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Abstract

The maximum power point tracking (MPPT) tecjud is considered a crucial part in
photovoltaic (PV) system design for maximising ¢lgput power of a PV array and improving
the stability and reliability of the PV system. $hiesearch focuses on developing common
MPPT techniques, including: perturb and observe @R&fuzzy logic control (FLC), an
adaptive neural-fuzzy inference system (ANFIS) anartificial neural network (ANN) for a
grid-connected PV system, with the best of themdpeaientified.

Whilst several techniques have been desighed?&0O algorithm is widely used for MPPT
due to its low cost and simple implementation. Hesvethe main drawbacks of this method
are a slow tracking speed, high oscillation andriti groblem associated with changing
irradiance rapidly. Hence, a modified P&O-MPPT lthea the Pythagorean theorem and a
constant voltage algorithm is proposed to addifessetissues by developing variable step size
and early step decision for the conventional P&@oathm, respectively. Unlikely, these
modifications do not avoid the drift problem noinghate the oscillation completely.

The FLC is a commonly deployed technique #itaieves vastly improved performance for
the MPPT technique in terms of response speedaamdluctuation. However, the key issues
of the conventional FLC-MPPT are the drift problemd complex implementation, when
compared with the P&O-MPPT. Hence, the MPPT tealmibased on the FLC and P&O
algorithm is proposed to address these challefiggs.technique incorporates the advantages
of the P&O-MPPT to account for slow and fast chanigesolar irradiance as well as reduced
processing time for FLC-MPPT to address complexrexgging problems when the number of
rules of membership functions are fewer. As a teth# proposed technique achieves average

tracking efficiencies of around 99.6% under the BB8D standard test.

The ANFIS technique and the ANN techniqueussed to predict the maximum power point
of a PV array, using experimental training datatead of the rules of membership functions.
To improve the accuracy of those techniques, aecfitting technique and the Particle Swarm
Optimisation algorithm are utilised, respectivelyiese optimisations are classified into two
strategies: adjusting the tuning of the ANFIS maaeivell as determining the right topology
and the initial weights of the ANN model. As a résthe training errors of those models are
minimised. Hence, the ANFIS technique achievesametracking efficiencies of greater than
99.3% under a semi-cloudy day test, while the ANNhhique delivers average tracking

efficiencies of more than 99.67% and 99.30% on gw@md cloudy day tests, respectively.



Declar ation

| declare that this thesis is my own work and ibrsifted for the first time to the Post-
Graduate Research Office of Brunel University Lamdbhe study was originated, composed
and reviewed by myself and my supervisors. Allitifermation derived from other works has

been acknowledged and referenced.

Sadeq Duair Aneed Al-M gjidi
September 2020



Acknowledgements

Firstly, I would like to express my appreadatiand gratitude to the Iragi Minister of Higher
Education and Scientific Research (MOHESR), Miskhmversity and the Iragi Cultural
Attaché-London for sponsorship and funding of myDR$tudy and managing the student

affairs.

| would like to thank my supervisor, Professamed S. Al-Raweshidy, for his advice and
guidance during the PhD period. | am so thankfuhtosecond supervisor Maysam F. Abbod

for his support, encouragement and valuable assista

My thanks go also to my colleagues in the RdBystem Research Group and Department
of Electronic and Computer Engineering at the @alef Engineering, Design and Physical

Sciences, who have been supportive throughout rbyj@lrney.

| would like to acknowledge the great attéwad all the staff members that | have interacted

with at Brunel University London.

Finally, to my parents, brothers, sisterseveihd my children, | would like to thank you for
being beside me as a source of care, love, encemey and motivation, which has filled me

with patience and commitment.



Contents

Y 0111 = 1o PP PP PPTPUPPPPP PP 1
D =Tol =T = Ao o TP T T SS PP PPPPPPPPRP Y
ACKNOWIEAGEMENTS ..ot e e e e e e e e e e e e e e e e nneeee e \Y,
1070} 311 011 J P VI
LIST OF FIGURES ...ttt e e e e e e e e e ee e e e e e e eeeees X
LIST OF TABLES ... .ottt ettt e e Xl
LIST OF SYMBOLS ..ottt ettt ettt e snnee s e e nnne e XV
LIST OF ABBREVIATIONS ... .ottt en e e e e eeeees XVI
(O F=T o] (=] S USSP 1
TpTigoTo (U Lot i o] o ISP TP PP PPPPPPPPN 1
I = 7= Tod (o [ (o 18] o IO TP PP PPPPPPPTN 1
1.2 MOBIVALIONS. ...t eeie ettt e et e e et e e e e e e s e e e e e e e s e e e e s 3
1.3 AIM @Nd ODJECHVES ..ottt e et e e e e ee e e e e e e e e e e e anes 4
1.4 ThesiS CONHDULIONS ...t e e e e e e e e e 5
1.5 ThesSis OrganiSatiON ................eeii e e e eeeeeeeeeeee e e e e ee e e e e et ee e e e eeereeeeeeeeeeeeeeeeeeeeeeenenns 6
1.6 List Of PUBIICALIONS. ......ceiiiiiiiiie et 8
1.6.1 Journal PUBICAIONS .......ccooiiieeeeeee e 8
1.6.2 Conference PUBblICAtIONS ..............cememeereriiiii e eeeeee e 8
(OF g F= T o1 (] SO P PO PPPPPPPPPPPPP 9
PROTOVOITAIC ENEIGY ...ttt e e e e e e e e e e aeeas 9
2.1 History of PhotovoItaiC ENEIQY ..........oceeeeeeeiiiiiiieiiiiieieiieiiiviisisasaaassnnnnnessssanssnsnnne 9
2.2 Types Of PhOtOVOIAIC CEIIS .......oeeiiieiieeeee e 12
2.2.1 MonocCrystalliNng SHICON .......ccoiiiiiiiie e 12
2.2.2 Polycrystalling SiliCON.......ccccoiiiiiiiiie e 12
2.2.3 AMOIPROUS SIICON ... e 12
2.3 Challenges of Photovoltaic Technology ..cccceeeo oo, 13

\



2.3.1 Efficiency of the PV Cell.........ooo e 13

2.3.2 Stability Of PV gENEIatioN ............uoeeeeeeeeeeieieiieeieieiesessissssssssssrnnnnnsessnnnna.. 13
2.3.3 Partial shading CONAItION ..........oiiireeiiiiiie e 14
2.3.4 MismatCh Of PV 1080 .......cccoiiiiiii ettt 14
2.3.5 Lifespan of an installed PV Module ... 14
2.4 Maximum Power Point Tracking TeChNIQUES -.cccc.vvviiiiiiiieiiiiiiiieeee e 14
2.5 Overview of the various MPPT Methods ......ccccvvviiiiiiiiiiiicc e 18
2.6 SUMIMIAIY ..uuiiiiiii ettt r e e e e e e e e et e e e eeas s e e e et s e e e st aeaeenesssseeeasanseeessnaenes 19
(O4 g F= T o1 (] S PP PP PP PPPPPPPPPTPPN 22
Modelling and Control of PV SYSIEMS ........ccooriiiiiiiiic e 22
3.1 Modelling Of @ PV Cell ...coooiiiiiiiieit e s 22
3.2 Structure of @ PV SYSIEIM ..o e 25
3.2.1 The Configuration Of @ PV AITQY ........cummmeeeeeeeriereiiiriiiiieeiisnsnennnnssnnnns 25
3.2.2 Topologies Of PV SYSIEIMS .......coiiiiceeeeeeiie et 26
3.3 DC-DC BOOSE CONVEITEN .....ceveeeieieiriiieiniiii s e e e e e e e e e e e e e e aneeena s e e e e eeaeeeens 27
3.4 Control Scheme of @ PV SYStEM ... 30
3.5 P&O AlGOITNIM ..ttt e e e e e e anmnn e e e e e e e e e nenae e 32
3.6 MOdIfIed PE&O-MPPT ..ottt mmmemi s s e e e e e e e e e e e e e e e e e aeaanenaneaeaeaaeaeaeens 34
3.7 SIMUIALION RESUILS. .....ceiiiiiiiiie e 37
3.8 SUMIMANY ... e e e e e e ae e e e e s s s n e e e e e e e e e e e e e e eeeeeas 39
(O T o] (=] RSP SPPPPPPPP 43
Proposed MPPT Based on FUzzy LOQIC CONLIOl e ceeeeeeeiiieieieiiieiiiiiiiiiiiiivisvmnmnnnenes 43
I [ a1 0T U ot 1o o IF PP PPPPPPPPPPPP 43
4.2 FUZZY LOGIC CONMIOL.......ccoiiiiiiie et e e 45
4.2.1 FUZZIFICALION ...ttt rnme e e e 46
4.2.2 FUZZY RUIBS ...ttt ettt e e e e e e e e e 47
4.2.3 DEfUZZIfICALION ...eeeiiiiiiii ettt 47

Wil



4.3 CONVENTIONAI FLC- M P P T .ottt ettt e e e e e e ee e e eeaaeeeereraenarees 47

4.4 Proposed MethOd.........ccoooiiii oo 51
4.5 SIMUIALION RESUILS. .....euiiiiiiiie e e e 54
4.6 The EN 50530 Standard Test of MPPT Efficiency.............ccccovviviiiiiiiiviiiiiiiiiees 60
S TN [ ] 4= Y U 63
(O4 g F= T o1 (] 2.5 PP P P PP PPPPPPPPPTPPN 65
Design of an Efficient MPPT based on ANFIS ..., 65
5.1 RelAtEA WOTKS ...ttt ettt e e e e e 65
5.2 ANFIS TECNNIQUE....ceiiiiieiiii it eeee et e e e e e bbb e e e e e aeens 70
5.3 ANFIS-MPPT CONLIOIET ...ttt 71
5.4 Methodology of Collected Data ............ccooeuriiiiiiiiiiiiiice e 72
5.5 Curve Fitting TECNNIQUE........coii it a e 74
5.6 Tuning of Proposed ANFIS NetWOrK..........cceeeiiiiiiiiiiiieeeeee e, 76
5.7 ReSUILS AN DiSCUSSION ........uiiiiiiiieeieeeetitie et e et ee e e e semr e e e e e e e e e e 80
5.8 Real MeasSUremMENt TEST..........ouuuet e ettt e e e e e s e e e e e e eeeeeeaeens 84
LR RS0 [ 0] 0 1= U PP 88
(O4 g F= T o1 (] S G PP PP PP PPPPPPPPPTPPN 89
An optimised Neural Network for Predicting the MRP............cccciii e, 89
6.1 State OF the AIT ... e e e e et e e 89
6.2 Optimised ANN-MPPT METNOM ..........coiiiimmmeiiiiiieieeeee e emmeeee s 91
6.3 ANN AlQONtNM . ... 92
6.3.1 Hidden Layer SIZE ........ccooiiiiiiiieeeeeee et 93
6.3.2 Initial Training WeIgNTS..........ooi it 94
6.4 PSO AIGONtNM .. ..o 94
6.5 Training Of ANN MOGEL...........ouiiiiiiiceem e 96
6.5.1 PSO-ANN algorithm - selected as the bestlogyoof an ANN network ............. 96
6.5.2 PSO-ANN algorithm - determining the initiakights of the ANN model............ 97

VIl



5.6 RESUILS AN DiSCUSSION . .euuiiitiieieeeeee ettt ettt e ettt e ee e eeteeeaareeseseemneesnareenaeeens 100

6.7 Experimental Measurement TEeSES ......cocccccci i i 103
6.8 Overview of the Proposed Methods........ccccooiiiiiiiiiiiiiie e 107
oI RS TU [ 010 0= PP 108
(O =T o] (=] S A USRS 110
Conclusions and FULUIE WOTK ..............o mmmmeeeeeeeeeesi e e e e 110
7.1 CONCIUSIONS ...ttt ettt e et e e e e e e e e et e e e e e s e e e e ane 110
7.2 FULUIE WOTK ...ttt ettt ettt e e e e eas 112
BiDHOGrapny ... e 114
Y o] o L= T [5G 129
Experimental Data SAmMPIE ........ovvviiiiiiiceeeeee e 129
F Y o] 01T a0 [l = PP PP PP TPPP 131
Data sheet of Sharp NU-S5E3E 185 PV module................ooovviiiiiiiiiiiiiieeieieeeeeee, 131
Y o] 01T o [ G PP PP PPPT PP 133
PSO-ANN AIgorithm (S-FUNCHON) .....ccooiiceeee e 133
APPENAIX D .o ———————————— 135
Modified P&O Algorithm (S-FUNCHION) ... 135
APPENIX B et et e e e e 137
The Simulink model of a grid-connected PV SYStem........ccccooveviiiiiiiiiiieieeeeeeeeeeeeeee, 137
Y o] 01T o [t PP PPTT R TRPPP 138
The graphical rules of @ FLC MOdel ... 138
Y o] o L= T [5G 139
The linguistic rules of an ANFIS Model ... 139
APPENAIX H ..o ———————————— 140
Neural Network Training RegreSSiON ..........ceeeeeiiiii e 140



LIST OF FIGURES

Figure 1.1. The global growth of PV power instatiatcapacity in GW ...............cccvvveee 2.
Figure 1.2. |-V characteristiCc 0f @ PV @rray .........ccccooeiiiiiiiiiiiieiee e 4
Figure 2.1. The historical development of PV €nergy........ccccccoeeiiiiiiiiiiiiiinieee e, 10
Figure 2.2. Historical decrease in the price BMacell..............evvvviiiiiiiiiiiiiiii e, 11
Figure 2.3. Types of PV t€CNNOIOGIES...... oo 13
Figure 2.4. Common types of MPPT methods for PYESHIS ...........ovvvvvviiiiiiiiiiiiiieeeen 21
Figure 3.1. The structure of @ PV Cell.....ummeeeiiiii et 22
Figure 3. 2. The equivalent circuit of @ PV Cell.........ouuuiiiiiiiiiiiiiie e, 23
Figure 3.3. P=V CUIVE Of @ PV AITAY ........ccemmemiurrmriiiiiiiiieis s s es e eeeeee s e e 25
Figure 3.4. The configuration Of @ PV @rray ............uvuiuiiiiiiiiiiiiiin e eeeeeessen e 25
Figure 3.5. Topologies Of PV SYStEMS ......ucceeeieiiiiiiiiieeeeeeeeeeeee e 26
Figure 3.6. The circuit diagram of a DC-DC DOOSINGEITET ..........ceeviieeeiiiiiiiiiiieieee s 29
Figure 3.7. The state conditions of @ DC-DC DOOSIVEIET.............uuuuiiiieirieeeee e s 29
Figure 3.8. The waveform of a DC-DC b00St CONVELLET.............cvvvvvvvrriiiiiiiiiiiiiinnnnns 30
Figure 3.9. The control scheme of the PV SyStem.............ooiiiiiiiiiiiiiiiieieeeeee e 31
Figure 3.10. The waveform of an MPPT CONtrOlEl ... ..vuveviiiiiieieeieeeee e, 31
Figure 3.11. The flowchart of the conventional P&Qorithm.............cccccceeiiiiiiiiiiiinnn. 33
Figure 3.12. P-V curve for a rapid irradiance Crang............cccuveeiiiieeeiiniiiiis e 34
Figure 3.13. P-V curve of the PV module illustrgtifie VSS...........cccccciiiiiiiiiiiiiieees 35
Figure 3.14. The flowchart of the modified P&O-MPRIEthod .............coooviiiiiiiiiiiinnnen. 37.
Figure 3.15. The general diagram of a grid-conreBé system.................ccoevvvvvvennnnns 39
Figure 3. 16. The input irradiance under constantaions...............cccceveveeeeerniniiieneennns 40
Figure 3.17. The output power of a PV array withlPT versus with MPPT ................... 40
Figure 3.18. The input of input solar irradiancéhwiarying conditions ..................cccvevee. 40
Figure 3.19. PV array output for the modified V$ieentional P&O method under ............ 41
Figure 3.20. The DC voltage of a grid-connectedsp¥tem .............coovvviiiiiiiiiiiiiiiiiiinns 42

Figure 4.1. The general diagram of a grid-conneBt¢dystem based on the FLC-MPPT...45
Figure 4.2. General diagram of fuzzy l0giC SYStem.............coooiriiiiiiiiiiiiiiieeeeeee e, 46

Figure 4.3. Various types of defined membershigfioms (a) monotonic (b) trapezoidal (d)

triANQUIAT (C) GAUSSIAN. .....eeviiiiiiiiiiiieeeeeee e e e e ee e e e e e e e et ettt e ettt e et eeaeae e e eeeeeeeeeeeeeeesesesssssnnnnes 46
Figure 4.4. The defined membership functions adraventional FLC-MPPT ...................... 49
Figure 4.5. A 3D surface between inputl (e) andiidifAe) verse outputAD). .................. 50



Figure 4.6. P-V curve for a rapid irradiance change..............cccccvvvvvvvvviviiiieiimnnneneeennnns 50

Figure 4.7. The designed membership functions@ptioposal..............ccccevvvvvvriririiiinnns 53
Figure 4.8. A 3D surface between inpudp/@v) and input2 dp/p) verse outputAD). ........ 54
Figure 4.9. The input solar irradiance based amp&rchanging condition....................... 56..

Figure 4.10. PV array system for the proposed niet@osus conventional P&O under
rapidly changing weather CONAItIONS .........ccceeemiiiiiiie e 57

Figure 4.11. PV array system for the proposed nietleosus conventional FL under rapidly

changing weather CONAItIONS. ............iii cem e e e e e 58
Figure 4.12. Grid-connected PV system using thegsed MPPT method .............ccccee..... 59
Figure 4.13. Triangular waveforms of irradiancetfoe EN50530 standard test of MPPT

B ICIENCY i e e e e e e e e e e e e e e e e e e e e e e e e aaaaaas 61
Figure 4.14. The PV power for the EN50530 standestiof MPPT efficiency.................... 62
Figure 4.15. The average efficiency of power tragkinder the EN50530 standard test...... 63
Figure 5.1. The studied PV array installed at Brlraversity London, UK........................ 69
Figure 5.2. A block diagram of the ANFIS model.............ccccooiiiiiiiiii e, 71
Figure 5.3. The diagram of a PV system using an WNAPPT. ........ccccocviiiiiiiiiiiiieeeeenn, 12.
Figure 5.4. The general diagram of a collected 8gstem. ... 73
Figure 5.5. The fitting curve of (a) PV power adiance level, (b) PV power - temperature

(o] 1T =1 [o] o AU TP PP PP PPPPPPPPPTPPN 76
Figure 5.6. Training data error versus epochsHerANFIS model. ..........cccccooiiiiiiiiiiin 78
Figure 5.7. The defined membership function forif@diance, and (b) temperature. .......... 79
Figure 5.8. A 3D surface between inputs irradiaaroe temperature verse PV power. ......... 79
Figure 5.9. PV array system for the ANFIS methogus P&O and FLC methods under a
fixed irradiation CONTITION. ...........euiiiii et e e e e e e e e e eneeen e 82

Figure 5.10. PV array system for the optimal ANFé&sus conventional ANFIS,

conventional P&O and conventional FLC methods urdepid change in weather

(o0 3 To 111 0] o - SO PP PP POPPPPPON 83
Figure 5.11. Real measurement test of one daypirradiance, and (b) temperature.......... 85
Figure 5.12. MPPT power for: (a) P&O versus tharopt ANFIS, (b) FLC versus the

optimal ANFIS and (c) conventional ANFIS versus tipgimal ANFIS. ............ovvvvviiiiinnnnne. 86

Figure 5.13. The average efficiency of the gendrptaver of PV array under the real
MEASUIEMENT TEST ... eeeiit et irerrr s e e e e e e e e e e e e e e e e armmmr e e e e e e ennnna e e eenenes 87
Figure 6.1. General diagram of a stand-alone PYesysising an ANN-MPPT method....... 91
Figure 6.2. Block diagram of an ANN SYSTEM...ccccaeiiiiiiiiiiieee e 93

Xl



Figure 6.3. The Flowchart of a PSO algorithMu e ..veeeeiiiiiiiciieeeeeeeeeee e, 95

Figure 6.4. Schematic diagram of the training methagy...............ccccvvvveveiiiiiiiiinnnns 96
Figure 6.5. The search history of the PSO-ANN athor. ..o 99
Figure 6.6. The best validation performance otlja)conventional ANN and (b) the

(o] o111 0 g IST=To Y N TP PP POPRRPPPP 99
Figure 6.7. The irradiance level of weather CORORL ................cooiiiiiiiiiiiiiieie e 101

Figure 6.8. PV array system for the proposed metteosius the P&O, FLC and ANN

methods under theoretical climate CONAItIONS.....cc...vvviiiiiiiiiiiii e 102
Figure 6.9. Experimental measurement tests fonaysand a cloudy day .......................... 104
Figure 6.10. MPPT predicting power on a sunny daggithe proposed method versus....105
Figure 6.11. MPPT power prediction on a cloudy dayg the proposed method versus...106
Figure 6.12. The average efficiency of the predgtower for the conventional P&O, FLC

and ANN as well as the proposed Method ........ccceeeeveiiiiiiiiiiiiiii s 107
Figure E.1. The Simulink model of a grid-conned®dsystem based on MATLAB
SIMUIBLION. ...ttt e e e et e e e e e amnn e et e e e e e e e s be e r e e e eeaeens 137
Figure F.1. The graphical rules of @ FLC MOd€Ll...c.....vvvieiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee, 138
Figure G.1. The linguistic rules of an ANFIS model............cccccciiiiiiiiiniiiiieeeeee 139
Figure H.1. The training regression of an ANN madel............ccccccciiiniiiiiiiiiiniineeens 140

X1



LIST OF TABLES

Table 2.1. An overview of the main features of thest popular MPPT methods................. 20
Table 3.1. Parameters of the Simulink PV module ... 24
Table 3.2 The probabilities of direction for a P&@orithm .............cccoooviiiiiiiiiiinnnn. 32
Table 4.1. The fuzzy rules that are used in theveotional FLC-MPPT.............ccoeeeee. 0.5
Table 4.2. The fuzzy rules that are used in the@sed method............cccceeeeeiiiiiiit coeenn 52

Table 4.3. A comparison of the properties of th@ppsed method, conventional P&O and

CONVENLIONAI FLC ... .ttt ettt e e e e e e e e st e e e e e nnees 56
Table 4.4. A comparison of the output energiesefgroposed method, conventional P&O
and CONVENLIONAL FLC. ...ttt e et e e s e e 56

Table 4.5. A Comparative study regarding the aveedftjciency for the proposed method

and the conventional FLC and P&O-MPPT techniques..............coovvvvvviiiiiriviviiiiiiiiennns 61
Table 5.1. PV module characteriStiCs. ........ccocoiiiiiiiiiiiiieieee e 69
Table 5.2. Simulation ANFIS model based on optimidata VS total data.......................... 78
Table 5.3. Mean Square Error (MSE) for differeqguihmembership functions.................... 78
Table 5.4. A comparison of the properties of theFADl P&O and FLC-MPPT. ................. 81
Table 5.5. Comparative study regarding the aveeffigency for the optimal ANFIS,
conventional ANFIS, conventional FLC and P&O-MPREHNIQUES. .........vvvveemrmennniiiinnnnnn. 85
Table 6.1. The main steps of the first proposedrélgn to find the optimised topology of

