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ABSTRACT

Hydrodynamics and heat transfer study in a fully developed,
laminar, 2D, incompressible, no viscous dissipation, reciprocating and
pulsating pressure driven flow in horizontal channel and pipe subjected
to a constant heat flux has been investigated. New theoretical model is
obtained by solving analytically the momentum and energy equations
for both reciprocating and pulsating flow in the channel and the pipe
using similarity transformation solutions. The main controlling
parameters obtained in the reciprocating flow are: Womersly number A,

dimensionless amplitude of fluid displacement A, , Prandtl number Pr
and the ratio of distance to hydraulic diameter x/D,, while the

controlling parameters of pulsating flow are: Womersly number A, mean

Reynolds number Re_, the ratio of amplitude to steady pressure

mo
gradient ', Prandtl number Pr and the ratio of distance to hydraulic
diameter x/D,.

The results of reciprocating flow showed that both velocity and
temperature distributions are affected by the oscillation, and
Richardson’s annular effect is appeared in the velocity and temperature

distributions. The instantaneous-local Nusselt number Nu, is varied

periodically with time and its enhanced by the order of magnitude with
increasing Womersly number or the frequency of oscillation.

Further, the results of pulsating flow showed that an imposed flow
pulsation causes both the temperature and Nusselt number fluctuate

periodically about the solution for steady laminar flow. The time

average-local Nusselt number Nuy is constant and equal to 8.235 for

channel and 4.364 for pipe with variation of all controlling parameters.



The results were found in very good agreement with that obtained
numerically using finite volume method. The comparison between
experimental results of other authors available in literature and present

analytical model gave a reasonable identification.
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NOMENCLATURE

List of Symbols

Symbol Definition Sl Units
a Radius of the pipe, m
Constant
A Area, m?2
Parameter defined be Eq.3.10a
A, Flow area m?
A, | Dimensionless amplitude of the fluid displacement,
X max / Dh
B Parameter defined by Eq.3.10b
Bei, | Imaginary part of complex Bessel function defined
in Appendix B
Ber. |Real part of complex Bessel function defined in
Appendix B
C:i. | Time-averaged friction coefficient of a fully
developed flow
C, Specific heat at constant volume J/kg.K
C, Specific heat at constant pressure J/kg.K
C Parameter defined by Eq.3.10c
Parameter defined in Appendix A&F
C, Constant
C, |Constant,
Function defined in Appendix G
C, | Constant,
Function defined in Appendix A&F
C, | Constant
D Diameter, m
Parameter defined by Eq.3.10d,
Parameter defined in Appendix A&F
D, | Hydraulic diameter m
E Parameter defined in Appendix A & F
E, Parameter defined in Appendix A & F
f Similarity transformation function for velocity,
Frequency Hz
F Parameters defined in Appendix A & F




F Parameters defined in Appendix A & F
g Similarity transformation function for temperature
Gz | Gratez number, x/Re Pr
h Half height of the channel m
h, Instantaneous-local heat transfer coefficient W/m?
K
h, | Time averaged-local heat transfer coefficient W/m?®
K
H Height of the channel m
IM, | Parameters defined in Appendix C
IM, | Parameters defined in Appendix C
IM, | Parameters defined in Appendix C
J, Bessel function of ordern, n=0,1,2,3 .......
k Thermal conductivity of the fluid, W/m.K
Constant
L Length of pipe m
Nu | Space-cycle average Nusselt number
Nu, | Instantaneous-local Nusselt number
Nu, | Time averaged-local Nusselt number
p Pressure N /m?
P Wetted perimeter, m
Parameter defined in Appendix A & F
P(a) | Parameter defined by Eqgs.2.25a & 2.25b
P1 Parameter defined in Appendix A & F
Pe Peclet number, Re Pr
R Amplitude of pressure gradient _1lop m/s®
P OX
Pr Prandtl number
q” Heat flux W/ m?
Q Parameter defined in Appendix A & F
Q1 | Parameter defined in Appendix A & F
Q. | Convective energy transfer in one cycle W /m?
r Radial coordinate m
R Radius of pipe, m

Function defined by Eq.3.112

RE,

Parameter defined in Appendix C




RE, | Parameter defined in Appendix C
RE, | Parameter defined in Appendix C
Re Reynolds number, ?
Re_; | Critical Reynolds number, 2300 for pipe
Ren Mean Reynolds number, u”‘“/D
Re;, |Reynolds number based on the Stokes’s layer,
umax'5
oy
2
Re, Kinetic Reynolds number, Dv'a)
Str, Strouhal number, C:—X
t Time S
T Temperature K
T, Fluctuation temperature K
T, Steady temperature K
u Axial velocity in x-direction m/s
u, | Mean velocity m/s
U, | Maximum velocity m/s
U, Fluctuation axial velocity m/s
u, Steady axial velocity m/s
u, |Free stream velocity m/s
U Dimensionless axial velocity in x-direction,
Parameter defined in Appendix A&F
U, Parameter defined in Appendix A & F
U, Parameter defined in Appendix A & F
Vv Velocity in the y-direction m/s
V | Volume m®
\ Velocity vector m/s
W Parameter defined in Appendix A&F
X Axial coordinate m
X Function defined by Eq.3.112,

Dimensionless axial distance




X, X, | Functions defined in Eq.3.76
X | Maximum displacement of the fluid m
y Normal coordinate m
Y Parameter defined in Appendix A & F
Y, Parameter defined in Appendix A & F
Function defined in Eq.3.76
Y, Function defined in Eq.3.76
Z Complex variable.
Z Parameter defined in Appendix A & F
Z, Parameter defined in Appendix A & F
Greek symbols
symbol Definition SI
Units
o Thermal diffusivity of fluid m?/s
a. | Effective thermal diffusivity due to flow oscillation m?/s
B Parameter defined by Eg3.49
p.i |Critical value of reciprocating pipe flow,
(AO v Rew )cri
Y Time average axial dimensionless temperature
gradient, dTe
dT”
7' The ratio of the amplitude to the steady value of the
pressure gradient
0 Oscillatory boundary-layer thickness, v2v/w
57 Axial distance between the nodes
S5, Normal distance between the nodes
Ax | Tidal displacement. m
¢ velocity ratio, Yinax
n Dimensionless distance, yvo/2v
0 Weighting parameter,
Concentration of the contaminant, mole

Dimensionless temperature, T TI

w i




K Diffusivity of the contaminant m2/s
ko | Effective diffusivity of contaminant m?/s
& Womersly number, hWeo /v or %m
0 Dynamic viscosity kg/m.s
1% Kinematics viscosity m2/s
P | Density kg/m?
T Time of period. S
o Angle of radial coordinate (crank angles). rad
W Intermittency of flow turbulence.
@ Angular frequency. rad/s
= Stokes number, %«/a)/ZV.
Subscripts
b Bulk
Cc Center
cri Critical
e East
eff Effective
f Fluid
h Hydraulic
[ Inlet
m Mean
max Maximum
min Minimum
n North
r Relative
p Pulsating
t Time, fluctuation
S Steady or mean flow, south
w Wall, west
00 Fully developed flow or at free surface.

Superscripts

Average, mean.

+

Dimensionless.

0

Lag time.




CHAPTER ONE
INTRODUCTION
1.1 General

The modern life progress and it’s increased requirements lead to

thinking about the several phenomena that surround us. Out of these
phenomena, unsteady of the flow and the heat transfer (oscillatory flow),
which have a rich interest from researchers to enhance the performance of
this operation.

Generally, the oscillatory flow can be classified as either a
reciprocating flow where the mass flow rate and the pressure gradient of
reciprocating flow fluctuate about a zero mean value ,therefore, a zero net
flow of fluid along the duct, or a pulsating flow where the mass flow rate
and the pressure gradient of pulsating flow fluctuate about a mean value of
nonzero and there is ,therefore, a net flow of fluid along the duct (Fig.1.1).
These two types of the flow occurred in numerous fields such as:
oscenilogical, medical or biological (human respiratory and vascular
systems), and industrial applications such as
1-The intake or the exhaust manifold of internal combustion engines and a
Stirling-cycle machines.
2-The electronic cooling and the space-base technology.
3-The flow in the hydraulic or the pneumatic lines and control systems.
4-The heat exchangers (heaters, regenerators and coolers) and pulse
combustor.
5-The chemical and the food technology.
6-The pumping systems and the cavitations and hydraulic pipe lines.

7- The continuous casting and metallurgical processes.



For more clarity, this introduction will be divided into a number of sections
and it will be discussed separately as bellow:
1.2 Characteristics of the Oscillatory Flow

There are several motions that depend on the time (unsteady flow), a
simple example of unsteady boundary layer is the oscillatory boundary
layer, the motion that starts from the rest (accelerated film by gravity), or
when it is driven by periodically flow. The oscillatory flows are classified

as.

1.2.1 The Flow Near an Oscillating Flat Plate

This type of flow is called Stokes’s second problem which discuss the
flow about an infinite flat wall, that execute linear harmonic oscillations
parallel to itself and which was first treated by Stokes!™. Because of: no slip
condition at the wall the velocity of the particles of the fluid at the wall is
considered as a part of the wall, and must be equal to that of the wall (the

wall moves harmonically). It was found the layer which is carried by the
wall has a thickness of order 6 «cv/v /@ (Stokes layer), and it decreases for

decreasing kinematics viscosity and increasing frequency!.

Recently, there are more extended researches (similar to Stokes’s
second problem) to study the effects of a periodically changed conditions at
the wall, such as a oscillatory temperature or oscillatory heat flux at the wall
or surfacel®. In the special design for heat exchangers (for examples plate
heat exchangers), the plate are made periodic wavy to improve the heat
transfer®*.,

1.2.2 Reciprocating Flow
The necessity to improve the thermal and hydrodynamic performance

of Stirling machine, crycoolers, internal combustion engines, etc., have



prompted researchers to pay increasing attention to the study of heat transfer
and fluid flow characteristics in the reciprocating flow. In the reciprocating
flow the fluid displacement is obtained by displacer such as piston and by
periodical motion of displacer , the harmonic motion is made. The
reciprocating flow requires to interchange between the inflow and outflow
boundaries during a cycle. For most application, it is a difficult to determine
the inflow/outflow boundary conditions, since the fluid particles exiting the
flow domain during a part of cycle are fed back into the domain later in the
cycle.

The main parameters in the reciprocating flow are depending on
frequency and amplitude of the harmonic motion which called: Womersly

number A or kinetic Reynolds number Re, and dimensionless amplitude of
the fluid displacement A, . It is agreed in general, that a reciprocating flow

becomes unstable with increasing either the dimensionless amplitude of the

fluid displacement A , or the kinetic Reynolds number Re, or Womersly

number. The critical dimensionless parameters for which the transition from

laminar to turbulent occurs is g, = (AOQ/Rew )Cri :

1.2.2 Pulsating Flow

The pulsating flow has a several practical applications for examples:
rocket engine, heat exchangers (heaters and crycoolers ), cavitations in
hydraulic pipelines, refrigerating systems, pressure surges and circulation
flow of blood and pumping systems, etc.. Pulsating flow can be produced
by reciprocating pump or by steady flow pumps together with some
mechanical pulsating device. The principle difference between the pulsating

flow and reciprocating flow are: The pulsating flow rate has a time-mean



value and do not reverse to another direction. These differences make a new
controlling parameters for this type of flow, represented by the mean —flow
Reynolds number behind the frequency and amplitude parameters. Thus, the
transition criteria for a pulsating flow becomes more complicated than in a
reciprocating flow because of the intersection between the mean flow and
oscillating effects. The criteria of transition from laminar to turbulent

depends on the Reynolds number of mean flow Re_. and on oscillating

cri

parameters A, and 4 .

1.3 Characteristics of Heat Transfer

There are many efforts done to improve the rate of heat transfer. The
improvements of the heat transfer depends on two method , the first is by
increasing the area of heat transfer such as extended surface (it is limited by
the design of device and the cost), the second depends on affecting the
boundary layer (thermally and hydrodynamically) such as varying the flow
from laminar to turbulent or changing the nature of flow from the steady to
unsteady by pulsating or reciprocating flow. The enhancement of heat

transfer in the oscillatory flow can be classified as

1.3.1 Heat Diffusion in Oscillatory Flow

The heat or mass diffusion can be improved by oscillating flow. The
reciprocating flow can enhanced the diffusion rate by several order of
magnitude greater than that possible by molecular diffusion alone. The rate
of mass transfer of a diffusing substance may be increased by an oscillatory
motion and affecting with oscillatory parameters such as low and high
frequency™. These types of studies are concerned with the comparing the

effective axial diffusion coefficient for oscillatory flow with molecular



diffusion in steady flow. The ratio of effective diffusivity of the contaminant

for unsteady and steady fluid flow (x; / x) is represented as a function to a

two oscillating parameters: Womersly number and tidal displacement. The
most of previous works in this field are shown a considerable increase in
axial diffusion heat transfer between two different temperature reservoirs
without a net transfer of mass due to a large time dependent radial
temperature gradient produced by the fluid oscillations. The temperature
distribution in many cases were obtained by assuming similarity

transformation solution and solving the conjugate energy equations.

1.3.2 Heat Transfer in Reciprocating Flow

Reciprocating motions are found in many applications such as heat
exchangers, internal combustion engines and electronic cooling. It is found
that from the numerical investigations that annular effects (similar to annular
effects in velocity) also exits in the temperature profile of a laminar
reciprocating flow. The axial and radial diffusion of heat transfer under
reciprocating flow conditions is considerably larger than in the absence of
the reciprocating flow. This enhancement is produced by the interaction
between the radially varying of velocity and temperature profiles that it can
be given a heat transfer coefficients of orders of magnitude larger than
without oscillating flow. The main parameters that effect of heat transfer in
the reciprocating flow are: Womersly number A or kinetic Reynolds number

Re_,, dimensionless amplitude of the fluid displacement A, Prandtl number

Pr and the ratio of length to diameter x/D.
Reciprocating flow is used to enhance conduction heat transfer
between two reservoirs maintained at different temperature to increase

efficiency of fins'® by improving the diffusivity of the fluid.



The careful observations of the literature for reciprocating flow heat
transfer shows two different kinds of investigations associated with this type
of flow. The first one is focused on heat transfer by conduction enhancement
with high frequency and low amplitude oscillations, while the second is
focused on forced convection with low frequency, large amplitude of
oscillation.

There are a survey correlations for Nu of experimental works of the

reciprocating flow depending on parameters A and Re "l and a few

theoretical researches are made in this field.

1.3.3 Heat Transfer in a Pulsating Flow

The enhancement and investigation of convective heat transfer of
pulsating flow characteristic have been of most important engineering space
of heat transfer researches. Heat transfer for pulsating flow is obtained as
either on flat plate or in internal flow. The external oscillatory flow over a
flat plate with a stream velocity depends on a frequency parameter and

Strouhal number Str, , gives not much difference from that of the mean flow
(steady flow) in the ranges of smaller and larger Strouhal number Str, ,
while it becomes more significant near the regiont” Str =1.

For internal pulsating flow the effective parameters are A, Re_,Pr,
A, and x/ D, . It may normally be expected that the heat transfer to or from

the flow would be changed because the pulsation would alter the thickness
of the boundary layer and hence the thermal resistance. The main exerted
efforts in the study of heat transfer in the pulsating are concerned with a
pulsating flow enhances heat transfer comparing to steady flow. The results

obtained from these studies can be classified into a four cases such as:



1-The pulsating flow enhances the heat transfer.

2-1t either enhances or decreases the heat transfer depending on the
controlling parameters.

3-The pulsating flow decreases the heat transfer .

4-1t has no effects on heat transfer.

These conflicting results showed that the heat transfer phenomenon in

pulsating flow is still not clearly understood.

1.4 Hydrodynamics and Thermal Considerations of Oscillating Flow

The considerations that were taken into account during the study of
oscillatory flow takes a wide area in the analysis. From these: studies
concerns the developing of the flow or the entrance region, where at the
entrance region the analysis is more difficulties and gives greater change in
all dependent variables such as friction factor and Nusselt number!®.
Number of authors made a simplifications for solving momentum and
energy equations theoretically in the developing region, and in most of their
analysis they assumed
1-Existence of a boundary layer.
2-The velocity in the inertia terms of boundary layer equation being the
same as at the entrance velocity given at the inlet.

Usually, the systems of reciprocating flow have a developing flow
more probably than a fully developing flow, owing to reverse flow, for
which a little length is not enough to complete the development, while the
pulsating flow systems usually reach the fully developing flow.

The conditions of fully developed in both hydrodynamics and thermal
boundary layer for oscillatory flow are similar to the conditions of steady

flow™.



The criteria of transition from laminar to turbulent have new
conditions represented by oscillating parameters. The oscillations makes the
velocity fluctuations near the wall are much stronger than at center line of
duct, i.e. the fluid flow near the wall may be first become unstable and
eddies occur near the wall, this is because high kinetic Reynolds number.
Furthermore, there are another criteria for turbulent flow represent by the
intermittency of turbulence of the flow, which is defined as the percentage
of the time to detect the critical values (transition from laminar to turbulent

region)!.

1.5 The Aim of the Present Work

There are nearly scarce analytical researches concern heat transfer in
oscillatory flow. On other hand, the available results about heat transfer
enhancement in the pulsating flow is not cleared, therefore the present study
is aimed to investigate the main points below:
1- Obtain an analytical model for hydrodynamics and heat transfer in both
reciprocating and pulsating flows by solving the momentum and energy
equation and overcome the complexity due to the unsteady flow.
2- Study the ability of enhancement the heat transfer by oscillating flow and
obtaining the controlling parameters of the process and detecting the
improvement caused by the unsteady flow over the steady flow.
3- Support the numerical and experimental researches in this field with
analytical model .

In this study, an analytical simulation based on similarity
transformation solution for momentum and energy equations are to be
obtained. The considered flow is to be oscillatory flow in the internal

horizontal duct (channel and pipe) subjected to a constant heat flux, for



laminar, 2D, incompressible and fully developed flow. Both kinds of
oscillatory flow the reciprocating and pulsating flow were to be considered.
Numerical simulation is to be performed using finite volume approach,
and the difference between the analytical and numerical solution for
dimensionless velocity and temperature distributions is to be illustrated.
Also, the results of analytical solution for Nusselt number were to be
compared with experimental data or experimental correlations of other

authors.
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CHAPTER TWO
LITERATURE REVIEW
2.1 Preface

A considerable amount of theoretical and experimental works

have been devoted to the study of oscillatory flow owing to its
importance in real life. Therefore, the oscillatory flow were extensively
studied by a several investigators in wide fields like: human,
engineering and nature. The oscillatory flow and heat transfer review is
performed for all faces that has some effects on the hydrodynamics and
thermal behaviors. A large number of articles illustrate all
considerations, types and controlling parameters of oscillatory flow and
heat transfer to obtain the conditions for enhancement of heat transfer.
Literatures have been categorized according to the following fields:

1- A general study for unsteady flow (human and nature phenomenon).
2- Hydrodynamics considerations of the oscillatory flow.

3- Heat transfer considerations in oscillatory flow.

