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ABSTRACT 

 Hydrodynamics and heat transfer study in a fully developed, 

laminar, 2D, incompressible, no viscous dissipation, reciprocating and 

pulsating pressure driven flow in horizontal channel and pipe subjected 

to a constant heat flux has been investigated. New theoretical model is 

obtained by solving analytically the momentum and energy equations 

for both reciprocating and pulsating flow in the channel and the pipe 

using similarity transformation solutions. The main controlling 

parameters obtained in the reciprocating flow are: Womersly number λ, 

dimensionless amplitude of fluid displacement oA , Prandtl number Pr 

and the ratio of distance to hydraulic diameter hDx / , while the 

controlling parameters of pulsating flow are: Womersly number λ, mean 

Reynolds number mRe , the ratio of amplitude to steady pressure 

gradient  , Prandtl number Pr and the ratio of distance to hydraulic 

diameter hDx / . 

 The results of reciprocating flow showed that both velocity and 

temperature distributions are affected by the oscillation, and 

Richardson’s annular effect is appeared in the velocity and temperature 

distributions. The instantaneous-local Nusselt number xNu  is varied 

periodically with time and its enhanced by the order of magnitude with 

increasing Womersly number or the frequency of oscillation.  

Further, the results of pulsating flow showed that an imposed flow 

pulsation causes both the temperature and Nusselt number fluctuate 

periodically about the solution for steady laminar flow. The time 

average-local Nusselt number xNu  is constant and equal to 8.235 for 

channel and 4.364 for pipe with variation of all controlling parameters. 



The results were found in very good agreement with that obtained 

numerically using finite volume method. The comparison between 

experimental results of other authors available in literature  and present 

analytical model gave a reasonable identification.     
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List of Symbols 

Symbol Definition SI Units 

a Radius of the pipe, 

Constant 

m 

 

A Area, 

Parameter defined be Eq.3.10a 

2m  

 

cA  Flow area 2m  

oA  Dimensionless amplitude of the fluid displacement, 

hDX /max  

 

B Parameter defined by Eq.3.10b  

nBei  Imaginary part of complex Bessel function defined 

in Appendix B 

 

nBer  Real part of complex Bessel function defined in 

Appendix B 

 

,fC  Time-averaged friction coefficient of a fully 

developed flow 

 

vc  Specific heat at constant volume J/kg.K 

pc  Specific heat at constant pressure J/kg.K 

C Parameter defined by Eq.3.10c 

Parameter defined in Appendix A&F 

 

1C  Constant  

2C  Constant, 

Function defined in Appendix G 

 

3C  Constant, 

Function defined in Appendix A&F 

 

4C  Constant  

D Diameter, 

Parameter defined by Eq.3.10d, 

Parameter defined in Appendix A&F 

m 

 

hD  Hydraulic diameter m 

E Parameter defined in Appendix A & F  

1E  Parameter defined in Appendix A & F  

f  Similarity transformation function for velocity, 

Frequency  

 

Hz 

F Parameters defined in Appendix A & F  



1F  Parameters defined in Appendix A & F  

g Similarity transformation function for temperature  

Gz Gratez  number, x/Re Pr  

h Half height of the channel m 

xh  Instantaneous-local heat transfer coefficient W/ 2m
.K 

xh  Time averaged-local heat transfer coefficient W/ 2m
.K 

H Height of the channel m 

1IM  Parameters defined in Appendix C   

2IM  Parameters defined in Appendix C   

3IM  Parameters defined in Appendix C   

nJ  Bessel function of order n, n=0, 1, 2, 3 …….  

k Thermal conductivity of the fluid, 

Constant 

W/m.K 

 

L Length of pipe m 

Nu  Space-cycle average Nusselt number  

xNu  Instantaneous-local Nusselt number  

xNu  Time averaged-local Nusselt number  

p Pressure 2/ mN  

P Wetted perimeter, 

Parameter defined in Appendix A & F 

m 

 

 

P(α) Parameter defined by Eqs.2.25a & 2.25b  

P1 Parameter defined in Appendix A & F  

Pe Peclet number, Re Pr  

oP  
Amplitude of pressure gradient 

x

p







1
 

2/ sm  

Pr Prandtl number  

q   Heat flux 2/ mW  

Q Parameter defined in Appendix A & F  

Q1 Parameter defined in Appendix A & F  

convQ  Convective energy transfer in one cycle 2/ mW  

r Radial coordinate m 

R Radius of pipe, 

Function defined by Eq.3.112 

m 

 

1RE  Parameter defined in Appendix C    



2RE  Parameter defined in Appendix C    

3RE  Parameter defined in Appendix C   

Re 
Reynolds number, 



uD
 

 

criRe  Critical Reynolds number, 2300 for pipe  

mRe  
Mean Reynolds number, 



Dum  
 

Re  Reynolds number based on the Stokes’s layer, 



.maxu
 

 

Re  
Kinetic Reynolds number, 



.2D
 

 

xStr  
Strouhal number, 

u

x.
 

 

t Time s 

T Temperature K 

tT  Fluctuation temperature K 

sT  Steady temperature K 

u Axial velocity in x-direction m/s 

mu  Mean velocity m/s 

maxu  Maximum velocity m/s 

tu  Fluctuation axial velocity m/s 

su  Steady axial velocity m/s 

u  Free stream velocity m/s 

U Dimensionless axial velocity in x-direction, 

Parameter defined in Appendix A&F 

 

1U  Parameter defined in Appendix A & F  

2U  Parameter defined in Appendix A & F  

v Velocity in the y-direction m/s 

V Volume 3m  

V


 Velocity vector  m/s 

W Parameter defined in Appendix A&F  

x Axial coordinate m 

X Function defined by Eq.3.112, 

Dimensionless axial distance 

 



21, XX  Functions defined in Eq.3.76  

maxX  Maximum displacement of the fluid m 

y Normal coordinate m 

Y Parameter defined in Appendix A & F  

1Y  Parameter defined in Appendix A & F 

Function defined in Eq.3.76 

 

2Y  Function defined in Eq.3.76  

z Complex variable.  

Z Parameter defined in Appendix A & F  

1Z  Parameter defined in Appendix A & F  

 

Greek symbols 

symbol Definition  SI 

Units  

α Thermal diffusivity of fluid sm /2  

ef f  Effective thermal diffusivity due to flow oscillation sm /2  

β Parameter defined by Eq3.49  

cri  Critical value of reciprocating pipe flow, 

 
crioA Re  

 

γ Time average axial dimensionless temperature 

gradient, 




dT

Td b
 

 

  The ratio of the amplitude to the steady value of the 

pressure gradient   
 

δ Oscillatory  boundary-layer thickness,  /2   


x  Axial distance between the nodes   



y  Normal distance between the nodes  

x  Tidal displacement. m 

ε 
velocity ratio, 

u

umax  
 

η Dimensionless distance,  2/y   

θ Weighting parameter, 

Concentration of the contaminant, 

Dimensionless temperature, 
iw

i

TT

TT




 

            

mole 



κ Diffusivity of the contaminant  sm /2  

eff  Effective diffusivity of  contaminant  sm /2  

λ 
Womersly  number, vh /  or v

D
/

2
  

 

μ Dynamic viscosity kg/m.s 

  Kinematics viscosity  sm /2  
  Density kg/ 3m  

τ Time of period. s 

φ Angle of radial coordinate (crank angles). rad 

ψ Intermittency of flow turbulence.    

  Angular frequency. rad/s 

Ω 
Stokes number, v

D
2/

2
 . 

 

 

Subscripts 

b Bulk 

c Center 

cri Critical 

e East 

eff Effective 

f Fluid 

h Hydraulic 

i Inlet 

m Mean 

max Maximum 

min Minimum 

n North 

r Relative 

p Pulsating 

t Time, fluctuation 

s Steady or mean flow, south 

w Wall, west 

 Fully developed flow or at free surface. 

 

Superscripts  

- Average, mean. 

+ Dimensionless. 

o Lag time. 



CHAPTER ONE 

INTRODUCTION 

1.1 General 

 The modern life progress and it’s increased requirements lead to 

thinking about the several phenomena that surround  us. Out of these 

phenomena, unsteady of the flow and the heat transfer (oscillatory flow), 

which have a rich interest from researchers to enhance the performance of 

this operation. 

 Generally, the oscillatory flow can be classified as either a 

reciprocating flow where the mass flow rate and the pressure gradient of 

reciprocating flow fluctuate about a zero mean value ,therefore, a zero net 

flow of fluid along the duct,    or a pulsating flow where the mass flow rate 

and the pressure gradient of pulsating flow fluctuate about a mean value of 

nonzero and there is ,therefore, a net flow of fluid along the duct (Fig.1.1). 

These two types of the flow occurred in numerous fields such as: 

oscenilogical, medical or biological (human respiratory and vascular 

systems), and industrial applications such as  

1-The intake or the exhaust manifold  of internal combustion engines and a 

Stirling-cycle machines. 

2-The electronic cooling and the space-base technology. 

3-The flow in the hydraulic or the pneumatic lines and control systems. 