L N 97
Table 6.2. The major steps of the second propdgeditam to find the initial weights of the
AN . et e o bbbt e ne e b et e et e et e e e nees 98
Table 6.3. The rudimentary statistical analysithefproposed algorithm. ................... 100
Table 6.4. A comparative study covering the maopprties of the conventional ANN, FLC
and P&O-MPPT method as well as the optimised ANNPNVIP...............vvviiiiiiiieieeenn, 101
Table 6.5. Comparative study regarding the howrrage efficiency for the proposed
method and the conventional ANN, FLC and P&O-MP@dhhiques. .............ccceeevveeeeene. 104
Table A.1 The data sample which collected from erpental PV test............ccccceveeeeel 912

X1l



LIST OF SYMBOLS

b; The bias of the ANN model

C The Capacitor

ci1and c. The cognitive coefficient factors of PSO
D The Duty ratio

Dm The Duty ratio at the MPP of PV array

fs The switching frequency

G The Solar irradiance

Goi The global best position of PSO algorithm
lc The Capacitor current

ld The current of PV diode

iL The Inductor current

Ipv The photovoltaic output current

ImPP The PV Current at maximum power point
I The output current generator of PV cell
Isc The short circuit current of PV cell

[ ph The current generator from the solar cell
Ipv The Output current of the PV cell

Ish The shunt circuit current of PV cell

Isc The short circuit current of PV cell

lo The saturation current of the PV diode

k The Boltzmann's constant

Ka The temperature coefficient

L The inductor

Pm The maximum output power

Ppv The module output power

Phi The best fithess values of PSO algorithm
Pout The actual output power of the PV array
Prax The theoretical maximum power of PV array
Pres The predicting power of ANN model

Pact The PV’s actual power of PV array

q The electrical charge

XV



Rsc
Ren
Rm
rrandrz
T
T;(0)
\%

Vd
Vpv
Vi
Vm

n MPPT

The Series resistance of PV cell

The Shunt resistance of PV cell

The resistive load at Pm

The random velocity values of PSO

The temperature

The target output

The speed velocity of PSO

The Voltage across the PV diode

The output PV voltage

The input voltage

The PV voltage at maximum power point

The output voltage

The PV diode factor

The real output

The connection weights of ANN model

The firing strength of FLC

The historical duty cycle changes during one sample
The historical power change during one sample
The historical voltage changes during one sample
The historical irradiance changes during one sample
The ripple output voltage of DC-DC converter
The ripple output current of DC-DC converter

The tracking efficiency of MPPT

XV



LIST OF ABBREVIATIONS

AC

Al
ANN
ANFIS
BP
BJT

C

cv
COG
DC

E
FOCV
FIS
FL
FLC
HC
GUI
IC
IGBT
-V
MOSFET
MFs
MPP
MPPT
MSE
oC

Pl
P&O
PSO
PV
P-v

Alternative Current
Artificial Intelligence
Artificial Neural Network
Adaptive Neuro-Fuzzy Inference System
Back Propagation algorithm
Bipolar Junction Transistor
Constant

Constant Voltage

Centre of Gravity

Direct Current

Error

Fraction Open Circuit Voltage
Fuzzy Interface System

Fuzzy Logic

Fuzzy Logic Controller

Hill Climbing

Graphical User Interface
Incremental Conductance
Insulated Gate Bipolar Transistor
PV Current Vs Voltage

Metal Oxide Semiconductor Field Effect Tsigtor
Membership Functions
Maximum Power Point
Maximum Power Point Tracking
Mean Square Error

Open Circuit

Proportional — Integral

Perturb and Observe

Particle Swarm Optimization
Photovoltaic

PV Power Vs Voltage

XV



PWM Pulse Width Modulation

S Signal of DC-DC converter

SC Short Circuit

SCADA Supervisory Control and Data Acquisition
SEPIC Single Ended Primary Inductor Converter
STC Standard Test Condition

LAN Local Area Network

GA Genetic Algorithm

GSA Gravitational Search Algorithm

VSS Variable Step Size

XVl



Chapter 1- Introduction

Chapter 1

Introduction

In this chapter, the background, motivatioagn and objectives of this thesis are
introduced. Section 1.1 covers the backgroundhofqvoltaic (PV) energy, while Section 1.2
discusses the motivations of this research. Ini@e&t3, the aim and objectives are explained.
Section 1.4 presents the contributions of thisitheghich is followed by its structure in Section

1.5. Finally, the publications stemming from tresearch are provided in Section 1.6.

1.1 Background

In recent years, the global demand for enbagy/increased dramatically due to population
growth. In addition, the phenomenon of global wamgnhas intensified owing to the O
emissions from fossil fuels. Nowadays, the majobgl production of electrical energy is met
from fossil fuels, constituting about 80% [1]. $tpercentage is expected to generate about
40.4 Gt CQby 2030 [2]. To solve the issue of lack of enengyuture years and to minimise
the side effects of burning fossil fuels, many &achave called for the use of renewable
energies. Hence, developing renewable energiestieme become a worthy research topic in
the last decade. The Renewable Energy InstructidgheoEuropean Union has set a goal of
energy generation over 32% of total production fr@mewable energies by 2030, with the
added aim of this reaching 100% by 2050 [3].

Solar PV systems, wind turbines and hydropawerthe main renewable energy resources,
coming from sunlight, wind and fast running watespectively. [4]. A solar PV system is
considered to be one of the most attractive renknaergy resources due to its provision of
sustainable, clean and safe energy [5]-[7]. Intawdiit can be installed almost anywhere with
different capacities and the operating cost of as®urce is lovig], [9]. On top of that, several

studies refer that the surface of earth receivioggy radiation from the sun about 1.8*10

1
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MW, which is considered much more than the totabgl demand for electrical power [10].
In recent years, the worldwide installed capacftyg &V system has risen sharply, as show in
Figure 1.1 [11]-[13]. This is because various cdast such as China and India, have
connected large PV plants with a utility grid. Mover, some countries, for example, the USA
and UK, have encouraged their citizens to instadl-gonnected PV systems on the rooves of
their houses. Furthermore, the average installest ob this PV system has dropped
dramatically.

The leader of installed PV systems for sdwazars during the latter part of 20th century
was the USA. In 1996, Its total PV generation reachmore than 77 MW. After this
date, Japan took this position until 2004 and &t ttear, the installed capacity of PV systems
in Japan become 1132 MW. Then, Germany turnedti@onorld's leader of generated PV
electricity during next 10 years, achieving PV proibn of about 40 GW in 2016. In
2015, China astonished other countries when it tbiskposition from Germany and in 2017,
it became the first country to generated 100 GWhfRV systems alone [14]. By the end of
2018, the global installation of PV systems excdesz0 GW.
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Figure 1.1. The global growth of PV power installation capacity in GW [11-13]
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The generation of this PV installation conitdd about 3% of global electrical energy
consumption. In Italy, Greece, Germany, and Clfile PV sources supplied about 8% of their
annual domestic consumption, where that in Hondwas the largest contributor at
about 14%. In Australia and USA, PV production et 7% and 4% of their electrical energy
consumption, respectively, while the PV productioi€hina and India closed to 2.55% [15].
According to the International Energy Agency (IEAJJjobal energy production from PV
resources will reach 16% of global electricity hg 2050s [16].

1.2 Motivations

In general, there are two types of a PV systgid-connected and stand-alone PV systems.
This work focuses on the first type, which has beately installed around the word due to its
lower cost [3,8]. The grid-connected PV systemrsefe PV generation that is connected to
the grid. The system consists of a PV array, povegiversion system and grid connection
equipment. Unlike the stand-alone PV system, itegally does not contain a storage unit
(battery) as this is still very expensive. Henée, power generation from this system feeds
directly to the consumer when the weather condstsurrounding the PV array is right. Despite
the impressive global growth of the grid-conned®&tsystem capacity in recent years owing
to the advantages and properties of the PV systemmentioned in Section 1.1, the efficiency,
stability and reliability remain major factors wheaeking to introduce this resource to the
market [17]-[19].

The output power from a PV system mostlyesels on irradiance and temperature, i.e.
weather conditions, as shown in Figure 1.2, whidistrates the current-voltage (I-V)
characteristic of a PV array. This indicates tiwat PV power generation increases when the
input irradiance increases, conversely, it decieasea high operating temperature [20] [21].
On this chart, there is a unique point, which repnes the maximum power point (MPP), and
the location of this point shifts according to tbkmate conditions. To track this point
continuously, the PV controller has been desigribd, tracking efficiency of which is
calculated based on the ratio of the theoreticaiimiam power and the actual maximum power

of a PV module.

The oscillation of the PV output power owittgthe variation of weather conditions is
considered a major challenge for the PV system whés connected with a grid [3]. In
particular, the stability of the power system caralfected when weather conditions are highly

variable, especially for a large-scale PV plantnése designing a control system for hybrid

3



Chapter 1- Introduction

power generation is essential for adjusting thep@Wer when it is connected with the utility
grid [22].

A failure in the equipment of a PV system rhappen similar to any other electrical device
due accidental events. The most common such faibrréhe PV system is when there are
rapidly changing in weather conditions, resultingiilarge change in the DC voltage of a PV
array. In this case, the PV power conversion systely be damaged and/or the lifespan of
the PV array can degrade quickly due to a hot-spothe PV array [23]. To address these
issues, control systems have been designed to emttamaverage tracking efficiency, improve
the stability and manage the power flow of a PVeagation under different weather conditions
[24]. Whilst several techniques have been use@sigd this control system, maximum power
point tracking (MPPT) based on artificial intelliggechniques is considered the most efficient

for a nonlinear system, such as the PV system.
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Figure 1.2. 1-V characteristic of a PV array under: a) variousvalues of irradiance at a

temperature of 25 °C; b) various values of temperature at an irradiance of 1000 W/m?

1.3 Aim and Objectives

Higher tracking efficiency, optimal output pemand reliable operation load are important
features for consumers and investors, if they @isetattracted to installing PV systems [25]-
[27]. The most effective way to improve the avertrgeking efficiency, enhance the stability
and increase the reliability of PV system generaisoto employ the MPPT technique with a
PV power conversion system [28]-[31]. BasicallyeTMPPT technique is a power control
system that feeds an appropriate duty cyblet¢ the PV power conversion system (DC-DC
converter) based on the output and/or input ofRemodule to capture maximum power
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production continuously, thereby achieving maximpower and delivering stable voltage
under varying weather conditions. In general, tlaeeeseveral issues that are key when aiming
to design the best MPPT technique for a PV sysiectyding cost, efficiency, loss of energy,
tracking time, level of oscillation, accurate tramckMPP and type of implementation [32] [33].
Taking these into account, many types of MPPT naslinave been developed for PV systems,
which can be divided into two types: classical me#) and artificial intelligence methods. The
main aim of this research is to propose common MRhniques based on an artificial

intelligence for a grid-connected PV system and the select the best of them.
The main objectives of this thesis are as follows:

1. The modelling of a grid-connected PV system desigreeng a MALAB environment
to assess the functionality of a PV module. Thissiystem consists of a PV array, DC—
DC boost converter with MPPT controller, DC-AC intez and a utility grid;

2. The MPPT technique is tested and examined to demad@sts greater effectiveness
for the PV system when compared with the perforraaoic one without a MPPT
controller;

3. Various MPPT methods are compared based on theimom features to help MPPT
designers select the most suitable method for aop¥rating system for their
applications;

4. A micro-grid PV system being installed at Brunelikémsity London, Uxbridge, UK,
to collect a large and real training dataset oMaaRay, which is an essential part in
the designing of several MPPT methods;

5. The EN 50530 standard test and experimental measmteests are used to calculate
the average tracking efficiency of the proposed MPMRethods under various

atmospheric conditions and to assess their perfocenduring different states.

1.4 Thesis Contributions
The major contributions of this research aréodlows:

1. A modified Perturb and ObseryB&0O)-MPPT controller based on a Pythagorean
theorem and Constant Voltage technique is presdotetlve the main issues of a
conventional P&O-MPPT by developing variable stee nd early step decision for

the conventional P&O algorithm.
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2. A novel MPPT technique based on fuzzy logic conffalC) and the P&O algorithm

is proposed to incorporate the advantages of th@-RE&PT to account for slow and
fast changes in solar irradiance and reduced psowesime for the FLC-MPPT to
address complex engineering problems when the nuailseembership functions are

fewer.

. An Adaptive Neural-Fuzzy Inference System (ANFI&@s&d on a large experimental

training data is designed to avoid the ANFIS mdd®h experiencing a high training
error. These data were collected throughout thdewbio2018 from experimental tests
of a PV array installed at Brunel University Londdixbridge, United Kingdom, and
then analysed using a fitting curve technique ttnape the tuning of the ANFIS

model.

. A feedforward Artificial Neural Network ANN technig using experimental data is

developed for predicting a maximum power point dfdPrays. In order to improve the
ANN model accuracy, the particle swarm optimisatidgorithm is utilised to find the
best topology and to calculate the optimum inivaights of the ANN model. Hence,
the dilemma between computational time and the-fitéafy regression of the ANN

model is addressed, as well as the mean squadeing minimised.

1.5 Thesis Organisation

This thesis consists of seven chapters and igaresed as follows.

+ Chapter 1 presents the general statement of this researcbvétrs the background of PV

®.
%

technology, followed by research motivations, aamd objectives and thesis contributions.

Finally, a list of publications from the work inistthesis is provided.

Chapter 2 introduces a brief review of historical PV enerfpflowed by types of PV cells

and the main challenges of PV technology. Thenptheiple work of the MPPT technique
and literature survey of common MPPT methods aseiged. Finally, these are compared

and classified based on their popular features.

Chapter 3 covers the modelling, structure, controller of #¥¢ system. It proposes the
modelling of a PV cell, followed by a structure PV array. Then, topologies of PV
systems are introduced, and the DC-DC boost cogwisrpresented. The control scheme

of PV system is covered, followed by the principierk along with the schematic diagrams

of the conventional P&O and modified P&O algorithrAsMATLAB-SIMULINK model
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for a grid-connected PV system is designed. Fintily simulation results are provided and
discussed.

Chapter 4 designs a novel maximum power point tracking teqimm based on fuzzy logic
control for a grid-connected PV system. A literattgview on the modified FLC technique
for a PV-MPPT system is presented and fuzzy logmtrol is explained. The advantages
and disadvantages of the FLC-MPPT are discusskolwtx by the designed membership
functions of this novel FLC controller based on adified P&O algorithm. The P&O-
MPPT, FLC-MPPT and proposed method are simulaidgtihen compared, according to
their common features. Finally, the EN 50530 stashtizst is used to calculate the efficiency
of the proposed method under varying weather ciamgit

Chapter 5 proposes an efficient maximum power point trackiechnique based on the
ANFIS method using a real large photovoltaic systmtaset. Related works of used
ANFIS-MPPT for PV systems are presented. The priaavork of the ANFIS technique is
introduced, following by a schematic diagram of tABIFIS-MPPT controller. The
methodologies of the collected and optimised datavell as the tuning of the proposed
ANFIS model are explained. The P&O-MPPT, FLC-MPRTd dhe proposed ANFIS
method are simulated, being then compared, acaptditheir popular features. Finally, a
real measurement test of a semi-cloudy day is tsedlculate the average efficiency of the

proposed method under varying climatic conditions.

Chapter 6 utilitiesan optimised feedforward Artificial Neural Netwddchnique based on
particle swarm optimisation using experimental datapredicting the maximum power
point of a photovoltaic array. A state-of-the-ald-MPPT for PV systems is advanced.
The principles of the feedforward ANN technique aR8O algorithm are covered,
following by a schematic diagram of ANN-MPPT cofigobeing presented. The training
of the proposed ANN model is designed, followedtly results being provided. Then,
experimental data of sunny and cloudy days are wsddtermine the average efficiency of
this proposed method under varying atmosphericitond. Finally, comparative analysis

regarding the main properties of the proposed naistiothis thesis is presented.

Chapter 7 contains the conclusions of this research, withppsed directions for future

work.
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System Data,Electronics, vol. 8, no. 8, pp.858, 2019.

3. S. D. Al-Majidi, M. F. Abbod, and H. S. Al-Raweskid“A Particle Swarm
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92, no. June, pp. 103688, 2020.
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based on Pythagorean Theorem and CV-MPPT for PYeigs 53 International
Universities Power Engineering Conference (UPEC), Glasgow, UK,2018.
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ANN-MPPT Controller using Real Photovoltaic SystBata” 54™ International
Universities Power Engineering Conference (UPEC), Bucharest, Romani2019.
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Tracking Technique based on Neural-Fuzzy approaich Stand-alone PV System”
55" International Universities Power Engineering Conference (UPEC), Torino, Italy
2020.
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Chapter 2

Photovoltaic Energy

This chapter presents the history, types aatlenges of PV energy. Despite the conversion
efficiency of PV technology having been enhancexbmdy, it still faces several issues in
relation to its application system, such as mistiatcof the maximum power point and loss
of stability and reliability. The most effective thed to address those problems is to employ
an MPPT controller. The chapter is organised dsvd: Section 2.1 briefly reviews the history
of PV energy; Section 2.2 presents the variousstypié®V cells; Section 2.3 covers the main
challenges of PV technology; the most common metttddMPPT techniques are covered in
Section 2.4; an overview of the various MPPT meshbdsed on their common features is

provided in Section 2.5; and finally, Section 2dhtains the chapter summary.

2.1 History of Photovoltaic Energy

In 1839, Becquerel noticed the phenomenorhefphoton-voltage effect when he was
studying the effect of light on electrolytic ce[l34]. Later, in 1877, Adams and Day also
noticed this phenomenon on solid Selenium. Subsetyyén 1883, Fritz proposed the first PV
cell with very low conversion efficiency of abou¥l However, researchers took a long time
to design the modern PV module, which was prodircd®54 at Bell Laboratories [35]. The
conversion efficiency of this module was about 861{36]. Using PV energy was limited to
the aerospace and military industries due to i lost. In the 1960s, several types of PV
module were developed based on compound semicanduwstich as, polycrystalline Si (pc-
Si) and thin-film [20]. Those types had an enhareffidiency of about 15%, high production
capacity and structural integration. As a reshig tapital installing cost for large-scale PV
system generation had been reduced. These prapeftiee new PV system as well as the oil

crisis, which happened in the 1970s, encouragedsinwent in this energy resource [37].
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Accordingly, several universities were installedhwPV system, such as Delaware University
and built University in the United States. The cersion efficiency of this PV module was
17% [35]. The 1980s was the first time when a lasgale PV plant of more than MW in an
industrial purpose was installed, with a conversffitiency of about 20%. Whilst the first
PV system for domestic purposes was produced il®9s due to the recommendation of
programmes investing in PV resources. By this titime conversion efficiency of a PV cell had
increased up to 30% [38]. In 2000, researchergydedia new PV cell based on two junctions
with conversion efficiency of more than 33%. Temangelater, they further developed this new
PV cell based on multi-junctions, with a conversgdficiency greater than 42%. In 2012,
researchers at the National Renewable Energy LaiygrédNREL) managed to get this multi-

junction PV cell to reach a conversion efficiendygceater than 44% [39], [40].

Several kinds of PV cells have been develapedntly, such as monocrystalline, thin-film
pc-silicon, thin-film amorphous, thin-film chalcagde, and the concentrated PV cell [41].
They are used for various applications, such asatempump systems, high-way signals,
lighting streets, roadside emergency telephonegeslance cameras, stand-alone PV systems
and grid-connected PV systems [42]. Figure 2.1gmssthe major historical developments of
PV technology regarding its conversion efficien@aséd on several research endeavours [36-
40].
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Figure2.1. The historical development of PV energy [36-40]
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Moreover, the price of this technology hasrdased dramatically, as shown in Figure 2.2
[43], where it can be seen that the average cassofar PV cell has decreased from $76.67/W
in 1977 to $0.74/W in 2013.
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2.2 Types of Photovoltaic cells

In genedl, there are three main commercial technologiesnianufacturing PV cells,
including monocrystalline silicon, polycrystallisdicon and amorphous silicon, as shown in
Figure 2.3 [5],[7].[9].

2.2.1 Monocrystalline silicon

Monocrystalline silicon technology is consielgérthe highest efficiency PV cell, with a
conversion efficiency of about 17 to 22%. This RAll &s made from extremely pure silicon
and its manufacture requires a separate singlendndial crystal of silicon to produce
monocrystalline silicon using a floating zone tedlogy. This technology is highly intensive
and expensive, which makes this type of PV celltngostly when compared with other PV

technologies. Therefore, this type is suitableaftigher producing consumption situation.

2.2.2 Polycrystalline silicon

As inferred above, polycrystalline siliconlieology delivers a cheaper PV cell than that of
monocrystalline silicon. However, its conversioficééncy is lower, at only about 12 to 16%.
It is made from an ingot of melted and recrystadisilicon. The manufacturing process of this
type of PV cell requires cutting this ingot intoryethin wafers according to the grain
boundaries and then, being assembled. The gapsgimisrgrain boundaries are what cause a
lower conversion efficiency. However, given thismaacturing process’s lower cost, it is

more suitable for a lower producing consumptionation.

2.2.3 Amorphous silicon

Amorphous silicon technology has the lowestt@nd lowest conversion efficiency of
around 6 to 10%. It is made from a thin wafer €sn and the manufacturing process of this
type of PV cell is divided into two steps. Firstilyis deposited on a carrier material based on
a several stage process to produce an amorphaendilm and secondly, it is sandwiched
between glass plates to manufacture a sample PWlmothe main disadvantages of this PV
cell are that it requires a large installing suefat has the lowest lifespan and it has the lowest
conversion efficiency when compared with the otlechnologies. Hence, it is more

appropriate for a small power consumption situation

12
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Polycrystalline Monocrystalline Amorphous

Figure 2.3. Types of PV technologies
2.3 Challenges of Photovoltaic Technology

2.3.1 Efficiency of the PV Céll

The output power of a PV cell changes accorttithe weather conditions surrounding the
PV cell [44], [45]. Basically, the generating power of the PV arrayeases as the irradiance
increases owing to high numbers of photon-voltatieng the electron-hole of the cell, thus
resulting in increased PV output current. Convegrstiis decreases at a high operating
temperature, because the open circuit voltage ofét\Mvill drop as temperature increases due
to the extension of the band gap of the PV semigctod. During this time, the movement of
PV electrons becomes less valent when input irtiatias absorbed, resulting in a decreasing
loss of energy. However, there is unique opergpioimt for the PV cell, which is called the

maximum power point (MPP) and this point shiftsading to the weather conditions.