2.2 The General Unsteady Flow

The phenomenon of unsteady propagate in the wide fields because
of a several of these phenomena are repeated with time periodically,
which represent a common factor between them. The unsteady flow is
started from the heart of human and a specific type of unsteady flows
include oscillatory flow and pulsatile flow which occurs in the nature
phenomena and the biological systems such as the human respiratory

and the vascular systems.



The unsteady flow is simply occurred when the motion of the
fluid is started suddenly from rest. The flow near a flat plate which are
impulsively accelerated from the rest was solved firstly by stokes as
cited by Schlichting ™. The Navier-Stokes equation

ou o4
R V_2
o oy
Is reduced to an ordinary differential equation by using similarity

parameter as £ =y/2,/vt.

The similar case for suddenly accelerated flow from rest is the

(2.1)

flow about an infinite flat wall which executes linear harmonic
oscillations parallel to itself and which was first treated by Stokes and

later by Rayliegh as cited by!!l. They supposed that this motion is given

u(0,t) = w cosat =U_,, COSwt (2.2)

where X being the amplitude of the velocity and displacement

max’umax
of the oscillating plate respectively. The velocity distribution above the
oscillating plate is given as

U(y,7) =%:e‘” cos(r —n) (2.3)

0
where 7 = y,/—
2v

They found that the oscillatory boundary layer or the so called ‘Stokes

layer’ has thickness of o =2v/®w which increased with increasing
the kinematics viscosity and decreasing with increasing the angular
frequency. This showed that the thickness of boundary layer became
thinner with increasing the frequency, which lead to enhance the

characteristics of oscillatory flow.



Evans™ 1973, considered a semi-infinite plate moving
with a velocity u,,(t) into a stagnant fluid and he obtained a solution

of heat transfer with constant surface enthalpy corrected to second order.
The second order results were obtained by numerical integration for
Prandtl number of 0.72.

Peattie™™ 1989, carried out experimental work to establish, a
piston-driven pipe flow (flow is driven at frequencies characteristic of
human breathing), in order to assess the effect of frequency on the
transport of a passive scalar contaminant in an oscillating flow. In the
test section he used in one a straight, round and uniform pipe and in
other a uniformly tapering pipe (i.e. conical). As a results he found that:
(i) The convective transport is increasing with frequency at constant
amplitude (ii) The effective diffusivity increase with flow amplitude ,
more strongly at A=5.7 than at A=16, but does not increase by a constant
scale factor as A varies from 5.7 to 16. He defined the effective mean

axial diffusivity for thermal energy transfer in a tube, as

Aot = Qe — (2.4)
) dT,
ra’pc,t—>
dx

where a: radius of the pipe, 1: time of period.

The oscillatory or periodic heat transfer in extended surface was
studied by Aziz and Lanardini™® 1994. They obtained analytical and
numerical approaches for periodic or oscillating heat transfer processes
occurring in extended surface. For liner problems the techniques include
complex combination, Laplace transforms, finite differences and
boundary elements. They discussed the applications of each approach in

detail. Both straight and annular fin configuration are covered for



different profile shapes include rectangular, trapezoidal and convex
parabolic. The periodic conditions involve oscillatory base temperature,
oscillating base heat flux, oscillating environment temperature,
convection at the fin’s base through a fluid with oscillating temperature
and some combination of these conditions. In this work the various
combinations of analytical and numerical methods had been found to be
effective in dealing with nonlinear problems.

Flow in the elliptical blood vessels calculated for a physiological
waveform by Robertson et al. ™! 2000. They idealized the geometry of a
non-circular vessel to an elliptical cross section and the dynamic
properties were calculated for a physiological waveform. The Fourier
harmonics for a common carotid waveform were determined and the
velocity profile and wall shear stress were calculated from the super
position of the individual contributions from each harmonic. They
concluded that in pulsative flow, the frequency perform a strong role in
determing the motion of the fluid and the resultant velocity profile. They
also concluded if the frequency is reduced, the relative viscous drag
between the central core and the lamina near the vessel wall is decreased
until the response of the different lamina to the applied pressure gradient
IS equivalent.

Concerning, the heat transfer considerations of the unsteady flow
(oscillatory flow ) a number of studies were carried out for the heat
transfer in a porous medium. Hassain et al.! 2000, considered the
unsteady free convection boundary layer flow which induced by time-
periodic variations in the surface temperature of a vertical surface
embedded in a porous medium. Both the low and high frequency limits

are considered separately and they observed:



1- At intermediate value of frequency parameter the amplitude of the
local Nusselt number increase as the surface temperature exponent
increase, but the phase of Nusselt number decrease.

2- There is always a phase lead increment as frequency parameter
increase and approaches the common asymptotic value n/4.

Al-Salmant** 2002, investigated experimentally and theoretically
the direct contact condensation process of saturated vapor on fully
developed subcoold laminar wavy falling liquid film flowing over an
adiabatic vertical wall. The results of the model illustrated that the main
parameters affecting the condensation process are the wave amplitude,
wave length, Peclet number and subcooling number. He showed that
the waviness of liquid film increases the heat transfer rate up to several
tenths of a percent, mainly due to the effective thinning of the film,
increasing convection along the film and circulation of the flow.

The streaming and oscillating flow fields and heat transfer
efficiency across channel between two long parallel beams was
investigated by Wan and Kuznestov!™™ 2003. One of these beams is
stationary and the other is oscillating in standing waveform. The
temperature field was computed for two cases: both beams are kept at
constant but different temperature or the oscillating beam is kept at
constant temperature and the stationary beam is prescribed a constant
heat flux. It is found that the streaming fields shows that the streaming
velocities approach constant values at the edge of the boundary layers
and provide slip velocities for the streaming field in the core region. The
results reveal a jump of Nusselt number and heat transfer coefficient
when the bifurcation occurs, and Nusselt number increases before the
jump and decreases after it. Khalid and Vafail*® 2003, analyzed the flow



and heat transfer inside oscillatory squeezed thin films subject to a
varying clearance of the films. They assumed the velocity of the fluid at
the squeezing plate as

V = h,oypsin(yot) (2.5

where h,: reference thin film thickness, y: is the dimensionless

frequency, B: is the dimensionless amplitude of the upper plate’s
motion, and ®: is the reference frequency. Nusselt number and their
amplitudes are decreasing with increasing the dimensionless slop of
upper plate.

Recently, Khalid and Vafai” 2004, analyzed the stokes and
Couette flow produced by an oscillating motion of a wall under
conditions where the no-slip assumption between the wall and the fluid
Is no longer valid. It is found that wall slip reduces the transient velocity
for Stokes flow while minimum transient effects for Coutte flow is
achieved only for large and small values of the wall slip coefficient and
the gap thickness respectively. The time needed to reach to steady
periodic Stokes flow due to sine oscillations is greater than that for
cosine oscillations with both wall slip and no-slip conditions.

2.3 Hydrodynamics Considerations in Oscillatory Flow
There are many works done in hydrodynamic of oscillatory
flow, which deals with all kinds of oscillatory flow and take into
account the effect of the varity of conditions acting on the flow. These
works can be classified into the following
2.3.1 Hydrodynamics of Reciprocating Flow
In the earlier time, the reciprocating flow taken a wide space of

investigations of oscillatory flow. The reciprocating motion of the fluid



driven either by sinusoidal displacer has a fluid displacement X is

explained as

m

X, = X—;""X (1—cosmt) (2.6)

or by a sinusoidal variation of pressure gradient as

_iop = P, cos at (2.7)
OX

Yo,
where P,: the oscillation amplitude of externally imposed pressure

gradient.

Uchida!”? 1956, obtained an exact solution for axial velocity
profile of a fully developed laminar reciprocating flow in a circular pipe
(with diameter of D=2a). This solution was simplified to give the
velocity distribution for small values of the Womersly number (very low
oscillation) and large values of Womersly number (very high
oscillation)™ .

Zhao and Cheng™® 1995, presented a numerical solution for
laminar forced convection of an incompressible periodically reversing
flow in a pipe of finite length at constant wall temperature. They
illustrated that is typical phase shifts between temperature and axial
velocity at selected locations.

Zhao and Cheng!*®! 1996, carried out analytical and experimental
work for reciprocating flow. They obtained an exact solution for the
axial velocity profile of a fully developed reciprocating pipe flow from
modification of Uchida’s analytical solution. Algebraic expression for
the time averaged friction coefficient of a fully developed reciprocating

flow was obtained as



c 3.272

o = 28
"7 A (Re%_2.030) (25)

2
kinetic

X : : :
where A, :ﬁdlmensmnless amplitude and Re, _ @b
| 4

Reynolds number.
They found that, although the dimensionless axial velocity profile of a
fully developed flow depends only on the kinetic Reynolds number,
while the friction coefficients depend not only on the kinetic Reynolds
number but also on the dimensionless oscillation amplitude.
Comparison were made for the time resolved and the cycle-averaged
friction coefficients between the analytical solution and the
experimental data which gives a good agreement.

Reciprocating flow in the channel differs from the reciprocating

flow in the pipe by (i) The hydraulic diameter may be partly wetted the

. 4
perimeter (thTAC, where A_: flow area and P: wetted

perimeter)?%. (ii) Womersly number for channel is defined as hva/v

where h: the half height of channel, while in the pipe D/2Jw/v .
Kurzweg'® 1985, found analytical solution for sinusoidally

oscillatory viscous fluid in an array of parallel-plate channels. He found

the axial velocity profile existing in the channel which is represented by

the real part of

iU 1 {1_ cosh \/Tan}eiwt 2.9)

U(@n,1t)=U_f(n)e'“=
(7.0) =U, T () o’ cosh+ia

where m=y/a, U, representative axial velocity, a=aJw/v the

0

Womersly number and A =|p/oxa®/ pU,v .



Yakhot et al.?! 1999, studied numerically oscillating laminar flow
of a viscous, incompressible liquid in a rectangular duct. The influence
of the aspect ratio of the rectangular duct and the pulsating pressure
gradient frequency on the phase lag, the amplitude of the induced
oscillating velocity, and the wall shear were analyzed. They found the
induced velocity has a phase lag (shift) with respect to the imposed
pressure oscillation, which varies from zero at very slow oscillations, to
90° at fast oscillations.

Karagoz”? 2002, introduced analytical solution based on
similarity transformation for oscillatory pressure driven, fully developed
flow in a channel. Variations of the velocity profile and skin friction
coefficient over a cycle had been obtained together with behavior of the
flow for various oscillation frequencies. He concluded that, when the
frequency is low, velocity profiles resemble much of the quasi steady
solution. An increase of o leads to a wider core region where the fluid
moves as if it were frictionless slug flow. The effects of oscillation
become dominant in a narrow zone adjacent to the walls in the case of
high o. Phase lag occurs between pressure and velocity variations so
that it is higher in the core region than in the boundary layers, due to
variation of the inertial forces across the flow section. Skin friction
coefficient was also affected by oscillation frequency of which high
values give rise to the amplitude of skin friction coefficient.

Sert and Beskok®! 2002, introduced a new micro heat spreader
(MHS) concept for efficient transport of large concentrated heat load.
The (MHS) is a single phase closed micro fluidic system, which utilize
reciprocating flow forced convection. They solved numerically the

momentum and energy equations by applying the spectral element



algorithm. Fluid flow and thermal transport equations are solved in
moving domains (the domain is divided into 68 quadrilateral and
triangular elements) using a recently developed arbitrary Lagrangian
Eullerian algorithm.

Sert and Beskok!*” 2003, performed a numerical simulation for
reciprocating flow in two-dimensional channels. The flow between two
parallel plates drive harmonically in time with a pressure gradient was

considered. They observed the quasi-steady flow behavior for o=I

(where o = HVolv ) (low frequency), and Richardson’s effect for
a=10 (high frequency). The numerical algorithm based on a spectral
element formulation, which enable high order spatial resolution with
exponential decay of discretization errors, and second order time
accuracy.

Finally, Cosgrove®® 2003, studied the applicability of the Lattic
Boltzman method to oscillatory channel flow with a zero mean velocity.
The model has been compared to exact analytical solutions in the

laminar oscillatory channel flow case (Re; <100,where Re; the

Reynolds number based on the Stokes layer), for the Womersly
parameter 1< o < 31. They defined analytical expression for the velocity
for large a as
u zisin wt (2.10)
wp

where P: amplitude of pressure gradient —op / ox
2.3.2 Hydrodynamics of Pulsating Flow

In the preceding section two types of the harmonic pulsation
flow were mentioned: internal and external pulsation flow. The external

free stream flow represented by!”



ut)=u, (L+¢ e'") (2.11)

where ¢ =—"% being the dimensionless oscillating velocity amplitude
u

0

which assumed to be small.

The internal pulsation flow was studied by Christian and
Kerczek!®! 1982. They investigated the instability of oscillatory plane
Poiseuille flow, in which the pressure gradient is time-periodically
modulated by a perturbation technique. They showed that the
sinusoidally oscillating plane Poiseuille flow for a wide range of
frequencies of the imposed oscillation and for substantial values of
oscillation amplitude.

Turbulent and laminar pulsating flow were measured
experimentally by Shemer et al.!*”! 1985, in a straight smooth pipe and
compared at identical frequencies and Reynolds numbers. Most
measurements were made at mean Reynolds numbers of 400 but the
influence of the mean Reynolds number was checked for

2900<Re<7500 and the nondimensional frequency parameter,

a =RJw/v from 4.5 to 15. The amplitude of imposed oscillation did
not exceed 35% of the mean, in order to avoid flow reversal or
relaminarization. The velocity at the exit plane of the pipe and pressure
drop along the pipe were measured simultaneously. The velocity
measurements were made with arrays of normal hot wires. They
concluded that:

I- Mean properties of the flow are not affected by pulsations in both
laminar and turbulent flow regimes, provided the amplitude is not

excessively high.



Ii- The radial distributions of amplitudes and phases of velocity
oscillation are strongly dependent on the flow regime in the pipe (i.e.
whether is laminar or turbulent).

Valencia and Hinojosa® 1997, studied numerically the
incompressible laminar flow of air and heat transfer in a channel with a
back ward-facing step, for steady cases and for pulsatile inlet conditions.
They used parabolic entrance profile for numerical solutions of pulsatile
flow. It was found at the amplitude of oscillation which is represented
by Reynolds number equal to 100, the primary vortex break down
through one pulsatile cycle. The wall shear rate in separation zone was
varied markedly with pulsatile flow.

Ju et al.®1 1998, developed an improved numerical modeling for
simulating the oscillating fluid flow and detail dynamic performance of
the orifice and double-inlet pulse tube refrigerator. They assumed a
simple sinusoidal oscillations for the compressor volume change with

crank angles as

V=V, + %vs (1+ cos ) (2.12)

where V, is the dead volume, and V. is the swept volume.

They proposed a numerical simulation and experimental verification of
the oscillatory flow in pulse tube refrigerator. The discretization of
governing equations based on full implicit time dependent and upwind
second order finite difference scheme. They found a good agreement
between the numerical simulation and experimental verification. Also Ju

et al. 11998, studied experimentally the oscillating flow characteristics



for a regenerator in a pulse tube crycooler. They determined a
correlation for a cycle-averaged friction factors at the frequency 50Hz.

José et al.* 2002, carried out both experimental and numerical
studies for unsteady pressure field inside a centrifugal pump. The
measurement were carried out with pressure transducers installed on the
volute shroud. The unsteady pressure field inside volute of centrifugal
pump has been numerically modeled using a finite volume code. The
numerical code used (FLUENT) solved the fully 3D, incompressible
Navier-Stokes equations, including the centrifugal force source in the
impeller and the unsteady terms and turbulence was simulated with the
standard x—& model. The results of the numerical simulation were
focused on the blade passing frequency to study two -effective
phenomena occurring at that frequency for a given position: the blade
passing in front of the tongue and the wakes of the blades.

Yakhot and Grinberg™ 2003, studied a pulsating laminar flow of
a viscous, incompressible fluid through a pipe with an orifice at
relatively low Reynolds numbers. The phase instantaneous state was
found as an ellipse. The ellipses of the instantaneous states (volumetric
flow rate vs pressure difference) during a cycle allow readily computing
the phase shift between them.

Baranyi®* 2003, computed Strouhal number, time-mean drag and
base pressure coefficient as well as the average Nusselt numbers by
solving the governing equations (continuity, Navier-Stokes equations,
Poisson equation for pressure and energy equation) for 2D, low
Reynolds number unsteady flow around and heat transfer from a

stationary circular cylinder placed in a uniform flow.



2.3.3 The Turbulence Considerations in the Oscillatory Flow

The considerations of transition flow from laminar to turbulent in
the oscillatory flow differ from that taken in the steady flow. The
condition of transition the laminar to turbulent flow in steady flow
depends on Reynolds number only, while in oscillatory flow it is
affected by frequency and amplitude of oscillation.

There are many researches concerned the criteria of oscillatory

flow to detect the conditions of transition from laminar to turbulent
flow.
The transition behavior of pulsating flow is characterized by a new
parameter in addition to frequency and amplitude of oscillation
represented by the mean-flow Reynolds number Re_ . If Reynolds
number is lower than critical valuel | the onset of turbulence depends
on Ajand AorRe,,.

Calmen and Minton!? 1977, found the velocity disturbances by
measuring intermittency of turbulence y of the flow (y: defined as the
percentage of the time of flow was disturbed during a 5 minutes
measuring period). The intermittency of turbulence depend on three
parameters: A, A, and Re_ . They found that (i) the intermittency  rises
from zero with the increase of the Womersly number A at a given value
of dimensionless amplitude of oscillation A, (5.8, 2.9, or 1.45); (ii) for
a given value of frequency of oscillation, an increase in A, produces an
increase in the intermittency; (iii) the intermittency y increase as Re
increased from 1275 to 1535 at fixed values of A and A, ;(iv) as the

mean- flow Reynolds number Re approaches the critical value of a

steady pipe flow, the minimum value of intermittency y becomes much



greater than zero. This implied that the pulsating flow becomes
turbulent when the mean-flow Reynolds number approaches the critical

value of steady pipe flow, or A and A, approach from critical values

(Beri) -

Zhao and Cheng™* 1996, carried out an experimental numerical
study for laminar forced convection in along pipe heated by uniform
heat flux and subjected to reciprocating flow of air. They used the range
of A,=8.5-34.9 and Re  =23-464.

2.4 Heat Transfer in the Oscillatory Flow

Research works dealing with heat transfer in oscillatory flow
can be categorized into the following
1- Enhanced axial heat diffusion by oscillating flow.
2- Heat transfer in internal reciprocating flow.
3- Heat transfer in internal pulsating flow.
2.4.1 Enhanced Axial Heat Diffusion by Oscillatory Flow

The oscillatory flow was not used in enhancement heat transfer
only, but it is also used for enhancement the rate of mass transfer of
diffusing substance. The dispersion in oscillatory flow is important in
many practical cases varying from tidal flow in estuaries to respiratory
flow in the air ways of lungs. Watson™™ 1983, studied the diffusion of
substance along a pipe and a two dimensional channel driven by an
oscillatory motion of ambient fluid in the pipe. He assumed the

concentration of the contaminant 6(x,y,z,t) as

O(X,y,2)=—y 7+ Re{y g(x,y) e“"t} (2.13)



where 0 satisfies the concentration equation

00 00
W=

x V20 (2.14)
ot 0z

where «: diffusivity of the contaminant.
He found that the effective diffusivity of the contaminant in the
oscillating flow using Green’s theorem as

Ky =K (1+R) (2.15)

R = f(DZC" ,K](LJZ (2.16)
v x )\AD

where V is tidal volume.

where

He concluded that the flux of contaminant can be increased
significantly, for given tidal volume, by using of a high frequency of
oscillation.