4-The heat exchangers (heaters, regenerators and coolers) and pulse 

combustor. 

5-The chemical and the food technology. 

6-The pumping systems and the cavitations and hydraulic pipe lines. 

7- The continuous casting and metallurgical processes.   



For more clarity, this introduction will be divided  into a number of sections 

and it will be discussed separately as bellow: 

1.2 Characteristics of the Oscillatory Flow 

 There are several motions that depend on the time (unsteady flow),  a 

simple example of unsteady boundary layer is the oscillatory boundary 

layer, the motion that starts from the rest (accelerated film by gravity), or 

when it is driven by periodically flow. The oscillatory flows are classified 

as: 

 

1.2.1 The Flow Near an Oscillating Flat Plate 

 This type of flow is called Stokes’s second problem which discuss the 

flow about an infinite flat wall, that execute linear harmonic oscillations 

parallel to itself and which was first treated by Stokes
[1]

. Because of: no slip 

condition at the wall the velocity of the particles of the fluid at the wall is 

considered as a part of the wall, and must be equal to that of the wall (the 

wall moves harmonically). It was found the layer which is carried by the 

wall has a thickness of order  /   (Stokes layer), and it decreases for 

decreasing kinematics viscosity and increasing frequency
[1]

. 

 Recently, there are more extended researches (similar to Stokes’s 

second problem) to study the effects of a periodically changed conditions at 

the wall, such as a oscillatory temperature or oscillatory heat flux at the wall 

or surface
[2]

. In the special design for heat exchangers (for examples plate 

heat exchangers), the plate are made periodic wavy to improve the heat 

transfer
[3,4]

. 

1.2.2 Reciprocating Flow
 
 

 
The necessity to improve the thermal and hydrodynamic performance 

of Stirling  machine, crycoolers, internal combustion engines, etc., have 



prompted researchers to pay increasing attention to the study of heat transfer 

and fluid flow characteristics in the reciprocating flow. In the reciprocating 

flow the fluid displacement is obtained by displacer such as piston and by 

periodical motion of displacer , the harmonic motion is made. The 

reciprocating flow requires to interchange between the inflow and outflow 

boundaries during a cycle. For most application, it is a difficult to determine 

the inflow/outflow boundary conditions, since the fluid particles exiting the 

flow domain during a part of cycle are fed back into the domain later in the 

cycle.  

The main parameters in the reciprocating flow are depending on 

frequency and amplitude of the harmonic motion which called: Womersly 

number λ or kinetic Reynolds number Re  and dimensionless amplitude of 

the fluid displacement oA  . It is agreed in general, that a reciprocating flow 

becomes unstable with increasing either the dimensionless amplitude of the 

fluid displacement oA , or the kinetic Reynolds number wRe or Womersly 

number. The critical dimensionless parameters for which the transition from 

laminar to turbulent occurs is  
criocri A  Re . 

 

1.2.2 Pulsating Flow     

 The pulsating flow has a several practical applications for examples: 

rocket engine, heat exchangers (heaters and crycoolers ), cavitations in 

hydraulic pipelines, refrigerating systems, pressure surges and circulation 

flow of blood   and pumping systems, etc.. Pulsating flow can be produced 

by reciprocating pump or by steady flow pumps together with some 

mechanical pulsating device. The principle difference between the pulsating 

flow and reciprocating flow are: The pulsating flow rate has a time-mean 



value and do not reverse to another direction. These differences make a new 

controlling parameters for this type of flow, represented by the mean –flow 

Reynolds number behind the frequency and amplitude parameters. Thus,  the 

transition criteria for a pulsating flow becomes more complicated than in a 

reciprocating flow because of the intersection between the mean flow and 

oscillating effects. The criteria of transition from laminar to turbulent 

depends on the Reynolds number of mean flow criRe  and on oscillating 

parameters andAo . 

 

1.3 Characteristics of Heat Transfer 

 There are many efforts done to improve the rate of heat transfer. The 

improvements of the heat transfer depends on two method , the first is by 

increasing the area of  heat transfer such as extended surface (it is limited by 

the design of device and the cost), the second depends on affecting the 

boundary layer (thermally and hydrodynamically) such as varying the flow 

from laminar to turbulent or changing the nature of flow from the steady to 

unsteady by pulsating or reciprocating flow. The enhancement of heat 

transfer in the oscillatory flow can be classified as 

 

1.3.1 Heat Diffusion in Oscillatory Flow   

 The heat or mass diffusion can be improved by oscillating flow. The 

reciprocating flow can enhanced the diffusion rate by several order of 

magnitude greater than that possible by molecular diffusion alone. The rate 

of mass transfer of a diffusing substance may be increased by an oscillatory 

motion and affecting with oscillatory parameters such as low and high 

frequency
[5]

. These types of studies are concerned with the comparing the 

effective axial diffusion coefficient for oscillatory flow with molecular 



diffusion in steady flow. The ratio of effective diffusivity of the contaminant 

for unsteady and steady fluid flow )/(  eff  is represented as a function to a 

two oscillating parameters: Womersly number and tidal displacement. The 

most of previous works in this field are shown a considerable increase in 

axial diffusion heat transfer between two different temperature reservoirs 

without a net transfer of mass due to a large time dependent radial 

temperature gradient produced by the fluid oscillations. The temperature 

distribution in many cases were obtained by assuming similarity 

transformation solution and solving the conjugate energy equations.  

 

1.3.2 Heat Transfer in Reciprocating Flow  

  Reciprocating motions are found in many applications such as heat 

exchangers, internal combustion engines and electronic cooling. It is found 

that from the numerical investigations that annular effects (similar to annular 

effects in velocity) also exits in the temperature profile of a laminar 

reciprocating flow. The axial and radial diffusion of heat transfer under 

reciprocating flow conditions is considerably larger than in the absence of 

the reciprocating flow. This enhancement is produced by the interaction 

between the radially varying of velocity and temperature profiles that it can 

be given a heat transfer coefficients of orders of magnitude larger than 

without oscillating flow. The main parameters that effect of heat transfer in 

the reciprocating flow are: Womersly number λ or kinetic Reynolds number 

Re , dimensionless amplitude of the fluid displacement oA , Prandtl number 

Pr and the ratio of length to diameter x/D.  

 Reciprocating flow is used to enhance conduction heat transfer 

between two reservoirs maintained at different temperature  to increase 

efficiency of fins
[6]

 by improving the diffusivity of the fluid. 



 The careful observations of the  literature for reciprocating flow heat 

transfer shows two different kinds of investigations associated with this type 

of flow. The first one is focused on heat transfer by conduction enhancement 

with high frequency and low amplitude oscillations, while the second is 

focused on forced convection with low frequency, large amplitude of 

oscillation. 

 There are a survey correlations for Nu   of experimental works of the 

reciprocating flow depending on parameters oA and Re [7]
, and a few 

theoretical researches are made in this field. 

 

1.3.3 Heat Transfer in a Pulsating Flow 

 The enhancement and investigation of convective heat transfer of 

pulsating flow characteristic have been of most important engineering  space 

of heat transfer researches. Heat transfer for pulsating flow is obtained as 

either on flat plate or in internal flow. The external oscillatory flow over a 

flat plate with a stream velocity depends on a frequency parameter and 

Strouhal number xStr  , gives not much difference from that of the mean flow 

(steady flow) in the ranges of smaller and larger Strouhal number xStr  , 

while it becomes more significant near the region
[7]

 xStr =1. 

  For internal pulsating flow the effective parameters are λ, Pr,,Rem

ho DxandA / . It may normally be expected that the heat transfer to or from 

the flow would be changed because the pulsation would alter the thickness 

of the boundary layer and hence the thermal resistance.  The main exerted 

efforts in the study of heat transfer in the pulsating are concerned with a 

pulsating flow enhances heat transfer comparing to steady flow. The results 

obtained from these studies can be classified into a four cases such as: 



1-The pulsating flow enhances the heat transfer. 

2-It either enhances or decreases the heat transfer depending on the 

controlling parameters. 

3-The pulsating flow decreases the heat transfer . 

4-It has no effects on heat transfer.  

These conflicting results showed that the heat transfer phenomenon in 

pulsating flow is still not clearly understood.  

 

1.4 Hydrodynamics and Thermal Considerations of Oscillating Flow 

 The considerations that were taken into account during the study of 

oscillatory flow takes a wide area in the analysis. From these: studies 

concerns the developing of the flow or the entrance region, where at the 

entrance region the analysis is more difficulties and gives greater change in 

all dependent variables such as friction factor and Nusselt number
[8]

. 

Number of authors made a simplifications for solving momentum and 

energy equations theoretically in the developing region, and in most of their 

analysis they assumed 

1-Existence of a boundary layer. 

2-The velocity in the inertia terms of boundary layer equation being the 

same as at the entrance velocity given at the inlet. 

Usually,  the systems  of  reciprocating  flow have  a developing  flow 

more probably than a fully developing flow, owing to reverse flow, for 

which a little length is not enough to complete the development, while the 

pulsating flow systems usually reach the fully developing flow. 