2.3.2 Stability of PV generation

The fluctuation of PV output power due to pag<louds is considered a major issue for
designing a grid-connected PV system [3], [46}eBal issues can affect the operation of the
PV system, such as a voltage rise and voltagdatsail. That is, the stability and reliability of
PV power generation can be severely affected wiranspheric conditions are highly variant,
especially regarding large-scale PV generations sue is not very common in conventional
power systems, so controlling the flow of energptighout a hybrid power system to adjust
the PV generation for the utility grid is essential

13
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2.3.3 Partial shading condition

In normal conditions, a PV array exhibits mgé unique maximum power point (MPP) in
relation to the input solar irradiance and temperbperation [47]. However, the PV array
will generate several MPPs when there is a sha@thg;h can be caused by trees or dust, i.e.
on part of the PV array. This is because each P®uteowill produce its MPP [48] and as a
result, several PV power values will be generatesaime time. Hence, the global PV power
generation will be decreasing. In this case, aguiten the PV module may occur owing to a
large change in PV voltage when the operation mhafts rapidly, thus leading to damage in

the PV system.

2.3.4 Mismatch of PV load

The voltage operation of a PV array also ddpeupon the value of the load [49], [50].
When the output power generation of a PV arrapugel or higher than the power load, the
PV voltage operation will drop or rise to a new igtimg point and consequently, the efficiency
of PV generation will drop. In addition, the equignt of a grid-connected PV system may be

damaged in case of a large-scale PV plant whesdbdnects due to the fault.

2.3.5 Lifespan of an installed PV module

Most PV manufacturing companies assert thatitaspan of PV module is typically 20-
years with its production being at least 80% ofrtited power [51]. However, several studies
have indicated that the weather operating conditioh an installed PV system play an
important role in degrading its lifespan by abow2% per year [52]. This is due to large

changes in PV voltage that accrue when the weathstitions change rapidly.

2.4 Maximum Power Point Tracking Techniques

The maximum power point tracking (MPPT) tecjud is an essential part of the PV system
design for tracking the MPP of a PV array, whichamces the stability and reliability of the
PV system when it is connected to a grid [53]-[3B5]addition, it addresses the problem of a
partial shading condition and the challenge of dchiag of PV load. Consequently, it
contributes to conserving the lifespan of an ihsthlPV Module. In general, tracking
efficiency, cost, energy loss and type of impleragah are the key issues when aiming to
design a MPPT method for a PV system [56]. Takim&gé into account, several common types

of MPPT techniques have been proposed for PV sgstetrich can be divided into two types:
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conventional techniques, such as constant voltay8 (57], fraction open circuit voltage
(FOCV) [33], Perturb and Observe (P&O) [58] andreamental conductance (IC) [59]; and
artificial intelligence techniques (Al), for examepfuzzy logic controller (FLC) [60], artificial
neural network (ANN) [61], adaptive neuro-fuzzyardnce system (ANFIS) [16] and particle
swarm optimisation (PSO) [47].

The CV method is the simplest MPPT algoritiomef PV system, because it does not require
an input sensor to determine the MPP [57]. Thisordigm assumes that the PV panel
variations, such as irradiance and temperaturesathrer conditions, are insignificant, and that
the constant reference voltagé€.) is adequate for achieving performance close¢dMRP,

as given in Eq. (2.1):
Vref. =k XV (2.1)

where,Voc is the open circuit voltage of a PV array and & tonstant value between 0.71 and
0.78, which is adjusted according to the charasties and the weather conditions for an
installed PV array. Hence, the operating poinhefPV array is assumed to be near to the MPP
by regulating the PV voltage to match with a fixeterence voltage. However, it is necessary
to collect climatic installing data to establiske tiixed voltage reference, as this may change
from one location to another. The main advantaghisftechnique is that it has a high speed
for reaching the steady state case, particularlpwand diffused radiation conditions [62].

However, it only calculates the MPP approximately.

Another simple method for the MPPT controigeFOCV control. This method tracks the
MPP of the PV module based on a linear proportioakdtionship between the operating
voltage of the installed PV module at MPP and fisrocircuit voltage, which is calculated
according to the datasheet of this installed PV umdas shown in Eq. (2.1). The constant (k)
in Eqg. (2.1) is changed and adjusted continuoustpming to the weather conditions of the
installed PV array. This method is more accuraténding the MPP under varying weather

conditions than the CV method. However, it alsg/ardiculates the MPP approximately.

The P&O-MPPT can be used to determine the MfeRrately. The principle work of this
algorithm is calculating the PV power by using seased values of the voltage and current of
the PV module. These are then compared with theiqare power and voltage, with the
direction of the algorithm to adjust the duty cyofethe power converter accordingly. It is a
widely used method for PV-MPPT due to its simpleplementation and low cost [63].

However, it faces many issues, such as a slowitrgaeed, high fluctuation around the MPP,
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and a drift issue associated with fast changiragliation [64]. As a result, the PV array achieves
a low tracking efficiency, especially on cloudy daj23]. The IC-MPPT was designed to
overcome the limitations of the P&O algorithm byngsthe incremental conductance of the

PV array. The principle work of this algorithm degds on researching the optimised operating
point based on the fact of derivative power-voltelgaracterises of the PV arragfgo, as given
in Egs. (2.2) and (2.3):

dP

v >0 left of MPP (2.2)
dp
i <0 right of MPP (2.3)

If 3—5 has a positive value, the optimised operationtgsian the left of the MPP, otherwise, it

is on the right. The major advantage of this atbariis that it has a high ability to reach the
MPP point under a rapid change of environmentaditmms [59]. However, instability and
measurement noise are big problems facing the tipgraork of the PV system due to the use
of a derivative operation in this algorithm [6536]. In addition, these are classified as complex
and costly control circuits when compared with B8O method. Hence, several modulations
based on the power-voltage curve of a PV array baea proposed to address the issues of the
classical MPPT methods by an adaptive algorithmaoiable step size for those conventional
methods, such as in [67]-[74]. Whilst those modiilecns enhance the performance of the
classical MPPT methods, they are considered ag)begufficient solutions, because these
modifications do not eliminate the issues of clemsMPPT methods completely. In addition,
they do not achieve a high efficiency under a rap@hge in weather conditions. Consequently,
Al methods based on MPPT have been introduceddeess these problems. These methods

do not require complex mathematics and accurasnpeters when managing the system [75].

In particular, the FLC-MPPT is one of the mpstverful controllers for a PV system owing
to its faster tracking speed and lesser oscillagi@und the MPP point, when compared with
classical MPPT methods [76]. Furthermore, it dagsrequire training data, unlike the ANFIS
and ANN methods, because it deals with imprecisk raisy input information based on a
mathematical model, thus resulting in its operatorglifferent types of PV array with the same
MPPT proposal. However, its implementation is cawpby comparison with the classical
MPPT methods. In addition, it suffers from the tdisue associated with a change in the solar

irradiation and operating temperature [77]. Thidéxause it heavily depends on the good
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knowledge of a PV system to design an optimal MBiitroller, which results in incorrect
fuzzy rules and inaccurate membership functionthefFLC system. To address those issues,
many modifications have been presented for an agaphd optimised defined membership
function of the traditional FLC-MPPT using seveggitimisation methods. for example, a
genetic algorithm, the PSO algorithm or the M5P eldigbe, as evidenced in [78]—-[85]. Whilst
these proposals avoid the drift problem during dian irradiance, their hardware

implementations become more complex.

Recently, an MPPT with ANN technique was ugesblve the issue of conventional FLC-
MPPT, which provides a heuristic output functioringsnumerical quantifying data and
therefore, it does not require good knowledge ef BV parameters to design an optimised
MPPT controller [76]. Hence, the ANN-MPPT method lagfaster tracking speed for transient
state and lesser oscillation around the MPP posteady state conditions when compared with
FLC-MPPT. In addition, it is more accurate for askhing the MPP in rapidly changing
atmospheric conditions. As a result, it achieveghéi efficiency than the conventional FLC-
MPPT method. However, slow training and black batknas well as the training strategy of
the ANN model are key weaknesses of the ANN sy$8&i To solve these limitations, several
modifications have been proposed to enhance ttierpence of the ANN model using various
types of optimisation strategies, such as in [p23], [87]-[92]. The methodologies of these
strategies can be divided into three cases: sefgttie effective training data, finding the best
topology of an ANN model and calculating the partarseof the ANN algorithm. However, the

training error of this technique is a high value.

The ANFIS method offers the most powerfuielligence technique for PV systems,
because it is integrated into the ANN and FLC sysieis an adapted neural network technique
based on s fuzzy inference system. The MPPT teabriijsed on ANFIS also has a faster
response, less oscillation and is more accurataddressing the MPP under different weather
conditions. However, getting accurate training datd optimised tuning of the ANFIS model
are big challenges when designing an efficient ANMPPT controller [93]. Several proposals
have been made recently using theoretical and iexpetal training data [16], [54], [94]-[101].
Whilst the proposed ANFIS-MPPT controllers basedhenexperimental training data achieve
higher performance when compared with the propéd¢IS-MPPT controllers based on the
theoretical training data, the rules of the ANFISd®l have not been optimised, thus resulting

in a high training error.
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The last MPPT method for PV application is B&0O algorithm. The principle idea of this
algorithm is that it tries to find an optimised yludycle, where each value has a degree of
possibility for a candidate solution. Hence, it sla®t require training data or prior data to
design the MPPT controller based on the PSO algorifThis method is more efficient when
the PV array is under partial shaded conditionsvéir, it has a long tracking time, medium
oscillation and highly complex implementation wheompared with the other intelligent
MPPT methods. To address these issues, the dymduthie PSO algorithm has been enhanced
recently by addressing its optimal parameters [84],[80]. However, this method does not
work properly under a rapid change in weather domth, because it requires a longer time to

find the optimised duty cycle.

In those previous studies, the researchersibadloped various MPPT controllers for PV
systems based on different techniques and thereraewptimisations were proposed to
enhance them. However, most of those proposalsatidddress the complex implementation
challenge when they tried to improve their perfang®further. In this thesis, common MPPT
methods, including: the P&O algorithm, FLC techdgANFIS model and an ANN technique
are proposed to increase the tracking efficienayprove the stability and enhance the
reliability of a grid-connected PV system, partanly under a rapid change in whether
conditions, without adding a step control unit. Ut 2.4 classifies the main commonly used

types of MPPT methods for PV systems.

2.5 Overview of the various MPPT methods

To summarise, the most common MPPT methodseTAal reports a comparative overview
of the main properties of the conventional CV, FQE%0, IC, FLC, ANN, ANFIS and PSO-
MPPT techniques used in PV systems. The propémtisie type of implantation, level of cost,
required training data and prior training afterithmplementation stage. Moreover, do they
have a fast or slow tracking speed for a transs&te and high or low oscillation around the
MPP at steady state conditions? Finally, can thaicutate the MPP accurately or
approximately under different weather conditions?a&esult, are they achieving a high or low
efficiency under various state conditions? Regaydmthis comparison, the MPPT methods
based on Al techniqgues have more complexity, castenand are difficult to implement.
However, they have higher tracking efficiency, éadtacking speed and less oscillation than
the classical MPPT methods.
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2.6- Summary

In this Chapter, a general overview of PV ggebased on MPPT techniques has been
presented. A brief historical view about the dep#lg PV technology has been provided. The
types of PV cells and the main challenges of PVirietogy have been presented. A literature
review of the most popular MPPT method for a PMeayshas been presented. The advantages
and disadvantages of each MPPT method have beeitgdo The conventional CV, FOCV,
P&O, IC FLC, ANN, ANFIS and PSO-MPPT methods haeer compared regarding their
popular features. Basically, whilst Al techniqueséd on MPPT have more complexity, cost
more and are more difficult to implement, they hhigher tracking efficiency, faster tracking

speed and less oscillation than the conventiongPMmethods.
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Table2.1. An overview of the main features of the most popular MPPT methods.

MPPT implementation | Cost Required | Prior Tracking Oscillation Calculating Tracking
Method data training speed MPP Efficiency
CcVv Simple Inexpensive | Yes Yes Fast Low Approximate Low
FOCV Simple Inexpensive | Yes Yes Fast Low Approximate Low

P&O Simple Inexpensive | No No Slow High Accurate Low

IC Complex Inexpensive | No No Slow Medium Accurate Low

FLC Complex Expensive No Yes Fast Medium Accurate Medium
ANN Complex Expensive | Yes Yes Fast Low Accurate High
ANFIS Complex Expensive Yes Yes Fast Low Accurate High

PSO Complex Expensive No No Slow Medium Accurate High
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Chapter 3

Modelling and Control of PV Systems

This Chapter presents the modelling, strucamd controller of a PV system. A grid-

connected PV system is designed based on an MRRiDlter to provide proof of the efficacy

of the principle work and features of the MPPT roethThe Chapter is organised as follows.

Section 3.1 proposes the modelling of a PV cell@action 3.2 explains the structure of a PV

system. The DC-DC boost converter and the contfudime of the PV System are covered in

Sections 3.3 and 3.4, respectively. The conventiB&#® and modified P&O algorithms are

discussed in Sections 3.5 and 3.6, respectivel\5dation 3.7, the simulation results of a
MATLAB-SIMULINK model for a grid-connected PV systeare provided. Finally, Section

3.8 contains the chapter summary.

3.1 Modelling of a PV Cell

The fundamental element of photovoltaic systethe solar PV cell, the structure of which

is illustrated in Figure 3.1.
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Figure 3.1. The structure of a PV cell
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It is a semiconductor with added boron andsphorus atoms to form a p-n junction with
two layers using a high-temperature. These twortagensist of positive and negative ions,
which pertain to the P-holes and N-electrons, retspsly. Then, a top electrode and bottom
electrode are added for an electric current floimaly, it is covered in glass with an anti-
reflective coating. The principle work of this calthat it converts the lighting into electrical
energy based on the photo-voltage effect phenom¢éh@?]. In a typical solar cell, the
resistances are not included, but they are impdaatel connected with the PV diode in a

practical case, as shown in Figure 3.2.

NOR

M
=
=

Figure 3. 2. The equivalent circuit of a PV cell

This is due to factors of the magnitude oistasice of the PV semiconductor and non-
optimum PN junction diode, resulting in the implertieg of series and shunt resistance,
respectively. Kirchhoff's law, as given in Eq. (B.&an find the current generator from the solar
cell [103], [104]:

Ipy =1, = Iqg = Isp 3.1
where,l_is the current generator which is given in Eq. 32

I, = G{Isc[1 + ka(T — Tsrc)]} (3.2)
where,G is the solar irradiationl is the ambient temperature of the climate conal#tjbs is
the short circuit current of the PV cédf is the temperature coefficiefisrc is the temperature
operation of the PV cell under standard test caomst (STC), andqy is the current of the PV
diode, which is given by Shockley’s Eq. (3.3):

=il (2) )
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where,I, is the saturation current of the PV diollg,is the voltage across the PV diode, q is
the electrical charge (1.69x10C), k is the Boltzmann constant (1.382£Q)/K), and n is the
PV diode factor. Now, the universal equation thasatibes the current-voltage (I-V)
characteristic chart of the PV cell is given by B334):

Ipy =IL—IO[eXp(%)—1] —[VP%S;RS] (3.4)
where,lpy, is the PV output current, any is the PV output voltage. To simulate the current—
voltage characteristics (I-V) in a MATLAB environmig Egs. (3.1) - (3.4) are used. The
parameters of the PV module used in this reseaecshmwn in Table 3.1[49]. This PV module
is connected as 66 parallel strings and 5 serieslp#o present the wanted PV array. As shown
in Figure 3.3, there are unique points on the pewdage (P-V) curve of the PV array, which
are recognised as the maximum power points (MPR&)tlze location of those points shifts
according to the irradiation and temperature ofdiraate conditions: the maximum available
power of the PV array increases as solar irradidtioreases, conversely a PV generator better

for low temperature operation than increased o68][1

Table 3.1. Parameters of the Simulink PV module

Characteristics Value
Cell number 96

Open circuit voltage 64.2V

Maximum power voltage 54.7V

Short circuit current 5.96 A

Maximum power current 5.58 A

Maximum power point 305 W

Diode ideality factor 0.944
Temperature Coefficient (Isc) +0.061%/°C
Temperature Coefficient (Voc) -0.272 V/°C

24



Chapter 3- Modelling and Control of PV System

10 10
1 W
a8 N ven? MPP
= 01 B A ] =
E’ i &4 Wi E
0 &
g ;
[
2
0
i} 100 200 300 A0 o 100 200 300 400
Valtage (V) Woaoltage (W)
(a) (b)

Figure 3.3. P-V curveof aPV array under: a) various values of irradiance at a temperature of
25 C°; b) variousvalues of temperature at an irradiance of 1000 W/m?

3.2 Structure of a PV System

3.2.1 The Configuration of a PV Array

The fundamental element of a photovoltaicesysis a solar cell. Several solar PV cells are
connected in parallel and series to obtain there@scurrent and voltage for a solar
panel(module), Then, many solar panels are conté@cteries and/or parallel to give different

configurations of a PV array, as shown in Figure[206].
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Solar Cells Solar Panel Solar PV Array
(4 Cells) (Module) (Multiple modules)

Figure 3.4. The configuration of a PV array [106]
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3.2.2 Topologies of PV systems

To improve the stability, reliability and quglof the output of PV generation, a power
conversion system is employed [107]. There aretiypes for PV power conversion system:
single and double stage. These types of PV powsrersion system are classified into four
topologies: centralised approach, string approactlti-string approach, and AC-module
approach, as shown in Figure 3.5 [108]. Whilstdimgle stage-power conversion system is
lower in cost due to its fewer part count, it stéféom several drawbacks, such as hot-spots
during various weather and partial shading conadgiof the PV array, increased probability
of leakage current through the parasitic capacgdmetween the PV array and the ground
system, high harmonic injunction and voltage risemwit connects with the grid and reduced
safety [60], [109], [110].

These issues occur in grid-connected PV sysdigrto a large change in the DC voltage of
the PV array, especially when the weather conditsurrounding the PV array are changing
rapidly. To address them, the first stage is usethdost the MPP voltage and track the
maximum power, whilst the second, converts this @ver into high quality AC power.
Hence, a DC-DC converter and DC-AC inverter havenbdesigned and connected with
generating PV arrays for interfacing with the gad, explained in the topology of the multi-

string approach [111].

PV String
PV String PV String PV String
{7
L m)
| [= = =
String i i _ — E Modular .
Inverter : [_ T : Inverter
= = — 1 hd 1
= Central ! T 'r‘ =
© ny I el = /1
Converter m 1l I Multi-string ! -
| [ i ] Inverter o I
AC b N [ (N
1 ll us ® AChus AC lJus-1 AC bus
(a) (b) (c) (d)

Figure 3.5. Topologies of PV systems[108]
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3.3 DC-DC Boost Converter

Whilst several DC-DC converters have beenghesl, such as boost, buck and chuk
converters, the boost converter is widely usedttier PV generated system due to its high
efficiency [112]. This is because the DC-DC boastwerter provides and regulates a higher
output voltage than the input voltage with a lowpo current. In this case, the loss power will
be low according to a loss power equation. As showfigure 3.6, the heart of the DC-DC
boost converter is a transistor, which regulatesaimplified processing by a controller. The
Metal Oxide Semiconductor Field Effect TransistsdQQSFET), Bipolar Junction Transistor
(BJT) and Insulated Gate Bipolar Transistor (IGBT§ common transistors used in a DC-DC
converter. However, the MOSFET transistor is usuadled for designing the DC-DC boost
converter due to its ability to work under a hedogd and higher frequency condition [113].

[114], whilst also having lower power losses.

The principle work of this converter is diviimto two states, as shown in Figure 3.7. First,
when the MOSFET is switched ON, the current flotwotigh an inductorl{ in a reverse
direction and the inductor stores the energy byeggimg a magnetic field. The current change
in the inductoi_ during time period (t) is given by Eg. (3.5):

AL,V (3.5)
At L '
where,Vi is the input voltage. At the end of the ON-stdlte, changing value df increases
and thus, is given by Eg. (3.6):

1Pr DT
AILon = ZJ;) V,dt = T V; (3.6)

In state two, when the MOSFET transistor is switc®&F, the energy stored and main source
will be in series, which leads to a higher outpaltage. The inductor voltage in this state is

given by Eq. (3.7):

v V—LdIL 3.7
(0] l_ dt (')

where, Vo is the output voltage. The inductor current isnghag linearly as long as the
MOSFET switch remains opened. The rating chandbedi when the MOSFET is switched
OFF is given by Eq. (3.8):

_ fT (Vi =Vo)dt _ (Vi =Vp)(1 = D)
DT L

; (3.8)

AILoff
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To support the steady-state mode of the DC-DC avorehe total rating value of the inductor

current must be equal to zero, as given in Eq).(3.9
Al + Al =0 (3.9)

Now, substituting Eq. (3.6) and Eg. (3.8) into E29) gives:

ViDT V.—-Vy)(1—-D)T
i +(L O)( ) =0

3 p (3.10)
This can be written as Eq. (3.11):
—V.D = (V; = V,)(1 - D) (3.11)
Now, the voltage gain of the circuit is given agi. (3.12):
G =Vo_ 1 (3.12)
Vi (A-D)
Eq. (3.13) is used to determine the value of tledtor:
V; D
L= ‘AT"}:" (3.13)

where,Ai; is the ripple input current factag, is the switching frequency aiy, . is the duty
cycle of the MPPT controller at the maximum powetpait of the PV source. While the input

capacitor ¢;) and the output capacitaf,) are calculated based on Egs. (3.14) and Eqg. (3.15),

respectively:
D
€ =———— (3.14)
8LAV; f,
Dmax
C, = ——2 3.15
27 RAV,f, (3.15)

where, AV; andAV, are the ripple input and output voltage factogspectively, whilsR is the
output resistance. Finally, the diode boost comvest selected regarding to its reverse rating
current. This value should allow the input currenflow from the PV array to the load at the
OFF-state. Hence, the forward current diode ofx8eDC converter should be equalled to the
maximum current load of PV system. Figure 3.8. gmés the waveform of a DC-DC boost
converter under different states. As can be séencurrent of the inductor starts to increase
from minimum to maximum value at the ON-state, othse, it begins to decrease from

maximum to minimum value at the OFF-state.
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Figure 3.6. Thecircuit diagram of a DC-DC boost converter
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Figure 3.7. The state conditions of a DC-DC boost converter
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Figure 3.8. Thewaveform of a DC-DC boost converter [115]

3.4 Control Scheme of a PV System

As shown in Figure 3.3, there is a unique pomthe P-V curve of a PV array recognised
as the MPP, with its location shifting accordingweather conditions. To track the MPP
continuously, the MPPT technique is employed with PV power conversion system and
connected between the PV array and the load or ghid principle work of this technique is
that it feeds the appropriate duty cyd® pased on the output of the PV array in the fofm o
the current and voltage and/or the inputs of swtadiance and temperature to adjust the
operation work of a PV power conversion systems ttasulting in high tracking power. This
duty cycle is converted to a signal by pulse widibdulation (PWM), as shown in Figure 3.9.