Joshi et al.®®! 1983, studied experimentally the gas exchange in
laminar oscillatory flow to determine the diffusivity of axial transport
through a tube of circular cross-section of a contaminant gas in

oscillatory flow and compared the results with results of Watson!,
which gives an excellent agreement. For ¢ =1 (Wherea:K). They
K

found that the effective diffusivity at high and low frequency as

Ky =K 141 pe? a<l (217a)
192
a+331/2 _ ,
K. =k|1+————Pe o>1 2.17b
eff ( 8\/5&4 J ( )

where Pe: Peclet number, a: dimensionless frequency parameters.



Kurzweg'® 1985, examined analytically enhanced heat conduction
in oscillatory viscous flow within parallel plate channels. The widths of
the fluid layers and the solid walls in this configuration were taken as 2a
and 2b respectively. He showed that for fixed frequency the
corresponding effective thermal diffusivity reaches a maximum when
the product of the Prandtl number and the square of the Womersly
number is approximately equal to A* Pr =7 and the axial heat transfer
achievable can be exceed that possible with heat pipes by several orders
of magnitude. He also found the temperature distribution between two
reservoirs at different temperature by suggesting a try locally valid

solution to solve the augmented problem as

T(x,m,8) =y (x+a g(ne) (2.18)

where n=y/a and y: time-averaged axial temperature gradient.
The above analysis was based on an important assumption that the time-
averaged axial temperature gradient of the fluid is constant along the

pipes. He defined the effective averaged thermal diffusivity as

27l 1

~ Q) = % [ dt[ Re[T (x, 7, )] RelV (x,7, ) A7 (2.19)

for very high frequencies the «; is

Uy 1 | Pr(Pr+1)*(u++/o)
oA 8V2a| Pr(PrP—1)(u++o)

_Pr+~/Pr)(uPr +o)
Pr(Pr*-1) (1 +o)

(2.20)
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where Axis tidal displacement, o =—"and u = k—f

as S

For low-oscillation frequency ;IS
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;Ae; =~ 8Pr {% 5 :;ﬂ(g ~1) " % 3?;:702? :32)} (2.2
where e =b/a

Kurzweg'®® 1985, examined the enhancement of conduction heat
transfer for sinusoidal oscillatory flow through circular tube connecting
two fluid reservoirs maintained at different temperatures. He solved the
governing heat conduction equation using the multiple time scale
expansion technique, the temperature variation expanding in the

perturbation series is

T=T,+&T,+&°T, (2.22)
where €: small parameter used in multi scale expansion and T,, T, and

T,: temperature expansion terms, °C.

He obtained a relation for effective diffusivity as

(oo (F’FAZ)2
=1+ P(A 2.23
a 16 a2 () (2.23)
where
P(/I):i for A<<1 (2.24a)
24
1
P(A)=A1-——=— for A>>1 2.24b
) ( @j (2.24b)

where Az: tidal displacement of fluid, A is Womersly number.
He concluded that the values of effective conductivity in liquid metals is

three orders of magnitude grater than the normal thermal conductivity



under typical experimental conditions without a net transfer of mass.
This was explained due to a large time dependent of radial temperature

gradient produced by the fluid oscillations at region near the wall. The

results was merged at approximately A*Pr =, which is the point
where the used multiple time scale expansion technique becomes
invalid.

Performance of heat exchangers occupied a part of the studies of
enhanced heat diffusions in fluids by oscillation. Kaviany®” 1990,
analyzed fluid flow and heat transfer in capillary tubes (Stokes’s
boundary layer thickness nearly equal to the tube radius), subjected to
oscillatory flow between two reservoirs maintained at different

temperature. He defined the effective thermal diffusivity as

27l

et 1
=——| | Re(u) Re(T) rdrdt 2.25
o ﬂj j (u) Re(T) (2.25)
and assumed temperature field as
oT _ oT
T, =— x+— 06(r,t 2.26
=5 X o (r.1) (2.26)

where 0: fluctuating component, m.

He concluded that (i) the performance of heat exchanger deteriorate as
thermal boundary layer becomes smaller than the tube radius (ii) the
viscous dissipation is generally negligible for water.

Kaviany and Rekker® 1990, presented experimental study for the
performance of a heat exchanger that takes advantage of enhanced heat
diffusion in oscillated fluids. Good agreement had been found between
the actual performance of the heat exchanger and the idealized analysis
for low and high frequencies. The measurements showed that there is a

temperature variation across the bundle and that the fluid entering the



tubes has a nonsteady temperature due to weak, non uniform mixing
within the reservoirs therefore, a spatial/temporal average was taken,
Further more, Khaled and Vafai® 2002, studied the effects of
both external squeezing inside non-isothermal and incompressible thin
films supported by soft seals. The main controlling parameters were:
squeezing number, squeezing frequency, frequency of pulsations,
fixation number (for the seal) and the thermal squeezing parameters.
They found that the fluctuations in the heat transfer and the fluid
temperature can be maximized at relatively lower frequency of internal

pressure pulsations.

2.4.2 Heat Transfer in Internal Reciprocating Flow

Generally, heat transfer in the reciprocating flow depends on
oscillatory frequency and tidal displacement of the fluid. The following
works to be presented includes some studies on forced convection in
laminar and turbulent reciprocating flow in a pipe and a duct that show
the effect of controlling parameters on heat transfer characteristics i.e.
Nusselt number and bulk temperature.

Cooper et al.ll 1994, investigated experimentally the convective
heat transfer in rectangular duct. The duct was heated from below and
subjected to a periodically reciprocating flow. The frequency and stroke

of oscillations were varied such that the range of Re_, was from 43 to
684 while the range of dimensionless oscillation amplitude of fluid A,
was from 23 to 600, such that the parameter (A,/Re,) ranging from

603 to 5568 (typical values of critical parameter 3., ranging from 400

to 800). The experimental data were arranged to obtain a correlation of



space-cycle averaged Nusselt number Nu for reciprocating turbulent
flow of air in a rectangular duct with one-side heated

q” 2a

N_u:_—
kf (TW _Tf)

=0.548 A)° Re%°% (2.27)

where T, being the space-cycle averaged temperature measured at the

outer surface of heated floor, and T, being the ambient temperature.

A numerical solution was presented by Zhao and Cheng ™! 1995,
for laminar forced convection of incompressible periodically reversing
flow in a pipe of finite length at constant wall temperature. They found
that four parameters govern the heat transfer characteristics for the

problem. These parameters are: the kinetic Reynolds number Re,_, the
dimensionless oscillation amplitude A, the length to diameter ratio L/D

and Prandtl number Pr of the fluid. They solved numerically the

dimensionless energy equation given below.

0B Wvyg=_1
or 2 Re Pr

(2]

(V20) (2.28)

where 0: is dimensionless temperature (T—_I'_} 7. is dimensionless

time. They used a highly nonuniform grid because of the extremely thin
thermal boundary layer at a high kinetic Reynolds number. The time-
space averaged Nusselt number Nu was correlated by the following
expression

Nu = 0.00495 A% Re?6% (2.29)

for A,=10to 35 and Re =10 to 400 and L/D=40.



For other values of A ,Re_ and L/D, Nusselt number was correlated as

Nu =0.00495 A’ Re%®*°[43.74(D/L)**® +0.06] (2.30)
The numerical results showed that annular effects also exit in the
temperature profiles near the entrance and the exit of the pipe during
each half cycle at high kinetic Reynolds numbers. The averaged heat
transfer rate was found to increase with both kinetic Reynolds number
and dimensionless oscillation amplitude but decrease with length to
diameter ratio.

Zhao and Cheng® 1996, carried out an experimental and
numerical study for laminar forced convection in along pipe heated by
uniform heat flux and subjected to reciprocating flow of air. The test
section was made of a copper tube, with length L=60.5 cm, inside

diameter D,;=1.35cm, and outside diameter D,=1.57cm. They
correlated the experimental results of Nu based on conjugate heat
transfer problem. It followed that Nu was a function of Re,, A,, Pr
andL/D,. The following correlation was obtained based on a least

squares fit of 53 experimental runs for laminar reciprocating flow of air

in along tube with constant heat flux:

Nu= 0.02 A’® Re’%® (2.31)

where A ;=8.54 t0 34.9 and Re_=231t0 464 at L/D,=44.8 and Pr=0.71.
They found a good agreement between numerical and experimental
results for space-averaged Nusselt number Nu, time-resolved centerline
fluid temperature T, and cycle-averaged wall temperature T,,.

[40]

The reciprocating flow in a channel was analyzed by Karagoz

2001. He solved numerically two-dimensional time dependent



governing equations (continuity, momentum and energy) using control
volume based on pressure correlation procedure. The flow has zero
mean oscillatory flow over a heated plate mounted on the bottom wall of
a channel. They found that the thickness of Stokes boundary layer
decreases and the core region of the flow exhibits more uniform velocity
profiles as the Womersly number increases. They compared the
numerical solutions with experimental values and the effects of
Reynolds number and Womersly number on the velocity and
temperature profiles were presented for the same Prandtl number.

[41]

Chang 2002, investigated experimentally the heat transfer of
forced convection in a reciprocating square duct fitted with 45° cross
ribs on two opposite walls. The parametric conditions involved several
Reynolds, pulsating and buoyancy numbers, in the ranges of 600-10000,
0-10 and 0-0.14, respectively with five different reciprocating
frequencies, namely, 0.67,1, 1.33, 1.67 an 2 Hz. The rib-induced flows
in static duct produced an augmentation of heat transfer in the range of
260-300 % compared to the smooth-walled situation. They observed
that when the Reynolds and pulsating numbers were relatively low, a
range of heat transfer impediments, could lead the spatial-time averaged
heat transfer to levels about 71% of non reciprocating values. A further
increase of pulsating number resulted in a subsequent heat transfer
recovery, which leads to heat transfer improvement relative to the non
reciprocating level.

A new micro heat spreader (MHS) concept for efficient transport
of large concentrated loads was introduced by Sert and Beskok®*! 2002.
The channel was insulated from bottom and subjected to constant heat

flux at the upper wall and Nusselt number defined as



q” 2H
T, (%) -T,(x,t) k
where H: the channel height.

Nu(x,t) = (2.32)

The results of minimum, maximum and time-averaged Nusselt number
at mid-cross section of the channel were shown in table(2.2), which
illustrated that the time-averaged Nusselt number increased with
increasing kinetic Reynolds number and Prandtl number.

Finally, Sert and Beskok™! 2003, proposed a numerical
simulation of laminar forced convection heat transfer for reciprocating,
2D, channel flow as a function of the penetration length (amplitude of
displacement), Womersly number (a) and Prandtl number (Pr). Uniform
heat flux and constant temperature boundary conditions were imposed
on certain regions of the top surface, while the bottom surface was kept
insulated (these sets of boundary condition enable time-periodic solution
of the problem). They illustrated at high Womersly number, the
temperature field is significantly affected by the Richardson’s annular
and heat transfer was increased with increasing the penetration length, o

and Pr. They showed the results for eight cases as in table(2.3).

2.4.3 Heat Transfer in Internal Pulsating Flow
The principle aim of studying the pulsating convection heat
transfer in an internal flow is whether a superposed flow pulsation
enhances heat transfer compared to the original steady flow. The
following review of works deals with this part of oscillatory flow.
Valencia and Hinojosa® 1997, found a numerical solutions for
pulsating flow and heat transfer characteristics in a channel with a back

ward-facing step. They showed that the wall heat transfer in the



separation zone was remained relatively constant and the time-average
pulsatile heat transfer at the walls was greater than in steady flow with
the same mean Reynolds number.

From review of Zhao and Cheng!? 1998, the variation of

(Nu, —Nu,) (where Nu,: Nusselt number of the pulsating flow, Nu,:

Nusselt number of mean flow) due to pulsating was pronounced in the
regions along a two-dimensional channel near the inlet of the heated

X
RePr

channel (small Gratez number Gz= ), and the influence of

pulsating becomes less significant with the increase of the axial distance
(nearly zero, i.e. the Nusselt number of the pulsating flow equal the
Nusselt number of mean flow). They found when the pulsation

amplitude A is small, the temporal behavior of (Nu, —Nu,) is fairly

symmetric about the half-period point while when A is larger, the

profiles of (Nu, —Nu) are non-symmetric about the half-period point.

Experimental and numerical study was performed by Ju et al.l**!
1998. They improved a numerical modeling for simulating the
oscillating fluid flow and detail dynamic performance of the orifice and
double-inlet pulse refrigerator. The simulation model is useful for
understanding the physical process occurring in the pulse tube
refrigerator. They obtained the time-dependent axial wall temperature
distribution, transient gas temperature variations, mean mass flow rate
and dynamic pressure distribution of the oscillation flow in the pulse
tube refrigerator.

Habib et al.*? 1999, experimentally investigated heat transfer

characteristics of pulsated turbulent pipe flow under different conditions



of pulsation frequency, amplitude and Reynolds number. The pipe wall
was kept at uniform heat flux and Reynolds number was varied from
5000 to 29000, while the used frequency of pulsation varied from 1 to 8
Hz. They showed an enhancement in the local Nusselt number at the
entrance region and the rate of enhancement decreased as Re increased.
This work included a total of 90 tests for different cases of Reynolds
number, frequency and amplitude. They found a correlation in a good

agreement with experimental data as (for fully developed region)

Nu= 0.022 Re®® pr°s (2.33)
They concluded (i) The heat transfer coefficient enhancement was more

pronounced in the entrance region than in the fully developed region (ii)

Negligible effect of pulsation frequency on the mean Nusselt numbers at

low Reynolds numbers (iii) A reduction of up to 13% in Nu occurs at
higher Reynolds number and the reduction was shown to depends on
pulsation frequency.

The experimental study of heat transfer enhancement in
oscillatory flow in grooved channel was carried out by Herman and
Kang!®™! 2001. They used holographic interferometry combined with
high speed cinematography to visualize the unsteady temperature fields
in self-sustained oscillatory flow of incompressible flow air over heated
rectangular Dblocks in a two dimensional horizontal channel.
Experiments were conducted in the laminar, transitional and turbulent
flow regimes for Reynolds number in the range from 520 to 6600 and
interferometric measurements were obtained for thermally and
dynamically periodically fully developed flow region on the ninth

heated block. The results presented for the heat transfer and pressure



drop, as function of the Reynolds number, in term of the block-average
Nusselt number and the local Nusselt number as well as friction factor.
They concluded that at Reynolds number beyond the onset of
oscillations the heat transfer in the grooved channel exceeds the
performance of the reference geometry, the asymmetrically heated
parallel channel.

Valencia et al.*¥! 2001, investigated numerically the unsteady
laminar flow and heat transfer in a channel of height H with periodically
mounted square bars of height 0.2H arranged side by side to the
approaching flow, for different transverse separation distance of bars.
They solved the unsteady Navier-Stokes equations and energy equation
by finite volume code with staggered grids combined with the SIMPLIC
algorithm and a fine grid resolution. They showed as consequence of the
self-sustained oscillations, there was an important heat transfer
enhancement on the channel wall.

Habib et al.™ 2002, investigated experimentally heat transfer
characteristics of laminar pulsating flow under different conditions of
Reynolds number and pulsation frequency. The tube wall was subjected
to a uniform heat flux condition and Reynolds number was varied from
780 to 1987 while the frequency of pulsation ranged from 1 to 29.5 Hz.
They showed that the relative mean Nusselt number was strongly
affected by pulsation frequency while it was slightly affected by
Reynolds number. They correlated the experimental data by the
following general dimensionless equations:

1- For frequency range 1-14 Hz (3< Q <12) and Reynolds number (780<
Re < 1987) is



Nu, =5.2087 Re %125 ( 19423Re ™ (2.34a)

2- For frequency range 14-29.5 Hz (12< Q <17.5) and Reynolds number
(780<Re < 1366) is
Nu, =0.00840Q° —0.4111Q° + 6.6024Q2 —33.789  (2.34b)

3- For frequency range 14-29.5 Hz (12< Q <17.5) and Reynolds number
(1643 and 1987) is

Nu, =0.0168Q° —0.7646Q* +11.487Q2 —55.923  (2.34¢)

where Q is Stokes number, defined as Q = % , /22 , Nu, is relative mean
1%

Nusselt number defined as Nu , / Nug.

They showed in the frequency range of 1-4 Hz, an enhancement up to
30% at Reynolds number of 1366 and pulsation frequency of 1.4 Hz and
in the frequency range of 1-25 Hz, an enhancement up to 9% at
Reynolds number of 1366 and pulsation frequency of 1.75 Hz. The rate
of enhancement of the relative mean Nusselt number decreased as
pulsation frequency increased or as Reynolds number increased. They
indicated a reduction in relative mean Nusselt number up to 40% for
pulsation frequency range of 4.1-17 Hz and a reduction up to 20% for
pulsation frequency range of 25-29.5 Hz for Reynolds number range of
780-1987.

Bouhadji and Dijilali'* 2003, presented a simulations for the
unsteady separated-reattaching flow and associated heat transfer along
rectangular plate subjected to an oscillatory inlet velocity,

U =1+ A, sin2#f t. The simulations were worked by solving Navier-

Stokes and energy equation using a finite volume method at Reynolds



number of 1000 and the response of the flow over a range of
frequencies up to 60" harmonic of the natural vortex shedding
frequencies and velocity perturbation amplitude up to 20% of the free

stream. They concluded that the highest forcing amplitudes (A,=0.2)

yields the shortest as well as the largest reattachment lengths depending
on the forcing frequency. A significant enhancement in the local
Nusselt number was accompanied the effect of forcing on the flow, and
the effect was localized to a small region near the leading edge for high
amplitude forcing, and in fact the overall average heat transfer rate was
reduced in this case.

Computation of unsteady momentum and heat transfer from a
fixed cylinder in laminar flow studied by Baranyi®*! 2003. The fluid was
assumed to be 2D, low Reynolds number, uniform flow and constant
properties. He solved Navier-Stokes equation, the continuity equation, a
Poisson equation for pressure and the energy equation at constant
temperature of the cylinder wall using finite difference solution. The
computed Strouhal number, time-mean drag and pressure coefficients as
well as the average Nusselt number compared well with existing
experimental results.