 The conditions of  fully developed in both hydrodynamics and thermal 

boundary layer for oscillatory flow are similar to the conditions of steady 

flow
[9]

. 



 The criteria of transition from laminar to turbulent have new 

conditions represented by oscillating parameters. The oscillations makes the 

velocity fluctuations near the wall are much stronger than at center line of 

duct, i.e. the fluid flow near the wall may be first become unstable and 

eddies occur near the wall, this is because high kinetic Reynolds number. 

Furthermore, there are another criteria for turbulent flow represent by the 

intermittency of turbulence of the flow, which is defined as the percentage 

of the time to detect the critical values (transition from laminar to turbulent  

region)
[7]

. 

 

1.5  The Aim of the Present Work 

 There are nearly scarce analytical researches concern heat transfer in 

oscillatory flow. On other hand, the available results about heat transfer 

enhancement in the pulsating flow is not cleared, therefore the present study 

is aimed to investigate the main points below: 

1- Obtain an analytical model for hydrodynamics and heat transfer in both 

reciprocating and pulsating flows by solving the momentum and energy 

equation and overcome the complexity due to the unsteady flow. 

2- Study the ability of enhancement the heat transfer by oscillating flow and 

obtaining the controlling parameters of the process and detecting the 

improvement caused by the unsteady flow over the steady flow. 

3- Support the numerical and experimental researches in this field with 

analytical model .  

In this study, an analytical simulation based on similarity 

transformation solution for momentum and energy equations are to be 

obtained. The considered flow is to be oscillatory flow in the internal 

horizontal duct (channel and pipe) subjected to a constant heat flux, for 



laminar, 2D, incompressible and fully developed flow. Both kinds of 

oscillatory flow the reciprocating and pulsating flow were to be considered. 

 Numerical simulation is to be performed using finite volume approach, 

and the difference between the analytical and numerical solution for 

dimensionless velocity and temperature distributions is to be illustrated. 

Also, the results of analytical solution for Nusselt number were to be 

compared with experimental data or experimental correlations of other 

authors.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Preface  

 A considerable amount  of theoretical and  experimental works 

have been devoted to the study of oscillatory flow owing to its 

importance in real life. Therefore, the oscillatory flow were extensively 

studied by a several investigators in wide fields like: human, 

engineering and nature. The oscillatory flow and heat transfer review is 

performed for all faces that has some effects on the hydrodynamics and 

thermal behaviors. A large number of articles illustrate all 

considerations, types and controlling parameters of oscillatory flow and 

heat transfer to obtain the conditions for enhancement of heat transfer. 

Literatures have been categorized according to the following fields: 

1- A general study for unsteady flow (human and nature phenomenon). 

2- Hydrodynamics considerations of the oscillatory flow. 

3- Heat transfer considerations in oscillatory flow. 

 

2.2 The General Unsteady Flow   

      The phenomenon of unsteady propagate in the wide fields because 

of a several of these phenomena are repeated with time periodically, 

which represent a common factor between them. The unsteady flow is 

started from the heart of human and  a specific type of unsteady flows 

include oscillatory flow and pulsatile flow which occurs in the nature 

phenomena and the biological  systems such as the human respiratory 

and the vascular systems. 



 The unsteady flow is simply occurred when the motion of the 

fluid is started suddenly from rest. The flow near a flat plate which are 

impulsively accelerated from the rest was solved firstly by stokes as 

cited by Schlichting
 [1]

. The Navier-Stokes equation  
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is reduced to an ordinary differential equation by using similarity 

parameter as ty  2/ . 

 The similar case for suddenly accelerated flow from rest is the 

flow about an infinite  flat wall which executes linear harmonic 

oscillations parallel to itself and which was first treated by Stokes and 

later by Rayliegh as cited by
[1]

. They supposed that this motion is given  
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where maxmax ,uX being the amplitude of the velocity and  displacement 

of the oscillating plate respectively. The velocity distribution above the 

oscillating  plate is given as 
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They found that the oscillatory boundary layer or the so called ‘Stokes 

layer’ has thickness of   /2  which  increased with increasing  

the kinematics viscosity and decreasing with increasing the angular 

frequency. This showed that the thickness of boundary layer became 

thinner with increasing the frequency, which lead to enhance  the 

characteristics of oscillatory flow. 



Evans
[10]

   1973,    considered   a   semi-infinite     plate   moving    

with   a velocity )(tuw  into a  stagnant  fluid and he obtained a solution 

of heat transfer with constant surface enthalpy corrected to second order. 

The second order results were obtained by numerical integration for 

Prandtl number of 0.72.  

 Peattie
[11] 

1989, carried out experimental work to establish, a 

piston-driven pipe flow (flow is driven at frequencies characteristic of 

human breathing), in order to assess the effect of  frequency on the 

transport of a passive scalar contaminant in an oscillating flow. In the 

test section he used in one a straight, round and uniform pipe and in 

other a uniformly tapering pipe (i.e. conical). As a results he found that: 

(i) The convective transport is increasing with frequency at constant 

amplitude (ii) The effective diffusivity increase with flow amplitude , 

more strongly at λ=5.7 than at λ=16, but does not increase by a constant 

scale factor as λ varies from 5.7 to 16. He defined the effective mean 

axial diffusivity for thermal energy transfer in a tube, as 
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where a: radius of the pipe, τ: time of period. 

 The oscillatory or  periodic heat transfer in extended  surface was 

studied by Aziz and Lanardini
[12]

 1994. They obtained analytical and 

numerical approaches for periodic or oscillating heat transfer processes 

occurring in extended surface. For liner problems the techniques include 

complex combination, Laplace  transforms, finite differences and 

boundary elements. They discussed the applications of each approach in 

detail. Both straight and annular fin configuration are covered for 



different profile shapes include rectangular, trapezoidal and convex 

parabolic. The periodic conditions involve oscillatory base temperature, 

oscillating base heat flux, oscillating environment temperature, 

convection at the fin’s base through a fluid with oscillating temperature 

and some combination of these conditions. In this work the various 

combinations of analytical and numerical methods had been found  to be 

effective in dealing with nonlinear problems. 

 Flow in the elliptical blood vessels calculated for a physiological 

waveform by Robertson et al.
 [13] 

2000. They idealized the geometry of a 

non-circular vessel to an elliptical cross section and the dynamic 

properties were calculated for a physiological waveform. The Fourier 

harmonics for a common carotid waveform were determined and the 

velocity profile and wall shear stress were calculated from the super 

position of the individual contributions from each harmonic. They 

concluded that in pulsative flow, the frequency perform a strong role in 

determing the motion of the fluid and the resultant velocity profile. They 

also concluded if the frequency is reduced, the relative viscous drag 

between the central core and the lamina near the vessel wall is decreased 

until the response of the different lamina to the applied pressure gradient 

is equivalent. 

 Concerning, the heat transfer considerations of the unsteady flow 

(oscillatory flow ) a number of studies were carried out for the heat 

transfer in a porous medium. Hassain et al.
[2] 

2000, considered the 

unsteady free convection boundary layer flow which induced by time-

periodic variations in the surface temperature of a vertical surface 

embedded in a porous medium. Both the low and high frequency limits 

are considered separately and they observed:  



1- At intermediate value of frequency parameter the amplitude of the 

local Nusselt number increase as the surface temperature exponent 

increase, but the phase of  Nusselt number decrease. 

2- There is always a phase lead increment as frequency parameter 

increase and approaches the common asymptotic value π/4. 

Al-Salman
[14] 

2002, investigated experimentally and theoretically 

the direct contact condensation process of saturated vapor on fully 

developed subcoold laminar wavy falling liquid film flowing over an 

adiabatic vertical wall. The results of the model illustrated that the main 

parameters affecting the condensation process are the wave amplitude, 

wave length, Peclet number and  subcooling number. He showed that 

the waviness of liquid film increases the heat transfer rate up to several 

tenths of a percent, mainly due to the effective thinning of  the film, 

increasing convection along the film and circulation of the flow. 

 The streaming and oscillating flow fields and heat transfer 

efficiency across channel between two long parallel beams was 

investigated by Wan and Kuznestov
[15] 

2003. One of these beams is 

stationary and the other is oscillating in standing waveform. The 

temperature field was computed for two cases: both beams are kept at 

constant but different temperature or the oscillating beam is kept at 

constant temperature and the stationary beam is prescribed a constant 

heat flux. It is found that the streaming fields shows that the streaming 

velocities approach constant values at the edge of the boundary layers 

and provide slip velocities for the streaming field in the core region. The 

results reveal  a jump of Nusselt number and heat transfer coefficient 

when the bifurcation occurs, and Nusselt number increases before the 

jump and decreases after it. Khalid and Vafai
[16]

 2003, analyzed the flow 



and heat transfer inside oscillatory squeezed thin films subject to a 

varying clearance of the films. They assumed the velocity of the fluid at 

the squeezing plate as  

)5.2()sin( thV o 

 

where oh : reference thin film thickness, γ: is the dimensionless 

frequency, β: is the dimensionless amplitude of the upper plate’s 

motion, and ω: is the reference frequency. Nusselt number and their 

amplitudes are decreasing with increasing the dimensionless slop of 

upper plate.  