The PWM circuit compares the duty cycle sigvith a sawtooth counter signal to generate
the PWM pulse. If the sawtooth signal is less ti@duty cycle signal, the output PWM signal
is in the ON-state (Ton), otherwise it is in theF#tate (Toff), as shown in Figure 3.10. This
process is repeating so as to adjust the operatimk of the PV array under varying weather
conditions. The optimal duty cycle depends on tlwation of the operational MPP on the P-V
curve. When the operating point is to the righentitheD will be increasing until it reaches to
the MPP, otherwise it will be decreasing. To impéemn the MPPT algorithms, a
microcontroller system is used. As mentioned ingi&aone, this power controller has several
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advantages for a PV system, including: enhanciegefficiency of the PV array; improving
the stability of PV generation; and increasingrigl@bility of the PV system [3] [116]. Whilst
several techniques have been developed, the Pemari®bserve (P&O) algorithm is widely
used for MPPT due to its low cost and simple imm@etation. However, the main drawbacks
of this method are a long converging time, highillsgon around the maximum power point,
and a drift problem associated with rapidly chaggmadiance. In this chapter, a conventional
P&O and modified P&O-MPPTSs are proposed to modelRK system.

MPPT -l—Dut'l,r CYC] P

+-
output—r— L
Pulse
/L/ J—Emr[er ram =
Sawtooth counter
Figure 3.9. The control scheme of the PV system
1 v
Carigr counter ramp|
Diuty cycle
0
0 Tper 2Tper I Tper 4 Tper
1 1
— PWI cutput |
o
0 Tper 2 Tper J*Tper 4 Tpar

Figure 3.10. The waveform of an MPPT controller
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3.5 P&O Algorithm

The P&O algorithm is widely used for PV-MPREEhNniques due to its low cost and simple
implementation. As shown in Figure 3.11, the ppheiwork of this method depends on
calculating the PV power by using the sensed valtid®e voltage and current PV array. Then,
these are compared with the previous power to addhe direction of the P&O algorithm and

subsequently, updating the duty cydl® of the DC-DC converter, according to Eq. (3.16):
D(k+1)=D(k)+ AD (3.16)

where,D(k+1) and D(k) are the next and previous perturbation® pfespectively andD is

the incremental step size of the referefizeBasically, the operating point of the P&O
algorithm moves in the same direction when theagg@tand power of the PV array increase
due to increasinD®; otherwise it moves in the opposite direction. phecess is continued until

it reaches to the MPP and then, oscillates arounithe total properties of the P&O direction
are explained in Table 3.2. In general, there areet major issues facing P&O-MPPT
operation: long converged time, high oscillatiooward the MPP and a drift problem associated

with rapidly changing irradiance.

These issues are explained as follows. ClearlgrgeAD leads to a fast steady-state and
large fluctuation after reaching the MPP. ConvearszlsmallAD results to a slow steady state
and smooth fluctuations. According to this conaaptithe size oAD is crucial for adjusting
the system operation. Another drawback is the ébgBe right direction of the MPPT tracker
when weather conditions alter rapidly. This phenoomecan happen, as shown in Figure 3.12,
when pointA (low point), which represents the MPP at a lovasotadiance level is oscillated
betweenB andB" and then, moves to poi@ or D (high point) due to rapidly increasing
irradiance. As a result, the right direction of@ithm moves far away from the new MPP,
according to the principle properties directiorile# conventional P&O algorithm, as shown in
Table 1. In other hands, this phenomenon happenase of the increasing irradiance only
[117].

Table 3.2 The probabilities of direction for a P& O algorithm

AP AV Direction of Perturbation
+ +
- + -
- - +
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Figure 3.11. Theflowchart of the conventional P& O algorithm [62]

To address those drawbacks, severalfitatibns have been presented as state of the
art. Among them, Yang and Zhao [118] suggestedrmabla step size (VSS) based on the
power-voltage curve to adapt the P&O-MPPT track&hilst this proposal reduces the
oscillation around the MPP point and increasespieed of the MPPT tracker when the weather
conditions change rapidly, the drift problem was discussed. Similarly, Xiao and Dunford
[68] adapted the conventional P&O-MPPT trackingeolasn the power-duty cycle curve in the
form of a high robot to track the MPP. Howeveeg thift problem is not eliminated completely
when the solar irradiance changes suddenly. Seah Et19] added a new step for the P&O-
MPPT algorithm based on the historical change irpBWer AP) to detect this deviation early,
but this modification seems to be a non-optimautoh, because this threshold changes
according to the weather conditions. Similarly,liKdnd Samanta [69] added the historical
change in the PV currentk) as a step decision between the decision of pesitistorical

change in powerAP) and positive historical change in voltage/J. Whilst this modification
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avoids the system drift problem, the proposal is vadid for the other side of the P&O
algorithm, i.e. when thé&P andAV exhibit negative historical changes. To solve tnit
problem completely, Kollimalla et al. [120] desighthe P&O-MPPT algorithm consisting of
three stages to track all the properties for threrdion problem. However, the implementation

of this is highly complex.

Cand
1Gx1ﬂl

MPP

0 100 200 300 400
Voltage (V)

Figure 3.12. P-V curvefor arapid irradiance change from A (low point) to D or C (high point),
thusillustrating the drift problem

3.6 Modified P&O-MPPT

The proposed modification is divided into twartp. The first involves developing a novel
and simple VSS, which can improve tracking fastef @educe the oscillation around the MPP.
This VSS is calculated according to Pythagoreaaordra which proves that the square of the
side opposite the right angle is equal to the s@ireqaares other two sides, as given in Eq.
(3.17):

a? + b? = ¢? (3.17)

where c is the length of the hypotenuse anandb are the lengths of the triangle's other two
sides. This triangle is equal to the movememi®fandAV in P-V curve, as shown in Figure
3.13. This theorem is adopted to represent the /dEB&O algorithm, as given in Eq. (3.18):
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AD, = M. JAPkZ + AV, 2 (3.18)

where 4Pk is the historical change in PV powsghk is the historical change in PV voltage and
M is a constant step size, which is adjusted aaogridi the parameters of the PV system. The

general tracking equation is now written as EqLYB.
Dys1 =Dy £ M. |APZ + AV,2 (3.19)

This VSS is automatically tuned accordinghe bperating point to enable a fast-tracking
ability. If the operational point is far from the®®, the historical change in PV power and
voltage are large, but they become smaller wheropigeational point of PV system is at the
MPP, as shown in Figure 3.13. Consequently, thpgeed system increases the speed of the
MPPT tracker when the weather conditions changellsapnd reduces the oscillation around
the MPP at steady-state conditions.

4
10 %10

MPP

0 79 150 229 300 373
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Figure 3.13. P-V curve of the PV moduleillustrating the VSS

The second part of this modification is addpsenew step decision for the conventional
P&O algorithm to address the drift problem earlpsBally, the drift problem happens when
the solar irradiance on the PV ariagreases rapidly by at least 10i#/s [117]. The input of
solar irradiance is divided into two types: slovaobe and fast change, as shown in Egs. (3.20)
and (3.21):
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w
AG < 1OW slow change (3.20)

w
AG > 1OW fast change (3.21)

where, 4G is the historical change in the solar irradianid®e standard test condition of solar

irradiance Grcis 1000 W/m. Now, the following is obtained:

AG
< < 0.01 slow change (3.22)
AG
< > 0.01 fast change (3.23)

As proven in [71], the normalised change in powegqual to the normalised change in solar

irradiance, as shown in Eqg. (3.24):

AP AG

P a (3.24)
Substituting Egs. (3.22) and (3.23) into Eq. (3. gi4ps:
AP
7 < 0.01 slow change (3.25)
AP
3 > 0.01 fast change (3.26)

where AP is the historical change in PV power dnd its previous iteration. If the value Bf
changes due to the changing irradiance, the vdludP@lso changes in the same direction.
Consequently, the value aP/P is almost constant during different environmentaiditions.

In addition, this value is positive when the operapoint is on the drift issue state, otherwise
it has a negative value. A constant value (C =)0i®hdded in the start of the program to
address the drift problem early, as shown in Figuid, which illustrates the flow chart of the
proposed algorithm. KP/P is less than C, it will recognise that the soteadiance on the PV
array is changing slowly and the P&O algorithm dtidae processed at this operating point,

otherwise a constant voltage (CV) algorithm proesss

The CV-MPPT assumes that the irradiance lendl temperature operation variations on
the PV array are insignificant, and the constai@resce voltage approximates to the real MPP
voltage [57]. The MPP voltage is calculated at lye@8% of the open voltage/{) under
varying weather conditions [121]. Hence, et is applied as 0.78. to enable the proposed
algorithm to ascertain the side of operating paifigr the solar irradiance changes rapidly. If

the PV voltage is higher thdfset, the operation point is on the right of the MPR#&ulting in
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decreasing the D reference, otherwise, the D neferés increasing and when operation point
is close to MPP, the C becomes very tiny. Consdtyyehe control unit switches into the

conventional P&O algorithm to establish the exauttroal MPP.

Recebve Wk, k)
Calculated P =I{k}*V(k) , dP=P{k}-P{k-1),
AV =k Vik-1).

Convenbional

¥
PRO ES drfe = ¢

V.ows W set YES-+ Intrease O

decragss O

Return

Figure 3.14. Theflowchart of the modified P& O-MPPT method

3.7 Simulation Results

To test the performance of the MPPT method, a MABEAIMULINK model for a grid-
connected PV system was developed. This grid-caedd®V system consists of a PV array,
DC-DC boost converter with MPPT controller, DC-Atverter and utility grid, as shown in
Figure 3.15. The parameters of the PV array usdtlisnsimulation are 321 V open-circuit
voltage, 273.5 V maximum power voltage, 393.3 Arslaorcuit current and 368.3 A maximum
power current. Whilst the parameters of the DC-@0db converter are a 5mH inductor, 100
pF input capacitor and 24000 pF output capacittrichvare calculated according to Egs.
(3.13), (3.14) and (3.15), respectively. The regamsrrent diode of the DC-DC converter is
chosen at 400 A to allow for maximum output currefithe PV array to flow from to the load
at the OFF-state. The switching frequency of MOSTEEselected at 5 kHz, with the updating
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time of the MPPT controller being every 500us. fype of PV module used in this simulation
is SunPower SPR-305-WHT and the main parametetisiofire provided in Table 3.1. The
DC-DC converter amplifies the PV voltage to 500 &,Qwhich is then converted to 260 V AC
with the unity power factor in the DC-AC invertén. the utility grid, this AC voltage relates
to a 10 kV-medium voltage distribution network b2@&0 V/15 kV-100 kVA transformer.

The simulations were configured under exadtly $ame parameters as for conventional
P&O and modified P&O-MPPTs as well as without th&RT state. The simulation was
divided into two scenarios. First, the PV systerthwind without P&O-MPPT controller was
simulated. As shown in Figure 3.16, the solar iaade of weather conditions was kept at a
constant value of 1,000 WAmAs shown in Figure 3.17, the output power of f\é system
with the MPPT controller was higher than without RTPcontroller, at about 100 kW and 80
kW, respectively. This is because the MPPT comroltacks the MPP of the PV array
accurately.

In the second scenario, the modified P&O aodventional P&O algorithms were
simulated. The input of solar irradiance used ia #fimulation decreased rapidly from 1,000
to 400 W/nt from 0.5 to 1 s, and then increased rapidly fr@@ % 1,000 W/rAfrom 1.5 to 2
s, as shown in Figure 3.18. The temperature operatas kept at a constant value of 25 °C.
As shown in Figure 3.19, the tracking power of gt@nventional P&O-MPPT method
ascertains the right direction of the input soteadiance when it decreases. However, it loses
it when the irradiance increases rapidly. Howetleg, modified P&O-MPPT method avoids
the drift problem under different changes (incregsand decreasing of the input of solar
irradiance). As a result, it takes a shorter timeatldress the drift problem than with the
conventional P&O method.

In addition, the PV voltage of the proposeetimd has a smooth oscillation around the
MPP at steady-state conditions compared to theardgional P&O-MPPT due to its VSS, as
shown in the zoomed in part of Figure 3.19(b). @ouently, the disputed power is higher in
the conventional P&O-MPPT than with the modified®8PPT. The resulting output power
of the conventional P&O-MPPT and the proposed nktab steady-state conditions are
100.722 kW and 100.724 kW, respectively, as showthe zoomed in part of Figure 3.19(a).
According to the simulation results, the modified®MPPT method quickly tracks the MPP
during weather condition changes and reduces tbi#ati®n around the MPP under steady-
state conditions. In addition, the output PV poisdrigher compared to the conventional P&O-

MPPT. However, it does not avoid the drift probleampletely when the weather conditions
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vary rapidly. This is because the threshold of ¢éady step decision, which is designed to
address the drift problem, changes in regard tdlvee@onditions.

To prove the effectiveness of the MPPT coterabn the grid-connected PV system, the
output of the DC-DC converter was simulated beforeé after the weather conditions changed.
As shown in the zoomed in area in Figure 3.20tf@®,output voltage of the DC-DC boost
converter for the conventional P&O-MPPT and modifit&O-MPPT methods are stable
during the rapid decrease in weather conditionsvéder, it drifts away to the right of the MPP
for the conventional P&O-MPPT controller when theather conditions suddenly change,
while the modified P&O-MPPT technique is almosb#taas shown in the zoomed in area in
Figure 3.20(b). However, the grid-connected PVayst based on the conventional P&O and
modified P&O algorithms deliver fluctuating DC vadfe during rapidly changing weather

conditions, because they do not avoid the drifbfgm completely.

3.8 Summary

In this chapter, the modelling and controbd®V system have been presented. To sum up,
the modelling of a PV cell has been proposed, thermatructure of a PV system has been
explained and its control scheme described. Theeardional P&O-MPPT and the modified
P&O-MPPT have been discussed, with the simulatesults being provided and compared.
Generally, using the MPPT with a PV system is ingar for enhancing the tracking
efficiency, stability, reliability and quality ofhe output system under different climatic
conditions. The modified P&O-MPPT based on Pythego theorem and CV-MPPT has been
shown to addresses the main issues of the conmaht®&O algorithm. However, this

modification does not avoid the drift problem arehate oscillation completely.

DC-AC
v | Inverter

Figure 3.15. The general diagram of a grid-connected PV system
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Chapter 4

Proposed MPPT Based on Fuzzy Logic Control

Fuzzy logic control (FLC) is common technidbat achieves vastly improved performance
for MPPT technique in terms of response speed@mdllictuation about the maximum power
point. However, major issues of the conventionaCAFMPPT are a drift problem associated
with changing irradiance and complex implementatidren compared with the P&O-MPPT.
In this Chapter, a proposed MPPT technique basdeL@and P&O algorithm is presented.
The proposed method incorporates the advantagie & O-MPPT to account for slow and
fast changes in solar irradiance and the reduaeekpsing time for the FLC-MPPT to address
complex engineering problems when the membershigtions are few. To evaluate the
performance, the P&O-MPPT, FLC-MPPT and the proposethod are simulated by a
MATLAB-SIMULINK model for a grid-connected PV syste The EN50530 standard test is
used to calculate the average tracking efficieridhi® proposed method under varying weather

conditions.

4.1 Introduction

As mentioned in Chapter 2, the P&O-MPPT impytar method for PV-MPPT owing to its
low cost and simple implementation. However, itg®snany challenges, such as a lower
converging speed, high oscillation around a maxinpawer point MPP, and a drift problem
associated with rapidly changing irradiance [638vé&al modifications have been introduced
based on a Power—Voltage (P-V) curve, but theycarssidered as insufficient solutions for
addressing all of these problems. Consequentlificat intelligence techniques based on
MPPT have been proposed to solve the significaril@nes of the classical MPPT methods
[122]. In addition, these techniques do not needlii@te parameters or complex mathematics

when managing the system [55]. In particular, th€MMPPT technique is one of the most

43



Chapter 4- Proposed MPPT based on Fuzzy Logic Glontr

powerful controllers for a PV system due to itshhigonverging speed and low fluctuation
around the MPP [76], [123]. Moreover, it does remuire training data, thus resulting in its
working for various types of PV module with the saMPPT design. However, the main
disadvantages are the aforementioned drift prolassociated with changing irradiance and

complex implementation when compared with the ddas8IPPT methods[124], [125].

Several types of modifications have been pgepdo address those issues. Among them,
Soufi et al. [80] used a particle swarm optimisa{ipSO) algorithm to adjust the duty cycle of
the boost convertor in the right direction for centional FLC-MPPT when the input solar
irradiance changes rapidly. In [81], Guenounoul etl@signed a gain controller based on the
FLC approach for online adapting of the step sfzmaoventional FLC-MPPT. In [126], Alajmi
et al. developed a novel FLC-MPPT based on a lliling algorithm for a stand-alone PV
system. Harrag and Messalti in [127] presentedrgraved maximum power point tracking
technigue using the Fuzzy-IC algorithm for a PVagrand fuel cells. Kottas et al. [128]
improved the conventional FLC-MPPT method by addimgy cognitive networks. Whilst
these proposals reduce the oscillations aroundviRB and avoid the drift problem during
changing irradiance, their hardware implementatieromes more complex due to an additional

step control unit.

Hence, Obeidi et al. [82] used a geneticritlym (GA) algorithm to optimise the designed
membership functions of the conventional FLC-MPBmtmller for which the fuzzy base had
already been created. Similarity, Gupta and Ga®ygresented maximum power point tracking
based on an asymmetrical fuzzy functions processiimise the longer processing time of
conventional FLC-MPPT. With the same idea, S. HifBet al. [83] presented maximum power
point tracking by modelling the fuzzy logic algtwit using an M5P model tree. In [84],
Subiyanto et al. used a Hopfield NN to tune thegiesd membership functions of FL-MPPT
automatically, instead of adopting the trial-ancbeapproach. Similarity, Nabipour et al. [85]
designed improved maximum power point tracking dasean indirect fuzzy for PV systems.
The results in [79], [82]-[85] report that the opised fuzzy controller achieved improved
performances, fast responses with less oscillatamavell as avoiding the drift problem.
However, the implementation of all these methoasase complex than for the classical MPPT

techniques.

In this Chapter, a proposed FLC-MPPT techmigased on a modified P&O algorithm is

designed. The proposed design takes into accoarktewissues. First, whilst the conventional
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P&O-MPPT is a suitable method for the PV systemeugdslow change of irradiance, it faces
significant challenges under a fast one. The sedssuk is that the complex engineering
problems of a fuzzy system become diminished wherdesigned membership functions are
few. The general diagram of a grid-connected P\esydased on the FLC-MPPT is presented
in Figure 4.1. The fuzzy rules of the proposed metire obtained from a modified P&O-MPPT
algorithm. The proposed technique accurately tréo&snaximum power point and avoids the
drift problem under different states. Moreover, @implified FLC-MPPT method, when
applied to a grid-connected PV system, achievedieficies greater than 99.6% under the
EN50530 standard test. The rest of this Chapterganised as follows. Section 4.2 analyses
the fuzzy logic control system. Section 4.3 disegsthe principle work of the conventional
FLC-MPPT method. In Section 4.4, the proposed nteiegresented, whilst the simulated
results are provided and discussed in Section Phe. EN50530 standard test results for
comparative analyses are provided in Section 4mallly, Section 4.7 covers the summary of
this Chapter.

Grid

Figure4.1. The general diagram of agrid-connected PV system based on the FLC-MPPT.

4.2 Fuzzy Logic Control

Fuzzy logic control is considered an importaechnique in industrial engineering
application because it has a high ability to workhwionlinear system [129]. It deals with
imprecise and noisy input information based on dheraatical model in order to imitate
human-like decisions in control implementation [[L3Chis technique supports two types of
fuzzy software system; Mamdani and Sugeno. InGhiapter, fuzzy Mamdani system is used
because it has a higher ability to adapt a fuzzg application based on a human expert
knowledge [131]. The main structure of FLC includese stages: fuzzification, fuzzy rules
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and defuzzification [132]. A general block diagrafithe FLC technique is shown in Figure
4.2.

Rulas

Fuzzifcation l Defuzzifcation

Input 1 = ﬁ#ﬁ&_ S R - ; : - .
Input 2 — ,ﬁ. ﬁ é'. Engine lﬁﬁﬁﬁﬁx P

Figure4.2. General diagram of fuzzy logic system.

4.2.1 Fuzzification

In fuzzification stage, the input variableg aonverted into linguistic variables based on
many defined membership functions (MFs) such agaagdular, trapezoidal, Gaussian, bell-
shaped, sigmoidal or (S-curve) with subset degedé@den O to 1, as shown in Figure 4.3. Each
type has advantages and disadvantages. Howevérafiezoidal MFs and triangular MFs are
commonly used because they have a high dynamiatiariin short processing time [133].
The quantity of those MFs is also an important esspkthe design as it determines the speed
and accuracy of the FLC system [134].

If the system has more membership functiohg implementation problem becomes over
complex, resulting in an accurate system but witlexcessive processing time. In contrast, if
the system has few membership functions, then tibassimple and whilst there is a faster
processing system time and there is a high acdeptibersity of outcomes. As well as,
selecting a discourse range of those MFs is anritapofeature to optimise this technique. The
discourse range of the MFs is determined regariirgglimited operating work of application

system.

{a) b ic) (d)

Figure4.3. Varioustypes of defined member ship functions (a) monotonic (b) trapezoidal (d)
triangular (c) Gaussian.
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4.2.2 Fuzzy Rules

In fuzzy rule stage, these linguistics vaealget manipulated, according to rules based on
the “if-then” concept that are guided by the dekbvehaviour of the system. The operator who
has familiar with the application system designgssthfuzzy rules. After the fuzzy rules
generate, The AND or OR fuzzy operators are usedljiost the subset degree of MFs. While
the clipping technique is utilised to regulate thie base with the accurate value of the rule

antecedent.

4.2.3 Defuzzification

The last stage of the FLC is the reverseuafification process which it converts the
linguistic variables into numerical variables usitige output of MFs. There are three
defuzzification technique; Mean of maximum methbeejght method and Centre of gravity
method (COG). However, the latter method is thetmosimon used because its defuzzified
value is very smooth when compared with other nigHa35]. The centroid defuzzification
algorithm is applied to perform those functionsdmhen the centred gravity of the defined

membership functions. The output of this methodieermined as shown in Eq. (4.1)

(4.1)

where W is the firing strength of thi& rule andCi is the centre value of the output membership

functions.