Yu et al.*1 2004, investigated analytically the pulsating laminar
and fully developed convection heat transfer in a circular tube with
constant heat flux. The pulsating flow was driven by a pressure gradient
that varies sinusoidally with time as

op 8pj ,
—=—1(1 CoS wt 2.35
~ (ax S( +y ) (2.35)

where »'is a constant that controls the amplitude of the pressure

fluctuation. They showed that both the temperature profile and Nusselt



number fluctuate periodically about the solution for steady laminar
convection, with the fluctuation amplitude depending on the

dimensionless pulsation frequency o, the amplitude y'and Prandtl

number, Pr. It was also shown that the pulsation has no effect on time-
average Nusselt number for pulsating convection heat transfer and the
fluctuation in the Nusselt number was negligibly small for »'=0.5 and
o >50.

Moon et al.”® 2005, investigated experimentally the effect of
pulsating flow on convective heat transfer from periodically spaced

blocks in tandem on a channel wall. The spacing  between repeated

blocks is varied from 0.3 to 0.6 of the Block pitch. The experiments
were carried out in the ranges of forcing frequency of pulsating flow
higher than 10 Hz and less 100 Hz and the oscillating amplitude of axial
velocity is between (0.2-0.3). The experimental results showed that
thermal transport from the block is greatly affected by frequency, the
amplitude of the flow pulsation, the inter-block spacing and the
Reynolds number. Also, they found (i) A noticeable enhancement in
heat transfer when the pulsating flow was imposed, depending on the
inter-block spacing as well as the pulsation frequency. (ii) Heat transfer
enhancement at the most upstream block showed a peak at around
frequency=40 Hz irrespective of the variation of inter-block spacing.
Finally, Zohir et al.l*1 2006, investigated experimentally the heat
transfer characteristics to both laminar and turbulent pulsating pipe
flows under different conditions of Reynolds number, pulsation
frequency, pulsator location and tube diameter. The tube wall of

uniform heat flux condition was considered for both cases. Reynolds



number was varied from 750 to 12320 while the frequency of pulsation
ranged from 1 to 10 Hz. The results showed an increase in heat transfer
rate due to pulsation by as much as 30% with flow Reynolds number of
1643 and pulsation frequency of 1 Hz, for the pulsater located upstream
of the inlet of the test section. Comparing the heat transfer results of the
two studied test sections tubes for Reynolds number range from 8000 to
12000 and pulsation frequency range from 1.0 to 10 Hz showed that
more improvement in heat transfer rate was observed with a larger tube
diameter. For Reynolds number ranging from 8000 to 12000 and
pulsating frequency of 10 Hz, an improvement in the relative mean
Nusselt number of about 50% was obtained for test section diameter of
50mm. While, for the same test section diameter of 15mm at same
conditions of Reynolds number and frequency, a reduction in the
relative mean Nusselt number of up to 10% was obtained. They
concluded (i) that the behavior of the local Nusselt number under the
influence of pulsation revealed that the improvement in the heat transfer
coefficient is more pronounced in the entrance region. (ii) comparing
the heat transfer results of the upstream and the downstream pulsation,
at Reynolds number of 1366 and 1643, low values of the relative mean

Nusselt number were obtained with the upstream pulsation.

2.5 Summery

This literature review has brought together a variety of analytical,
numerical and experimental findings and conclusions of fluid mechanics
and heat transfer characteristics of oscillatory flow. The main points that

concluded are summarized below:



1-The amplitude and frequency of oscillating flow have a greater effect
on the characteristics of flow and heat transfer.
2-The oscillating flow becomes unstable with increasing either the

dimensionless fluid displacement A, or kinetic Reynolds number Re .

3- The variation of the boundary conditions with time or the periodic
change in the surface of heat transfer conditions give a similar effect
that produce by the oscillatory flow.

4- The effective thermal diffusivity is proportional to the Kinetic

Reynolds number Re_ and dimensionless displacement of fluid A,, and

also it depends on the thermophysical properties of fluid and solid.

5- The numerical results reveal that the annular effects exist in the
hydrodynamic is also acts similarly in temperature profiles for
reciprocating flow in a pipe at high kinetic Reynolds number.

6-There are a survey correlations for Nu of experimental works of the

reciprocating flow depending on parameters A and Re_, and a few

theoretical researches are made in this field.
7-The cycle averaged Nusselt number obtained for laminar pulsating
internal flow is either higher or lower than that for steady-flow value,

depending on the frequency.



Table(2.1) Critical values of S

ri

for the reciprocating pipe flow!”.

Authors Year B

Li 1954 800

Collins 1963 230

Sergeev 1966 700

Vincent 1967 160
Pelissier 1973 150-420

Daneshvar 1973 730

Merkli & Tomann 1975 400

Hino, Sawamoto & Takasu 1975 780

Ohmi, Lguchi & Urahata 1982 800

Kurzweg, Lindgren & 1989 700

Lorthron
Zhao & Cheng 1996 761

Table(2.2) The minimum, maximum and time-averaged Nusselt

numbers at mid-cross section of the channel'®!,

Re Pr Min. Nu Max. Nu Ave. Nu
2n 1 3.62 5.92 5.50
27 10 5.34 9.88 8.42
27 25 6.96 11.82 10.20
47 1 2.30 6.96 5.92
8n 1 0.66 8.00 6.31




Table(2.3) Non-dimensional parameters used in the simulations of Sert
and Beskok'?4.

Case no. L L, L, o Pr Re’
1 20 12 5 1 1 S/m
2 20 12 5 1 10 5/n
3 20 12 5 10 1 500/n
4 20 12 5 10 10 500/x
5 20 12 10 1 1 10/n
6 20 12 10 1 10 10/n
7 20 12 10 10 1 1000/%
8 20 12 10 10 10 1000/
Where

L: The ratio of total channel length to channel height.

L,: The ratio of length of the heated portion of the channel to channel

height.

L,: The ratio of tidal displacement to the channel height.

Re': Reynolds number based on volumetric flow rate per unit channel

width (%M,
1%




CHAPTER THREE
THEOERTICAL ANALYSIS

Theoretical model for study of heat transfer enhancement due to

internal oscillatory flow in a duct is developed to obtain a complete
description for enhancement of heat transfer in the oscillatory flow.
The exact analytical solution is found base on using the similarity
transformations for solving the Navier-Stokes and energy equations,
while the numerical solution is based on the applying the finite volume
technique.

This model needs  evaluation of the characteristics of
hydrodynamics of the oscillatory flow, therefore hydrodynamics
investigation will be made for both types of oscillatory flow
(pulsating and reciprocating), in addition to the heat transfer
investigation. The duct is considered to be of a uniform diameter
(pipe) or two dimensional channel. The frequency and amplitude of
oscillatory flow and other dimensionless numbers are studied aiming
to investigate the effect of  parameters that controlling this
phenomenon.

The governing equations, for the present model of reciprocating
and pulsating flow are based on the following physical and
geometrical assumptions:

1- The flow is unsteady.
2- The oscillating flow (reciprocating or pulsating) is driven by a
sinusoidally varying pressure gradient.

3- The internal flow is laminar.



4- The flow is fully developed hydrodynamically and thermally.
5- The fluid is flowing in the closed duct (pipe or channel).
6- The properties of the fluid are constant.
7- The viscous dissipation within the fluid is negligible (®=0).
8- The fluid is incompressible.
9- The duct is horizontal and thin thickness.
10- Two dimensional flow of the fluid for the pipe or channel.
The theoretical analysis in this work will be classified into four
parts depending on the type of the oscillatory flow (reciprocating or

pulsating) and on the geometry of the duct (pipe or channel).

3.1 Analytical Model of Reciprocating Flow and Heat
Transfer in the Channel
3.1.1 Hydrodynamics Analysis
The reciprocating flow in the 2D channel Fig.3.1, is analyized
hydrodynamically. The Navier-Stokes equations for fully developed
flow, constant properties, reciprocating pressure driven and laminar

flow through a horizontal channel can be written as

10
By (3.0

p Oy
2
ou 16pJr o°u

et Y st 3.2
R Ak (3.2)
where
_ip P, cosat ~Re(P,e'") (3.3)
L OX



q" =constant
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Fig.3.1 Physical model for reciprocating flow in channel.

with boundary and initial conditions

1. u=0 at y==h fort>0 noslipatthwall (3.4a)
2. %; =0 at y=0 fort>0 axisymetric  (3.4b)
3. u="f(y) at t=0 initial condition  (3.4c)

or in dimensionless form Eq.3.2 can be written as

+ 2.+
(j;tt ot +%ng2 (3.5)
where
2
u*'ZL, umaX:MZi’ﬂth/(()/ :1 Rew ,Rewz Dh.a),
U ax 2 ) 4 1%

y* =Y t* =at and D, = 4h(for the channel with width >> height)
h




The boundary and initial conditions in dimensionless form becomes

1.ut =0 at ym =71 tT >0 (3.6a)
ou™ + +
.ut=f(y") attt=0 initial condition (3.6¢)

Appling similarity transformation of the form® u* = f(y*)e" in
Eqg.3.5 gives

f7—il?f =-2° (3.7)
Solving the ordinary differential equation Eq.3.7 yields

| cosh+/idy*
f=1|—————-1 3.8a
{ cosh/iA } (3.58)
and
| coshA/idy* "
u"=i|——==—-1/¢' 3.8b
{ cosh/iA } (3.80)
Appling the identify /i = % , the real part of u” can be written as
2 2 . H + . +
o (c?+Dp?-AC BDgsmt 2 (BC — AD)cost 39)
C°+D
where
A=cosh(ly" /+/2) cos(Ay* //2) (3.10a)
B =sinh(ly* /+/2)sin(ly* /~/2) (3.10b)
C =cosh(1/~/2) cos(1/~/2) (3.10c)

D =sinh(1/,/2) sin(1//2) (3.10d)



3.1.2 Heat Transfer Analysis
Taking into account the previous assumptions the energy

equation without viscous dissipation (®=0) could be reduced to

2
L S a1y

with the boundary and initial conditions as

1. % =0 at y=0 for t >0 axisymetric (3.12a)

2.q"=k(%T aty=+h for t>0, const heat fluxatthewall (3.12b)

3. T=1(y) at t=0 initial condition  (3.12c)

Eqg.3.11 in the dimensionless form becomes

+ + 20T+
Pr 22 ‘ZL +% A, Pr2u* ‘j; - ‘2;2 (3.13)
X
where
C kT /D X
Pr:/u p’-l-+: /,,h’X-i—:L and A0: max
k q D, D,

and D, = 4h (for the channel with width >> height)

with boundary conditions becomes

1. a@; =0 at y'=0 for t* >0 axisymetric (3.14a)
oar’ + +

2.——=1at y"=+1 for t" >0 const heat flux at the wall (3.14b)

3. T =y(xX"+9(y")) at t"=0 initial condition  (3.14c¢)

Assuming similarity transformation of the form®



T =%f(x+ Dhg(y)e“"t) (3.15)

or in dimensionless form yields

+ d-r+ + +\Ait" + o\ it"
o=t ol raet ) @as)
where:db+ is a time-average axial dimensionless temperature
X
gradient.
and
T + 17[ + A+t
T == j T, dt (3.17a)
7Z—O
where
1
'[T+U+dy+
T, =% (3.17b)
ju*dy*
0

substituting of the similarity transformation of T* EQ.3.16, and the
solution of u™ EQ.3.8b in Eq.3.13, the energy equation described by
Eqg.3.13 can be reduced to ordinary deferential equation as

coshvily" }

cosh+/id (3.18)

g”—iPri’g =%Prﬂ{

The solution of Eg.3.18 can be written as
g =C, cosh~iPrily" +C,sinh«/iPriy" +
A Pr coshAidy® A

2(1—Pr) cosh+/id ) (3:19)

where C, and C,are constants.




Using the boundary conditions described by equations Egs.3.14a and
3.14b yield the temperature distribution

T x s E+F AP [((EY,-FZ)cost"
U, 2Priy 24/Pr(1-Pr) U,C,

(E;Z, +FY,)sint N A, Pr( Q,cost™ —P,sint N cost (3.20)
U,C, 2 C;(1-Pr) Pr

where E, F,U,,Y,,Z,,C,,Q, and Pare functions obtained during
derivation and given in the Appendix A.
The gradient of dimensionless time-average bulk temperature y

used in the previous derivation can be obtained from the energy

balance for control volume of the fluid in the channel as

2q".1.dx = pc, (2h.1)u,, dT, (3.21)

or in dimensionless form

dT, _ 41/_ (3.22)
dx*  Prha,
where @ is obtained from the following relation
0 =1jumaxsin¢ g PV (3.23)
T 0 T



thus Eqg.3.22 can be written as

dT.’ Vs
= (3.24)
dx APrA A
The instantaneous-local Nusselt number is defined as
NIRRT (3.25)
K T, -1,
while the time averaged -local Nusselt number is defined as
Nuy = by 1 (3.26)
T, -T.7
where
T + 1 T + A4+
T, == [T,dt (3.27)
7 0

3.2 Analytical Model of Reciprocating Flow and Heat
Transfer in the Pipe
3.2.1 Hydrodynamics Analysis
The Navier-Stokes equations for a fully developed, 2D, constant
properties, reciprocating pressure driven and laminar flow in a

horizontal pipe Fig.3.2 , are written as

_ie_y (3.28)
p or
2
u_ 1o, [ou 1o (3.29)
ot L OX or: ror
with boundary and initial conditions
1. Z—u =0 or uis finite at r=0 fort>0 axisymetric (3.30a)
r
2. u=0 at r=D/2 fort>0 noslipatthwall (3.30b)

3. u=f(r) at t=0 initial condition (3.30c)



q" =constant
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Fig.3.2 Physical model for reciprocating flow in pipe.

where
—i@zpo cosat ~Re(P, ') (3.31)
L OX
or in dimensionless form EQ.3.29 yields
+ 2, + +
g2 M _gprer (OU LU (3.32)
ot" o rtor’
where
2
u’ :L, Unax = Xmax'a)zi, ﬂ,:E«/a)/V =l1/ReW , Re , = b 'a),
U o 2 @ 2 2 1%
r'=2 and t' =t

Eq.3.32 is subjected to the boundary conditions

out
Cort

0 oru’is finite at r'=0 for t">0 (3.33a)



2. u"=0 at r"=1/2 fort" >0 noslipatthwall (3.33b)

3. u"=1(r") at t" =0 initial condition (3.33c)
Assuming similarity transformation solution for Eq.3.32 of the form

ut=f(r)e"

gives
f”+i+ f'+i%40°f =44 (3.34)
r
Using the general form of Bessel function® , Eq.3.34 can be solved
and gives
£3/2 +
foi| @A) (3.35)
3,(¥%2)
and
+3/2 +
ut =i 30(2'_3,2’” ) 1| e (3.36)
J, (177 1)
After simplifying Eq.3.36 (see Appendix B), the real part of u™ can be
written as
sint (Ber, (24r*)Ber, (4) + Bei, (24r *)Bei, (4) Jsint* N
Ber (1) + Beil (1)
(Bei0(2/1r+)Ber0 (1) - Bero(2/1r+)Beio(/1))cost+ (3.37)
Ber? (1) + BeiZ (A) '
For large value of A, the asymptotic of Bessel function could be
used™ as
Jn(Z)zF e” (i)™ (i)™" (3.38)
T

where: n is order of Bessel function and z : is complex variable.



Applying the asymptotic of Bessel function and identify i*? ==

Eq.3.36 becomes

pAN2(2r 1) GiaiN2(2r ) _1} e't’ (3.39)

L 1
ut =i
L/Zr+

The real part of u™ (EQ.3.39) is

+ s 1 AN22r 1) e[+ + :|
ut =sint* — e sinlt* +A//2(2r" =1))| (3.40)
% ( )
3.2.2 Heat Transfer Analysis
The energy equation for thermally fully developed reciprocating

flow in the pipe, without viscous dissipation (®=0) is

2
CLIRFYRCLINN S L (3.41)
ot OX orc ror
with the boundary and initial conditions
1.T =T, atx=0 inlet condition (3.42a)

2.q”:kg—T at r=D/2 for t>0 const heat fluxat thewall (3.42b)
r

3. Z—T =0 at r=0 for t >0 axisymetric (3.42¢)
r
4. T=1(r) at t=0 initial condition (3.42¢)
Using the dimensionless form
a q” D D



Eqg.3.41 can be transformed to

+ + 2T + +
apr 2t +2A0Pr/12u+aT o1 a

3.43
ot* oxtoort? rt oort (3.43)

The boundary and initial condition in the dimensionless form becomes

1T =T" at x" =0 inlet condition (3.44a)
8T+ + +
2. po =1 at r' =1/2 for t” >0 const heat flux at the wall (3.44b)
r
oT” N . : :
3. po =0 at r' =0 for t7 >0 axisymetric (3.44c)
r
4, T =1(r") at t" =0 initial condition  (3.44c¢)
Assuming a similarity transformation solution for Eq.3.43 of the form
T .
T =%(x+ D g(r)e"‘") (3.45)
X
or in dimensionless form as
T =yl +g(re”) (3.46)
where y = Tb+
dx
and
[1/2 ]
L _[T*u+ rodr”
== | dt* (3.47)
"o _[u+ r*dr*
0

Substituting Eq.3.46 and u® (EQ.3.36) into Eq.3.43, an ordinary

differential equation can be obtained



" 1 r, :3 2 - 2 “]O(2i3/2ﬂ‘r+)
+—g'+i4PrA°g=i2PrA A -1 3.48
g r+ g g A\) |: Jo(i?’/zﬂ) ( )
Using the rule™!
14 1 !
9"+ 9 =-p%g (3.49)
where
g= Jo(ﬂr+)

and applying the boundary conditions (Egs.3.44b and 3.44c). The
solution of homogeneous and nonhomogeneous parts of Eq.3.48 will
be

T+zy{x++eit[—JO(2i3’2ﬂ,\/ﬁr*)(\/§(1+i)+i* Pr Jl(iS’Z;L)J

VPP, AVPr) | 4y 26 2 (1-Pr)3,(%%A)
+i{ Pr Jo(2i.3;/22lr+)+lﬂ} (3.50)
2\ @-Pr) J,(3%%2)

The functions J,(2i*2APrr), J,(i*2APr), 1,(i*?4), 3,(i*?4)
and J,(2i*?Ar") are simplified to real and imaginary parts (see

Appendix C). The final real relation for temperature distribution of
Eq.3.50 is

R v APy
T =n {4/1ﬁ(RE1 M) 2+/Pr(1-Pr)

((RE, RE, — IM, IM,)*cost" — (RE, IM, + IM,RE,)*sint")

e Yad (RE3 cost” —IM, sint+)+M cost” (3.51)
2(1—Pr) 2



where: RE,, IM,, RE,,IM,, RE; and IM,are functions defined in
Appendix C.
For large value of A or Pr, the asymptotic Bessel function should be

used for complex variable (Eq.3.38), simplification of Eq.3.50 (see

Appendix D) gives
ﬁeﬂm(zﬁ—l)

T =yx" + cos(~Pr/2A(2r" 1))
{ 4~/Pry2r* (

+sin(/Pri2A(2r" -1)))

7/A0 Pr e/%/PI‘/Z(ZI’Jr—l)

2(1—Pr)}W/Prv2r*
AlN2(2rt-1)
N y A Pre

21— Pr2r

+%cost+ } (3.52)

(cos(t™ +~/Pri2a2r -1)))

(cos(t™ + A/v2(2r" 1))

where the value of time-averaged dimensionless bulk temperature
gradient y is obtained from heat balance for a control volume from the
pipe, in a similar manner as that done for rectangular channel. The

dimensionless value of temperature gradient has the form

dT.* T
b+ =y = 5 (3.53)
dx PrAA
The instantaneous-local Nusselt number is defined as
Nu, = h,.D = ! (3.54)
Kk T, —-T,
and the time averaged -local Nusselt number is defined as
Nuy = nD__ 1 (3.55)
Kk T, -T,'

where



T2 [T, dt (3.56)
4 0

3.3 Analytical Model of Pulsating Flow and Heat Transfer in
the Channel
3.3.1 Hydrodynamics Analysis
The momentum equations for fully developed flow, laminar, 2D,
constant properties, pulsating pressure driven flow in a horizontal
channel Fig.3.3, could be described by EQs.3.1&3.2, with boundary

conditions as

lu=0 at y==+h no slip at the wall (3.57a)

2.%“ =0 aty=0 axisymteric (3.57b)

3. u=f(y) at t=0 initial condition  (3.57¢)
q" =constant

VIR N 2 2 2 A
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y ‘ 2h 0 OX

S - _— ________________ — O
X Pulsating
Flow time
Tttt 11
q" =constant

Fig.3.3 Physical model of the pulsating flow in channel.