 Recently, Khalid and Vafai
[17] 

2004, analyzed the stokes and 

Couette flow produced by an oscillating motion of a wall under 

conditions where the no-slip assumption between the wall and the fluid 

is no longer valid. It is found that wall slip reduces the transient velocity 

for Stokes flow while minimum transient effects for Coutte flow is 

achieved only for large and small values of the wall slip coefficient and 

the gap thickness respectively. The time needed to reach to steady 

periodic Stokes flow due to sine oscillations is greater than that for 

cosine oscillations with both wall slip and no-slip  conditions. 

2.3 Hydrodynamics Considerations in Oscillatory Flow 

       There  are  many  works  done  in  hydrodynamic  of   oscillatory  

flow, which deals with all kinds of oscillatory flow and take into 

account the effect of the varity of conditions acting on the flow. These 

works can be classified into the following 

2.3.1 Hydrodynamics of  Reciprocating  Flow  

In the earlier time, the reciprocating flow taken a wide space  of 

investigations of oscillatory flow. The reciprocating motion of the fluid 



driven either by sinusoidal displacer has a fluid displacement mX  is 

explained as 
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or by a sinusoidal variation of pressure gradient as 
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where oP : the oscillation amplitude of externally imposed pressure 

gradient. 

Uchida
[7] 

1956, obtained an exact solution for axial velocity 

profile of a fully developed laminar reciprocating flow in a circular pipe 

(with diameter of D=2a). This solution was simplified to give the 

velocity distribution for small values of the Womersly number (very low 

oscillation) and large values of Womersly number (very high 

oscillation)
[1]

 . 

Zhao and Cheng
[18]

 1995, presented a numerical solution for 

laminar forced convection of an incompressible periodically reversing 

flow in a pipe of finite length at constant wall temperature. They 

illustrated that is typical phase shifts between temperature and axial 

velocity at selected locations.             

Zhao and Cheng
[19]

 1996, carried out analytical and experimental 

work for reciprocating flow. They  obtained an exact solution for the 

axial velocity profile of a fully developed reciprocating pipe flow from 

modification of Uchida’s analytical solution. Algebraic expression for 

the time averaged friction coefficient of a fully developed reciprocating 

flow was obtained as  
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 They found that, although the dimensionless axial velocity profile of a 

fully developed flow depends only on the kinetic Reynolds number, 

while the friction coefficients depend not only on the kinetic Reynolds 

number but also on the dimensionless oscillation amplitude. 

Comparison were made for the time resolved and the cycle-averaged 

friction coefficients between the analytical solution and the 

experimental data which gives a good agreement. 

 Reciprocating flow in the channel differs from the reciprocating 

flow in the pipe by (i) The hydraulic diameter may be partly wetted the 

perimeter ( ,
4

P

A
D c

h   where cA : flow area and P : wetted 

perimeter)
[20]

. (ii) Womersly number for channel is defined as  /h  

where h: the half height of channel, while in the pipe  /2/D . 

 Kurzweg
[6] 

1985, found analytical solution for sinusoidally 

oscillatory viscous fluid in an array of parallel-plate channels. He found 

the axial velocity profile existing in the channel which is represented by 

the real part of  
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where η=y/a, oU  representative axial velocity,  /a  the 

Womersly number and  oUaxp // 2 . 



 Yakhot et al.
[21]

 1999, studied numerically oscillating laminar flow 

of a viscous, incompressible liquid in a rectangular duct. The influence 

of the aspect ratio of the rectangular duct and the pulsating pressure 

gradient frequency on the phase lag, the amplitude of the induced 

oscillating velocity, and the wall shear were analyzed. They found the 

induced velocity has a phase lag (shift) with respect to the imposed 

pressure oscillation, which varies from zero at very slow oscillations, to 

90
o
 at fast oscillations.   

 Karagoz
[22]

 2002, introduced analytical solution based on 

similarity transformation for oscillatory pressure driven, fully developed 

flow in a channel. Variations of the velocity profile and skin friction 

coefficient over a cycle had been obtained together with behavior of the 

flow for various oscillation frequencies. He concluded that, when the 

frequency is low, velocity profiles resemble much of the quasi steady 

solution. An increase of α leads to a wider core  region where the fluid 

moves as if it were frictionless slug flow. The effects of oscillation 

become dominant in a narrow zone adjacent to the walls in the case of 

high α. Phase lag occurs between pressure and velocity variations so 

that it is higher in the core region than in the boundary layers, due to 

variation of the inertial forces across the flow section. Skin friction 

coefficient was also affected by oscillation frequency of which high 

values give rise to the amplitude of skin friction coefficient. 

Sert and Beskok
[23]

 2002, introduced a new micro heat spreader 

(MHS) concept for efficient transport of large concentrated heat load. 

The (MHS) is a single phase closed micro fluidic system, which utilize 

reciprocating flow forced convection. They solved numerically the 

momentum and energy equations by applying the spectral element 



algorithm. Fluid flow and thermal transport equations are solved in 

moving domains (the domain is divided into 68 quadrilateral and 

triangular elements) using a recently developed arbitrary Lagrangian 

Eullerian algorithm.     

 Sert and Beskok
[24]

 2003, performed a numerical simulation for 

reciprocating flow in two-dimensional channels. The flow between two 

parallel plates drive harmonically in time with a pressure gradient was 

considered. They observed the quasi-steady flow behavior for α=1 

(where  /H ) (low frequency), and Richardson’s effect for 

α=10 (high frequency). The numerical algorithm based on a spectral 

element formulation, which enable high order spatial resolution with 

exponential decay of discretization errors, and second order time 

accuracy.  

 Finally, Cosgrove
[25]

 2003, studied the applicability  of the Lattic 

Boltzman method to oscillatory channel flow with a zero mean velocity. 

The model has been compared to exact analytical solutions in the 

laminar oscillatory channel flow case ( ,100Re  where Re  the 

Reynolds number based on the Stokes layer), for the Womersly 

parameter 1< α < 31. They defined analytical expression for the velocity 

for large α as  
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where P: amplitude of pressure gradient xp  /  

2.3.2 Hydrodynamics of Pulsating Flow 

In the   preceding   section two  types   of  the harmonic  pulsation  

flow were mentioned: internal and external pulsation flow. The external 

free stream flow represented by
[7]
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umax  being the dimensionless oscillating velocity amplitude 

which assumed to be small.  

 The internal pulsation flow was studied by Christian and 

Kerczek
[26] 

1982. They investigated the instability of oscillatory plane 

Poiseuille flow, in which the pressure gradient is time-periodically 

modulated by a perturbation technique. They showed that the 

sinusoidally oscillating plane Poiseuille flow for a wide range of 

frequencies of the imposed oscillation and for substantial values of 

oscillation amplitude. 

 Turbulent and laminar pulsating flow were measured 

experimentally by Shemer et al.
[27]

 1985, in a straight smooth pipe and 

compared at identical frequencies and Reynolds numbers. Most 

measurements were made at mean Reynolds numbers of 400 but the 

influence of the mean Reynolds number was checked for 

2900<Re<7500 and the nondimensional frequency parameter, 

 /R  from 4.5 to 15. The amplitude of imposed oscillation did 

not exceed 35% of the mean, in order to avoid flow reversal or 

relaminarization. The velocity at the exit plane of the pipe and pressure 

drop along the pipe were measured simultaneously. The velocity 

measurements were made with arrays of normal hot wires. They 

concluded that:  

i- Mean properties of the flow are not affected by pulsations in both 

laminar and turbulent flow regimes, provided the amplitude is not 

excessively high. 



ii- The radial distributions of amplitudes and phases of velocity 

oscillation are strongly dependent on the flow regime in the pipe (i.e. 

whether is laminar or turbulent). 

 Valencia and Hinojosa
[28]

 1997, studied numerically the 

incompressible laminar flow of air and heat transfer in a channel with a 

back ward-facing step, for steady cases and for pulsatile inlet conditions. 

They used parabolic entrance profile for numerical solutions of pulsatile 

flow. It was  found at the amplitude of oscillation which is represented 

by Reynolds number equal to 100, the primary vortex break down 

through one pulsatile cycle. The wall shear rate in separation zone was 

varied markedly with pulsatile flow. 

 Ju et al.
[29]

 1998, developed an improved numerical modeling for 

simulating  the oscillating fluid flow and detail dynamic performance of 

the orifice and double-inlet pulse tube refrigerator.  They assumed a 

simple sinusoidal oscillations for the compressor volume change with 

crank angles as 
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where dV  is the dead volume, and sV  is the swept volume. 

 They proposed a numerical simulation and experimental verification of 

the oscillatory flow in pulse tube refrigerator. The discretization of 

governing equations  based on full implicit time dependent and upwind 

second order finite difference scheme. They found a good agreement 

between the numerical simulation and experimental verification. Also Ju 

et al.
 [30]

1998, studied experimentally the oscillating flow characteristics 



for a regenerator in a pulse tube crycooler. They determined a 

correlation for a cycle-averaged friction factors at the frequency 50Hz.     