4.3 Conventional FLC-MPPT

Nowadays, FLC based on an MPPT techniqued@sne a popular method for PV systems
[124]. Usually, the conventional FLC- MPPT has twputs and one output, as shown in Egs.
(4.2) and (4.3) [136]:

AP Py — P

e(k) = — = 9D (4.2)
AV Vo = Ve

Ae = E(k) - e(k—l) (43)

whereg(k) is the change of slop P-V curve, axelis the change in its value of slop P-V curve.
The output is the change of duty cyale, which adjusts the performance of DC-DC converter
as through Eq. (4.4) [55]:
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D(k+1) = D(k) + AD (4.4)

whereD(k+1) andD(Kk) are the next and previous iteration for the dutsieyespectively, and
AD its incremental increase, which is the outputtef fuzzy controller. The work of the
conventional FLC-MPPT is to examine the first inpditthis value is greater than zero the
incremental change of the duty cycle increased tiiMPP is reached, whereas if it is less
than zero then the opposite occurs until the optirakue is reached. The second input is then
used to reduce the oscillation in the duty cycleatively. The quantity of membership
functions of the conventional FLC-MPPT method igidiéd into five values: negative big
(NB), negative small (NS), Z, Zero (ZZ), positivaall (PS), and positive big (PB), as shown
in Figure 4.4. For example, if the value of theoeis NB and changing error also negative big
PB, the predefined rules assign the next varialg clycle as ZZ, with process continuing until
the optimal MPP is reached. All the rules of thevemtional FLC-MPPT algorithm as well as

its 3D surface are provided in Table 4.1 and Figube respectively.

In general, FLC-MPPT is considered one ofrtiest efficient controllers for a PV system
due to its smooth fluctuation, and high accuraagaching the MPP. In addition, as mentioned
earlier, it does not require training data and twasks on different types of PV module the
same MPPT design. In other words, it needs a cdmpsive study about the PV system
operation to design an accurate controller. Morgor®lementation of this method is complex

compared with the classical MPPT methods.

The main challenge of this method is the ghifenomenon which happens when weather
conditions change, which Figure 4.6 explains iPdintA (low point), which represents the
MPP at a low solar irradiance level is movindt¢high point) due to a rapid increase in solar
irradiance, the right direction of the fuzzy tracke moving far away from the new MPP,
according to the rule base of the conventional RIPPT algorithm, as show in Table 4.1. To
solve this issue. Many modifications have been psed, such as an adaptive and optimised
membership function of the conventional FLC-MPPgoaithm. However, in this case the

implementation becomes much more complex.
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Figure4.4. The defined member ship functions of a conventional FLC-MPPT: (a) inputl (e); (b)
input 2 (Ae); and (c) output (AD).
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Table4.1. Thefuzzy rulesthat are used in the conventional FLC-MPPT.

Ae E

NB | NS |ZZ | PS | PB
NB ZZ | ZZ | NB | NB | NB
NS ZZ | ZZ | NS | NS | NS
7 NS | ZzZz | Zzz | ZZ | PS
PS PS|PS |PS|2z2z2| 2z
PB PB | PB |PB|ZZ| Z2Z

bl

-0.02 -

: :

1 . -35
Inputz inputl

-100

Figure4.5. A 3D surface between inputl (e) and input2 (Ae) verse output (AD).

x 1|:}|1

10

o] 100 200 300 400
Voltage (V)

Figure4.6. P-V curvefor arapid irradiance change from A (low point) to B (high point), thus
illustrating the drift problem in the FL-M PPT algorithm.
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4.4 Proposed Method

The proposed method is designed to incorptdnat@dvantages of the FLC-MPPT method
and P&O-MPPT algorithm, whilst eliminating theirasvbacks. As mentioned in Chapter 3,
the P&O algorithm is a suitable method for a PV-MRystem when solar irradiance changes
slowly from 1 to 10 W/rf/s. However, this method is flawed when the chapgiradiance is
quicker than this. Therefore, the normalised chandke applying solar irradiance regarding
to the normalised change in the output power ofaPdy is classified into two major types:
fast change and slow change presented in Chapiéri8.concept is given by Egs (4.5) and
(4.6):

AG AP

— =—>0.01 fast change (4.5)
G P

AG AP

- = 53 < 0.01 slow change (4.6)

whereAP is the historical change in PV power @@ the previous iteration for PV power. If

the value ofP is changed due to a solar irradiance change,alewfAP also changes in the
same direction. Consequently, the value%)fis almost constant during varying weather

conditions. In addition, this value is positive whte operation point is on the drift issue, as
mentioned in Chapter 3. The value is used in t@eyfuules to detect the drift problem early.
Defining the input and output of membership funesias considered an important step in the
fuzzy logic design [137] and those for the proposgstem are selected as following Eqs (4.7)
and (4.8):

AP _ P(k) - P(k—l)

il (4.7)
AV Vo = Ve

AP _ Pgoy = Pae-)

(4.8)
P P(k—l)

where Eq. (4.7) represents the historical chang®/ipower relative to the historical change in
PV voltage, whilst Eq. (4.8) pertains to the histal change in PV power relative to the
previous iteration for it and the output of propb$ezzy system is determined as in Eq. (4.4).
The principle work of this proposal is to examihe first input. If this value is greater than zero

the incremental change of the duty cycle increas¢isthe MPP is reached, whilst if it is less
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than zero the opposite occurs also until the optuake is reached. While the second input is
then used to address the drift problem. The vagiaigputs and output are divided into four
fuzzy subsets: positive big (PB), positive smalb)Pnegative big (NB), and negative small
(NS), as shown in Figure 4.7. The variable sedopdt (AP/P) is adjusted according to Egs.
(4.5) and (4.6). The fuzzy rules of the proposesiesy are based on the P&O-MPPT algorithm,
with there being a total of 16. If the value AP(AV) is NB and AP/P) is also NB, then so too
is the duty cycle is NB. The process is continuetil the optimal MPP is reached. To avoid
the drift problem associated with positive fastrap@in solar irradiance, the fuzzy rules are
changed in a reverse direction wh@g/P) > 0.01, which is equal to the PB in the second
input. All the fuzzy rules of the proposed MPPT huet, as well as its 3D surface are provided
in Table 4.2, and Figure 4.8, respectively.

The output of proposed system is the varidbtg cycleAD, which is added to the previous
iteration for the duty cycle, as show in Eq. (4A43.a result, the step size of the duty cycle is
large when the operational point is far from theRmMBnd it automatically becomes tiny, when
the operational point closes in on it. Consequetily proposed system increases the speed of
MPPT tracking when the weather conditions changedha In addition, it reduces the
oscillation around the MPP for steady-state cood#i Moreover, what is proposed is more
accurate for addressing the new MPP when the anagi changes owing to the adaptive rules
of the fuzzy system according to weather conditidagrthermore, the proposed system
provides a lesser complex implementation, minimuatessing time and more delivery when
compared with the conventional FLC-MPPT method abee of its lesser number of fuzzy

rules.

Table4.2. Thefuzzy rulesthat are used in the proposed method.

AP/AV

AP/P NB NS PS PB

NB NB NS PS PB

NS NB NS PS PB

PS NB NS PS PB

PB PB PS NS NB
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Figure4.7. The designed member ship functions of the proposal: (a) inputl%; (b) input 2%; and
(c) output AD.
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4.5 Simulation Results

To test the performance of the proposed FL@hatk a MATLAB-SIMULINK model for
the PV system has been developed. The PV systethimgkis simulation consists of a PV
array, DC-DC boost converter with the MPPT conépIDC-AC inverter and utility grid. The
parameters of this PV system are calculated arehgivChapter 3. The simulation was divided
into two scenarios. First, the proposed method @rentional P&O were simulated. The
input solar irradiance on the PV array was rapidtyeased from 400 to 1000 W/from 1 to
2 s, as shown in Figure 4.9. This reference signdissimilar to that presented in Chapter 3,
which was rapidly decreased and then, increased.i¥because the drift problem was found
to happen most clearly when the weather condisomunding the PV array increase rapidly.
This is the main problem raised and addressedsrChapter.

As shown in Figure 4.10(a), the power traclohghe proposed FLC method addresses the
right direction of the input irradiance, whilst thaf the conventional P&O algorithm was lost
when the solar irradiance changed rapidly. As altethe latter method takes a longer time
than the proposed one to address the phenomenihe afrift problem, as shown in Figure
4.10(b). In addition, the duty cycle of the propbseethod is more accurate in finding the new

MPP after solar irradiance changes, and it hasom8noscillation around this value for steady-
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state conditions when compared with the conventiBg8®-MPPT, as shown in the zoomed
area in Figure 4.10(c). Consequently, the outpwgrmf conventional P&O-MPPT method
and the proposed FLC method at the steady-stawitaon after they reach to the MPP, are
100.722 kW and 100.724 kW, respectively, as showtheé zoomed area in Figure 4.10(a)

In the second scenario, the proposed methddhe conventional FLC-MPPT algorithm
were simulated under the same weather conditiopseagously. The simulation results again
proved that the proposed method avoids the systpariencing the drift problem. In addition,
it gives a fast response to finding the new MPRndua high change in solar irradiance,
whereas the FLC-MPPT continues to suffer from thf groblem, as shown in Figure 4.11.
However, this problem was more effective on the veotional P&O-MPPT than the
conventional FLC-MPPT, as shown in Figures 4.16) 4.11(b).

Whilst the fluctuations of the MPPT trackeowamnd the MPP steady-state conditions are
higher in the proposed method when compared wethctnventional FLC-MPPT, as shown
in the zoomed area in Figure 4.11(c), the outpuipBWer of the conventional FLC-MPPT is
lower due to it having more membership functiohsstresulting in a longer computation time.
Consequently, the lost power is a higher in theveational FLC-MPPT than the proposed
MPPT method. As a result, the outputs under thedgtsetate condition being 100.723 kW and
100.724 kW, respectively, as shown in the zoomed ar Figure 4.11(a).

To validate the accuracy of the proposed®P¥MRacker for the grid-connected PV system,
DC voltage, injected current and grid voltage, befand after the weather conditions change,
were simulated. As shown in the zoomed area inrEiguL2(a), the output voltage of the DC-
DC boost converter is stable even during rapid hexatonditions change as the one cycle at
1.1s. Hence, the injected current and the grithge of the grid-connected PV system is stable
at all times, as shown in Figures. 4.12(b) and (¢)12espectively. As a result, the proposed
method is more effective for working with the gddanected PV system under varying
weather conditions.

To assess further the proposed MPPT technicuige 4.3 compares its properties with the
conventional P&O-MPPT and FLC-MPPT. As can be s#enproposed MPPT method has a
medium oscillation around the MPP point under tieady state condition, a smaller number
of fuzzy rule subsets, simple implementation and kiighest output power. Moreover,
according to the simulated results, the proposgthigue accurately tracks the MPP and avoids

the drift problem.
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Notably, whilst the power improvement of thé §ystem based on the proposed method is
only 1W and 2 W under steady state conditions rttome with the conventional FLC-MPPT

and conventional P&O-MPPT methods, respectivelyilitcapture a substantial amount energy

over the lifespan of the PV system (25 years)hasva in Table 4.4. In addition, this value will

be higher given the lower drift correction powertlbé conventional FLC-MPPT and P&O-

MPPT methods under a rapid change of weather g¢onslit

Table 4.3. A comparison of the properties of the proposed method, conventional P& O and

conventional FLC.

MPPT Number of | Oscillation | Implementation Output

fuzzy rules power (kW)
Proposed method 16 Medium Simple 100.724
Conventional FLC 25 Low Complex 100.723
Conventional P&O - High Simple 100.722

Table 4.4. A comparison of the output energies of the proposed method, conventional P& O and

conventional FLC.

MPPT Power (Kw) Energy (kWh) over | The value of the
25 years capturing energy
Proposed method 100.724 543909600 10800
Conventional FLC 100.723 543904200 5400
Conventional P&O 100.722 543898800 0
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Figure4.9. Theinput solar irradiance based on arapid changing condition
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4.6 The EN 50530 Standard Test of MPPT Efficiency

To assess the proposed FLC method, EN50580ast@ test of MPPT efficiency [138] was
used. Basically, it involves supplying triangulaaweforms of irradiance sequentially with
different ramp gradients. The first sequence iso& £hange of irradiance and then, this is
gradually increased. In this work, three triang@@quences were applied, slow, fast and very
rapid change in solar irradiance about 10, 40 @nW81¥/s, respectively, as shown in Figure
4.13. The comparison between the proposed methddhrenconventional P&O method is

shown in Figure 4.14(a).

Clearly, the tracking power of the latter alsthe drift problem during a slow change in
the solar irradianceAG < 10 W/m?/s) due to the large and fixed step size of the dutjecy
as show in first sequence, as shown in the zoomqwhit of Figure 4.14(a). However, the
tracking power of the conventional P&O method drdtvay from the right direction when the
irradiance increases at a fast pace in second sege; > 10 W /m?/s), as show the second
sequence, because the MPPT tracking is unable deesal this rapid change in weather
conditions. In third sequence, the problem becowase, when the irradiance is increased
very rapidly AG >» 10 W/m?/s), as shown in the zooming in of the third sequehtease
of decreasing irradiance, the tracking power add®ghe right direction under different
sequences, as shown in the other side of thesBgtience.

The comparison between the proposed methdthenconventional FLC method is shown
in Figure 4.14(b). Whilst the latter method suffean the drift problem under fast changes in
weather conditions (increasing and decreasing ipatisolar irradiance), as shown in the
zoomed in part of Figure 4.14(b)., the problem isimal when compared to the conventional
P&O method. This is because the MPPT tacking ottmentional FLC method can address
the problem early. However, the problem became ehmworse when the irradiance changes
very rapidly. In contrast, the proposed method dsdhe drift problem for all three ramp

gradients, as shown in Figures 4.14(a) and (b).

To calculate the average tracking efficientyhe MPPT controller, the MPPT efficiency
formula is used, as given in Eqg. (4.9) [138]:

J Poue ()dt
.MPPT % ="+——"—"7-— 4.9
n (avarge) % [ Pome (D (4.9)
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wherePou is the output power of the PV array @l is its theoretical maximum power. The
actual power is calculated using the sensors ofuhrent and voltage of the PV array and then
multiplied. The theoretical maximum power is caftad using the general equations of PV
array, as given in Egs (3.1) -(3.4). The trackinggt(t) is calculated according to the ability of
the power tracking to reach the MPP under sameheeabndition for the actual power and
the theoretical power of the PV array. Then, vasitnacking times are used to calculate the
average tracking efficiency of the MPPT method.

Whilst the MPPT efficiency of the proposed hoet for 400 W/mappears to be the lower
in the beginning of the signal test, it achievesamarage tracking efficiency of 99.6% under
all the varying weather condition scenarios, whert@se for the conventional FLC-MPPT
and P&O-MPPT methods are 96.4 %, and 93.5%, raspctas shown in Figure 4.15 and
Table 4.5.

Table4.5. A Comparative study regar ding the aver age efficiency for the proposed method and
the conventional FLC and P& O-M PPT techniques.

MPPT method Average efficiencies

Proposed method 99.6%

Conventional FLC 96.4%

Conventional P&O 93.5%
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Figure4.13. Triangular waveforms of irradiance for the EN50530 standard test of MPPT
efficiency.
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Figure4.14. The PV power for the EN50530 standard test of MPPT efficiency, (a) MPPT power
tracking for P& O versusthe proposed method, (b) MPPT power tracking for FLC versusthe
proposed method.
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Figure 4.15. The aver age efficiency of power tracking under the EN50530 standard test for: (a)
P& O-MPPT versusthe proposed method; and (b) FL-MPPT versusthe proposed method.

4.7 Summary

A proposed maximum power point tracking tegiei based on fuzzy logic control for a
grid-connected PV system has been presented, wiaishihe ability to track the MPP when
there are big fluctuations of irradiation. The ateges and disadvantages of the FLC-MPPT
has been discussed. The designed membership fanaifoFLC the controller where tuned
based on modified a P&O algorithm to incorporate ddvantages of the P&O-MPPT and the
FLC-MPPT as well as to eliminate their drawbackse TP&O-MPPT, FLC-MPPT and
proposed method were simulated, being then compagedrding to their common features.

The EN50530 standard test was used to calculatefficeency of the proposed method under
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varying weather conditions. The simulation reshtise revealed that the proposed technique
exhibits a higher output power, and no divergemoenfthe MPP during varying weather
conditions regardless of the speed of change. i§htie proposed concept has been shown to
be highly effective for working with a grid-connedt PV system, achieving efficiencies of

around 99.6%. Finally, this modification has beleoven to be simple to implement.
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Chapter 5

Design of an Efficient MPPT based on ANFIS

In this Chapter, an efficient maximum poweinp tracking technique based on ANFIS
using a real photovoltaic system data is desighkdse real data are collected throughout the
whole 2018 from experimental tests of a photovol@iray installed at Brunel University,
London, United Kingdom. Normally, data from expeemtal tests include errors and therefore
are analysed using a curve fitting technique tonoipe the tuning of ANFIS model. A real
measurement test of semi-cloudy day is used talzdécthe average efficiency of the proposed

method under varying climate conditions.

5.1 Related Works

As mentioned in Chapter 2, the MPPT controller Hase artificial intelligence techniques
for a PV system has been widely used in recensy@&ais is because it can solve the significant
issues associated with the classical MPPT methddseover, these techniques do not need
complex mathematics or accurate parameters whemagmanthe system. In particular, the
ANFIS-MPPT is one of the most powerful controlleasa PV system due to experiencing less
fluctuation around the optimized MPP point, fasicking speed and low computation time.
However, the main disadvantages are the lack efratetraining data and tuning of the ANFIS
model. Hence, several types of ANFIS-MPPTs haven lwsigned using different types of
training data. Among them, in [94], Lasheen and dishlam developed an MPPT technique
based on adaptive ANFIS and Hill Climbing (HC) teicjues to increase the generated energy
from a PV system. This proposed technique is a cmatibn of two stages to adjust the

property duty cycle of a boost converter for MP&Cking.

In the first stage, the duty cycle is estidatehilst in the second, the exact duty cycle

corresponding to the optimized MPP point is detagdi In order to construct the training of
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the ANFIS system, the ranges of the ambient teniyperand solar irradiance are determined,
according to the latitude and longitude of the sftthe PV system. With same ideal, Farzaneh
et al. [54] presented an intelligent MPPT for P\steyn using hybrid ANFIS and Particle
Swarm Optimization (PSO) technique to reduce theveming time of the MPPT algorithm
under partially shaded conditions. The solar imddn and temperature operation are selected
as the input, whilst the optimal duty cyclen{) is the output, which is optimized using the
PSO algorithm. The data of the ANFIS system arkectdd from different scenarios of the PV
operating system under varying partial shading.I|8Vkhese proposals increase the efficiency

of the PV system, their implementations become owetplex due to an additional step unit.

Hence, Muthuramalingam and Manoharan [98$@nt a comparative study among P&O-
ANFIS, PSO-ANFIS and ANN-MPPTs for a stand-alone Bytem under partial shade
conditions. The training data of the ANN method eo#ected from a single operating test of
the PV array, while the P&O-ANFIS and PSO-ANFIS dezived from the operational PV
system, with the P&O and PSO, respectively. In [1@&bido et al. designed an efficient
ANFIS-MPPT method based on a large training datimePV systems. The inputs of the
proposed ANFIS technique consist of the irradiaad temperature conditions, whilst the
output is the optimized PV voltage at the MPP pdwin). The large training dataset is
collected from Simulink operation tests of a PV miedunder a wide range of weather

conditions to avoid the system having a high tragrerror.

In [139], Kharb et al. modelled an intelligdiPPT controller based on ANFIS to solve
the complexity of the tracking mechanism and naedr nature of a PV system. The
temperature and irradiance of the weather conditaoe used as inputs of the training data of
proposed method, while the output is the value akimum power from the PV array at a
specific temperature operation and irradiance IéRa). In [140], Abu-Rub et al. designed an
intelligent MPPT technique based ANFIS for a séi&f system to reduce converge tracking
time under a fast change in weather conditions. Héwe point of this proposal is that the
maximum power of the PV module is adjusted undeciigc conditions. The proposed ANFIS-
MPPT is trained by the solar irradiation level aedhperature operation of the Simulink
operation of a PV module under varying weather @¢@rs$ and the output is the maximum
power. In [141], Abu-Rub et al. designed an ingght MPPT controller based on ANFIS to
generate the maximum power of a PV system in tiredstione operation. The maximum power
generation of the load is ensured by an adaptivEISNMPPT with a quasi-Z-source inverter.
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The inputs of the proposed ANFIS method caradishe solar irradiance and temperature,
while the output gives the optimism voltage attfeP point of each of the weather conditions.
The training data are collected based on a sinamaést of a single PV module under various
environmental conditions. In [98], Bin-halabi et pfoposed and implemented an intelligent
MPPT method using an ANFIS model to enhance thispeance of a PV system. The main
contribution of this work is eliminating the neear finputting irradiance sensor. The PV
voltage, PV current, and temperature operatiorsalected as the input, whilst the optimal PV
voltage at the MPP is the output of the ANFIS moddie data of the ANFIS system are
collected from Simulink operation tests of a PVtegs under varying climate conditions.

In [142], Murdianto et al. designed an intgint MPPT based on ANFIS for a PV system
to generate maximum output power. This work invelilizing the maximum power for
energy storage using a SEPIC converter. The soltiance and temperature operation are
selected as the input, with the optimal PV cur@nthe MPP Ifm) being the output of the
ANFIS model. The data of ANFIS system are colledtech the curve characteristics the PV
array under varying weather conditions. In [96]d&it et al. designed and implemented an
ANFIS-MPPT technique using an FPGA board for stémda photovoltaic systems to
demonstrate the usefulness of ANFIS. The soladimrece and temperature operation are
selected as the inputs of the ANFIS model, whilstdptimal current is the output.

The training data are used to define thetinmembership function of the proposed method
by assuming that the PV array is located in thersotilrag. In [143], an intelligent approach
to optimizing the efficiency of a PV system by thRFIS-MPPT technique is presented. The
system consists of a PV array, MPPT controller,DCEtonverter and a DC motor pump. The
PV current and PV power are selected as the imptit,the duty cycle being the output of the
proposed MPPT method. The data of ANFIS systentaltected from several experiments
performed on a PV array under various values argaladiance and a constant temperature
at 25°C.

In [144], an intelligent MPPT controller wasoposed for a PV system using an ANFIS
model to track the MPP point under varying weattwrditions. The inputs of the proposed
ANFIS method consist of the current and voltaga &V module, whilst the output gives the
propertied duty cycle for a power conversion systéhe proposed ANFIS method generates
change in the duty cycle based on a historical gbari PV power and derivate in this value.
In [30], Ounnas et al. design an efficient MPP@hteque based ANFIS for PV systems to
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determine the MPP point under different weatherddmns. The solar irradiance and
temperature operation are selected as the inptiie &NFIS model, whilst the optimal voltage
at the MPP is the output. The data of ANFIS mose&lallected from the power—voltage curve

of PV array under different weather conditions.