The pressure gradient of pulsating flow is written as

—1@{—1@} (1+y'cosat) = P, (1+ y'cosat) (3.58)
0 OX P OX )

where

(—lg—zj = P, :is pressure gradient of steady flow (mean flow).
EAVE

and »': the ratio of amplitude of pressure gradient to that steady flow

at value (0 <y'< 1), and has values less than 0.5 to avoid reversion

flow and relaminarization.

Using dimensionless form

2
u+=L, umaX:POh /I:h«/a)/v,y+:% and t" =t

2v
Eq.3.2 can be written as

ou” o%u’

2 ' +
A =2(1+y'cost™) +——

(3.59)

+

For pulsating flow the velocity distribution form is assumed as

Uy ) = Ui (y ) s (YLt (3.60)
where
u, : steady dimensionless axial velocity.
and
u, : fluctuation dimensionless axial velocity.

Substituting Eg.3.60 in Eq.3.59 gives

+ + 2.+ 2+
ﬂ{%+?€‘+ ):2(1+7/’cost+)+(a s +a Y ) (3.61)

ay+2 8y+2



Using superposition method the following equation can be obtained

o°u;
+2

+2=0 (3.62a)

au+ 2, .+
A —L =2y'cost” +—S

+

(3.62b)

+2

and the boundary conditions becomes

lu"=0 at y" =41 = u; =0 and u, =0 no slip at the wall (3.63a)

2 au =0 aty'=0 = 2;5 0 and 2;: =0 axisymteric (3.63b)

A +

3.u"="f(y") att" =0 initial condition (3.63c)

For steady part the integration of Eq.3.62a with boundary conditions
Egs.3.63a & 3.63b gives

ug =1-y") (3.64)
For unsteady part, applying similarity transformation form

us = f(y")e" (3.65)

Eq.3.62b can be transformed to

f"—il2f==2y (3.66)
Solving EQ.3.66 for homogeneous and nonhomogeneous parts with
boundary conditions Eq.3.63a & 3.63Db yields

2i" | cosh+/idy*
f = -1 3.67a
2 { cosh/iA } (3.672)

and

2i" | cosh~/idy* -
u, = —~1¢ 3.67b
bR { cosh+/id } (3.670)



1+
J2

relations (such as coshix=cosx and sinhix =isinx), the real part of

Using the identify +/i= , trigonometric relations and complex

u,” can be obtained as

. 2y'[(c?+D?-AC-BDJsint" —(BC — AD)cost*
u’ =5 — (3.68)
A C°+D
where A, B, C, and D defined in Eq.3.10.
Then the total velocity (u; +u,") could be written as
I _
, (iCJr ?3 5 Jsint+ —(BC—-AD)cost*
0= -y )+ 2 - (3.69)

A C’+D°

3.3.2 Heat Transfer Analysis
The energy equation defined by Eqg.3.11 also can be used for this

case and could be transformed to dimensionless form

oT

+ + 2T +
prd 3 Re, Pru* oa__o TZ (3.70)
+ 32 + ay+
with boundary conditions
1.8T+ =0 at y' =0 (3.71a)
oy
T 1 at y* =41 (3.71b)
oy
3.T" =0 at x* =0 (3.71¢)



by using the dimensionless form

Pr:K,T+:m_Ti)/Dh,x+:l A=hwlv , Rem:“m'Dh

o q" D, 1%
and y" =vy/h
and

2 :
u, = gumax (see Appendix E)

For pulsating flow the temperature distribution form is assumed as

T (X y 1) =T, (X", y)+T, (y",t7) (3.72)

Substituting u™ defined in Eq.3.60 and T* defined in EQ.3.72 into

Eq.3.70 and using superposition gives

+ 2T+
3 Re., Pru; o, _ 0 TSZ (3.73)
32 ox" oy”
and
+ + 2T+
prpz e | 3 Re Pru/ o, _ 2 th (3.74)
T32 ox"  oy”
with boundary conditions
1. 6T+ =0 aty" =0 = aTi =0 and aTt+ =0 (3.75a)
oy oy
2T b ayrom o T 1 gng T g (3.75b)
g 4 g 4 oy

3.7*=0 at x* =0 (3.75¢C)



For steady part the solution of Eq.3.73 is assumed as®”

T =X,(xX)Y(y) + X,(x7) + Y,(y")  (3.76)
\! ! \!
decaying initial axial temperature rise due normal temperature
transient to accummulaed wall flux  varition to let wall
flux into fluid

The initial transients value (Xl(x+) Yl(y+)) will be eventually decay to
insignificance value, leaving only T," = X, +Y,. Substituting Eq.3.76
and EQq.3.64 into E@.3.73 and taking into account the above

consideration, Eq.3.73 becomes

%Rem Prl—y™?)X;, =Y, (3.77)
The above equation can be solved using the separation of variable
method as
X, = 3 Y, =k (3.78)
~ Re, Prl-y*
35 en PTL=Y™)
then
X, =k (3.79a)
Y, = 3—32k Re Pr(l—y*?) (3.79b)

Integrating Eqs.3.79a & 3.79b gives
X, =kx"+C, (3.80a)

+2 +4

3 .
Y=k RemPr(y2 —312 )+C,y* +C, (3.80b)




From boundary condition Eq.3.75a C2=0, and the boundary condition
Eq.3.75b gives

4
k = 3.81
Re  Pr (3.80)
then
+ +2 +4
Tro X 30 Y e, (3.82)
Re . Pr 8 2 12
where C,=C,+C,
Using the definition of bulk temperature (for channel)
1
IT; u;dy”
T, =45— (3.83)
Jusdy*
0

Substituting u; (Eq.3.64) and T,” (EQ.3.82) into EQ.3.83 and using
boundary condition EQ.3.75c gives

=39
* 1120
Then, the steady dimensionless temperature distribution becomes,
. 4xT 3 L, oyt 39
T — + — _) ) 384
> Re, Pr 16(y 6 ) 1120 (3.84)

The unsteady part of temperature distribution defined by EQ.3.74 is

+

simplified by substituting the value of ZTi obtained from Eq.3.84,
X

which is equal to and the value of u; which defined in

Re Pr

m

Eq.3.67b to get



Pr A2

+ s H + 2T+
or;” 3 2y {cosh\/fxly - 1}“* _oT (3.85)

ot 2 22| coshvid

Assuming similarity transformation solution as

T =g(y")e"
and substituting in the above equation the ordinary differential

equation can be obtained as

g"—iPri’g =

_3i7[cosh\/72, y" _1} (3.86)

22 | cosh+/ik
Solving above equation with boundary conditions Eqs.3.75a & 3.75b
yields

1o e cosh(/iPriy*) sinh(v/id)
o JPrsinh(viPri) (1—Pr)cosh(+/iA)

cosh(idy") 1 (3.87)
‘(1-Pr)cosh(~/iA) Pr '
: . - 1+i .
Using the identify /i ==—, the real part of T, is
V2
T o A ot (E,Y,—F Z,)cost" —(E, Z, + F Y,)sint" _
oA JPr(@-pPnu,C,
Q,cost” —Psint”  cost” (3.89)
(1-Pr)C, Pr '

where E;,F,U,,Y,,Z,,C,,Q, and P, functions defined in the
Appendix F.



Then, the total dimensionless temperature distribution (T," +T,")

becomes
+ +4
-|-+= 4x +i(y+2_y )_ 39 +
Re,Pr 16 6 1120

3" | (EY,—F Z)cost" —(E, Z, + FY,)sint”
i Dy a

.Ql cost” —Rsint”  cost (3.89)
(1-Pr)C, Pr
The instantaneous-local Nusselt number is defined as
Nu = Dn 1 (3.90)
k T, -T,
and the time averaged-local Nusselt number is defined as
Nuy = Dy 1 (3.92)
k T, -T,

3.4 Analytical Model of Pulsating Flow and Heat Transfer in
the Pipe
3.4.1 Hydrodynamics Analysis
The momentum equation for pulsating flow in pipe Fig.3.4, with
previous assumptions could be written as

2
M_[LLP) ycosaty+v| CUTH (3.92)
ot P OX ) or: ror



with boundary and initial conditions

1. u=0 at r=D/2 fort>0 no slip at thwall (3.933a)
2. Z—uzo or uis finite at r=0 fort>0 axisymetric (3.93b)
r
3. u="f(r) at t=0 initial condition (3.93c)
q" =constant

VIR 2NN A A 2 N A A

_lo N
r ‘ D pox

-1 0~ .. — — - — . — | — . — . —.—. _ 0
X Pulsating
Flow time
Tttt 17
q" =constant

Fig.3.4 Physical model of the pulsating flow in pipe.

Using the dimensionless form

. _u P b

Uur=—=-2_21 wlv, r+=% and t" =t

©
Eq.3.42 becomes
ou”

+

e (3.94)

o’ut 1 au”
r or’

=16(1+ y'cost™) + +—
A+y ) (8r+2



The velocity of pulsating flow is divided into a two parts: steady part

+

u; and fluctuation part u;” thus

Ut (rt ) = Ul (rt) +ug (et ) (3.95)

Substituting of EQ.3.95 into Eq.3.94 , and using superposition, two
differential equations are obtained

o°u; +iau; B

o r=-16 (3.96)
+ 2 .+ +

a7 ?[Ji 16" cost" +(‘2 u] +i+gug ] (3.96b)
r r r

and boundary conditions becomes

1. u"=0 at r"=1/2 = u/ =0 and u/ =0 (3.97a)
ou”
or’

3. u"="1(r") at t"=0 initial condition (3.97¢)

2.

=0 or u” is finite at r'=0 (3.97b)

Integrating Eq.3.96a with boundary conditions Eg.3.97a and Eq.3.97b
gives

u =1-4r* (3.98)

For unsteady part, assuming a similarity transformation solution as

uy = f(y"e" (3.99)
Substituting f Eg.3.99 into Eq.3.96Db, the ordinary differential equation
can be obtained as

f"+i+ f'+i%42°f =16y (3.100)
r



Using the general form of Bessel function and applying the boundary

conditions Egs.3.97a & 3.97b one can get

S +3/2 +
. 4|;2/ J0(2|_3/2/1r )_l (3.101)
A J,(i° 1)
and
' =3/2 +
ur = A7) D@74 | i (3.102)
A Jo, (i)

For small value of A (A < 2) the following definition of complex Bessel

function can be used

J,(2i%2ar") = Ber, (2Ar") +i Bei, (24r™) (3.103a)
J,(i*? 1) = Ber, (A) +iBei, (1) (3.103b)

Eqg.3.102 can be simplified and the real part will be

. 4y'[ . ((Ber,(24r)Ber,(4) + Bei, (24r*)Bei, (1) Jsint*
u =—5|sint” - . - +
A Bery (1) + Beiy (1)

(Bei, (24r)Ber, (/1)2 — Ber, (2 -/Eﬁ)Beio (4)Jcost* H 100
Bery (1) + Beiy (4)

The total velocity u™, is equal to summation the of the steady part u;

and fluctuation part u;” as



ut=1-4r" +4—7;[sint+ —
A

(Ber, (24r)Ber, (1) + Bei, (24r *)Bei, (4) Jsint* N
Ber/ (1) + Bei; (1)

(Beig (24r)Ber, (/1)2 — Ber, (Zﬁr*)Beio (A)Jeost’ H (3.105)
Ber?(4) + Bei? (1)

For large value of A (A > 2) asymptotic Bessel function for complex
variable Eq.3.38 can be used to simplify Eq.3.102b , the total velocity
u” can be obtained (see Appendix G)

ut =1-4r* +4—7;{sint+ —
A

{%e”ﬁ(“”) sin(t™ +A/~2(2r" —1))} (3.106)
.

4.4.2 Heat Transfer Analysis

Energy Equation for pulsating flow could be described by
Eq.3.41 or in dimensionless form as

+ + 27T+ +
4Pr i’ 8T+ +2Re, Pru” 8T+ ¢ T+2 +i+ 8T+ (3.107)
X or
where
Pr:K’T+:k(T_T0)/D,X+:l’i:B,,la)/V , Rem:umD,
a q” D 2 1%

r'=r/D and umzéu )

max

Assuming a solution for T* compose of two parts: the steady part, and
unsteady part as



TH(X, ) =T (X, r) + T, (r,t) (3.108)

Substituting Eq.3.108 into Eq.3.107 and using the superposition gives
L o1y o°T, 10T/

2 Re,, Pru, >+ — (3.109)
oxt or rtor’
and
+ + 271+ +
apr 2N o Re, Pru/ o, _ 0 th R (3.110)
+ 8X+ ay+ r+ ar+
with boundary conditions
1.T"is finite atr" =0 =T, and T,” are finite (3.111a)
2'8T =1 at r'=1/2 = T =1 ol =0 (3.111b)
or’ or’ or*
3.T" =0 at x*=0 = T,/ =0 (3.111c)
For steady part Eq.3.109, the following solution is assumed
T, (X, r7)=X(x")+R(r") (3.112)

Substituting the above equation and u; defined by EQq.3.98 into
Eq.3.109 gives

2Re,, Pr(1—4r+2)><'=R"+i+R'=i+ai+(r+R') (3.113)
r r r

Using the separation of variables to solve the Eq.3.113 as

R”+1+R’

X' = r =k (3.114)
2Re, Pr(l—4r™)

where Kk: Is constant.



Separating EQ.3.114 yields

X'~k =0 (3.115a)

1

r

R"+-—R'—2kRe, Pr(l—4r?)=0 (3.115h)

Integrating both Eqgs.3.115a & 3.115b gives
X =kx"+C, (3.116)

and

+2 +4

' r4 j+c2 Inr* +C, (3.117)

R=2kRe, Pr[
4

where C,, C, and C,are constants.

According to Egs.3.115a & 3.115b the temperature T.,” will be

+2 +4

T :k{w 1 2Re. Pr[r4 ; ﬂmz Inr*+C,  (3.118)

where C, =C, +C,
from boundary condition Eq.3.111a, C2=0, and from boundary

condition Eq.3.111b yields

k= 4
Re, Pr

and

T+ 4x

= +2(r? —r)+C 3.119
* “Re_Pr ( )+C, ( )




Using the definition of bulk temperature for pipe

1/2

jT; u; rrdr’
Top = 573 (3.120)
J.us+ redr”
0
with the boundary condition Eqg.3.111c the constant C, is
—7
C,=—
Y48
then
TS+ _ 4X +2(r+2 _r+4)_l (3121)
Re . Pr 48

for unsteady part of T7, a similarity transformation solution is

assumed as

T (rt)=g(r")e" (3.122)

Substituting the similarity transformation solution Eq.3.122 and the

value of
ot . .
obtained from Eq.3.121, which is equal to , and the
oX* Re, Pr
value of u;” from Eq.3.102 into the Eq.3.110 gives
Co1 o =iy [3,(2i%2Ar)
+—+1"4PriA°g = -1 3.123
S T { 3,(i¥24) (3.123)

Solving EQ.3.123 with boundary conditions Egs.3.11l1a & 3.111b
yields



8 e | (PA)  3,(2°7ANPrrY)

T =22, .
ooy @—Pr)J,(i*¥%2) Prd,(i*?APr)

+3/2 +
Jo(2 /.12,2) —i} (3.124)
(1-Pr)J,(i*"“A) Pr
and the total dimensionless temperature distribution is
-|-+: 4x +2(r+2_r+4)_l+
Re, . Pr 48
8 J,(%%2)  J(2%APrrT)
a4 @—Pr)J, (i*¥22) Prd,(i*?A~/Pr)
+3/2 +
@A) 1 } (3.125)
(1-Pr)J,(i*'“A) Pr

where J,andJ;, Bessel function of first and second types (see
Appendix C).

The final real value of T " is

T o X +2(r+2—r+4)—l+
Re,, Pr 48
87'[ ((RE,RE, - IM,IM, ) cost” - (RE,IM, + IM,RE,)sint")
2 (1—Pr)V/Pr
RE;cost™ —IM,sint™  cost (3.126)
(1-Pr) Pr

where  RE;, IM,, RE,,IM,, RE, and IM,functions defined in
Appendix C.

For large value of Pr A, asymptotic complex Bessel function defined
in Eq.3.38 (see Appendix D) could be used to obtained the final

relation of T* as



T = 4x +2(r+2—r+4)—l+
Re, Pr 48

8y’ gh/Pr22r' Y
A [(1— PrV2Prrt
pA/N2(r -y
(L-PrVar*
The instantaneous-local Nusselt number defined as

_hD 1
ook Ty =Ty

cos(t+ +~/Pri2A(2r* —1)—

cost”

coslt™ + A/~/2(2r" —1))- : j (3.127)

Nu (3.128)

and the time averaged-local Nusselt number defined as

Nux = th'D - (3.129)




3.5 Numerical Model for Oscillatory Flow

3.5.1 Numerical Model of Reciprocating Flow in the Channel
Eq.3.5 and Eq.3.13 for reciprocating flow in the channel are

solved numerically using the finite volume method®™Y, at the same

boundary and initial conditions of analytical solutions. In general the,

the differences that are used: a forward difference for time, a central

difference for dimensions and linear interpolation for medium values.

The main steps of the finite volume method are proposed as

Stepl Grid Generation

To start the procedure of finite volume method, the control
volume and nodal points are drawn in the Fig.3.5. The first step in the
finite volume method is to divide the domain into discrete control

volumes.

AF PN
A A
+

Pn
+ r . X
Y

Nep

Ll‘

Fig.3.5 Control volume and nodes of finite volume solution for 1D
Channel.