 José et al.
[31]

 2002, carried out both experimental and numerical 

studies for unsteady pressure field inside a centrifugal pump. The 

measurement were carried out with pressure transducers installed on the 

volute shroud. The unsteady pressure field inside volute of centrifugal 

pump has been numerically modeled using a finite volume code. The 

numerical code used (FLUENT) solved the fully 3D, incompressible 

Navier-Stokes equations, including the centrifugal force source in the 

impeller and the unsteady terms and turbulence was simulated with the 

standard    model. The results of the numerical simulation were 

focused on the blade passing frequency to study two effective 

phenomena occurring at that frequency for a given position: the blade 

passing in front of the tongue and the wakes of the blades. 

 Yakhot and Grinberg
[32]

 2003, studied a pulsating laminar flow of 

a viscous, incompressible fluid through a pipe with an orifice at 

relatively low Reynolds numbers. The phase instantaneous state was 

found as an ellipse.  The ellipses of the instantaneous states (volumetric 

flow rate vs pressure difference) during a cycle allow readily computing 

the phase shift between them.    

 Baranyi
[33]

 2003, computed Strouhal number, time-mean drag and 

base pressure coefficient as well as the average Nusselt numbers by 

solving the governing equations (continuity, Navier-Stokes equations, 

Poisson equation for pressure and energy equation) for 2D, low 

Reynolds number unsteady flow around and heat transfer from a 

stationary circular cylinder placed in a uniform flow. 

 



2.3.3 The Turbulence Considerations in the Oscillatory Flow 

The considerations of  transition flow  from laminar to turbulent in    

the oscillatory flow differ from that taken in the steady flow. The 

condition of transition the laminar to turbulent flow in steady flow 

depends on Reynolds number only, while in oscillatory flow it is 

affected by frequency and amplitude of oscillation.  

 There are many researches concerned  the criteria of oscillatory 

flow to detect the conditions of transition from laminar to turbulent 

flow. 

The transition behavior of pulsating flow is characterized by a new 

parameter in addition to frequency and amplitude of oscillation 

represented by the mean-flow Reynolds number mRe . If Reynolds 

number is lower than critical value
[9] 

, the onset of turbulence depends 

on .Re orandAo   

 Calmen and Minton
[7]

 1977, found the velocity disturbances by 

measuring intermittency of turbulence ψ of the flow (ψ: defined as the 

percentage of the time of flow was disturbed during a 5 minutes 

measuring period). The intermittency of turbulence depend on three 

parameters: λ, oA and mRe . They found that (i) the intermittency ψ rises 

from zero with the increase of the Womersly number λ at a given value 

of dimensionless amplitude of oscillation oA  (5.8,  2.9, or 1.45); (ii) for 

a given value of frequency of oscillation, an increase in oA  produces an 

increase in the intermittency; (iii) the intermittency ψ increase as Re 

increased from 1275 to 1535 at fixed values of λ and oA ;(iv) as the 

mean- flow  Reynolds number Re approaches the critical value of a 

steady pipe flow, the minimum value of intermittency ψ becomes much 



greater than zero. This implied that the pulsating flow becomes 

turbulent when the mean-flow Reynolds number approaches the critical 

value of steady pipe flow, or λ and oA  approach from critical values 

)( cri . 

Zhao and Cheng
[34]

 1996, carried out an experimental numerical 

study for laminar forced convection in along pipe heated by uniform 

heat flux and subjected to reciprocating flow of air. They used the range 

of oA = 8.5-34.9 and Re =23-464. 

 

2.4 Heat Transfer in the Oscillatory Flow 

Research   works  dealing  with   heat  transfer in   oscillatory flow  

can be categorized into the following  

1- Enhanced axial heat diffusion by oscillating flow. 

2- Heat transfer in internal reciprocating flow. 

3- Heat transfer in internal pulsating flow. 

2.4.1 Enhanced Axial Heat Diffusion by Oscillatory Flow        

 The oscillatory flow was not used in enhancement heat transfer 

only, but it is also used for enhancement the rate of mass transfer of 

diffusing substance. The dispersion in oscillatory flow is important in 

many practical cases varying from tidal flow in estuaries to respiratory 

flow in the air ways of lungs. Watson
[5]

 1983, studied the diffusion of 

substance along a pipe and a two dimensional channel driven by an 

oscillatory motion of ambient fluid in the pipe. He assumed the 

concentration of the contaminant θ(x,y,z,t) as  
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  where θ satisfies the concentration equation  
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where κ: diffusivity of the contaminant. 

He found that the effective diffusivity of the contaminant in the 

oscillating flow using Green’s theorem as  
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where V is tidal volume. 

He concluded that the flux of contaminant can be increased  

significantly, for given tidal volume, by using of a high frequency of 

oscillation. 

 Joshi et al.
[35]

 1983, studied experimentally the gas exchange in 

laminar oscillatory flow to determine the diffusivity of axial transport 

through a tube of circular cross-section of a contaminant gas in 

oscillatory flow and compared the results with results of  Watson
[5]

, 

which gives  an excellent agreement. For σ =1 (where



  ). They 

found that the effective diffusivity at high and low frequency as 
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where Pe: Peclet number, α: dimensionless frequency parameters. 



 Kurzweg
[6]

 1985, examined analytically enhanced heat conduction  

in oscillatory viscous flow within parallel plate channels. The widths of 

the fluid layers and the solid walls in this configuration were taken as 2a 

and 2b respectively. He showed that for fixed frequency the 

corresponding effective thermal diffusivity reaches a maximum when 

the product of the Prandtl number and the square of the Womersly 

number is approximately equal to  Pr2  and the axial heat transfer 

achievable can be exceed that possible with heat pipes by several orders 

of magnitude. He also found the temperature distribution between two 

reservoirs at different temperature by suggesting a try locally valid 

solution to solve the augmented problem as  
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where  η=y/a  and γ: time-averaged axial temperature gradient. 

The above analysis was based on an important assumption that the time-

averaged axial temperature gradient of the fluid is constant along the 

pipes. He defined the effective averaged thermal diffusivity as 
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for very high frequencies the eff  is 
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 For low-oscillation frequency eff is 
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where ab /  

 Kurzweg
[36] 

1985, examined the enhancement of conduction heat 

transfer for sinusoidal oscillatory flow through circular tube connecting 

two fluid reservoirs maintained at different temperatures. He solved the 

governing heat conduction equation using the multiple time scale 

expansion technique, the temperature variation expanding in the 

perturbation series is 
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where ε: small parameter used in multi scale expansion and oT , 1T  and 

2T : temperature expansion terms, ºC. 

He obtained a relation for effective diffusivity as  
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where z : tidal displacement of fluid, λ is Womersly number. 

He concluded that the values of effective conductivity in liquid metals is 

three orders of magnitude grater than the normal thermal conductivity 



under typical experimental conditions without a net transfer of mass. 

This was explained due to a large time dependent of radial temperature 

gradient produced by the fluid oscillations at region near the wall. The 

results was merged at approximately  Pr2 , which is the point 

where the used multiple time scale expansion technique becomes 

invalid. 

 Performance of heat exchangers occupied a part of the studies of 

enhanced heat diffusions in fluids by oscillation. Kaviany
[37]

 1990, 

analyzed fluid flow and heat transfer in capillary tubes (Stokes’s 

boundary layer thickness nearly equal to the tube radius), subjected to 

oscillatory flow between two reservoirs maintained at different 

temperature. He defined the effective thermal diffusivity as 
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where θ: fluctuating component, m. 

He concluded that (i) the performance of heat exchanger deteriorate as 

thermal boundary layer becomes smaller than the tube radius (ii) the 

viscous dissipation is generally negligible for water. 

 Kaviany and Rekker
[38]

 1990, presented experimental study for the 

performance of a heat exchanger that takes advantage of enhanced heat 

diffusion in oscillated fluids. Good agreement had been found between 

the actual performance of the heat exchanger and the idealized analysis 

for low and high frequencies. The measurements showed that there is a 

temperature variation across the bundle and that the fluid entering the 



tubes has a nonsteady temperature due to weak, non uniform mixing 

within the reservoirs therefore, a spatial/temporal average was taken. 

 Further more, Khaled and Vafai
[39]

  2002, studied the effects of 

both external squeezing inside non-isothermal and incompressible thin 

films supported by soft seals. The main controlling parameters were: 

squeezing number, squeezing frequency, frequency of pulsations, 

fixation number (for the seal) and the thermal squeezing parameters. 

They found that the fluctuations in the heat transfer and the fluid 

temperature can be maximized at relatively lower frequency of internal 

pressure pulsations. 

 

2.4.2 Heat Transfer in Internal Reciprocating Flow    

 Generally, heat transfer in the reciprocating flow depends on 

oscillatory frequency and tidal displacement of the fluid. The following 

works to be presented includes some studies on forced convection in 

laminar and turbulent reciprocating flow in a pipe and a duct that show 

the effect of controlling parameters on heat transfer characteristics i.e. 

Nusselt number and bulk temperature. 