The results in previous report that the cotieaal ANFIS-MPPT based on theoretical data
increased tracking speed and reduced oscillatidosiever, they are not achieving a higher
efficiency when compared with hybrid methods beeaxfsa shortage of accurate training data.
Consequently, Khosrojerdi et al. [97] proposedealiigent MPPT technique based on ANFIS
for standalone PV systems using a large real ddia. solar irradiation and temperature
operation are selected as the input of the ANFI8ahavhilst the optimal voltage at the MPP
and duty cycle are the outputs. The training dathe proposed ANFIS system are collected
from experimental testing of a PV array installedOttawa, Canada. With the same idea,
Chaouachi et al. [89] presented a novel methodofogynaximum power point tracking of a
grid-connected photovoltaic system using an expamtal data of a PV system installed in
Tokyo, Japan. The operating temperature and innaditevel are used as input training data of
the proposed ANFIS method, and the output is tfe¥eace voltage.

Although those proposed method in [97] and [B8ined using the real data, they are not
optimized. Hence, the MPPT tacker are achievingeloefficiency compared with a hybrid
algorithm under different weather conditions. Iist@hapter, an experimental training data is
collected during one year from experimental te§ts BV array installed at Brunel University
London, Uxbridge, United Kingdom, as shown in Feg&r.l. Then, they are analysed and
optimized using Curve Fitting technique to desigrefficient maximum power point tracking
technigque for photovoltaic system. The installedr®dtules characteristics are given in Table
5.1.

The rest of this Chapter is organized as ¥mloSection 5.2 discusses the MPPT using the
ANFIS algorithms. The stand-alone PV system basedhe ANFIS-MPPT controller is
presented in Section 5.3. The methodology of cttbthe training data is explained in Section
5.4. While Section 5.5 presents the curve fittighhique. In Section 5.6, the tuning and
optimising of proposed ANFIS model are given, wihite results are provided and discussed
in Section 5.7. Real measurement test resultsetlag are provided in Section 5.8, with Section

5.9 containing the summary of this Chapter.
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Figure5.1. Thestudied PV array installed at Brunel University London, UK.

Table5.1. PV module char acteristics.

Parameters Value

Cell number 48
Dimensions 1.318x994%46 mm
Nominal power 185W

Open circuit voltage 30.2V
Maximum power voltage 24V

short circuit current 8.54 A
Maximum power current 7.71 A
Temperature Coefficient (Pmax) -0.485%/°C
Temperature Coefficient (Isc) +0.053%/°C
Temperature Coefficient (Voc) -104 mvV/°C
Type of PV cell Monaocrystalline
Type of PV module Sharp NU-S5E3E 185
Conversion Efficiency 14.1%
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5.2 ANFIS Technique

ANFIS technique is considered a hybrid method basethe architecture of a neural network
and fuzzy logic inference [145]. It is adapted @uetwork technique based on fuzzy inference
system. The principle work of this technique iselgged on three concepts:

1. Rule base selects fuzzy rules.

2. Data base identifies the membership functions ugiaguzzy rules.

3. Reasoning mechanism inferences the rules with idgrioutput.

To address and optimise the signal system, a hdaiching rule combining back-propagation,
gradient-descent and a least-squares are used THEANFIS structure consists of five layers:
fuzzification, rules, normalization, consequent] addition, as shown in Figure 5.2. In the first
layer, every node of the training data is an agaptiode, with the node function using Egs.
(5.1) and (5.2) to generate the defined membefsinigtions:

Ay = pxi(x) for i= 12 (5.1)

Ay = uyi—2(y) for i= 3,4 (5.2)

where,u is the defined membership functions aad is the defined membership value for the

inputs x and y. The subscripted 1 and i is therlayenber and node number of the training data,
respectively. The defined membership functionslEany shaped function, such as triangular,
trapezoidal or Gaussian. The best membership fumtivhich achieve a less training error. In

layer 2, every node is a fixed node based on amedhd fuzzy rule. The output value is given

by Eq. (5.3):

Ay = w; = pX; (uY; (y) i= 12 (5.3)

In layer 3, every node is fixe based on titemalization of each valid fussy rulesing Eq.
(5.4):

w;

A3,1 =w; = (54—)

wq + w,

In layer 4, every node is adapted and calculateddan the rule consequent, as given in Eq.
(5.6):

Ay = wifi=wi(p; x+q; y+r1) (5.6)
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where,pi, gi andri are consequent parameters, which require beingha@&d in the training
operation. In layer 5, all input nodes are summogéther to get the final output signal, as given
in Eqg. (5.7):

Asy = Tiwf; = L0 (5.7)
where w; is the minimum number of membership functions ghds the centre value of the
output membership function. The training procedfr@NFIS model is depended on a number
of epochs. In each epoch, the output nodes arendietd in layer 4 while the consequent
parameters are determined in layeA%ack propagation (BP) algorithm or hybrid alglonit

are used to learn the process of the ANFIS model.

layerl layer2 layer3 layerd layers

I

—

Figure5.2. A block diagram of the ANFIS model [145].

5.3 ANFIS-MPPT Controller

The traditional ANFIS-MPPT method usually has twplts and one output, as shown in
Figure 5.3. The operating temperature (Tx) andliarace level (Gx) are usually used as inputs
to the training data of the ANFIS method, and thgot is the reference power (Pref.). Under
the same weather conditions, the actual PV powast(Hs calculated using the sensed voltage
and current of the PV operation. These two powadirgys are compared, and the error (e) is
given to a Proportional Integral (PI) controllergenerate the signal of a DC-DC convertor by
a PWM generator, to adjust the operating MPP pafitlhe PV module. The signal control (s)
of the PI controller is given by Eq. (5.8):

D = Kp(Pact. = Preg.) + & (Pact. = Prey.) (5.8)
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where,KpandK; represent the proportional and integral gain efRlhcontroller, respectively.

In general, the MPPT technique based on ANFIS kas blesigned to solve the limitations of
an intelligent system. In addition, it can adjustparameters to give a faster response and less
oscillation under different weather conditions diee less time being consumed in the
defuzzification stage. However, getting accura@ing data and tuning ANFIS model are big
challenges when designing an efficient ANFIS-MPRilthis Chapter, the proposed ANFIS
model is designed using real data collected fromegmental PV tests installed at Brunel
University London, Uxbridge, United Kingdom.

G-I
canverter

Load

Figure5.3. Thediagram of a PV system using an ANFIS-MPPT.

5.4 Methodology of Collected Data

A micro-grid PV system is installed at Brunel Urmisi¢y London, Uxbridge, UK, to collect
real training data, as show in Figure 5.4. The R¥yaconsists of five PV modules connected
in series. This PV array is connected to the mgrid-through dedicated Sunny Boy Inverter.
The main reason to use this DC-AC inverter isitr@informs the regulations concerning small-
scale PV generation. In addition, it has inbuiltncounication system, anti—islanding unit and
voltage protection. To measure and collect thetebat parameters of the PV system, Sunny
Boy Controller Pulse is connected to the inverteRI$485 transmission protocols. In addition,
a weather station comprising of a Pyrometer, Hyditem and Anemometer and wind vane is
installed and connected to the Sunny Boy Contréligise via RS232 cable for studying and
analysing the dependence of weather parameterbough four parameters of weather

conditions (irradiation, temperature, wind speed dumidity) are measured, the solar
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irradiation and ambiance temperature are selectetbsign PV-MPPT systems because they
are the most effective on PV systems than othempeters according to the general equation
of PV cell. The ranges of the ambient temperatndesalar irradiance are determined according
to the latitude and longitude of Uxbridge, LonddskK, which are 51.531 and -0.474,

respectively.

A supervisory control and data acquisitiosteygn (SCADA) was used to monitor and
control the system, linked to the university loaega network (LAN) using TCP/IP and SBC
Net Port system commination. The Sunny Boy corgrokad data every 5 minutes periodically
in daytime and switched off at night. It then tuors every 15 minutes to exam the weather
conditions otherwise it returns to power-save mdde data were recorded on PC and stored
as a Microsoft Excel Sheet. To avoid failure in doenmination system, an external modem
was installed with the system to send an alarmasigm the system'’s operator if any such
problems occurred. Throughout whole the year 28i8ut 48,500 data readings were collected
and recorded comprising the irradiance level amip&rature operation of the atmospheric
station, with the output being the measured povi¢h® photovoltaic array at the maximum

power point.
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Figure5.4. The general diagram of a collected data system.
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5.5 Curve Fitting Technique

It is very common in engineering practice to obtamd record real data from device systems.
Engineers use these data to understand underlyopepies and solve issues of the system.
However, it is not easy or even possible to deteenthe relationship that describes the
behaviour of the system using the real data. Remgeanalysis of data is a statistical procedure
and can be used to identify the relationships antbffigrent points. Whilst there are varying
methods of the regression analysis, a curve fittig@apnique is considered as one of the best

methods which is utilised in this work [147].

This technique is attempted to find a mathaahtfunction that can describe the
measurements of real data as accurate as pogsiblaot necessary that the function obtained
will pass through all the real data points. Howetee smallest possible error of fitting curve
should be gotten which defined as Eq. (5.9):

p =X 1’ =Xy — (axi + ao))? (5.9)

wherer; is the residual vector of each data poipt,the value of the straight line evaluated at
x; point,a; anda, are the coefficients of curve fitting and n is thenbers of data. Hence, for

exemplify, the equations of curve fitting coefficie for five points are writing as Egs. (5.10-
14):

a;x, +ag =y, (5.10)
a1x2 + ao = yz (5.11)
a;x3+ag=ys (5.12)
A1X4 + Ay =Y, (5.13)
a1 xs +ayg =Yys (5.14)

Now, those above five equations are writing in agrmmpact method using matrix notation,
as defined in Eqg. (5.15):

Ab =17y (5.15)

where,
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X, 1] Y1

X, 1 )
a

A=|x, 1], b=[ },y= Vs
d,

x, 1 Ya

| Xs 1] BEE
Now, the residual matrix notation is written as Eq16):
r=y—Ab (5.16)

Substituting Eq. (5.16) into Eqg. (5.9), the followiis obtained:

n
p= Y 1 =rTr=yTy—2yTAb+ bTATAb  (5.17)
i=1
whererT is the transposed residual matrix notation. Tamize the value ofp, the derivation

process is used. This gives in Eq. (5.18):

ap
ab

0=-2yTA+24TAb (5.18)
Now, the coefficients of fitting curve (b) is dedid as Eqg. (5.19):
b=(ATA) 1yTA (5.19)

In this application, y-axis is the PV powedaxtaxis are irradiance and temperature of
weather conditions. About 48,500 data sets foryaae are used. In addition, the second order

polynomial of last squares is utilised to get a ieas shown in Egs. (5.20) and (5.21).
y =3.416 X 1077x% + 0.0011 x + 0.00115 (5.20)
y =—1.858 x 1077x2 + 0.015 x + 0.00649 (5.21)

To draw those fitting curves, MATLAB code is gertethbased on Egs. (5.20) and (5.21). As
noticed from Figure 5.5, the power generation @& BV array increases as solar irradiance
increases, conversely it is better for low tempeeabperation than raised one. In addition, the
PV generated power almost depends on the irradiasdmearity. In contrast, the operating

temperature is less effective on PV power genaraowell as non-optimized linearity. Those

conceptions will be used in Section 5.6 to adjnstdefined membership function of proposed
ANFIS model.
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Figure5.5. Thefitting curve of (a) PV power - irradiance level, (b) PV power - temperature
operation.

5.6 Tuning of Proposed ANFIS Network

Using a MATLAB/Simulink model, an efficient ANFIS-RPT method based on the large
and real data of a PV system is designed to aha@idystem from having a high training error.
Those data are collected throughout the whole 2@i8 experimental tests of a photovoltaic
array installed at Brunel University London, Uxlge&l United Kingdom, as described in
Section 5.4. The inputs of the proposed ANFISnaqle consists of the irradiance level and
temperature operation of weather conditions, whighcollected by a weather station, and the
reference power is measured from the PV instalteslyaas the output of the ANFIS system.
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The estimation accurate PV power depends on timngedataset; therefore, it is very important
to select the training data with wide variationstbé solar irradiance and the operating
temperature [87]. Hence, the measured data fora48 delected 10 days from each season
whose have different variation of weather condgiare used. The ANFIS model based on those
data achieves a better performance when compardgdtind@ ANFIS model based on total
collected data due to its very short training tilogser number of epochs (50) and lower target
error (0.08) while the training parameters of ttelr model is a very long time, more number
of epochs (980) and higher target error (0.14%hasvn in Table 5.2.

To select the best membership function ofAN&IS model, different types of membership
functions are tested. The linear type for the autpembership functions and the triangular type
for the input membership functions (trimf) achidess tolerance of Mean Square Error (MSE)
about 0.0706, as shown in Table 5.3 and Figure I&.@addition, triangular membership
functions have a simple formula and high computati@fficiency [96]. As proved in Section
5.4, the PV generated power almost depends onrithdiance as linearity. In contrast, the
operating temperature is less effective on PV pogemeration as well as non-optimized

linearity.

According to those conceptions, the numbergs@it membership functions (mf) of solar
irradiance are selected more than the numberspoit imembership functions of operating
temperature to able the ANFIS model predicting @ueate power generation of the installed
PV array under varying conditions. In addition, agiable second input is adjusted according
to the fitting curve of operating temperature bgfshg the MF of the second input. Hence,
they avoid the state of non-optimized linearityhiis second input. Those membership functions
for each input are learned by the ANFIS model based5 fuzzy rules derived from 8 input

defined membership functions as shown in Figure 5.7

The quantity of membership functions of thput applying irradiance is divided into five
values: very low, low, medium, high and very highjle the quantity of membership functions
of the surrounding temperature is divided into ¢hwvalues: low, medium, and high. The fuzzy
inference system is trained based on the hybrignomtion method by combining the back
propagation gradient techniques and the least sgLiine surface of training data indicates that
the reference power of installed PV array increasesothly, with an increase in the radiation

level and with a decrease in the temperature dparats shown in Figure 5.8.
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Table5.2. Simulation ANFIS model based on optimized data VStotal data.

Model Training time | Number of Error (%)
epochs

Optimized data | Very short 50 8

Total data Too long 980 14

Table5.3. Mean Square Error (M SE) for different input member ship functions.

Purpose Function Error
Triangular mf. Trimf 0.0706
Trapezoidal mf. Trapmf 0.1085
Generalized bell curve mf. Gbellmf 0.0787
Gaussian curve mf. Gaussmf 0.0766
Two-sided Gaussian curve mf. gauss2mf 0.0894
Pl-shaped curve mf. Pimf 0.1215
Difference of two sigmoid mf. Dsigmf 0.0808
Product of two sigmoid mf. Psigmf 0.0819
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5.7 Results and Discussion

In this chapter, a MATLAB-Simulink model forséand-alone PV system based on ANFIS-
MPPT controller is simulated instead of a grid-cected PV system because the training data
of ANFIS model are collected from a micro-grid Pxé®m. This PV system consists of a PV
array, DC-DC boost converter with an MPPT controbad resistive load. The main
parameters of PV model are given in Table. 5.1. Fkearray consists of five PV modules
connected in series. The parameters of the DC-D@erter are 0.5mH, 65uF and 850uF
which are determined using Egs. (3.13), (3.14) @tb). While the resistive load, switching
frequency, current diode and updating time arecssteat 18, 5kHz, 10A and 500us,
respectively. To assess the performance, the opfi&lS-MPPT, conventional P&O-MPPT,
conventional FLC-MPPT and conventional ANFIS-MPP&athods are simulated under similar

conditions.

The simulation was divided into two scenarieed input solar irradiation and variation
input solar irradiation. The input irradiation atemperature of the first scenario is fixed at
1000 W/nt and 25°C, respectively. As shown in in the zooraegh in Figure 5. 9 (a), the
converging time of the power tracker for the opliddFIS-MPPT method is the lowest when
compared to the conventional ANFIS-MPPT, convergioRLC-MPPT and conventional
P&O-MPPT methods, being about 0.07 s, 0.08, 0411ds0.13 s, respectively.

Moreover, it has the lowest fluctuation arotimel MPP point for steady-state, thus resulting
in less computation time, as shown in the zoont iRigures. 5.9 (b) and (c). Furthermore, it
is more accurate for addressing the optimised M#it prhen compared with the conventional
ANFIS-MPPT, conventional FLC-MPPTSs, as shown inzbemed area in Figure 5.9 (b), due
to the large and accurate training dataset. Asaltrehe PV voltage at the MPP point for the
optimal ANFIS-MPPT is in the middle of the optimiz&oltage of the conventional P&O-
MPPT, while the PV voltage at the MPP point for t@nventional ANFIS-MPPT and
conventional FLC-MPPTs are to the right and leftlod optimized voltage of P&O-MPPT
with low and medium oscillations, respectively. Hmer, the fluctuation problem is the
highest in the conventional P&O-MPPT owing to tlentnuous perturbation of the P&O
tracker for reaching the optimized MPP point, gsl&xed in Chapter 4.

Therefore, the lost power in the optimal AREMPPT is less than for the conventional
FLC-MPPT and conventional P&O-MPPTs. As a restilg butput power of the optimal
ANFIS-MPPT, conventional ANFIS-MPPT, conventionald~MPPT and conventional P&O-
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MPPTSs, after they have reach the optimised MPPtpaia about 924.50 W,923.75 W, 923.25

W and 922.5 W, respectively, as shown in the zooaned in Figure 5.9(a).

In the second scenario, the input irradiaterel is rapidly increased from 200 to 1000
W/m?at 1 to 2 s, and the temperature operation is &epb °C. As shown in Figure 5.10(a),
the power tracker of the optimal ANFIS-MPPT addessthe right direction of the input solar
irradiance when it changed rapidly owing to itsgkitraining and optimized tuning of the
proposed model, whilst the tracking power of coriveral ANFIS-MPPT, conventional FLC-
MPPT and conventional P&O-MPPTs do not addressrigite direction when the input
irradiation changed suddenly. Notably, the conerdi P&O-MPPT was the mostly effected
by the drift problem and the conventional ANFIS-MPRas the least effective by this issue.

As a result, they take a longer time than MBBsed on the optimal ANFIS to address the
drift issue phenomenon, as shown in Figure 5.1@dutition, it is a more robust in addressing
the right direction during a rapid change in saleadiance. On another words, this issue was
more effective on the conventional P&O-MPPT thes ¢bnventional FLC-MPPT. To assess
the optimal ANFIS-MPPT further, Table 5.4 compaitssproperties with the conventional
ANFIS-MPPT, conventional FLC-MPPT and conventioR&80-MPPTs. As can be seen, the
optimal ANFIS-MPPT has the lowest converging tirties least oscillation around the MPP
point and the highest output power. Moreover, thesmost accurate in tracking the MPP point

and avoiding the drift phenomenon.

Table5.4. A comparison of the properties of the ANFIC, P& O and FLC-MPPT.

MPPT Converging Oscillation Drift Output power
time (s) problem (W)
Optimal ANFIS 0.07 Low Avoidance 924.50
Conventional ANFIS 0.08 Low Suffering 923.75
Conventional FLC 0.11 Medium Suffering 923.25
Conventional P&O 0.13 High Suffering 922.50
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5.8 Real Measurement Test

To assess the proposed method, the four previchsitgies have been compared based on
real measurement of the input solar irradiancetangberature for one day on"10une 2018
(05.00 — 20.00), as shown in Figures 5.11 (a) dhdThose data were collected as mentioned
and explained in Section 5.3. Notably, the EN50&3) was used to calculate the average
tracking efficiency of the FLC-MPPT method, whil&perimental testing was utilised to
calculate the average tracking efficiency of theFABEMPPT method. This is because, the
EN50530 test was designed to calculate the traaiicjency of MPPT methods under a rapid
change in weather conditions, when a drift probt&m occur, which is the major issue of the
FLC-MPPT method presented in chapter 4. While #peemental test is proposed to calculate
the tracking efficiency of MPPT methods under vagyweather conditions, in this state, the
inaccurate tracker justifies clearly, which is tmajor issue of the ANFIS-MPPT method

explained in this chapter.

The comparison between an optimal ANFIS-MP4&d conventional P&O-MPPT is
shown in Figure 5.13(a). Clearly, the power tracikkethe latter method addresses the right
direction during a slow change in the weather cooas owing to the large and constant step
size of the incremental duty cycle. However, thev@oof the conventional P&O-MPPT drifts
away from the correct direction when the solardiaion and ambient temperature increases
rapidly, because it is not able to cope with thpidachange in the input irradiation, as
mentioned and explained in Chapter 4. That is,itsee becomes worse when the solar
irradiation is changed suddenly. However, the tiragkbower of the P&O-MPPT addresses the
right direction under the different case of decireggradiation, as shown in the zoomed area
in Figure 5.12(a).

The comparison between the optimal ANFIS-MR#®T a conventional FLC-MPPT is
shown in Figure 5.12(b). Whilst the latter methodfers from the drift problem under rapid
changes in weather conditions (increasing and deitrg the weather conditions), as shown in
the zoomed area in Figure 5.12(b), the problembeaseen as being minimal when compared
to the conventional P&O-MPPT. As mentioned in Clkagt this is because the MPPT tracking
of the conventional FLC enables it to address tioblpm early. The comparison between the
optimal ANFIS-MPPT and a conventional ANFIS-MPPEl®wn in Figure 5.12 (c). Although
the latter method almost avoids the deviation urdiferent weather conditions, it is not
accurate to address the MPP. In contrast, theitrggower of ANFIS-MPPT based on the
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large and real training data avoids the probleneuddferent weather conditions. To calculate
the tracking efficiency of the MPPT controller, teerage MPPT efficiency formula is used,
as given in Eq. (4.9), explained in Chapter 4. \&thihe efficiency of ANFIS-MPPT method
for a beginning day appears to be the lowest hieses an average efficiency of 99.3% under
all the different climate conditions, whereas thtisethe conventional ANFIS, conventional
FLC and conventional P&O-MPPTs are 97.9%, 96.88d,32.6%, respectively, as shown in
the zoomed area in Figures 5.13 (a), (b) and éc)vell as Table 5.5.

Table5.5. Compar ative study regar ding the aver age efficiency for the optimal ANFIS,
conventional ANFIS, conventional FL C and P& O-M PPT techniques.