Step2 Discretisation
Integrating the governing equation (Eg.3.5) over the control

volume and time to obtain a discretised equation at its nodal point P as

mft[ ou” dv}dﬁ :t+Tt]cost+dth+ +
C

t* t*CV
tr+AL* 2
[ %% avar (3.130)
tt C.Vﬂ“ ay

Using the forward difference for the time t* and central difference for

dimension y*, to get a general form as

a,us; =a, [¢9u§ +(1—9)u;°]+ ag [ng +(1—9)u§°]

+[a, —(1-0)(a, +as)u; +b (3.131)
where
=AY (3.132a)

At

S (3.132b)
A Fpy

as :i2 1+ (3.132¢)
A e

ap, =a,+6(ay +asg) (3.132d)

b=cost"AV = [<9(cos(t+ + At+))+ 1-6) cost*]AV (3.132¢)

and

0: weighting parameter between 0 and 1 and has the values
0=0 for explicit

0=1 for full implicit

0=1/2 for Crank-Nicolson



Repeated the above steps for energy equation to obtain

a, Ty =a, 0T +A-0)T° |+ a o1y + @-o)1°]

+[a, —(1-O)(ay +as)Ty +b (3.133)

where

a, =PrA° A\i (3.134a)

At

a, = A“ (3.134b)
@/PN

as = Aj (3.134c¢)
Fsp

a, =a,+6(ay +ag) (3.134d)

and

b= —% A, Pr2AV u’ (3.134¢)

where

Ui =0u’ +(@L—0)uy° (3.1341)

3.5.2 Numerical Model of Reciprocating Flow in the Pipe
The steps of section 3.5.1 are repeated, for case of reciprocating
flow in the pipe with a control volume as shown in Fig.3.6. The

Eqg.3.32 is solved numerically using a finite volume method to get a

general form as (for r*>0)

a,u; =ay [ous; +A-0)u [+ a,[ous + @—o)u |+ aduz +b (3.135)



a, = 41°AV (3.136a)
a, :{ Ai + A" }At* (3.136h)
2r; gy
a,=| S A A (3.136¢)
2r,  Ofgp
ap :ao—g[A‘_A%}At*+0{ Aj + Aj }At+ (3.136d)
'p 2 Noy g
ap=a,+(1-6) A A ALY — A + A At” (3.136¢)
2ry  2r5 Hoy  Hop
and
b =44°AVAt*|fcos(t” + At*) + (1-6)cost” | (3.136 1)
N . 7y
n
—0— ™
Moy
o +— | P @ 1
S
A 4 v _(>_ 5rS+P
S

Fig.3.6 Control volume and nodes of finite volume solution for 1D
pipe.




For r* =0, a special form of the equation must be obtained by letting

r* — 0 in the Eq.3.32 then becomes
au+_ 2+

+

4%

= 4% cost™| | t
r =

rt=0

or r or

+|imr+ﬁo(i GUJ (3.137)
rt=0

When L’Hospital rule® is applied to the last term on the right side
Eq.3.137 gives

ou”

+

o%ut
=4]%cost™| T2
r' =
rt=0 or rt=0

The general form of finite volume method for the above equation can

402 (3.138)

be written as

au; =ay[ou; +@1-0)u|+aous +@-0)u]+agu +b (3.139)
where

a, = 41°AV (3.140a)

ay {2 A" }At* (3.140b)
é*PN

ag :{2 Ai }AF (3.140¢)
SP

a, =a, +2e[ A“ + AS }At* (3.140d)

PN sp
ap =a, —2(1—0){[ AQ + Ai )At*} (3.140e)
Noy e

and

b = 422AVAt*|fcos(t” +At*) +(1—6)cost” | (3.140 1)



The energy equation (Eq.3.43) is solved numerically using the

finite volume method to get a general form (for r* > 0)

a, T =2, [0Ty +(1-0)T,° |+ a,[0Ts +A-0)T° |+ aST,* +b (3.141)

where

a, =41’ PrAv (3.142a)

a, = {A" A } t* (3.142b)
2rP 5rP+N

ag {_AS + A }At+ (3.142¢)
2r;  Orgp

a, =a, +9{ A LA } %{%}Aﬁ (3.142d)

ap=a,+1- 9){( A ASJ [i—i]m*} (3.142¢)

Hoy  Hgp 2ry  2ry
and
b=-222A, PravVAt*|ou; + (1-6)u;° | (3.142 1)

Forr™ =0 applying L Hospital’s rule for energy equation (Eq.3.43) to
get
2T+
+47° Hoo=2 0 T2
=0 or| .

rt=0 r'=0

4% Pr or
ot

(3.143)

The general form of the finite volume expression for the above
equation can be written as
a,T," =a, 0T, +(L-0)T,° |+ a, 0T, + Q-O)T;° |+ a3 T, +b (3.144)



where

a, =41°PrAav (3.145a)

a, =2 A“ At* (3.145b)
PN

a; =2 Aj At” (3.145c)
SP

a, =a, +2@{ A +i+}m+ (3.1450)

PN SP
ap =a, + 2(1—9)[_ A“ - AS ]At* (3.145¢)
oy Ofgp
and
b=—24%A, Pry AVAt*|ou; +(1-6)u,°| (3.145f)

3.5.3 Numerical Model of Pulsating Flow in the Channel
Momentum equation of pulsating flow (Eq.3.61) in the channel
Fig.3.7 is rearranged using finite volume method in the similar maner

to get the following general form
asUp =a, [ng +(1—6?)u§°]+ ag [eu; +(l—0)u;°]

+la, -(1-0)(a, +as)u° +b  (3.146)
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Fig.3.7 Control volume and nodes of finite volume solution for 2D
channel.
where
a, = av (3.147a)
At”
A
ay = —2 1+ (3.147b)
A ey
aq =i2 1+ (3.147¢)
A Hep
ap =a,+0(a, +ag) (3.147d)
and
2 ——
b= ?(1+ y'cost )AV (3.147¢)

where

cost™ =@cos(t” +At")+ (1-6)cost”

(3.147 1)



The energy equation of pulsating flow in the channel (Eq.3.70) is
written in the general form of finite volume method (using a control

volume is shown in Fig.3.7) as

apTp =2ay [QTN+ +(1-0)T° ]+ as [9T5+ +(1-O)TS" ]""
ag|uiTs + @-ourTe |+

a, [OusT, + -0y T, [+ agTy (3.148)
where
a, =A°Pr av (3.149a)
At”
ay = A+” (3.149b)
Ve
as = Aj (3.149c¢)
SP
ag = _—3Rem Pri (3.149d)
32 2
-3 AW
a, =—Re_Pr—= 3.149¢
w = oy Ren P ( )
a, =a, +0a. —a, Ju; +6[a, +a] (3.149f)
and

a2 = a, + (- 0)(a. —a, )u;° ~(1-0)(@y +as) (3.1499)



3.5.4 Numerical Model of Pulsating Flow in the Pipe

Eq.3.94 is rearranged using the finite volume method to obtain

the general form (for r* >0)

asUp =4, [Hug +(1—¢9)u§°]+ as [Gug +(1—9)u§°]+ ap u, +b (3.150)
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Fig.3.8 Control volume and nodes of finite volume solution for 2D
pipe.
where
a, =4A4°AV (3.151a)
ay =| 0 g (3.151b)
2r, oy
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The energy equation (Eq.3.10) with control volume and nodes is

shown in the Fig.3.8 is formed in the finite volume method for r* =0

as
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CHAPTER FOUR
RESULTS AND DISCUSSION

In this chapter the hydrodynamics and heat transfer characteristics

due to oscillatory flow is presented. The effects of parameters with
various values in the solution of governing equations will be introduced.
The results of both types of oscillating flow: reciprocating and pulsating
for internal flow inside a channel and a pipe subjected to a constant heat
flux will be discussed.

The main parameters characterize the flow and heat transfer are:
dimensionless velocity u® , dimensionless temperature T%

dimensionless bulk temperature T,”, dimensionless center temperature

T.', instantaneous-local Nusselt number Nu, and time average-local
Nusselt number Nuy. The results are presented in three sections:

1- Analytical solution of the new model.

2- Numerical solution for checking the new model.

3- Comparison of the new model with experimental results of other

authors.

4.1 Analytical Solution of the New Model

The results of the solution of the new model will be divided into
four categories depending on a type of flow and duct shape:
1- Analytical results of reciprocating flow and heat transfer in the
channel.

2- Analytical results of reciprocating flow and heat transfer in the pipe.



3- Analytical results of pulsating flow and heat transfer in the channel.

4- Analytical results of pulsating flow and heat transfer in the pipe.

4.1.1 Analytical Results of Reciprocating Flow and Heat Transfer in
the Channel.

Analytical solution of momentum and energy equations for
reciprocating flow inside horizontal channel shows that four parameters
have influence on the flow and heat transfer and these are: Womersly
number A, dimensionless amplitude of fluid displacement A/, Prandtl
number Pr and the ratio of distance to hydraulic diameter x/D,,.

The values of A and A, are taken not greater than the critical

values 8. . To avoid the limit of turbulence intensity region, the

values of £, is taken to be less or equal to 400 as the most of the

cri

authors used (table 2.1), and the values of A and A, are related to it.
The Prandtl number Pr is taken equal to 0.7 (for the air ) in the various
calculations. The hydraulic diameter for very wide channel (width >>
height) is equal to 4h, which makes the ratio x/D,, has the values of 0<
x/ D, <100. Usually, a large value of x/D, is used, such as x/D,

=10-50, to avoid the negative value of dimensionless temperature

distribution which occurs when the mean value of dimensionless

temperature (¥ x*) becomes less than the fluctuation value

(yg(y*)eit+ ) The large values A and A, give a similar results (negative

values of dimensionless temperature distribution) , therefore , in order to

keep away from such behavior, the small values of A and A, should be

taken (Eq.3.24 shows the relation between y and A & A, ).



Reciprocating flow require interchange between the inflow and
out flow boundaries along the length of pipe or channel during a cycle.
It is assumed that the fluid particles during a cycle exiting the flow
domain, i.e. the time required for the flow to go along the length equal
to the half time of cycle for coming back flow.

Starting from the velocity distribution, Fig.4.1 illustrates the
variation of dimensionless velocity u® with dimensionless channel
height during a half cycle n. The velocity profile is represented at
different times (30° between each time used). The figures clarifies that
the velocity profile is varied depending on the time at which the velocity

is taken for constant controlling parameters (A=4, A =15, Pr=0.7 and

x/ D, =20), therefore at a certain time the u® becomes parabolic

(unidirection) and in the other time changes specially at the region near
the wall. This effect is due to the oscillation of the flow which makes
the region near the wall faster than at the core region and this is called
Richardson annular effects!”. At approximately 130° the flow begins to
reverse its direction (the fluid flowing near the wall starts to reverse its
direction as much as 30° approximately sooner than the flow reversal
in the center of the channel.

In the second half of the cycle, the change of direction of the flow
has no influence on the shape or magnitude of u™ at the same cyclic
time (€ + 7z, where 0 is the crank angle), but only on the direction of
distribution u”.

Fig.4.2 shows the distribution of dimensionless temperature T~
with dimensionless channel height over a half cycle n. The controlling

parameters are kept constant as (A=4, A =15, Pr=0.7 and x/D,=20). It



is cleared from shape of temperature distribution, that the wall
temperature is greater than at the center temperature since the heating is
at the wall. The sharp velocity gradient near the wall leads to change in
the temperature distribution along the channel height, i.e. the annular
effect of velocity gives annular effect in the temperature distribution. It
Is also clear from the shapes of velocity and temperature distributions
that, increasing the velocity causes a decreasing in the temperature
(when the velocity is increased, allowing more fluid flow per unit time
being passed which makes the value of temperature decreased).

The two Figs. 4.1 & 4.2 show the phase shifting between the
velocity and temperature distributions.

Figs.4.3 & 4.4 indicate the influence of Womersly number A on

the dimensionless velocity u® profile and dimensionless temperature T~
profile respectively with dimensionless channel height at the
dimensionless time 60°, for (A,=15, Pr=0.7 and  x/D, =30), where

A=4, 8 & 12. For high Womersly number A of flow, the velocity and
temperature distribution is significantly affected by the Richardson’s

annular effect.

Fig.4.5 & 4.6 present the effects of Womersly number A and
dimensionless amplitude of the fluid displacement A, on the
dimensionless bulk temperature T, over a one cycle 2n. Fig.4.5
illustrates the influence of increasing Womersly number A during a one
cycle 2w on T, at constant values of the controlling parameters ( A, =15,

Pr=0.7 and x/D,=20). The values of A are equal to: 4, 8, and 12. Its

shows declining in T,” with increasing Womersly number, because of



increasing the velocity of flow due to increase the frequency, which
makes the magnitude of temperature is decreased. The effect of
dimensionless amplitude of fluid displacement A, on the dimensionless
bulk temperature T, along one cycle 27 is presented in the Fig.4.6. A,

equal to 10 and 15, while A=4, Pr=0.7 and  x/D, =20. It is illustrated

that T," decreases with increasing A,, which belong to increase quantity
of flow (velocity or volumetric flow rate) with increasing A, .

The periodical change of the velocity with time for reciprocating
flow where the mean value of flow rate equal to zero which requires that

the velocity at the certain time reach zero also, makes the value of
dimensionless bulk temperature T,” go to infinite at the certain time.
This behavior makes a clear discontinuity in the distribution of T, with

time.
Fig.4.7 indicates the variation of instantaneous-local Nusselt

number Nu, with time(one cycle 2x) for different value of Womersly

number (A =4, 8 and 12), while the other parameters are kept constant

(A,=15, Pr=0.7 and x/D, =20). The increment of Womersly number
(frequency) rise Nu,, which is attributed to thinner boundary layer and
therefore the thermal resistance becomes small. The values of Nu, go to
infinite at the certain time, which is resulting from the value of T,". It is
clearly shown from the figure that the value of Nu, for reciprocating

flow is more than for steady fully developed flow in the channel which

equals to Nu=8.235%" by the order of magnitude. This is

enhancement making the application of oscillatory flow or



reciprocating flow is very effective means for enhancement of heat

transfer and can be used in the wide field of industrial application.
Fig.4.8 illustrates the effect of dimensionless amplitude of fluid

displacement A ,( A,=10 and 15, and A=4, Pr=0.7 and Xx/D, =20). On

the instantaneous-local Nusselt number Nu, over a one cycle 2x. It is
shown that A, has no effect on Nu,, because the varying of A, means

the change of velocity or volumetric flow rate which has no effect on

Nu, for fully developed flow.

Fig.4.9 shows the variation of the dimensionless center
temperature T, at y* =0 over a on cycle 2x for different locations
X/ D, ( x/D,=20, 25& 30) while the other parameters are fixed (A=4,
A,=15 and Pr=0.7). It shows that T." is increased with increasing X/D,
, due to accumulate heat supplied along the channel. It also shows that
T." is varied periodically with time and becomes minimum at the certain
time because of varying the velocity with time. Fig.4.10 demonstrates
the effect of dimensionless amplitude A, ( A,=10, 15 & 20, and A=4,

Pr= 0.7 and x/D,=20), on T, with time (one cycle 2n). It refers to

decrease T, with increasing A,, because of increasing the volumetric
flow rate with increasing A,, which effects on the temperature profile.
Fig.4.11 illustrates the variation of the instantaneous-local Nusselt
number Nu, over a one cycle 2n for different ratio of distance to
hydraulic diameter x/D, (x"=10, 20 & 25) and the other parameters
are (A=4, A,=15 and Pr=0.7). It is seemed from the figure that x/D,



has no effect on Nu,, this is return to the fully developed flow along
the flow direction.

Finally, the influence of Prandtl number Pr on the time averaged-
local Nusselt number Nux during a one cycle 27, is presented in the
Fig.4.12, for two value of A (A=4 and 8) while the other controlling

parameters are kept constant (A,=15 and x"=20). The increment of

Prandtl number Pr increases Nux due to increase the hydrodynamics

diffusivity of the fluid or due to increase the specific heat capacity of

the fluid (Przz). Also, the figure shows the effect of Womersly
o

number A on the time averaged-local Nusselt number Nuy, which

increases with increasing the Womersly number A.

4.1.2 Analytical Results of Reciprocating Flow and Heat Transfer in
the Pipe.
Similarly as in channel flow, the main parameters that influence
the reciprocating flow and heat transfer in the pipe that are found in the
solution of momentum and energy equations are: Womersly number A,

dimensionless amplitude of fluid displacement A, , Prandtl number Pr

and the ratio of distance to diameter x/D. The parameters ranges used

in calculations are:

Womersly number A 1-12
Dimensionless amplitude of fluid displacement A, 5-35
Prandtl number Pr 0.7

The ratio of distance to diameter x/D 1-60



Firstly, the effect of oscillation on the velocity profile will be
discussed. Figs.4.13 and 4.14 are drawn for a half cycle n because of
similarity between two halves of cycle. Fig.4.13 illustrates the variation
of dimensionless velocity u™ along a half cycle &, with step between
each time and other equal to 30°. The values of the controlling
parameters are fixed as (A=8, A,=15, Pr=0.7 and x/D=30). It is clear

from this figure that (i) The clear effect of oscillation is seemed at the
region near the wall.(ii) The particles of fluid in the region near the wall
reverse their velocity faster than at the core region.

Fig.4.14 indicates the variation of temporal dimensionless

temperature T over a half cycle n with 30° between each time used.

The controlling parameters are kept constant (A=8, A, =15, Pr=0.7 and

x/D=20) . It is clear that for all times the wall temperature is greater
than that of other regions because of heating source located at the wall
and the low velocity in this region. The effect of reciprocating flow is
clearly started at the boundary layer near the wall, while the core region
becomes more uniform. The Richardson’s annular effect of oscillation
has a common effect on both velocity and temperature distribution.
These variation in the temperature distribution may be useful in a
special applications.

The trends of T* profiles in different times are  similar, the
maximum slope of temperature curves at the wall and zero at the center.
The discontinuity in the T* at the center point for all curves, because of

consequence of the obtained analysis (the denominators of a three

terms of EQ.3.52 contain the variable r*, which goes to infinite at



r*=0).To overcome this discontinuity, the points just very near the
center are taken.

The temperature distribution for the reciprocating flow is different
from that for steady laminar fully developed flow, since at the certain
time the temperature in the core region is greater than the temperature at
the region near the wall. This may be attributed to the cooling effect
which is different near the wall than from the core due to the velocity
behavior.

Figs.4.15 and 4.16 illustrate the effect of Womersly number A on
the dimensionless velocity and temperature distributions respectively at

the time t* =60°, for constant parameters A, ,Pr and x* (A,=15,
Pr=0.7 and x/D=30). These figures show the annular effect of

oscillation with increasing the Womersly number A. The core region

becomes wider than the regions near the wall for both u™ and T at
high Womersly number and the annular effect in the velocity profiles
makes the boundary layer thinner.

Fig.4.17 presents the variation of dimensionless bulk temperature
T,” over a one cycle 2z, for different values of Womersly number
(A=4, 8 and 12) while the parameters A,,Pr and x"are fixed (A,=15,
Pr=0.7 and x/D=30). It shows that T,” is decreasing with increasing
Womersly number, the reason for that is explained in the section 4.1.1 .
The effect of dimensionless amplitude of fluid displacement A, on T,
is shown in the Fig.4.18. The behavior can be explained as: T, is
decreasing with increasing A, , since the increment of A, means higher

flow rate.