 Cooper et al.
[7] 

1994, investigated experimentally the convective 

heat transfer in rectangular duct. The duct was heated from below and 

subjected to a periodically reciprocating flow. The frequency and stroke 

of oscillations were varied such that the range of Re  was from 43 to 

684 while the range of dimensionless oscillation amplitude of fluid oA  

was from 23 to 600, such that the parameter )Re( oA   ranging from 

603 to 5568 (typical values of critical parameter cri  ranging from 400 

to 800). The experimental data were arranged to obtain a correlation of 



space-cycle averaged Nusselt number Nu  for reciprocating turbulent 

flow of air in a rectangular duct with one-side heated  
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where wT  being the space-cycle averaged temperature measured at the 

outer surface of heated floor, and fT  being the ambient temperature. 

 A numerical solution was presented by Zhao and Cheng 
[18]

 1995, 

for laminar forced convection of incompressible periodically reversing 

flow in a pipe of finite length at constant wall temperature. They found 

that four parameters govern the heat transfer characteristics for the 

problem. These parameters are: the kinetic Reynolds number Re , the 

dimensionless oscillation amplitude oA , the length to diameter ratio L/D 

and Prandtl number Pr of the fluid. They solved numerically the 

dimensionless energy equation given below. 
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time. They used a highly nonuniform grid because of the extremely thin 

thermal boundary layer at a high kinetic Reynolds number. The time-

space averaged Nusselt number Nu  was correlated by the following 

expression 

)29.2(Re00495.0 656.09.0
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for oA =10 to 35 and Re =10 to 400 and L/D=40. 



For other values of oA , Re  and L/D, Nusselt number was correlated  as 

)30.2(]06.0)/(74.43[Re00495.0 18.1656.09..0  LDANu o    

The numerical results showed that annular effects also exit in the 

temperature profiles near the entrance and the exit of the pipe during 

each half cycle at high kinetic Reynolds numbers. The averaged heat 

transfer rate was found to increase with both kinetic Reynolds number 

and dimensionless oscillation amplitude but decrease with length to 

diameter ratio. 

 Zhao and Cheng
[34]

 1996, carried out  an experimental and 

numerical study for laminar forced convection in along pipe heated by 

uniform heat flux and subjected to reciprocating flow of air. The test 

section was made of a copper tube, with length L=60.5 cm, inside 

diameter iD =1.35cm, and outside diameter oD =1.57cm. They 

correlated the experimental results of Nu  based on conjugate heat 

transfer problem. It followed that Nu  was a function of Re , oA , Pr  

and iDL / . The following correlation was obtained based on a least 

squares fit of 53 experimental runs for laminar reciprocating flow of air 

in along tube with constant heat flux:  

)31.2(Re02.0 58.085.0
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where oA =8.54 to 34.9 and  Re =23 to 464 at iDL / =44.8 and Pr=0.71. 

They found a good agreement between numerical and experimental 

results for space-averaged Nusselt number Nu , time-resolved centerline 

fluid temperature cT  and cycle-averaged wall temperature wT .   

 The reciprocating flow in a channel was analyzed by Karagoz
[40]

 

2001. He solved numerically two-dimensional time dependent 



governing equations (continuity, momentum and energy) using control 

volume based on pressure correlation procedure. The flow has zero 

mean oscillatory flow over a heated plate mounted on the bottom wall of 

a channel. They found that the thickness of Stokes boundary layer 

decreases and the core region of the flow exhibits more uniform velocity 

profiles as the Womersly number increases. They compared the 

numerical solutions with experimental values and the effects of  

Reynolds number and Womersly number on the velocity and 

temperature profiles were presented for the same Prandtl  number.  

 Chang
[41]

  2002, investigated experimentally the heat transfer of 

forced convection in a reciprocating square duct fitted with 45° cross 

ribs on two opposite walls. The parametric conditions involved several 

Reynolds, pulsating and buoyancy numbers, in the ranges of 600-10000, 

0-10 and 0-0.14, respectively with five different reciprocating 

frequencies, namely, 0.67,1, 1.33, 1.67 an 2 Hz. The rib-induced flows 

in static duct produced an augmentation of heat transfer in the range of 

260-300 % compared to the smooth-walled situation. They observed 

that when the Reynolds and pulsating numbers were relatively low, a 

range of heat transfer impediments, could lead the spatial-time averaged 

heat transfer to levels about 71% of non reciprocating values. A further 

increase of pulsating number resulted in a subsequent heat transfer 

recovery, which leads to heat transfer improvement relative to the non 

reciprocating level. 

 A new micro heat spreader (MHS) concept for efficient transport 

of large concentrated loads was introduced  by Sert and Beskok
[23]

 2002. 

The channel was insulated from bottom and subjected to constant heat 

flux at the upper wall and Nusselt number defined as  
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where H: the channel height. 

The results of minimum, maximum and time-averaged Nusselt number 

at mid-cross section of the channel were shown in table(2.2), which 

illustrated that the time-averaged Nusselt number increased with 

increasing kinetic Reynolds number and Prandtl number. 

 Finally, Sert and Beskok
[24]

 2003, proposed a numerical 

simulation of laminar forced convection heat transfer for reciprocating, 

2D, channel flow as a function of the penetration length (amplitude of 

displacement), Womersly number (α) and Prandtl number (Pr). Uniform 

heat flux and constant temperature boundary conditions were imposed 

on certain regions of the top surface, while the bottom surface was kept 

insulated (these sets of boundary condition enable time-periodic solution 

of the problem). They illustrated at high Womersly number, the 

temperature field is significantly affected by the Richardson’s annular 

and heat transfer was increased with increasing the penetration length, α 

and Pr. They showed the results for eight cases as in table(2.3). 

 

2.4.3 Heat Transfer in Internal Pulsating Flow  

 The principle aim of studying the pulsating convection heat 

transfer in an internal flow is whether a superposed flow pulsation 

enhances heat transfer compared to the original steady flow. The 

following review of works deals with this part of oscillatory flow. 

 Valencia and Hinojosa
[28]

 1997, found a numerical solutions for 

pulsating flow and heat transfer characteristics in a channel with a back 

ward-facing step. They showed that the wall heat transfer in the 



separation zone was remained relatively constant and the time-average 

pulsatile heat transfer at the walls was greater than in steady flow with 

the same mean Reynolds number. 

 From review of Zhao and Cheng
[7]

 1998, the variation of 

)( sp NuNu   (where pNu : Nusselt number of the pulsating flow, sNu : 

Nusselt number of mean flow) due to pulsating was pronounced in the 

regions along a two-dimensional channel near the inlet of the heated 

channel (small Gratez number 
PrRe

x
Gz  ), and the influence of 

pulsating becomes less significant with the increase of the axial distance 

(nearly zero, i.e. the Nusselt number  of the pulsating flow equal the 

Nusselt number of mean flow). They found when the pulsation 

amplitude   is small, the temporal behavior of )( sp NuNu   is fairly 

symmetric about the half-period point while when   is larger, the 

profiles of  )( sp NuNu   are non-symmetric about the half-period point. 

 Experimental and numerical study was performed by Ju et al.
[29]

 

1998. They improved a numerical modeling for simulating the 

oscillating fluid flow and detail dynamic performance of the orifice and 

double-inlet pulse refrigerator. The simulation model is useful for 

understanding the physical process occurring in the pulse tube 

refrigerator. They obtained the time-dependent axial wall temperature 

distribution, transient gas temperature variations, mean mass flow rate 

and dynamic pressure distribution of the oscillation flow in the pulse 

tube refrigerator. 

 Habib et al.
[42] 

1999, experimentally investigated heat transfer 

characteristics of pulsated turbulent pipe flow under different conditions 



of pulsation frequency, amplitude and Reynolds number. The pipe wall  

was kept at uniform heat flux and Reynolds number was varied from 

5000 to 29000, while the used frequency of pulsation varied from 1 to 8 

Hz. They showed an enhancement in the local Nusselt number at the 

entrance region and the rate of enhancement decreased as Re increased. 

This work included a total of  90 tests for different cases of Reynolds 

number, frequency and amplitude. They found a correlation in a good 

agreement with experimental data as (for fully developed region) 
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They concluded (i) The heat transfer coefficient enhancement was more 

pronounced in the entrance region than in the fully developed region (ii) 

Negligible effect of pulsation frequency on the mean Nusselt numbers at 

low Reynolds numbers (iii) A reduction of up to 13% in Nu  occurs at 

higher Reynolds number and the reduction was shown to depends on 

pulsation frequency. 

 The experimental study of heat transfer enhancement in 

oscillatory flow in grooved channel was carried out by Herman and 

Kang
[43]

 2001. They used holographic interferometry combined with 

high speed cinematography to visualize the unsteady temperature fields 

in self-sustained oscillatory flow of incompressible flow air over heated 

rectangular blocks in a two dimensional horizontal channel. 

Experiments were conducted in the laminar, transitional and turbulent 

flow regimes for Reynolds number in the range from 520 to 6600 and 

interferometric measurements were obtained for thermally and 

dynamically periodically fully developed flow region on the ninth 

heated block. The results presented for the heat transfer and pressure 



drop, as function of the Reynolds number, in term of the block-average 

Nusselt number and the local Nusselt number as well as friction factor. 