MPPT method Average efficiencies

Optimal ANFIS 99.3%

Conventional ANFIS 97.9%

Conventional FLC 96.8%

Conventional P&O 92.6%
S
i;.' "
E q

(b)
Figure5.11. Real measurement test of one day of: (a) irradiance, and (b) temperature.
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(c) conventional ANFIS versusoptimal ANFIS.
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5.9 Summary

An efficient maximum power point tracking teafue based on ANFIS using a real
photovoltaic system data has been designed inChapter. The large training dataset was
collected during one year from the experimentalinigsof a PV array installed at Brunel
University, London, UK, and then, they are analysed optimised using a fitting curve
technique to avoid the system from having a higiming error. The solar irradiation and
ambient temperature are selected as the inputstnthi2 maximum available power from the
PV array is the output of what is termed the ANRFiI&del. Under the same weather conditions,
actual PV power is measured using a sensed voladethe current of a PV Simulink
operation. These two power outputs are comparedl ttean error is given to Pl controller to
generate the signal of a DC-DC converter by the Pyélerator, to adjust the operating MPP
point of the PV array.

To sum up, a literature review on ANFIS-MPRT & PV system has been presented. The
methodologies of collected and optimized data aeduning of proposed ANFIS model were
explained. The P&O-MPPT, FLC-MPPT and the propoAdiFIS method were simulated,
being then compared, regarding their popular featurhe real test outcomes for semi-cloudy
day were used to calculate the efficiency of theppsed technique under varying weather
conditions. The results have demonstrated thaptbposed method exhibits higher generated
power, and no deviation from the optimized MPP pdiuring different climate conditions than
the alternative ones proposed, achieving efficenaf greater than 99.3%. Finally, the

implementation of this proposal can be considemagler then hybrid methods.
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Chapter 6

An optimised Neural Network for Predicting the MPP

In this Chapter, a feedforward Artificial NalirNetwork (ANN) technique using
experimental data is designed for predicting th&imam power point of a photovoltaic array.
An ANN model training strategy is challenging dwethe variations in the training and the
operation conditions of a photovoltaic system. deo to improve ANN model accuracy, the
Particle Swarm Optimisation (PSO) algorithm isiséitl to find the best topology and to
calculate the optimum initial weights of the ANN d&b. Hence, the dilemma between
computational time and the best-fitting regressibthe ANN model is addressed, as well as
the mean squared error being minimised. Experinhelata of a sunny and cloudy day are
utilised to determine the average tracking efficieof this proposed method under varying

atmospheric conditions.

6.1 State of the Art

The ANN approach is the leading technigsed in PV-MPPT applications, because it
is able to predict the MPP of PV arrays accuratglgier various weather conditions [148].
Unfortunately, as aforementioned, the ANN modehtray strategy is challenging in relation
to designing the optimised ANN-MPPT controller f¥ systems due to the variations in the
training data and operation conditions. In orddantprove model accuracy, several researchers
have proposed various optimisations, among thenmarHay et al.[87] presented a novel
methodology based on a regression analysis metheeléct effective data for training an
ANN-MPPT model. The data set was collected fromeexpental tests of a PV array installed
at Kumamoto University, Kumamoto, Japan, for onarysnd then, the measured data for two
days with a widely varying weather conditions westected. This proposal gives accurate
predictions when compared with an ANN-MPPT basetheriotal data. Afin and Akkaya [88]
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used a genetic algorithm (GA) to select automdyicdle effective data among all those
collected, resulting in a smaller mean squaredr efrthe ANN training network. Simulation

and experimental results confirmed that this preganception is effective for working with
PV systems.

In [89], Chaouachi et al. classified the r@aia of a PV system installed in Tokyo, Japan,
into three multi-layers based on a fuzzy rules-tasefore they fed them into an ANN for
offline training. The results of this proposed nuethreveal that it achieves the highest
efficiency when compared to the conventional ANNI &&O algorithms under different
climatic conditions. With the same idea, Fathalpad®] used the Lambert W function with a
feed foreword ANN technique to calculate the chiaméstics of silicon and plastic PV cells.
The major contribution of this method is that ihances the performance of the ANN model
in predicting the PV curve.

In [150]. Akkaya et al. used the GA to optimise #hee of the hidden layer of an ANN
model using an evolutionary hybrid algorithm, whrelsulted in minimising the mean squared
error of the ANN training. The experimental resyltsve that the proposed method is efficient
for controlling PV systems under varying atmospheonditions. Similarly, Af et al. [151]
used the GA to find the optimal numbers of neurodes for a multi-layer neural network. The
results demonstrated that the proposed techniqualid in that comparison between the
practical and simulation results showed good agee¢nn the same vein, Zhang and Bai [152]
adapted the GA to find the optimal number of aabdasis function ANN for modelling PV
arrays. The results proved that the proposed meatiiodccurately predict optimised PV power
under various conditions. Hamdi et al. [153] th¢hats used a particle swarm optimisation
(PSO) algorithm instead of the GA one to find th@nmrparameters of the radial basic function
of an ANN network using a novel adaptive stratébiye results provided evidence that the
proposed method enhances the efficiency of MPRKitrg.

However, the selecting the effective training datd determining the topology of ANN
model whose report in previous proposals are censit basic criteria to enhance their
performance. Hence, Duman et al. [61] used a hyB&® gravitational search algorithm
(GSA) to calculate a suitable activation functidrAdIN layers, resulting in the achievement
of an accurate power prediction. Unfortunatelys timodification is classified as a complex
method. There are novel optimisations based ofstkg Wolf and Bee Colony algorithm that
have been proposed in recent years, which have ussehto enhance the performance of Al

techniques such as [154]-[156]. In this work, RS Qtilised to improve the accuracy of ANN
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model due to its sampling technique and fast ogtition delivery. The rest of this Chapter is
organised as follows: Sections 6.2 presents a satierdiagram of PV system based on
optimised ANN-MPPT controller. Sections 6.3 and ti&ec 6.4 cover the principles the

feedforward ANN technique and PSO algorithm, respely. Section 6.5 explains the training

of proposed ANN model. In Section 6.6, the resaitsprovided. Experimental measurement
test results for sunny and cloudy days are provatetidiscussed in Section 6.7, whilst Section
6.8 presents the comparative study based on thpepies of the proposed methods in this

thesis. Finally, Section 6.9 contains the summaéithie Chapter.

6.2 Optimised ANN-MPPT Method

In this Chapter, a feedforward ANN technigsi@mployed to predict the maximum power
point (MPP) of a PV array using a large real tragnilataset, as shown in Figure 6.1. Those data
are collected from experimental tests on a PV amatalled at Brunel University London,
Uxbridge, United Kingdom, as mentioned in Chaptef&optimise the training strategy of the
ANN model, the PSO algorithm is utilised. This &gy is divided into two parts: determining
the right topology and then, optimising the initiaights of the feedforward ANN model. That
is, the issue between the computational time amddist-fitting regression of the distribution of
the ANN nodes is solved in the first part, while gflobal minimum training error of the ANN
model is addressed in the second. Consequentlyréuicting function of the proposed ANN
method is improved under various weather conditidie irradiance®x) and temperature
(Tx) of the atmospheric conditions are used as thetisnpithe proposed ANN model, whilst

the predicting powerRref.) is the output.

[CE

Figure6.1. General diagram of a stand-alone PV system using an ANN-M PPT method.

91



Chapter 6 - An optimised Neural Network for Preiigithe MPP

This regulates the of a DC-DC boost converter after being comparet wie PV'’s actual
power Pact.) using a proportional-integral (PI) controllehdD is converted into the signal
(s) of the DC-DC converter using a pulse-width mation generator (PMW) to regulate the
operating MPP of the PV array. As mentioned in t&ap, the signal control (s) of the PI
controller is given by Eq. (5.8).

6.3 ANN Algorithm

An ANN technique is a distributed processahnique, which is able to save experimental
knowledge of application systems [157]. It doesnequire a good knowledge when modelling
an application system, but it does need accurate tdapredict output functions as close to
reality. This algorithm converts the training dédaa non-linear mapping between inputs and
output nodesANN topology is classified in to two types: feedfordi@and feedback networks.
The first type is the most commonly deployed dueitsousage of less memory in the
implementation stage [158]. Furthermore, it hasygnoto be highly powerful when working
with non-linear systems, such as a PV array. TedftewardANN is also classified into three
kinds includes single layer, multilayer and radlzsis function nets. The multilayer
feedforward ANN is the most popular type because it has a ligility to determine the
weighting of hidden layer [159].

In general, the multilaydeedforwardANN has three layers, input, hidden and output, as
shown in Figure 6.2. Moreover, the neurons of daghr are connected through the weights
of the other neurorand bias terms the antecedent layeiEhis distributed processing system

is defined mathematically by Eqg. (6.1):
n
i=1

where,x; is the input training nodey;; are the connection weights associated with thatjnp
hidden and layer nodes; is the bias of the hidden and the output layeresaghdn is the
number of input signal#\ sigmoid activation function igequentlyutilised to determine the
hidden layer input and target the hidden layer wiufpo learn the process of a feedforward
ANN system, the back propagation (BP) algorithraged.It is a complex gradient algorithm
deployed for enhancing the performance of the ANNIlanging the weights of each node and

the bias termsantil the output value at the output layer predibesactual outputs as closely as
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possible, thus resulting inraduction in the training errof he mean squared error (MSE) is
usually chosen as the cost function, which is giveikq. (6.2):

m

> o -0l (62)

n
MSE =
i=1 j=1

S|

where,n is the number of input datay is the number of output signa¥(i) is the real output,
andT;(i) is the target output. There are two main issuesnadesigning a feedforward ANN:
finding the best topology of its structure (the fu@mof hidden layers and units in these); and
optimising the initial weights of the training nade

Input Hidden Cutput
layar layper layer

Figure 6.2. Block diagram of an ANN system.

6.3.1 Hidden Layer Size

Calculating the optimum number of hidden layand units in each is an important task for
the feedforward ANN design, as this addressessthieeibetween the computational time and
best fitting regressionf the distribution of the ANN nodes [150]-[158160]. If the ANN
model has too many units in the hidden layersctmputational time becomes too long, thus
resulting in an over fittingegressionin contrast, if the ANN model has too few unithidden
layers, then it will have low computational time avhthere is a linear fittingegression. The
most common method fdinding the hidden layer size is a trial and etemhnique. However,
this technique is inadequate as it requires a logny time.
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6.3.2 Initial Training Weights

As aforementioned, the BP algorithm is uselk#éonthe process of the feedforward ANN
model based on searching an error surface. Thisepsing search ishanging as gradient

descent regarding to the incremental change iw#ight (AW) , As explained in Eq. (6.3);
wj; () = nwji(t = 1) + p Awj; (¢) (6.3)

where wjli(t) and lel-(t—l) are the current and previous assumed training M&ig

respectivelyy is the learning rate andis the momentum coefficient. Each iteration in Bie
algorithm has two steps: a forward step to producepdating solution; and a backward step
to compute and modify the MSE to new weights baseHqgs. (6.2) and (6.3). This procedure
continues until the optimal training weights of AN model are determined. Many studies
have pointed out that this method will be failedital the optimised training weights, because
it mostly depends on the size al¥ [160]-[162]. IfAW is large, this can lead to accelerate
training and large fluctuating research on therestoface, thus resulting in a non-converged
optimising solution. Conversely, £ is small, this can lead to slower training and stho
fluctuating research on the error surface, whialldonean that the training process is stopped
before the global minimum error is found. Regardimg concept, the assumed initial weights
play a crucial role in designing an accurate ANNdelo

6.4 PSO Algorithm

The PSO algorithm is considered a high-qualggarch tool in engineering
applications[163]. The principle idea of this algfom is that it tries to find an optimised area,
where each space has a degree of possibility éandidate solution [164]. The movement of
the PSO algorithm is inspired from the behavioubibéls flocking, which depends on the
individual and neighbouring experiences of the Rfpmiser during each particle step. The
procedure of the PS@lgorithm is divided into four steps, as shown igufe 6.3. In the first,
the PSO optimiser starts the search within a ran@anticle value. This particle value is
selected based on the degree of possibility ofteoluspaces regarding several varying
optimisations. In the second step, it compareptieeious and next best fitness valubs)(
and @), respectively, to search for optimised solutionthe same space. In the third step, the
best and global best positiorS,{) are compared to select the global fitness vdbueing this
step, these positions are adapted and recordeédefarext step mathematically, as defined by
Egs. (6.4) and (6.5):
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VIt =w x VI + 7 X op X (P — X)) + 1y X e X (Gp — XF)  (6:4)
X+t = x4 vk (6.5

where, X is the current position of each particlg,is the speed of the search spads the
optimisation vectork is the number of iterations: represents the inertia weight factor of the
speedc: is the cognitive coefficient of the single pariglc: is the social coefficient of all the
particles and andrz are the random velocity values of the search sjeite range 0 to 1. In
the fourth step, the best particle in terms offttreess evaluation is determined and saved to
enhance the particle movement steps in each aarafihose steps continue to work until a
stopping condition is achieved or the number afitiens has ended. The stopping condition
and the number of iterations are proposed basdatieorequired accuracy of the system and

control processing time.

Figure 6.3. The Flowchart of a PSO algorithm.
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6.5 Training of ANN Model

Using a MATLAB-Simulink model, an intellige®NN-MPPT technique based on a large
and real data set of a PV system is proposed. Téatseare collected from the PV system
installed at Brunel University London, as explaiire@hapter 5. The inputs of the ANN method
consist of the G level and T operation of climatmnditions, while the maximum power
measurement of the PV installed array at the MPfasoutput. As mentioned earlier, the
accurate prediction of PV power using the ANN tegha mostly depends on the training
strategy of ANN network. This starts with selectthg topology of the ANN model and then,
optimising its initial weight values. To addresssthtrategy, two algorithms are developed in
the form of a hybrid PSO-ANN technique. The pararebf the PSO optimiser are set as
having the following valuesl = 1.49618¢2 = 1.49618w = 0.7298k = 50 and the swarm size
=20. In addition, the transfer function is utilisad object function of the PSO algorithm. A

schematic diagram of the training methodology & BSO-ANN algorithm is presented in

EEE—

Figure 6.4.

- : +

Tit

Figure 6.4. Schematic diagram of the training methodology.

6.5.1 PSO-ANN algorithm - selected asthe best topology of an ANN networ k

In the first part of this modification, the ®&lgorithm is employed with the ANN model
to find the best topology of the feedforward ANNwerk. Hence, a hybrid algorithm is used
to test progressively increase the number of neuirohidden layer without requiring the user
to preselect the number, which may be inaccurdte.rain steps of this are provided in Table

6.1. The lower and upper boundaries of the neutonbrers in this algorithm are 10 to 20. In
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this work, one hidden layer with two inputs and ogput of the neural network is achieved
with minimum training error, while the optimisedmber of neurons in it is 18 neurons. This
topology will be used in the second modificatioriihal the optimal initial weights of the ANN

model.

Table6.1. The main steps of thefirst proposed algorithm to find the optimised topology of the
ANN.

Step | Command
1 Load data;

2 Set the number of the hidden layer;

3 Set the main parameters of the PSO algorithm

4 Initialise the random number for the neurons of the hidden layer;

5 Generate (for loop) to calculate the MSE for each particle using “netff”,
“train” and “net” commands and Eq. (6.2);

6 Update the MSE value for each particle;

7 Compare the P with the Py of the PSO algorithm for each patrticle;

8 Compare the Py with the Gpi of the PSO algorithm for each particle;

9 Update the velocity and position values of the PSO algorithm by Egs. (6.4)

and (6.5);

10 If the maximum iterations are reached or the stopping condition is achieved,

print the result (the number of neurons of the hidden layer), otherwise return

to step 5.

6.5.2 PSO-ANN algorithm - deter mining theinitial weights of the ANN model

Once the topology of ANN network has been getba hybrid algorithm based on the PSO
and ANN method is designed to find the optimisatiahweights of the ANN model. These
are determined to improve the output predictiothefmodel when the assumed initial weight
values are correcting. To this end, the PSO algorit utilised with the ANN technique. The
main steps of the hybrid algorithm are describetahle 6.2. The lower and upper boundaries
of the weight values in this algorithm are - 0.90t@. As a result of running this hybrid
algorithm the optimised initial weights are obtaln&he search history of the algorithm is
presented in Figure 6.5. Then, the optimal inivaights are used to train the ANN model

using the “nntool” command of MATLAB. Next, the apised initial weights are replaced
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with the standard training weights in a field oktmitial weights of the “nntool” box.

Consequently, the performance of the ANN model dase the optimised training strategy
using the real data achieves better prediction witina conventional ANN. This is because of
its MSE and lesser number of epochs, about 0.0806817 respectively, while those of the
non-optimal ANN are about 0.0079 and 68, respegtivass shown in Figure 6.6. Table 6.3
presents the rudimentary statistical analysis efpgtoposed algorithm. Notably, this proposal

is simpler to design, because it does not needxtta anit in the implementation stage to

improve its accuracy.

Table 6.2. Themajor steps of the second proposed algorithm to find the initial weights of the

ANN.
Step | Command
1 Load data;
2 Set the testing and training samples,

3 Select the number of neurons in the hidden layer regarding to the first
modification;

4 Set the number of initial weights of the ANN;

5 Set the main parameters of the PSO algorithm;

6 Generate (for loop) to calculate the random weights of the ANN using “netff”

7 Generate (for loop) to determine the optimised initial weights after training
the ANN using the “neural_model” “findfitness”, “train” and “net” commends.

8 Calculate the MSE value based on Eq. (6.2) for each particle;

9 Update the MSE value for each particle;

10 Compare the P with the Py, of the PSO algorithm for each patrticle;

11 Compare the Py; with the Gpi of the PSO algorithm for each particle;

12 Update the velocity and position values of the PSO algorithm by Egs. (6.4)
and (6.5);

13 If the maximum iterations are reached or the stopping condition is achieved,

print the result (the optimal initial weights of the ANN), otherwise return to

step 7.
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Table 6.3. Therudimentary statistical analysis of the proposed algorithm.

Training ANN The number of Average +Standard
no. Topology weights and biases deviation of MSE
1 2:10:1 41 0.00795£1.2x1073
2 2:12:1 49 0.00781+1.8x10*
3 2:20:1 81 0.00678+1.4x10*
4 2:17:1 67 0.000769+3.22x10°
5 2:18:1 73 0.000689+1.03x10°

6.6 Results and Discussion

To assess the performance, a MATLAB/Simulingded for the studied PV system is
designed for three popular methods, namely, corvesitP&O, FLC and ANN-MPPT as well
as the proposed ANN-MPPT method. This PV systensistof a PV array, DC-DC boost
converter with the MPPT controller and resistivadpwhilst the array consists of five PV
modules connected in series. The parameters oPiisystem are determined and given in
Chapter 5. The solar irradiance, which used inghraulation, is rapidly decreased from 1000
to 200 W/nt at 1 to 2 s and then, it is increased from 200000 W/n? at 3 to 4 s, as shown
in Figure 6.7, whilst the temperature is kept cansat 25 °C.

As presented in Figure 6.8(a), the predigboeer of the proposed ANN method addresses
the right direction of input solar irradiance dgyivarying atmospheric conditions owing to its
optimised training strategy. In addition, it is am@robust in delivering the optimal MPP under
increasing and decreasing radiation. Whereas tineecional methods for the ANN, FLC and
P&O techniques drifts away from the right directishen the input irradiance rapidly changed,
as presented in Figure 6.8(b). Notably, although pihenomenon is very effective on the
conventional P&O-MPPT method by comparison with dmaventional ANN and FLC-
MPPTSs, it almost avoids the problem when the inpatiance decreases rapidly.

Another advantage of this proposed contraBethat its converging time to reach the
tracking power from the transient state into stestelte conditions is the fastest when compared
with the conventional ANN, FLC and P&O-MPPT methodsing about 0.06s, 0.08 s, 0.11 s
and 0.13 s, respectively, as shown in the zoomegamm of Figure 6.8(a). Moreover, the
fluctuation around the MPP for the steady-stateditmms of the proposed ANN method is the
lowest by comparison with the other methods, thesulting in less consumption time, as

shown in the zoomed in part of Figures. 6.8(a) @)dFurthermore, it is more precise at
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predicting the MPP under steady-state conditioasabse the optimal MPP duty cycle of the
proposed method is more centred than those ofaheentional methods.

Whilst the MPP duty cycle of the conventioANN and FLC-MPPT methods are to the
left and right of the optimal MPP duty cycle of tleenventional P&O-MPPT method,
respectively. Consequently, the dissipated powehénproposed ANN-MPPT method is the
lowest when compared with the conventional ANN, Fu@ P&O-MPPT methods. Hence,
the tracking power of the proposed ANN-MPPT methtmhg with those of the conventional
ANN, FLC and P&O-MPPT methods, after they have hedcthe MPP, is about 924.60,
924.00 W, 923.25 W and 922.50 W, respectively,hesve in the zoomed in part of Figure
6.8(a). Table 6.4 reports a comparative study d¢ogehe main properties of the conventional
ANN, FLC and P&O-MPPT methods as well as the omedi ANN-MPPT. Regarding this
Table, the converging time and tracking power @& finoposed method are the fastest and
highest, when compared with the conventional ANNCFnd P&O methods. In addition, the
fluctuation around the MPP is the least of all tiethods. Moreover, the predicting power of
the optimised ANN avoids the drift problem undestability conditions.

Table 6.4. A comparative study covering the main properties of the conventional ANN, FLC and
P& O-MPPT method aswell asthe optimised ANN-MPPT.

MPPT Tracking Oscillation | Power (W) Drift
time (s) Problem
Optimised ANN 0.06 Low 924.60 Avoidance
Conventional ANN 0.08 Low 924.00 Suffering
Conventional FLC 0.11 Medium 923.25 Suffering
Conventional P&O 0.13 High 922.50 Suffering
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Figure6.7. Theirradiance level of weather conditions.
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6.7 Experimental Measurement Tests

To assess the prediction of the proposed ANfthod under different climatic conditions,
experimental measurement tests of a sunny ancud\ciday on % July 2018 (06.00 - 19.00)
and 3@ July 2018 (06.00 -19.00), respectively, have hesal. The irradiance and temperature
of those days are presented in Figures. 6.9(ajlgnd@hen, these are applied to the studied PV
system with the conventional P&O, ANN and FLC-MPRisswell as the optimised ANN
method, as shown in Figures 6.10 and 6.11.

In the first case, the predictive power o ttonventional P&O method finds the right
direction of the input weather conditions on tharsuday; however, it drifts away from the
right prediction on the cloudy day, as presentetiénzoomed in parts of Figures. 6.10(a). The
issue becomes worse regarding the power of theetional P&O method, when the solar G
of the cloudy day is rapidly changed, as showniguie 6.11(a). In the second case, when
comparing the proposed ANN method with the conwerai FLC one, the predicting power of
the latter method suffers from the deviation orhbibie sunny and cloudy days, as shown in
the zoomed in part of Figures. 6.10(b) and 6.1 Hbjvever, the problem can be seen as having
a minimum effect when compared with the conventi®&O method.

In the third case, whilst the drift problemeses to have very little effect on the power
prediction of the conventional ANN method on bo#lys] it is inaccurate to track the MPP, as
shown in the zoomed in part of Figures. 6.10(c) @id (c). Notably, the prediction function
of the conventional ANN on the cloudy day has ahargdeviation when compared with that
on the sunny day. In contrast, the power prediatiothe proposed ANN method is as close to

the reality during both sunny and cloudy days d@uistoptimised training strategy.