Figs.4.19 and 4.20 show the effect of Womersly number A and

dimensionless amplitude of fluid displacement A, on the instantaneous-
local Nusselt number Nu,. Fig.4.19 illustrates behavior of three curves
of Nu, for three values of Womersly number (A=4, 8 and 12), where
other controlling parameters are equal to (A, =15, Pr=0.7 and x"=30).
The effect of A on  Nu, of the pipe is similar to effect of A on Nu, in
the channel which showed in the Fig.4.7. Its also indicates that Nu, is

doubled with varying A from 4 to 8 or from 8 to 12. The point of

discontinuity in the curves is repeated in  Nu,, because of the previous

mentioned reason in the section 4.1.1.

The variation of instantaneous-local Nusselt number Nu, for two
values of dimensionless amplitude A, that equal to (15 and 25) is
represented in the Fig.4.20 . The parameters A, Pr and x/D are kept
constant (A=4, Pr=0.7 and x/D=30). It shows that the variation A,
has no effect on the Nu, since the flow is fully developed.

The effect of dimensionless distance x/D on the dimensionless

temperature of the center T, is represented in the Fig.4.21. The values
of A, A, and Pr are fixed (A=4, A,=15 and Pr=0.7) and T." is drawn
for three values of x/D (x"=20, 25 and 30). It shows that T, s

increasing with increasing the distance x*, due to accumulative heat or
energy with axial distance. Basing on this figure indirectly one can
conclude that the periodic effect of oscillation is extending to  bulk

temperature and center temperature and temperature of all radial points.

Its shows at the time wt =0, the value of T, is not a maximum, because



of the phase shifting between the temperature and velocity as well as the
pressure gradient of driven flow.

Fig.4.22 shows the variation of dimensionless center temperature

T,” with Womersly number (A=4, 6 and 8), while the other parameters

c
are kept constant (A,=15, Pr=0.7 and x"=30). The figure illustrates
that the increment of A leads to decrease the dimensionless central
temperature T. . The reason of this behavior is similar to that affecting
the bulk temperature which is mentioned in the section 4.1.1. Also, the
figure indicates phase shifting between the maximum or minimum
values of T, for different values of Womersly number because the
phase shifting between the temperature and velocity which is affected
by varying Womersly number.

Finally, Fig.4.23 illustrates the variation of time average-local

Nusselt number Nu, with Prandtl number at constant A, and x/D
(A,=15and x"=30) and two values of A 4 and 8. This figure shows that

Nuy is increasing with increasing Prandtl number which is due to the
increment in the hydrodynamics diffusivity of the fluid or specific heat

capacity.

4.1.3 Analytical Results of Pulsating Flow and Heat Transfer in

the Channel.

The analytical solution of momentum and energy equations with
previous simplifications and conditions for pulsating flow in the
channel, gives the following effecting parameters with chosen range

values used for calculations:



Womersly number A 1-8

Dimensionless amplitude of pressure gradient ' 0-05
Mean Reynolds number Re <2300
Prandtl number Pr 0.7

The ratio of distance to hydraulic diameter X/ D, 1-60

The value of Womersly number A is varied from 1 to 8 to avoid
the transition from the laminar to turbulent flow. The magnitude of ' is
taken to be less than 0.5 to avoid the relaminarization phenomena and
reversion of the flow!””). There is a relation among the parameters

A, A, y'and Re_ used to detect the criteria of transition from laminar to

8 A A’

turbulent in the pulsating flow defined as ' =3

, where Re_ <

m

2300 (see Appendix H). Prandtl number is taken to be constant and
equal to 0.7 for air. Reynolds number is calculated for the mean velocity
(steady state), and it should be less than the critical value of internal
flow Re, <2300.

First, the velocity profile is drawn over a half cycle n. Fig.4.24
shows the variation of dimensionless velocity u™ with step equal to 60°
between each time and other. The parameters 4, ', Re., Pr and x/D,

are kept constant as (A=4, »'=0.3, Re, =1200, Pr=0.7 and

X/ D, =20. The general trend of profiles of u™ are parabolic shape, this
IS because the flow has mean velocity which makes the effects of
oscillation is not distinct in the low frequencies.

The distribution of dimensionless temperature over a half cycle ©

for various values of time starting from 0° crank angle and 60° step, is



illustrated in the Fig.4.25. the controlling parameters are equal to: A =4,
y'=0.3, Re, =1200, Pr=0.7 and x/D, =20. It indicates that the
parabolic profile for temperature distribution due to (i) Symmetric
boundary conditions (ii) The velocity profile is parabolic (iii) The flow
rate has mean value only.

Effect of Womersly number A on the dimensionless velocity u”
and temperature T* are shown in the Figs.4.26 & 4.27 respectively.
Fig.4.26 illustrates the influence of A (A=2, 4 and 10) on u" with

constant values of parameters (»'=0.3, ReA =1200, Pr=0.7 and

X/ D, =30). The main effect of A on the u™ and T are represented by
making the core region more uniform (tip of parabolic) with
increasing A.

Figs.4.28, 429 & 4.30 show the wvariation of temporal

dimensionless bulk temperature T,” with the parameters A, " and Re,,

respectively. Fig.4.28 illustrates the effect of Womersly number A on T,

during a one cycle 2z, for three values of A (4, 8 and 12) and the

parameters »', Re_, Pr and x/D, are kept constant (y'=0.3,

Re,, =1500, Pr=0.7 and Xx/D, =20). The amplitude of T, s
decreased with increasing A. This behavior occurs because the variation
of velocity with varying A. The mean value of all profiles are stilled
constant value and equal to steady value for laminar fully developed
convection.

Fig.4.29 shows the variation of dimensionless bulk temperature

T,” over a one cycle 2x for different value of ratio of amplitude to

steady pressure gradient y'( »'=0.1, 0.3 & 0.5), while the other



controlling parameters are remained constant as (41 =4, Re_  =1200,

Pr=0.7 & x/D,=30. The amplitude of T, is increased with
increasing y'. This can be explained as: the increment of y' means

increasing or decreasing the magnitude of pressure gradient
(periodically change with time), which leads to large cyclic difference

in the thickness of boundary layer which produces from the variation the
velocity with varying »'. The mean value of T," is remained constant
and equal to steady value because Reynolds number is kept constant.
Fig.4.30 illustrates the effect of mean Reynolds number Re_ on
the dimensionless bulk temperature T,” during a one cycle 2w, at
constant parameters A, ', Prand x/D, (1=4, =03, Pr=0.7 &
x/ D, =30). The values of mean Reynolds number are:1000, 1500 &
2000. The increment of mean Reynolds number makes the mean value
of dimensionless bulk temperature T," to be decreased. This behavior

occurs because increasing the velocity with increasing Re_, , which

causes decrementin T,'".

Fig.4.31 shows the effect of Womersly number A on the

instantaneous-local Nusselt number Nu, over a one cycle 2m at
constant controlling parameters y', Re., Pr & x/D,are ('=0.3,
Re, =1500, Pr=0.7 & x/D, =20), while A=2, 4 and 8. It illustrates
that the time average of Nu, is not affected by the variation frequency

of pulsation and it is equal to the value of steady laminar fully
developed flow for the channel with width >> height which equal to

8.235% The amplitude of Nu, is decreased with increasing A. This



behavior occurs because the variation of thickness of boundary layer
with varying A, hence the thermal resistance.

Fig.4.32 shows the effect of ratio of amplitude to steady pressure
gradient »'( »'=0.1, 0.3 & 0.5), on the instantaneous-local Nusselt
number Nu, during a one cycle 2m, while the other controlling
parameters  are kept constant (A=4, Re, =1500, Pr=0.7 &
X/ D, =20). The amplitude of Nu, is increased with increasing y' due
to increase or decrease the magnitude of pressure gradient (periodically
change with time), which leads to large periodically difference in the
thickness of boundary layer which produces from the variation the
velocity with varying »'.

Fig.4.33 shows the variation of instantaneous-local Nusselt
number Nu, during a one cycle for different values of Prandtl number
(Pr=0.1, 0.7 & 10). The other controlling parameters are kept constant
(=4, =03, Re, =1500 & x/D,=20). It is shown that the

amplitude of Nu, is decreased with increasing Prandtl number because

of increasing hydrodynamics diffusion or decreasing the specific heat
capacity.
Figs.4.34 & 4.35 show the effect of Womersly number A and the

ratio of amplitude to steady pressure gradient »’' on the time-averaged

bulk temperature To, respectively. Fig.4.34 illustrates that the

increment of A has no effect on Tp for the values of A greater than 2,
while the percent of enhancement reaches to 4% for values of A less

than 2.



Fig.4.35 illustrates the effect of the ratio of amplitude to steady

pressure gradient ' on the time-averaged bulk temperature Tp. It can

be noticed that To is constant  with varying y'. The reason of this
behavior may be attributed to the fluctuation of T,” about mean value
with varyingy’ Fig.4.29.

Figs.4.36 & 4.37 indicate the variation of Nux with A and '
respectively, with kept other parameters constant. Fig.4.36 illustrates the
variation of  Nux with Womersly number, which shows the
enhancement reaches to only 2% for A less than 2. Fig.4.37 shows the
variation of Nux with ', which illustrates that Nux is not varying
with »'.

Fig.4.38 shows the variation of instantaneous-local Nusselt
number Nu, during a one cycle for different values of mean Reynolds
number (Re, =1000, 1500 & 2000). The other controlling parameters
are kept constant (41=4, »'=0.3, Pr=0.7 & x/D, =20). It indicates
that there is no effect for mean Reynolds number on  Nu,, because of

the flow is fully developed.

4.1.4 Analytical Results of Pulsating Flow and Heat Transfer in

the Pipe.

Both energy equation and momentum equations are solved for
pulsating flow in the horizontal pipe to give the velocity and
temperature distributions as given in Eqs.3.105 & 3.126 respectively,
and the following controlling parameters together with the chosen range

values of these parameters are used for calculation:



Womersly number A 1-8

Dimensionless amplitude of pressure gradient ' 0-0.5
Mean Reynolds number Re <2300
Prandtl number Pr 0.7
The ratio of distance to diameter x/D 1-60

The values of A, ', Re,, Pr & x/D that it is used in this section

have a similar considerations as in section 4.1.3, but the criteria of

AL

m

transition from laminar to turbulent becomes ' = , where Re, <

2300 (see Appendix I).

Figs.4.39 & 4.40 show the distribution of dimensionless velocity
u™ and dimensionless temperature T* over a half cycle © with time step
equal to 60° between each other. The controlling parameters are equal
to: A=4, y'=0.3, Re, =1200, Pr=0.7 and x/D=40. The general
behavior of these figures are similar to that of the pulsating flow in the
channel (section 4.1.3), except the difference in the maximum value at
the tip of parabolic profiles, due to the difference in the geometry. These
figures show discontinuity in the center of pipe, because of the
consequence of the used analysis.

Effect of Womersly number A on the dimensionless velocity u”
and temperature T* are shown in the Figs.4.41 & 4.42 respectively.
Fig.4.41 illustrates the influence of A (A=2, 4 and 8) on U™ at @t =60°
with constant values of parameters (y'=0.3, Re,, =1200, Pr=0.7 and
X/ D, =40). The main effect of A is represented by making the core

region more uniform (tip of parabolic) with increasing A. Fig.4.42



indicates the influence of A on the dimensionless temperature profileT *

at ot =60°. It shows that the core region is affected by the pulsating
flow at high frequency or A because the varying of velocity with
increasing Womersly number.

Figs.4.43 illustrates the effect of Womersly number A on the
instantaneous dimensionless bulk temperature T,” for constant

controlling parameters (' =0.3, Re, =1000, Pr=0.7 and x/D =30),

where A equal to 2, 4 and 8. It shows that the amplitudes of T, are
increased with decreasing the Womersly number A, while the mean
value is constant. The reason of this behavior is similarly explained in
the section 4.1.3.

The effect of dimensionless amplitude of pressure gradient ' on
the T," is represented in Fig.4.44. the parameters are equal to (A =4,
Re, =1000, Pr=0.7 and x/D =30), while »' is taken the values 0.1,
0.3 and 0.5. This figure is similar to Fig.4.29 for pulsating flow in the
channel except the difference in the magnitude of T,” because the
difference between the parameters of pulsating flow in the channel and

pipe.
Fig.4.45 indicates the variation of the instantaneous-local Nusselt

number Nu, with Womersly number A=2, 4 & 8, while the other
parameters »', Re., Pr & x/D are kept constant (where: »'=0.3,
Re, =1000, Pr=0.7 and x/D=30). It shows that the amplitude of
Nu, is decreased with increasing Womersly number, while the mean

value remains constant. This is owing to increase the diffusivity with

increasing Womersly number which makes the temperature field more



uniform. In general the pulsating of flow has no effect on the mean

value of Nu,, as it is observed in Fig.4.45 the average value of Nu, is

equal to 4.364 as in steady flow in the pipe.

Fig.4.46 shows the variation of instantaneous-local Nusselt number Nu,

during a one cycle for different values of Prandtl number (Pr=0.1, 0.7 &

10). The other controlling parameters are kept constant (1 =4, »'=0.3,
Re, =1000 & x/D=30). This figure shows that the amplitude of
Nu, is decreased with increasing Prandtl number.

The effect of dimensionless amplitude of pressure gradient ' on
the instantaneous-local Nusselt number Nu, is presented in Fig.4.47.
the parameters A, Re, Pr & x/D are kept constant (A=4,
Re, =1000 Pr=0.7 & x/D =30). The increment of #’ increase the
amplitude of Nu,, which explains by increasing the pressure gradient

with »’. The mean value of Nu, is constant and equal to 4.364.

The variation of time-averaged bulk temperature Tb» with A and y'
for different values of mean Reynolds number Re_  =1000, 1500 &

2000, are shown in Figs.4.48 & 4.49 respectively. The parameters A or
y', Pr & x/D are fixed (1=4or »'=0.3, Pr=0.7 & x/D=30). Its

show that there is no effect of A or ' on Ty, while Ty is decreased

with increasing Reynolds number.
Fig.4.50 shows the influence of Womersly number on the time
averaged-local Nusselt number Nu, for different values of mean

Reynolds number Re_  with the other parameters are kept constant



(=03, Pr=0.7 & x/D=30). This figure illustrates that both the

mean Reynolds number and Womersly number have no effect on Nuy.
Fig.4.51 shows the variation of Nuy with 3 for various values of

Re,, and constant A, Pr & x/D (A=4, Re,=1500 Pr=0.7 &

m
x/D =30). It is clear from this figure that, there is a decrement in Nujx

with increasing »’, which equal to 0.5%, which is not important from

the practical point of view.

4.2 Numerical Solution for Checking the Analytical Model.

The numerical solution based on the finite volume method has the
following considerations:
1- The solution of the general form of the governing equations is done
by iteration method (see Appendix J).
2- The weighting parameters 0 is taken for explicit method 0=0.
3- The area of the four sides of control volume are equal
A=A =A, =A for2Dor A =A, for 1D.
4- The steps of the time chosen is equal to 0.001 second.
5- The criteria of convergence for both calculations of velocity and

temperature is equal to 1*107*.
6- The small value of dr*, dy" and dx" are taken equal in both sides of
point P (i.e. dypy =Wgp, Mpy =ep).

The discussion of the numerical results is divided into four

sections depending on the type of flow and duct shape.



4.2.1 Numerical Results of the Reciprocating Flow in the Channel.

Eq.3.5 is solved numerically using the finite volume method to
give the general form of F.V.M which is defined in Eq.3.131 with dy”
=0.05 and the number of nodes equal to 21 at the wt=0.05. The
controlling parameters are: A=4, A =15 Pr=0.7 & x/D,=20.
Fig.4.52 shows the analytical and numerical solution of Eq.3.5, which
gives a very good agreement. Fig.4.53 illustrates the analytical and
numerical solution of T* ( solution of EQ.3.13) for controlling
parameters as: 1 =4, A, =15 Pr=0.7 & x/ D, =20. This figure shows a
very good identification between analytical and numerical model. It is
shown that in the region near the wall a less agreement is obtained,
because of the annular effect or the oscillation flow which is occurred in

the region nearest to the wall.

4.2.2 Numerical Results of the Reciprocating Flow in the Pipe.

Eqg.3.32 is solved numerically using F.V.M to give a general form
of finite volume method as in Eq.3.135. The number of nodes of domain
are 21, and the controlling parameters are: 1=4, A =15 Pr=0.7 &
x/D =20 at the time ot=0.05. Fig.4.54 illustrates the analytical and
numerical solution of u™. It indicates that there is a very good
agreement between both solutions.

The numerical solution of Eq.3.43 is represented in the Eq.3.141.
The solution is based on 21x30 nodes, at the time wt=0.05 for
parameters as: A =4, A =15 Pr=0.7 & x/D =20. Fig.4.55 shows the

checking of analytical solution with numerical solution of T*, which

gives a good identification.



4.2.3 Numerical Results of the Pulsating Flow in the Channel.
The momentum equation (Eqg.59) is solved numerically to obtain a
general form of finite volume solution Eq.3.146. The domain is divided

into 20 node and the parameters used are: 1 =4, »'=0.3, Re,, =1500,
Pr=0.7 & x/D, =20 at the time «t=0.10. The comparison between

analytical and numerical solution of u™ are shown in the Fig.4.56 which
yields an excellent agreement.

Eq.3.70 is transformed to the general form of finite volume
method and expressed by EQ.3.148. The calculation was done using
controlling parameters : A=4, »'=0.3, Re,=1500, Pr=0.7 &

x/D, =30 at the time @t=0.40. The domain is divided into 20x30
nodes. Fig.4.57 shows the comparison between the analytical and

numerical solution of T*, which gives a reasonable agreement between

them.

4.2.4 Numerical Results of the Pulsating Flow in the Pipe.

The general form of numerical solution of Eq.3.94 is represented
in Eg.3.150. The domain has 20 node and the parameters used in the
calculation are equal to: A=4, »'=0.3, Re, =1000, Pr=0.7 &
x/ D =230 at the time wt=0.05. Fig.4.58 shows excellent identification
between numerical and analytical solution of Eq.3.94.

The temperature distribution T* is obtained from numerical
solution the general finite volume form given by EQq.3.154. The domain
has 20x30 nodes and the parameters used for calculation are equal to:

A=4, =03, Re,, =1000, Pr=0.7 & x/D =31 at the time t*=0.05.



Fig.4.59 shows the comparison between the analytical and numerical
solution of temperature distribution, which gives a good agreement

between them.

4.3 Comparison of the New Model with Experimental Results
of Other Authors
In order to demonstrate the validity of the present analytical
model, a comparison between the experimental work for other authors

and the new model is carried out. The main parameters that used in the
comparison are: time averaged-local Nusselt number Nuy and space-

cycle averaged Nusselt number Nu. Because of non identification
between the parameters of a new model and the works that is used for
comparison, the parameters are simplified.