They concluded that at Reynolds number beyond the onset of 

oscillations the heat transfer in the grooved channel exceeds the 

performance of the reference geometry, the asymmetrically heated 

parallel channel. 

 Valencia et al.
[44] 

2001, investigated numerically the unsteady 

laminar flow and heat transfer in a channel of height H with periodically 

mounted square bars of height 0.2H arranged side by side to the 

approaching flow, for different transverse separation distance of bars. 

They solved the unsteady Navier-Stokes equations and energy equation 

by finite volume code with staggered grids combined with the SIMPLIC 

algorithm and a fine grid resolution. They showed as consequence of the 

self-sustained oscillations, there was an important heat transfer 

enhancement on the channel wall. 

 Habib et al.
[45] 

2002, investigated experimentally heat transfer 

characteristics of laminar pulsating flow under different conditions of 

Reynolds number and pulsation frequency. The tube wall was subjected 

to a uniform heat flux condition and Reynolds number was varied from 

780 to 1987 while the frequency of pulsation ranged from 1 to 29.5 Hz. 

They showed that the relative mean Nusselt number was strongly 

affected by pulsation frequency while it was slightly affected by 

Reynolds number. They correlated the experimental data by the 

following general dimensionless equations: 

1- For frequency range 1-14 Hz (3< Ω ≤12) and Reynolds number (780≤ 

Re ≤ 1987) is  
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2- For frequency range 14-29.5 Hz (12< Ω ≤17.5) and Reynolds number 

(780≤ Re ≤ 1366) is 

)34.2(789.336024.64111.00084.0 23 bNur 

 

3- For frequency range 14-29.5 Hz (12< Ω ≤17.5) and Reynolds number 

(1643 and 1987) is  

)34.2(923.55487.117646.00168.0 23 cNur 

where Ω is Stokes number, defined as 




22

D
 , rNu is relative mean 

Nusselt number defined as ./ sp NuNu  

They showed in the frequency range of 1-4 Hz, an enhancement up to 

30% at Reynolds number of 1366 and pulsation frequency of 1.4 Hz and 

in the frequency range of 1-25 Hz, an enhancement up to 9% at 

Reynolds number of 1366 and pulsation frequency of 1.75 Hz. The rate 

of enhancement of the relative mean Nusselt number decreased as 

pulsation frequency increased or as Reynolds number increased. They 

indicated a reduction in relative mean Nusselt number up to 40%  for 

pulsation frequency range of 4.1-17 Hz and a reduction up to 20% for 

pulsation frequency range of 25-29.5 Hz for Reynolds number range of 

780-1987. 

 Bouhadji and Djilali
[46]

 2003, presented a simulations for the 

unsteady separated-reattaching flow and associated heat transfer along 

rectangular plate subjected to an oscillatory inlet velocity, 

tfAU pp 2sin1 . The simulations were worked by solving Navier-

Stokes and energy equation using a finite volume method at Reynolds 



number of 1000 and the response of the flow over a range of  

frequencies up to 60
th
 harmonic of the natural vortex shedding 

frequencies and velocity perturbation amplitude up to 20% of the free 

stream. They concluded that the highest forcing amplitudes ( pA =0.2) 

yields the shortest as well as the largest reattachment lengths depending 

on the forcing frequency. A significant enhancement  in the local 

Nusselt number was accompanied the effect of forcing on the flow, and 

the effect was localized to a small region near the leading edge for high 

amplitude forcing, and in fact the overall average heat transfer rate was 

reduced in this case. 

 Computation of unsteady momentum and heat transfer from a 

fixed cylinder in laminar flow studied by Baranyi
[33]

 2003. The fluid was 

assumed to be 2D, low Reynolds number, uniform flow and constant 

properties. He  solved Navier-Stokes equation, the continuity equation, a 

Poisson equation for pressure and the energy equation at constant 

temperature of the cylinder wall using finite difference solution. The 

computed Strouhal number, time-mean drag and pressure coefficients as 

well as the average Nusselt number compared well with existing 

experimental results. 

 Yu et al.
[47] 

2004, investigated analytically the pulsating laminar 

and fully developed  convection heat transfer in a circular tube with 

constant heat flux. The pulsating flow was driven by a pressure gradient 

that varies sinusoidally with time as 
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where  is a constant that controls the amplitude of the pressure 

fluctuation. They showed that both the temperature profile and Nusselt 



number fluctuate periodically about the solution for steady laminar 

convection, with the fluctuation amplitude depending on the 

dimensionless pulsation frequency ω
*
, the amplitude  and Prandtl 

number, Pr. It was also shown that the pulsation has no effect on time-

average Nusselt number for pulsating convection heat transfer and the 

fluctuation in the Nusselt number was negligibly small for  =0.5 and 

ω
*
>50. 

 Moon et al.
[48] 

2005, investigated experimentally the effect of 

pulsating flow on convective heat transfer from periodically spaced 

blocks in tandem on a channel wall. The spacing  between repeated 

blocks is varied from 0.3 to 0.6 of the Block  pitch. The experiments 

were carried out in the ranges of forcing frequency of pulsating flow 

higher than 10 Hz and less 100 Hz and the oscillating amplitude of axial 

velocity is between (0.2-0.3). The experimental results showed that 

thermal transport from the block is greatly affected by frequency, the 

amplitude of the flow pulsation, the inter-block spacing and the 

Reynolds number. Also, they found (i) A noticeable enhancement in 

heat transfer when the pulsating flow was imposed, depending on the 

inter-block spacing as well as the pulsation frequency. (ii) Heat transfer 

enhancement at the most upstream block showed a peak at around 

frequency=40 Hz irrespective of the variation of inter-block spacing. 

 Finally, Zohir et al.
[49] 

2006, investigated experimentally the heat 

transfer characteristics to both laminar and turbulent pulsating pipe 

flows under different conditions of Reynolds number, pulsation 

frequency, pulsator location and tube diameter. The tube wall of 

uniform heat flux condition was considered for both cases. Reynolds 



number was varied from 750  to 12320 while the frequency of pulsation 

ranged from 1 to 10 Hz. The results showed an increase in heat transfer 

rate due to pulsation by as much as 30% with flow Reynolds number of 

1643 and pulsation frequency of 1 Hz, for the pulsater located upstream 

of the inlet of the test section. Comparing the heat transfer results of the 

two studied test sections tubes for Reynolds number range from 8000 to 

12000 and pulsation frequency range from 1.0 to 10 Hz showed that 

more improvement in heat transfer rate was observed with a larger tube 

diameter. For Reynolds number ranging from 8000 to 12000 and 

pulsating frequency of 10 Hz, an improvement in the relative mean 

Nusselt number of about 50% was obtained   for test section diameter of 

50mm. While, for the same test section diameter of 15mm at same 

conditions of Reynolds number and frequency, a reduction in the 

relative mean Nusselt number of up to 10% was obtained. They 

concluded (i) that the behavior of the local Nusselt number under the 

influence of pulsation revealed that the improvement in the heat transfer 

coefficient is more pronounced in the entrance region. (ii) comparing 

the heat transfer results of the upstream and the downstream pulsation, 

at Reynolds number of 1366 and 1643, low values of the relative mean 

Nusselt number were obtained with the upstream pulsation. 

 

2.5 Summery  

This literature review has brought together  a variety of analytical,  

numerical and experimental findings and conclusions of fluid mechanics 

and heat transfer characteristics of oscillatory flow. The main points that 

concluded are summarized below: 



1-The amplitude and frequency of oscillating flow have a greater effect 

on the characteristics of flow and heat transfer. 

2-The oscillating flow becomes unstable with increasing either the 

dimensionless fluid displacement oA  or kinetic Reynolds number Re . 

3- The variation  of the boundary conditions with time or the periodic 

change in the surface of heat transfer conditions give a similar effect 

that produce by the oscillatory flow. 

4- The effective thermal diffusivity is proportional to the kinetic 

Reynolds number Re and dimensionless displacement of fluid oA , and 

also it depends on the  thermophysical properties of fluid and solid. 

5- The numerical results reveal that the annular effects exist in the 

hydrodynamic is also acts similarly in  temperature profiles for 

reciprocating flow in a pipe  at high kinetic Reynolds number. 

6-There are a survey correlations for Nu   of experimental works of the 

reciprocating flow depending on parameters oA and Re , and a few 

theoretical researches are made in this field.  

7-The cycle averaged Nusselt number obtained for laminar pulsating 

internal flow is either higher or lower than that for steady-flow value, 

depending on the frequency.     

 

 

 

 

 

 

 



Table(2.1) Critical values of cri  for the reciprocating pipe flow
[7]

. 

 

Authors Year 
cri  

Li 1954 800 

Collins 1963 230 

Sergeev 1966 700 

Vincent 1967 160 

Pelissier 1973 150-420 

Daneshvar 1973 730 

Merkli & Tomann 1975 400 

Hino, Sawamoto & Takasu 1975 780 

Ohmi, Lguchi & Urahata 1982 800 

Kurzweg, Lindgren & 

Lorthron 

1989 700 

Zhao & Cheng  1996 761 

 

 

Table(2.2) The minimum, maximum and time-averaged Nusselt 

numbers at mid-cross section of the channel
[23]

. 

