, with ∆t = 0.000001 and J = 20 .
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7 Conclusions

This study delves into the numerical analysis of the DWE on open bounded convex domains R ⊂ Rd,
where d ≤ 3, under Neumann boundary conditions. We propose two numerical solutions, which are
SDA and FDA. The existence and uniqueness of solutions for both schemes are established. Our findings
indicate a first-order error rate in the temporal discretisation and a second-order error rate in the spatial
discretisation, applicable in both one- and two-dimensional cases. Moreover, we derive multiple bounds for
the approximate solutions across different function spaces. The paper also includes a practical algorithm
for solving the approximate problem, which is utilized to generate numerical results. This framework
provides deeper insights into the solution’s behaviour and supports its practical implementation.

The impact of mesh size on the accuracy of the FEM is a crucial factor in numerical simulations.
Reducing the mesh size generally improves the FEM solution, as it converges towards the exact solution
or a more precise approximationan attribute known as the convergence property of FEM. Finer mesh
elements provide a more detailed representation of the geometry and physical phenomena, enhancing
accuracy. However, FEM inherently presents discretisation error due to the approximation of continuous
functions with piecewise polynomial ones. This error decreases as the mesh size becomes smaller, leading
to a more accurate solution. Additionally, smaller mesh elements are better at capturing local variations,
particularly in areas with steep gradients or abrupt changes in the solution, thereby ”smoothing out” the
results.

Despite these benefits, smaller mesh elements significantly increase the computational cost. A finer
mesh involves a larger number of elements, which translates to solving a more extensive system of equations,
requiring additional computational time and memory. Thus, selecting an optimal mesh size is essential in
FEM simulations, balancing accuracy and computational efficiency. Refining the mesh is often an effective
strategy to enhance accuracy, but adaptive meshing techniques and consideration of the problem’s specific
features can yield more efficient and tailored solutions.
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