Heat transfer in reciprocating flow in the channel of the new
model is compared with experimental investigation for convective heat
transfer in a rectangular duct heated from the below and subjected to a
periodic flow, which is investigated by Copper et al. and cited by Zhao
and Cheng! . This experimental work was done for turbulent flow and
the results were correlated by suitable relation for Nu and since no
experimental work done for laminar flow therefore the comparison will

be made at critical oscillatory parameter f.; only. The parameter that

used in the comparison is space-cycle averaged Nusselt number Nu
which is defined in EQ.2.27. Fig.4.60 shows this comparison between
the value of Nuobtained from the new model and with the
experimental correlation obtained by Copper et al.l) for various values

of Womersly number. The behavior of the results obtained from both



work have a similar trend, the observed difference between them may be
attributed the flow region that used in the experimental correlation
(transition and turbulent regions).

Analytical solution of a new model for heat transfer in the
reciprocating flow in the pipe is compared also with the study for
oscillatory heat transfer in a pipe subjected to a laminar reciprocating
flow investigated by Zhao and Cheng!®*. The values of kinetic Reynolds
number is varied from 23 to 464 and A, is varied from 8.54 to 34.9 and

L/D=44.8 and the fluid used for comparison is air. Fig.4.61 illustrates

this comparison for Nu against Womersly number for both the present
analytical solution and the experimental correlation defined in the
Eqg.2.31 which gives a qualitative reasonable agreement. The difference
between the two curves may be attributed to that, the correlation of
experimental data based on conjugate heat transfer (convection in the
fluid and conduction in the tube) in which the temperature at outer wall
is used instead of at the inner wall which is equal to fluid temperature,
while the present study is made for convection in the fluid only.

The solution of pulsating flow in the channel for the new model is

compared using the heat transfer enhancement factor N_Up which

Nus

defined as the ratio between time-averaged Nusselt number for pulsating
flow to time-averaged Nusselt number for steady flow which is
obtained by Moon et al.¥l . Fig. 4.62 shows a good agreement between
the analytical results and experimental results for fully developed
laminar flow, Reynolds number equal to 700, the ratio of amplitude of

fluctuate to steady velocity equal to 0.2 and different frequencies (hence



the standard deviation of I:_Up Is 0.061). Also the curve shows the
Us

fluctuating of the experimental results about the analytical results of a
new model.

The analytical solution of a new model for pulsating flow in the
pipe is compared with experimental study for convective heat transfer
characteristics of laminar pulsating flow pipe air flow by Habib et al'*.
The parameter of comparison is the relative mean Nusselt number Nu,

Uom

Nu

which is defined as Nu, = , where Nu @ is the pulsated mean

om

Nusselt number and Nu,, : is the mean Nusselt number without

pulsation. The range of mean Reynolds number used are from 780 to

1366, and Stokes number  is in the range from 12 to 17.5 where

Qz%‘/zﬁ. The relative mean Nusselt number defined in Eq.2.34b is
14

used for comparison. The values used for calculation are »'=0.5,
Pr=0.7, Re,, =1000 for various values of A. Fig.4.63 shows that Nu, is
remained constant and equal to 1 for the present analytical solution of a
new model while Nu, for experimental works of Habib et al. 1 is
fluctuated about 1 (increased or decreased relative to 1), where the

standard deviation of Nu, is 0.114,
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Fig.4.38 Effect of mean Reynolds number on the instantaneous-local Nusselt
number at A=4, »'=0.3, Pr=0.7 and x/D,=20. (Pulsating flow in the
channel)



0.50

0.25 —

0.00 —

-0.25 —

-0.50 T I I I T
0.00 0.40 0.80 1.20
u+
Fig.4.39 The Variation of dimensionless velocity profile for 2=4, »'=0.3,
Re  =1200, Pr=0.7 and x/D=40. (Pulsating flow in the pipe

0.50
00
0.25 —| — 60°
— 12Q°
180°
+
r
0.00 —
0.25 —
-0.50 :
0.00 0.10 0.20 0.30 0.40 0.50

T+
Fig.4.40 The Variation of dimensionless temperature profile for A=4,
y'=0.3, Re, =1200, Pr=0.7 and x/D=40. (Pulsating flow in the pipe)



0.50

0.25 — — A2
B
+ =8
r 0.00 —]
-0.25 —
-0.50 T T T T T | T
0.00 0.40 0.80 1.20 1.60

+

u
Fig.4.41 Effect of Womersly number on the dimensionless velocity profile at

at =60° for »'=0.3, Re,, =1200, Pr=0.7 and x/D=40. (Pulsating flow
in the pipe)

0.50

0.25 —

r 0.00 —

-0.25 —

0.00 0.10 0.20 0.30 0.40 0.50
T+
Fig.4.42 Effect of Womersly number on the dimensionless temperature
profile at @t =60°, for »'=0.3, Re =1200, Pr=0.7 and x/D=40.
(Pulsating flow in the pipe)



0.30

| — =2
0.25 —] — =
] — A=8
0.20 —
T |
b
0.15 —
0.10 —
0.05 —]
7] T I T I ) I | I 1 I )
0 60 120 180 240 300 360

ot (degree)
Fig.4.43 Effect of Womersly number on the instantaneous dimensionless
bulk temperature at ' =0.3, Re, =1000, Pr=0.7 and x/D=20. (Pulsating

flow in the pipe)

0.19
'
- — y'=01
’—
0.18 —] y =03
'
— y'=05
0.17 —
T+ .
b
0.16 —
0.15 —
0.14 T [ T [ T T T T T T T
(0] 60 120 180 240 300 360

ot (degree)
Fig.4.44 Effect of the ratio of the fluctuate to the steady pressure gradient on
the instantaneous dimensionless bulk temperature at A=4, Re, =1000,

Pr=0.7 and x/D=30. (Pulsating flow in the pipe)



4.80

4.60 —
4.40 —
Nu

4.20 —

4.00 —

A=2
3.80 — =4
A=8

=60 — 1 - 1 T 1 T 1T T 1
8] 60 120 180 240 300 360
ot (degree)
Fig.4.45 Effect of Womersly number on the instantaneous-local Nusselt
number at »"'=0.3, Re,, =1000, Pr=0.7 and x/D=30. (Pulsating flow in

the pipe)

4.50

4.40 —
4.30 —
Nu

4.20 —

4.10 —

— Pr=0.1
+00 7 —  Pr=0.7

3.90 — — Pr=10

3.80 T | T | T | T | T | T
(0] 60 120 180 240 300 360

ot (degree)
Fig.4.46 Effect of Prandtl number on the instantaneous-local Nusselt number
atA=4, »'=0.3, Re,, =1200 and x/D=30. (Pulsating flow in the pipe)



4.60

4.50 —
4.40 —
Nu,
4.30 —
4.20 —
!
. — y =01
!
4.10 — — y =03
!
. — y =05
4.00 T I T [ T T T I T | T
0 60 120 180 240 300 360

ot (degree)
Fig.4.47 Effect of the ratio of the fluctuate to the steady pressure gradient on
the instantaneous-local Nusselt number at =4, Re_ =1000, Pr=0.7 and

x/ D=30. (Pulsating flow in the pipe)

0.18
>18 T — Re_ =1000

- . — Re,, =1500

" 014 — Re,, =2000
0.12 —
0.10 —
0.08 T I T I T I T I T I T
0 2 4 S} 8 10 12
A
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CHAPTER FIVE
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions
From the present analytical model it can be concluded the

following remarks:

1- Analytical modeling for hydrodynamics and heat transfer in the
oscillatory flow is possible based on the following considerations:
laminar, 2D, incompressible, horizontal channel or pipe, no viscous
dissipation ®=0 and the flow is driven by reciprocating or pulsating
pressure gradient.

2- Both reciprocating and pulsating flow is studied and the obtained
effecting parameters that control the flow and heat transfer are defined
()for reciprocating flow as: Womersly number A, dimensionless

amplitude of fluid displacement A,, Prandtl number Pr and the ratio of
distance to hydraulic diameter x/D,.(ii)) for pulsating flow as:
Womersly number A, the ratio of fluctuate to steady pressure gradient y'
, mean Reynolds number Re,_, Prandtl number Pr and the ratio of
distance to hydraulic diameter x/D, .

3- The effect of oscillation on the velocity and temperature profiles is
more significant in the reciprocating flow than pulsating flow.
4- The dimensionless bulk or center temperature and the instantaneous-

local Nusselt number Nu, are fluctuated periodically with time for

reciprocating flow.



5- The instantaneous-local Nusselt number Nu,and time averaged-local

Nusselt number Nuyx are clearly increased with increasing Womersly
number and Prandtl number in the reciprocating flow.

6- The reciprocating flow gives enhancement in the heat transfer rate
reaches to order of magnitude for Nu, or Nuy comparing to steady state

at the same considerations.

7- The results show that the an imposed flow pulsation causes both the
temperature and  Nusselt number fluctuate periodically about the
solution for steady laminar convection.

8- The solution of pulsation flow has been demonstrated strongly that
pulsation has no effect on the time average Nusselt number for pulsating

convection heat transfer in the channel or the pipe with constant heat

flux ( Nu=4.364 for pipe and Nu=8.235 for channel with width >>
height).

5.2 Recommendations

In extension of the present study it is recommended for future to
note the following:
1- This study can be developed for turbulent and compressible flow.
2- Heat transfer in the micro channels can be studied in the similar
manor of the present model.
3- Entrance region can be investigated.
4- Investigation can be extended to hydrodynamics and heat transfer in
oscillating external flow.
5- The present study can be accompanied with other devices to enhance

heat transfer such as wavy wall or surface.



6- The periodically repeated conditions such as periodic wall
temperature or periodic heat flux may be applied for future

investigation.
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APPENDICES
Appendix A

The functions that find in the Eq.3.20 are defined as

E,=EU+FW (AD)
F=FU-EW (A2)
U,=U?+W? (A.3)
Y,=YC+ZD (A4)
Z,=ZC-YD (A5)
C,=C*+D? (AB)
Q =QC+PD (A7)
P=PC-QD (A8)
and

E= cosh(«/ Pr/2 A y+) cos(«/Pr/Z A y*) (A9)

F =sinh(VPr/22y*) sin(yVPri2 y*) (A.10)
U =sinh(\Pr/2 2 ) sin(v/Pr/2.4) (A1)
W = cosh(«/Pr/Zﬂ.) cos(«/Pr/ZJ,) (A12)
Q=cosh(1/~2y*) cos(A/~2y") (A.13)
P =sinh(2/+2y") sin(2/~/2y") (A.14)
C =cosh(2/+/2 ) cos(2/+/2) (A.15)

D =sinh(2/42 ) sin(1/~2 ) (A.16)

Y =sinh(2/+/2 ) cos(2/+/2) (A17)

Z =cosh(2/+/2 ) sin(4/+/2) (A.18)



Appendix B

The general form of Bessel function with complex variable (i*?)is
J,(i*?2r* 1) =Ber (2r*A) +iBei_(2r* 1) (B.1)
where

J, : Bessel function of order n.
n: the order of Bessel function.

and
© 2k+n
Ber, (x)=)_ (x/2) os(?’n hl ZKJ” (B.2)
—kI'(n+k+1) 4
) 2k+n
Bei, ()= > (x/2) n(3”+2k}z (B.3)
—KIT'(n+k+1) 4
and
[": is Gama function defined as
r =_|.e“‘1 e dx (B.4)
0
' (n+1)=n! n=1,2,3, (B.5)
for n=0 (zero order)
( 1) (X)4k X4 X8
Ber, (x) = Zz4k 20T g +22426282 e (B.6)
] © (_1)k (X)4k+2 X2 X6
Be| X) = i W B.7
() ;24“2 [k +DP 2% 2%4%? " (B7)



Appendix C

The complex functions in the Eq.3.50 are simplified as

3,(2i%22/Prr* )= Ber, (2A~/Prr*) +iBeiy (2A~/Prr*) = BR, +iBI, (C.1)

3, (%2 2+/Pr )= Ber, (A</Pr) + iBei, (1+/Pr) = BR, +iBl, (C.2)
3,(i%22) = Ber, (1) + iBei, (1) = BR, +iBl, (C.3)
3,(i%22)= Ber, (1) +iBei, (1) = BR, +iBI, (C.4)
3,(2i%24r* )= Ber, (24r*) +iBei, (24r*) = BR; +iBlI, (C.5)

and the function RE,, IM,, RE,, IM,, RE;, and IM, in Eq.3.51 are

BR, BR, + Bl, Bl

RE — 1 2 1 2 C6
" BR2+BI,’ (€0
i\ _ ~BRiBI, +BI,BR, ©7)
' BR,” + Bl
~g _ BRsBR, +BI,Bl, 9
i BR, +BI,’
M. -~ BRaBl, +BI; BR, ©9)
, = .
BR,” +BI,’
~g _ BRsBR, +BI; Bl (©.10)
’ BR,” +BI,?

~BR, BI, + B, BR,

IM, =
’ BR, +BI,

(C.11)




Appendix D

The complex Bessel function in EQ.3.50 are simplified using
asymptotic Bessel function for complex variable Eq.3.38 as below

2 iz(j}%i)ﬂ,\/ﬁﬁ' < ~:3/2 n -1/2 ,. 0
J0(2i3’2/1\/ﬁr+)_ ;e (|2| A~NPrr ) (i)

: = - (D.)
J. (i¥2A/Pr i3, spr _
3 ) \Fe 25 i A Pr ) i)
T
: + (1) +
30(2|_3’2Mﬁr )_ 1 pweers (0.2)
3,24y er
=3/ + (2+) +
Jo(zu_3 2 APrr )_ 1 e (03)
Jl(|3/2/7v\/P_r) 2r"

Jo (22 APrry i e\/?wr*—l) eiﬁz(zr*—l) (04
‘Jl(iS/z/l\/ﬁ) 2rt .
3@ APy i (e cos(Pri2acer )+ 03
3,GY2Pr) Jor sin(VPr/24(2r* -1)) |

and
.3/ g eii3/2/1(ii3/21)_1/2(i)—1
J;(1I7°4) T 1 .
= =—=—i (D.6)

Jo(iglzﬂ) _\F i%i .. 1/2 . [
Ze 2 (ii¥21) )
Ce E(ia) )



and

2 2200 (- :312 50t Y2 10

: = - (D.7)
J |3/2/’L i1, _
0( ) \Fe J2 (ii3/2/1) 1/2(i)0
T
J +3/2 + (1) +
0(2| Ar ) B 1 el 7 A(2r*-1) (D.8)
31,62 Jar |
J, %%y 1 “aer
0 _ e V2 (D.9)

Jo(i3/2/1) - 2r"
The Egs.E.5, E.6 and E.9 are substituted in Eq.3.50 to obtain Eq.3.52.



Appendix E

For steady flow the solution of momentum equation in x-direction gives
the velocity distribution as

ut =1-y* (E.1)
where
, o u Ph*/v
u =—, umax =
u 2

the average velocity defined as

Q ju dA (E2)

n = area jdA

m

by substituting Eq.E.1 obtain

1
Uy = U [ A= Y)Y =2t (E3)
0

then

(E-4)



Appendix F

The function which defined in Eq.3.88 are
E,=EU+FW

F=FU-EW

U,=U?+W?

Y,=YC+ZD

Z,=2C-YD

C,=C*+D?

Q=QC+PD

P=PC-QD

and

E :cosh(\/PrIZ/‘ty*) cos(\/Prlz/ly*)
F :sinh(«/Pr/Zﬂ.y*) sin(«/Pr/Ziy*)
U :sinh(\/PrIZi) cos(\/Pr/Z/l)

W =cosh(\/Pr/2ﬂ,) sin(\/Pr/2/1)
Q=cosh(2/~2y*) cos(A/~2y")

P =sinh(2/~/2y*) sin(2/~2y")

C =cosh(2/+/2 ) cos(2/~/2)

D =sinh(2/+2 ) sin(2/+2)

Y =sinh(2/+2 ) cos(2//2)

Z =cosh(2/+/2 ) sin(2/42)

(F.1
(F.2)
(F.3)
(F.4)
(F.5)
(F.6)
(F.7)
(F.8)

(F.9)
(F.10)
(F.12)
(F.12)
(F.13)
(F.14)
(F.15)
(F.16)
(F.17)

(F.18)



Appendix G

The complex Bessel function of Eq.3.102 are simplified as

2 2200 (- ni312 50t Y2 0
J0(2i3’2/1r+)_\/;e (|2| Ar ) (i)

_ _ (G.D)
3/2
‘]O(I ﬂ’) \Feii l(ii3/2ﬂ/)_1/2(i)0
T
+3/2 +
30(2|_3/2/1r ): 1 oi i7/2(2r ) (G.2)
Jo(i°4) 2r°
Completed the simplifications of EQ.3.102 gives
.4y 1 i¥24(2r* 1) itt
u, =—=> e -1lle (G.3)
LA {E
The value of i*'? = 1-i then
\/z )
i H/1(2r*—1) -
Tl B TIPS ) (G.4)
A | Vr?
or
.4y 1 AIN2(2rt 1) L iAlV2(2rt-1) Aitt it
u, = ——8 e e’ —e (G.5)
A LT

The real part of u;” Eq.G.5 gives

/

i =2 sint* - 12 Vgin(t 4 2/42(2r -1)|  (G6)
bR 2r*




Appendix H

Momentum equation of steady flow in the horizontal channel is
o'u__1op_

2 _p H.1

¢ ayz p ax (o] ( )

with boundary conditions

1. u=0 at y=x=h (H.2)

2. a_u=0 at y=0 (H.3)
oy

where h: half height of the channel.
Integrating Eq.H.1 with boundary conditions Eqgs.H.2 and H.3 obtain

u= us,max((y/h)2 _1) (H4)

where
P h?
us,max = 2V

The ratio of amplitude to steady pressure gradient is defined as

' i ut,max'a) _ § Aoﬂf'

=—= = H.5
" P T3uv/h? 3Re, (H-9)
where
P = Ui max @

2 )
um - gus,max (Appendlx E)
and
xmax'a)

u

t,max —
2



Appendix |

Momentum equation of steady flow in the horizontal pipe is

Vlﬁ(rajjz_l@:po (1.0)

ror\ or L OX

with boundary conditions

1. u=0 at r=D/2 (1.2)

2. a—u=0 at r=0 (1.3)
or

Integrating Eq.l.1 with boundary conditions Egs.l.2 and 1.3 obtain

u=u, . (4(r/D)? 1) (1.4)

where
P D?

_ 0
Hsmax =35

The ratio of amplitude to steady pressure gradient is defined as

’ 5 l"It,ma\x'a) _ Aoﬂfl

— = 1.5
32u v/D* 4Re, (1)

0



Appendix J

A simple flow chart of iteration method for numerical solution
using the finite volume method.

l start l

A 4

Read the properties, parameters
and number of nodes of domain

A 4

Inlet the boundary and initial
conditions

A 4

Calculate the velocity or
temperature from the general form
of finite volume method

\ 4

no

/ convergenc
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