To determine the tracking efficiency of the RIPmethods, the average MPPT efficiency
formula based on tracking time is usually usedyiasn in Eq. (4.9). However, a sample time
has been used in this chapter instead of the trgdkine. This is because the average MPPT
efficiency formula based on the sample time carsgrethe comparative results of several
MPPT methods clearly, especially in the case oiouarexperimental tests. The actual and
theoretical output power of MPPT method are divideid 12 samples for each hour to
calculate the prediction efficiency of the MPPT huets under varying atmospheric conditions.
As presented in Figures. 6.12(a), and (b), as agelable 6.5, the hourly average efficiency of
the proposed method achieved the highest efficiatyboth sunny and cloudy days by
comparison with the conventional ANN, FLC and P&@RRIT techniques.
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Table 6.5. Comparative study regarding the hourly aver age efficiency for the proposed method
and the conventional ANN, FL C and P& O-MPPT techniques.

Atmospheric Average efficiencies
Proposed Conventional Conventional | Conventional
method ANN FLC P&O
Sunny day | 99.68% 99.17% 98.90% 98.18%
Cloudy day | 99.30% 97.43% 94.69% 88.21%
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Figure 6.9. Experimental measurement testsfor a sunny and a cloudy day of: (a) irradiation;

and (b) temperature.
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Figure 6.10. MPPT predicting power on a sunny day using the proposed method versus: (a) the
conventional P& O method; (b) conventional FL C method; and (c) the conventional ANN
method.
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Figure6.11. MPPT power prediction on a cloudy day using the proposed method versus. (a) the
conventional P& O method, (b) conventional FL C method; and (c) the conventional ANN
method.
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Figure 6.12. The average efficiency of the predicting power for the conventional P& O, FLC and
ANN aswell asthe proposed method on a (a) sunny day and (b) cloudy day.

6.8 Overview of the Proposed Methods

According to the results of the proposed meéshan this research, the better MPPT
controller for PV applications is the optimisedirtiag ANN technique using the particle

swarm optimisation when compared with the optinoairng ANFIS technique based on the
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curve fitting technique, if the installed PV systdata is available. This is because it achieves
a higher tracking efficiency about 99.67 % and 098 under the sunny and cloudy day,
respectively, while the optimal tuning ANFIS teaiume achieves about 99.30 % under semi-
cloudy day, as well as the tracking time being mised about 0.01s. This is because of its
training error is 0.00068, while the optimal ANR$3.0706.

On other hands, the novel MPPT technique basethe FLC and P&O algorithm is an
appropriate method to enhance the PV electricaéiggion when the very well knowledge of
the PV systems is familiar for MPPT designers tsigle the fuzzy rules of proposed FLC-
MPPT owing to its ability to track the MPP when rthare big fluctuations of irradiation.
Furthermore, it is the lowest complex implementatnd least part units when compared with
the other intelligent MPPT controllers. Consequgtitlachieves the highest tracking efficiency
under the EN 50530 standard test around 99.6 %devitieé modified P&O-MPPT method has
been designed for low-cost PV systems becauseailasver complex modification. As well

as, it does not eliminate the oscillation nor avbig drift problem completely.

6.9 Summary

An optimised feedforward artificial neural wetk technique based on the Particle Swarm
Optimisation algorithm using real data has beetisetl for modelling a current-voltage
characteristic and predicting the maximum powernpodf photovoltaic arrays. This
optimisation was divided into two parts: selectthg best topology and then, optimising the
initial weights of the feedforward ANN model. Acdimgly, the problem between the
computational time and best-fitting regressionhaf distribution of ANN nodes was solved in
the first part, whilst the mean squared error & &NN model was reduced in the second
optimisation. Consequently, the predicting powertltdé ANN-MPPT controller has been
improved under various weather conditions when amegbwith the conventional ANN, FLC,
and P&O methods.

In addition, the converging speed of the pssgobmethod has been enhanced under a
transient state. As a result, hourly efficienciémore than 99.67% and 99.30% on sunny and
cloudy days, respectively, have been achieved. Mare this controller also improves the
stability and reliability of the PV generation whénconnects to a grid. Furthermore, the
optimisation has been demonstrated to be simpgles@mn. To sum up, a state of the art of the
ANN-MPPT for PV systems is advanced. the principhesfeedforward ANN technique and
PSO algorithm are covered, following by a schemdiagram of ANN-MPPT controller. The
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training of proposed ANN model is designed, follogiby its results. Then, experimental data
of a sunny and cloudy day are used to determinawbeage tracking efficiency of this proposed
method under varying atmospheric conditions. Fnaln overview of results of proposed

methods in this research is presented.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The efficiency, stability and reliability ofpdnotovoltaic energy are considered major factors
for establishing this energy resource on the matkehis research, common maximum power
point tracking techniques, including perturb andee, fuzzy logic control, adaptive neural-
fuzzy inference system and artificial neural netwoave been proposed for a grid-connected
PV system to maximise the output power of a PVWarfae aim has also been improving the
stability and reliability of a PV power conversiaspecially in the context of a rapid change in
atmospheric conditionslhe following is an overview of the scope, main tcinutions and

conclusions of the study.

* A comprehensive review of various PV-MPPT methadsluding the CV, FOCV,
P&O, IC, FLC, ANN, ANFIS and PSO techniques, basedheir main features, has
been presented. In addition, the advantages aadwistages of each MPPT method
has been described and discussed to help researahdgrstand and thus, be able to
choose a suitable MPPT technique for tackling tkpecific issues. Regarding the
outcome of this evaluation, the MPPT controllersngsartificial intelligence
techniques have more complexity, cost more andliéfieult to implement. However,
they have higher tracking efficiency, faster trackspeed and less oscillation than the

classical MPPT methods.

* The modelling and control of the PV system haventsesyeloped by using MATLAB-
SIMULINK to test the performance of the various MPBontrollers. The primary
results have proven that employing an MPPT comraliith the PV system increases

the output PV power, reduces the converging tint mmimises MPP fluctuations.
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Hence, the average tracking efficiency of the P%tay is improved as well as the
stability and reliability of the PV generation bgienhanced when it connects to the

grid.

* Four common types of MPPT controllers, including B®&O, FLC, ANFIS and ANN
methods for PV electrical generation, have beeneldged based on simple
optimisation strategies to enhance a PV systendurntinder different atmospheric
conditions. The main features of each method weéseudsed to facilitate MPPT
designers’ understanding and thus, be able to tsalewitable technique for their
application area of interest. Then, the proposethous were developed to improve

their performance, especially under a rapid changématic conditions.

* Whilst several techniques have been designed, ¢neiB and Observe algorithm is
widely used for MPPT due to its low cost and simipi@lementation. However, the
main drawbacks of this method are a long convertiing, large oscillation around the
maximum power point, and the drift problem assedatvith rapidly changing
irradiance. Hence, the modified P&O-MPPT based gthd&orean theorem and
constant voltage algorithm was proposed to addhessiain issues of the conventional
P&O algorithm. However, grid-connected PV systemsdd on the conventional P&O
and modified P&O algorithms deliver fluctuating Gltage during rapidly changing
weather conditions. This is because they do noidaW@ drift problem and eliminate

the oscillation about the MPP completely.

* A novel maximum power point tracking techniquedzhsn fuzzy logic control for a
grid-connected PV system has been presented, Waglthe ability to track the MPP
when there are big fluctuations of irradiation. S'Tproposed method incorporates the
advantages of the P&O-MPPT to account for slowfastichanges in solar irradiance.
There are reduced processing times for the FLC-MR#&Taddressing complex
engineering problems when the membership functtmadew. The simulation results
have revealed that the proposed technique exhifigeer output power, and no
divergence from the MPP during varying weather domts regardless of the speed of
such change. That is, the proposed concept hassbesvn to be highly effective for
working with a grid-connected PV system, achieaffgciencies of around 99.6% under
The EN 50530 standard test.
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An efficient maximum power point tracking technigo@sed on the Adaptive Neural-
Fuzzy Inference System (ANFIS) using a real phdtaimdataset has been designed.
A curve fitting technique was used to analysisitipeit experimental data and optimise
the tuning of ANFIS model, thus resulting in avaiglithe system from experiencing a
high training error. The results have demonstréted this proposed method exhibits
higher generated power, and no deviation from gieesed MPP point during different
climate conditions, than the alternative ones, eghg efficiencies of greater than

99.3% under a semi-cloudy day test.

An optimised feedforward Artificial Neural Netwo(RNN) technique using real data
has been utilised for modelling current-voltage rabteristics and predicting the
maximum power point of the photovoltaic array. der to improve the ANN model’s
accuracy, the particle swarm optimisation (PSO9riigm was deployed. Accordingly,
the predicting power of the ANN-MPPT controller Hasen enhance under varying
weather conditions. In addition, the convergingespef the proposed method has been
enhanced under a transient state. As a result|yheflficiencies of more than 99.67%

and 99.30% on a sunny and cloudy day, respectihalye been achieved.

The optimised training ANN technique based on tB®Ralgorithm is a preferable
method for designing a PV-MPPT controller compaméti the optimal tuning ANFIS
method based on the curve fitting technique. Thibaecause it achieves a higher

tracking efficiency and faster tracking speed unbderexperimental measurement tests.

The proposed MPPT technique based on the FLC and Bi§orithm is the most
suitable method for enhancing PV electrical gemamatiue to its ability to track the
MPP when there are big fluctuations of irradiatibtence, it achieves the highest
tracking efficiency under the EN 50530 standartl ¥4ile the modified P&O-MPPT

method has been designed for low-cost PV systestisray

7.2 Future Work

In this research, various MPPT controllersehaeen developed to improve the average

tracking efficiency, increase the stability and &mte the reliability of a grid-connected PV

system, especially under a rapid change in weatbeditions. However, there are other

challenges that need further solutions, if investimthis type of energy resource is to become

more attractive, some suggestions being as follows.
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Partial Shading Condition

Enhanced tracking efficiency of a PV systendamrapidly changing atmospheric
conditions has been demonstrated in this curremkwbwould prove beneficial to improve
the PV system performance under a partial shadingliton. This condition happens when
there is a shading, which can be caused by tre#oshar dust, i.e. on part of the PV array. In
this case, the PV array will generate several MPfesice, the total generating efficiency of
the installed PV array decreases. To solve thiseisan MPPT controller based on the PSO

algorithm could be used.

Fault Ride Through

A fault situation is considered one of the enajhallenges facing large-scale PV systems
when connected to the grid. This issue can cadgeamic stability problem with voltage rise.
However, disconnection of faulty units could catisesystem to malfunction. To address this

issue, advanced active control and advanced reaotintrol would need to be employed.

Frequency Response State

The problem of frequency response happens whesotlier generation unit or load demand
change rapidly, leading to a large frequency d@atWhilst this issue is very common for
classical power grid due to increased power Idad,donsidered a huge challenge in the case
of a grid-connected PV system, because its poweergéon changes rapidly. To solve this
issue, three approaches put forward are: emplogginiyIPPT controller, installing a storage

unit and adding a dump load.
Economic Dispatch Challenge

Economic dispatch is a major featéwe power generation units when they are connected
with a utility grid. The principle idea of this dienge is to deliver optimal generation from
each unit in the power plant for a given demandhat lowest possible cost. In classical
generation, the economic dispatch challenge isrmdted according to the relationship
between the burning of fossil fuel and the optip@der generation of a traditional plant. While
the economic dispatch challenge of a PV systeral@utated based on the factor of the capital
cost and the optimal power generation of a solargoglant. This issue has three categories

of problems that need to be addressed: generaspatdh, reserve strategy, and instability.
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Appendix A

Experimental Data Sample

Table A.1 The data sample which collected from experimental PV test.

Irradiance (W/m?) | Temperature (°C) | PV power (kW)
1036.¢ 32.28: 0.833¢
1026.: 32.1:% 0.832:
1018.: 32.98¢ 0.831:
311.88 9.4% 0.242¢
353.93! 9.65¢ 0.291¢
238.53! 10.22: 0.221:
229.23. 10.35¢ 0.229¢
163.08:« 10.29: 0.165¢
160.20¢ 10.17¢ 0.167:
173.96¢ 10.07¢ 0.192¢
175.50! 9.98¢ 0.188:
238.53! 9.96: 0.201¢
296.24. 10.11: 0.207¢
256.33! 10.36: 0.179¢
187.15¢ 10.64¢ 0.107:
129.18t¢ 10.7¢ 0.128!
96.19: 10.74" 0.096¢
127.49¢ 10.66¢ 0.130:
271.12¢ 5.79:¢ 0.185¢
284.76¢ 6.18¢ 0.222¢
239.93¢ 6.33¢ 0.203:
272.39¢ 6.53¢ 0.245
251.21: 6.52¢ 0.234¢
325.69: 6.64] 0.231]
336.76: 6.801 0.226¢
330.97: 7.04¢ 0.202:
345.59: 7.21% 0.208¢
273.21¢ 7.32¢ 0.189:
245.62¢ 7.29¢ 0.237:
156.71 6.64 0.177¢
179.80! 6.75¢€ 0.195:;
160.65: 6.91 0.173¢
187.69¢ 7.07] 0.204¢
295.68t¢ 7.217 0.309¢
425.36: 7.59 0.397¢
313.19° 9.26¢ 0.271¢
464.03: 9.49¢ 0.378
461.34. 9.67 0.373¢
396.16: 9.96¢ 0.308:
148.61- 10.14¢ 0.123¢
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17712 8.30¢ 0.180¢
93.15¢ 8.14: 0.079¢
40.34¢ 8.011] 0.046¢
45.94¢ 7.91 0.059¢
64.55¢ 7.78¢4 0.078¢
95.18¢ 7.57¢ 0.114:
245.38t¢ 7.39¢ 0.226!
298.31! 7.40¢ 0.258¢
283.35: 7.68i 0.244:
138.35¢ 7.98i 0.137-
114.06: 8.181 0.123-
92.27¢ 8.1¢ 0.095%
124.95! 8.181 0.133:
112.19 8.16¢ 0.114:
265.59! 7.67 0.200%
253.94¢ 7.78i 0.211¢
265.39¢ 7.85¢ 0.199¢
293.53: 7.94:% 0.206¢
286.71! 7.97¢ 0.192¢
339.45¢ 8.19¢ 0.269¢
270.71: 8.27¢ 0.216¢
357.45( 8.20¢ 0.270¢
356.98t 8.25¢ 0.281¢
371.318 8.51¢ 0.279¢
368.28! 8.717 0.294.
383.16¢ 8.87¢ 0.282:
368.53: 8.8¢ 0.244:
377.69° 8.87¢ 0.252;
471.27¢ 9.35¢ 0.366¢
415.94: 9.51¢ 0.325¢
393.35: 9.60z 0.314:
287.90: 9.52 0.232¢
333.99. 9.42¢ 0.267¢
230.11¢ 9.452 0.210:
184.70:« 9.22¢ 0.196:
229.36¢ 8.96: 0.221:
260.08° 8.86¢ 0.228-
139.17¢ 9.11Z 0.143¢
114.10: 8.681 0.126:
293.29° 7.67 0.283¢
305.53¢ 1.77¢ 0.288¢
232.90¢ 7.8¢ 0.226!
201.29¢ 7.97: 0.189;
184.88¢ 8.03¢ 0.190¢
186.92° 7.98¢ 0.195¢
302.87¢ 7.96¢ 0.277-
227.10¢ 7.69¢ 0.225¢
379.4¢ 7.7¢ 0.340¢
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Appendix B

Data sheet of Sharp NU-S5E3E 185 PV module

SHARP TE%S;EBE / NU18B5E1

Photovolimic module mone ryshatine

| ot

Shasps WAUSSEIE ¢ UEESE ) photmokac sodule 15
dre il e for lampe elertiio] plwesd reclirms
. : High jus e L TR irdeg 155 T mim Sopiem
T i.:||"l'_-'.| 1 HE rey irirn - e
: oy aline siion solar cely welh 14,7 % modale
or prar A7 yeoee, ths modale has superh dershdey o R
3 i
i A i oSOl Dperatiig B o aid B wiifable
br grl e symjee Photwakaic modale with bepass Sode menamisss the
il Oy Coosai] Dy thaoe Teodored Call cunan o
srlyrm fhm el Fasnight wee] B5F Mack Serfse=
Nefed smumie o trpreye el cofeerzon =fidensy
Pes TS peegd slens, PRA medn, ond 8 eeat
! 8l Wi Wt i e P i Pt
st e
B 1ulpul beerina L Lead wire with yaerool comnedo
£ m=mpacal m i
{LFAESE s reanufarnesd i 10K
et Iros D acw Of Mot O models &0 ot

il demage redisnce Devied B TUY n sxovdance with

erGR1715

131



Appendix

Specifications
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Appendix C

PSO-ANN Algorithm (S-Function)

clear all
cl ose all

OUDATA
| oad dat a;

B=regress(Y,X); % B _matlab=Y*(X"-1)

N _par =1,

%SO

N=20; % we need to justify for 20 particles.

MaxVal ue=50;

M nVal ue=1;

V=zeros(N, 1);

Xp=r ound( M nVal ue+( MaxVal ue- M nVal ue) *rand(N, N_par));

osecond Part

Pl =Inf(N, 1);

Pbest Val ue=I nf;

Lbest Val ue=I nf;

V=zeros(N, N _par);

Xp_particl eBest=zeros(N, N _par);

cl 49618;
c2 49618;
w = 0.7298;
Ni t =50;
for ii=1:Nit
%for loop to the PI calculate per each Particle
for i=1:N
net=newf f (i nput' , P, Xp(i));
net=train(net,input',P);
D=net (i nput"');
XB=nse(D- P );
Pl _1(i,1)=XB;
%updat e the position value and the Pl val ue per each
particle
if PI_I(i,1)<PI(i,1)
PlL(i,1)=P_I(i,1);
Xp_particleBest(i,:)=Xp(i,:);

= 1.
= 1.

end
end
Ytipdate the L-best position value
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[ Lbest Val uen, Lbest | ndexRow] =mi n(Pl); % n fitness,
m n_fitness_index
i f Lbest Val uen<Lbest Val ue
Lbest Val ue=Lbest Val uen;
L _best =repmat ( Xp(Lbest | ndexRow, : ), N, 1);
end
Ytpdate the G best position val ue
[ Pbest Val uen, Pbest | ndexRow] =m n(PI'); % n_fitness,
m n_fitness_index
i f Pbest Val uen<Pbest Val ue
Pbest Val ue=Pbest Val uen;
G _best =repmat ( Xp( Pbest | ndexRow, : ), N, 1);
end

%SO equat i on

V=w*V+cl*rand( 1) *( Xp_particl eBest-Xp)+c2*rand(1)*(G best-
Xp); %update speed

Xp=r ound( Xp+V); %update position

Pl _plot(ii)=mean(Pl)
end

pl ot (Pl _pl ot)

m n(Pl)
G best(1,:)
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Appendix D

Modified P&O Algorithm (S-Function)

function D = P& (Param Enabled, V, 1)

% D out put
%

% Enabl ed input = 1 to enable the MPPT controller

%V input = PV array termnal voltage (V)

%1 input = PV array current (A

%

% Param i nput :

Dinit = Paranm(1l); %nitial value for D output

Dmax = Paran(2); %vexi mum val ue for D

Dmin = Param(3); %MV ni rum val ue for D

deltaD = Param(4); % ncrenent value used to increase/decrease

Duty cycle of the boost converter

% ( increasing D = decreasing Vref )
%

persi stent Vol d Pold Dol d;
dat aType = 'doubl e';

i f isenpty(Vold)

Vol d=0;
Pol d=0;
Dol d=Di ni t;
end
P= V*I|;
dv= V - Vol d;
dP= P - Pol d;
if dP/P > 0.01
if V < 244
D = Dold - deltab;
el se
D = Dold + deltab;
end
el se
if dP < 0O
if dv < 0
D = Dold - deltab;
el se
D = Dold + deltab;
end
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el se
if dv < 0
D = Dold + deltab;
el se
D = Dold - deltab;
end
end

end

if D> Dmax | D<= Dmn
D=Dol d;
end

Dol d=D;
Vol d=V;
Pol d=P;
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Appendix E

The Simulink model of a grid-connected PV system

Figure E.1. The Simulink model of a grid-connected PV system based on MATLAB simulation.
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Appendix F

The graphical rules of a FLC model

4. Rule Viewer: F4 — O >
File Edit View Options

inputt=0 input2 =0 output! = -0.000707
1 - | I - | I f |
2 | ™ | I = | I { |
3| | I [~ | I f |
4| | I | I \ |
5 | | I | I I, |
6 | | I | | I [ |
7 | I [ ™ | I [ |
8 | | I | I A |
8 | " | I - | I il |
10| S | I = | I F |
1 " | I [ | I il |
12 ™, | I | I [ |
13 | | I - | I \ |
14| | I | | I \ |
15 | | I [~ | I Y |
16 | | I | I { |
-5 5 005 005 | y | |

Input: [0:0] Plot points: |41 Mowe: left | right | duwn| up |

Opened system F4, 18 rules Help | Close |

Figure F.1. The graphical rulesof a FLC model.
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Appendix G

The linguistic rules of an ANFIS model

“&] Rule Ecitor v
File Edit View Opticns

rrrhp.rl hﬂn;.- w]wmpﬂhmupm foutpul i putimiz} (1)
‘3. W iinputt B wery_law ) and (npui2 & high) then (autput @ st nfdk (11
A et s lowep and (npal? is o) than (ostput s oout Todd ) 1)
S5 IF (inputt i o) and Cneat? B maduimy tkan foupud i autimiE) 1)
%. It Input? & o} and (rpatZ is high) Than [owlpul Is sut1mmss 1]

¥ {input1 & medum) and (npul? is o) tken [mutput e outImd 7))
& I finputd & medulm) and (nput? is medsing fhen (ouleul & ot oS 11
‘2. It {input1 | meduim) and {nput2 s high| then joutput s out1miz) (11
1ﬂ'H{rmiahmbﬂdhwrﬂuhw]hndnmtnmﬂnﬂﬂﬂ}

Figure G.1. Thelinguistic rules of an ANFIS model.
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Appendix H

Neural Network Training Regression

Tradning: R=0 5646 Walidation: R=0.95255

o 12| R B iy '
[} L=
[ Lo | |
= i + 1
E.‘I.—:l F - | 4
E =
o 3 o]
o 8| o 6 i
= 1 { |
1 n |
! 04l |
LA B
ﬂ: .2 1. |:_:'I| ....:'. l
] 0 o 1
o] {8 i i, .5 1
Tamel Tangat
Test: R=l 36167 All; R=0,9638T

Cutput == D93 Targat « 0,022

Tanget Tamal

FigureH.1. Thetraining regression of an ANN model
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