 

Re Pr Min. Nu Max. Nu Ave. Nu 

2π 

2π 

2π 

4π 

8π 

1 

10 

25 

1 

1 

3.62 

5.34 

6.96 

2.30 

0.66 

5.92 

9.88 

11.82 

6.96 

8.00 

5.50 

8.42 

10.20 

5.92 

6.31 



Table(2.3) Non-dimensional parameters used in the simulations of Sert 

and Beskok
[24]

. 

 

Case no. L  hL  pL    Pr eR   

1 

2 

3 

4 

5 

6 

7 

8 

20 

20 

20 

20 

20 

20 

20 

20 

12 

12 

12 

12 

12 

12 

12 

12 

5 

5 

5 

5 

10 

10 

10 

10 

1 

1 

10 

10 

1 

1 

10 

10 

1 

10 

1 

10 

1 

10 

1 

10 

5/π 

5/π 

500/π 

500/π 

10/π 

10/π 

1000/π 

1000/π 

 

Where  

L :  The ratio of total channel length to channel height. 

hL : The ratio of length of the heated portion of the channel to channel 

height.  

pL : The ratio of tidal displacement to the channel height.  

eR  : Reynolds number based on volumetric flow rate per unit channel 

width (


Hu.
).  

 

 

 

 

 

 



CHAPTER THREE 

THEOERTICAL ANALYSIS 

 

 Theoretical model for study of heat transfer enhancement due to  

internal oscillatory flow in a duct is developed to obtain a complete 

description for enhancement of heat transfer in the oscillatory flow. 

The exact analytical solution is found base on using the similarity 

transformations for solving the Navier-Stokes and energy equations, 

while the numerical solution is based on the applying the finite volume 

technique. 

 This model needs  evaluation of the characteristics of  

hydrodynamics of the oscillatory flow, therefore hydrodynamics 

investigation will be made  for both  types of oscillatory flow 

(pulsating and reciprocating), in addition to the heat transfer 

investigation. The duct is considered to be of a uniform diameter 

(pipe) or two dimensional channel. The frequency and amplitude of 

oscillatory flow and other dimensionless numbers are studied aiming 

to investigate the effect of  parameters that controlling this 

phenomenon. 

 The governing equations, for the present model of reciprocating 

and pulsating flow are based on the following physical and 

geometrical assumptions:  

1- The flow is unsteady. 

2- The oscillating flow (reciprocating or pulsating) is driven by a 

sinusoidally varying pressure gradient.  

3- The internal flow is laminar. 



4- The flow is fully developed hydrodynamically and thermally. 

5- The fluid is flowing in the closed duct (pipe or channel). 

6- The properties of the fluid are constant.  

7- The viscous dissipation within the fluid is negligible (Φ=0). 

8- The fluid is incompressible. 

9-  The duct is horizontal and thin thickness. 

10- Two dimensional flow of the fluid for the pipe or channel. 

 The theoretical analysis in this work will be classified into four 

parts depending on the type of the oscillatory flow (reciprocating or 

pulsating) and on the geometry of the duct (pipe or channel).  

 

3.1 Analytical   Model   of   Reciprocating   Flow   and   Heat   

      Transfer in the Channel   

3.1.1 Hydrodynamics Analysis 

 The reciprocating flow in the 2D channel Fig.3.1, is analyized  

hydrodynamically. The Navier-Stokes equations for fully developed 

flow, constant properties, reciprocating pressure driven and laminar 

flow through a horizontal channel can be written as 
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with boundary and initial conditions 

)4.3(00.1 awallthatslipnotforhyatu 

)4.3(000.2 bcaxisymetritforyat
y

u






)4.3(0)(.3 cconditioninitialtatyfu 

      

or in dimensionless form Eq.3.2  can be written as 
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Fig.3.1 Physical model for reciprocating flow in channel. 
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The boundary and initial conditions in dimensionless form becomes 
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Appling similarity transformation of the form
[22]

  
  iteyfu )( in 

Eq.3.5 gives 
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Solving the ordinary differential equation Eq.3.7 yields  

 

)8.3(1
cosh

cosh
a

i

yi
if 
















 

and  

)8.3(1
cosh

cosh
be

i

yi
iu it

















 

Appling the identify 
2

1 i
i


  , the real part of u

+
 can be written as 

   
)9.3(

cossin
22

22

DC

tADBCtBDACDC
u









 

where 

)10.3()2/sin()2/sinh(

)10.3()2/cos()2/cosh(

byyB

ayyA













)10.3()2/sin()2/sinh(

)10.3()2/cos()2/cosh(

dD

cC









 



3.1.2 Heat Transfer Analysis 

 Taking into account the previous assumptions the energy 

equation without viscous dissipation (Φ=0) could be reduced to  
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Assuming similarity transformation of the form
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The solution of Eq.3.18 can be written as 
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Using the boundary conditions described by equations Eqs.3.14a and 

3.14b yield the temperature distribution  
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where 11311211 ,,,,,, PandQCZYUFE are functions obtained during 

derivation and given in the Appendix A. 

The gradient of dimensionless time-average bulk temperature γ 

used in the previous derivation  can be obtained from the energy 

balance for control volume of the fluid in the channel as  

 

)21.3()1.2(.1.2 bmp Tduhcdxq 

 

or in dimensionless form 

 

)22.3(
Pr

4

m

b

uhdx

Td 






 

  where mu  is obtained from the following relation 

)23.3(
2

sin
1 max

0

max






u

duum  

 



thus Eq.3.22 can be written as  
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The instantaneous-local Nusselt number is defined as 
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3.2 Analytical   Model  of  Reciprocating   Flow  and   Heat  

      Transfer in the Pipe   

3.2.1 Hydrodynamics Analysis 

 The Navier-Stokes equations for a fully developed, 2D, constant 

properties, reciprocating pressure driven and laminar flow in a 

horizontal pipe Fig.3.2 , are written as 
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Eq.3.32  is subjected to the boundary conditions 
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Fig.3.2 Physical model for reciprocating flow in pipe. 
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 Assuming similarity transformation solution for Eq.3.32 of the form  
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Using the general form of Bessel function
[50] 
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After simplifying Eq.3.36 (see Appendix B), the real part of u  can be 

written as 
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For large value of λ, the asymptotic of Bessel function could be 

used
[50] 

as
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The real part of u  (Eq.3.39) is 
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3.2.2 Heat Transfer Analysis 

         The energy equation for thermally fully developed reciprocating 

flow in the pipe, without viscous dissipation (Φ=0) is  
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with the boundary and initial conditions  
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Eq.3.41 can be transformed to  
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The boundary and initial condition in the dimensionless form becomes   
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Substituting Eq.3.46 and u  (Eq.3.36) into Eq.3.43,  an ordinary 

differential equation can be obtained  
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Appendix C). The final real relation for temperature distribution of 
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where: 332211 ,,,, IMandREIMREIMRE are functions defined in 

Appendix C. 

For large value of λ or Pr, the asymptotic Bessel function should be 

used for complex variable (Eq.3.38), simplification of Eq.3.50  (see 

Appendix D) gives 
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where the value of time-averaged dimensionless bulk temperature 

gradient γ is obtained from heat balance for a control volume from the 

pipe, in a similar manner as that done for rectangular channel. The 

dimensionless value of temperature gradient has the form 
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The instantaneous-local Nusselt number is defined as  
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3.3 Analytical Model of Pulsating Flow and Heat Transfer in          

        the Channel   

3.3.1 Hydrodynamics Analysis 

 The momentum equations for fully developed flow, laminar, 2D, 

constant properties, pulsating pressure driven flow in a horizontal 

channel Fig.3.3, could be described by Eqs.3.1&3.2, with boundary 

conditions as  
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Fig.3.3 Physical model of the pulsating flow in channel. 
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 The pressure gradient of pulsating flow is written as  
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and  : the ratio of amplitude of pressure gradient to that steady flow 

at value (0 < < 1), and has values less than 0.5 to avoid reversion 

flow and relaminarization.  
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For pulsating flow the velocity distribution form is assumed as 
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Using superposition method the following equation can be obtained 
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and the boundary conditions becomes  
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For steady part  the integration of Eq.3.62a with boundary conditions 

Eqs.3.63a & 3.63b gives 

)64.3()1(   yus   

 For unsteady part, applying similarity transformation form  
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Eq.3.62b can be transformed to  
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Solving Eq.3.66 for homogeneous and nonhomogeneous parts with 

boundary conditions Eq.3.63a & 3.63b yields 

)67.3(1
cosh

cosh2
2

a
i

yii
f 























and  

)67.3(1
cosh

cosh2
2

be
i

yii
u it

t



























 



Using the identify 
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
 , trigonometric relations and complex 

relations (such as xix coscosh    and  xiix sinsinh  ), the real part of 



tu  can be obtained as 
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where A, B, C, and D defined in Eq.3.10. 

Then the total velocity )(   ts uu  could be written as  
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3.3.2 Heat Transfer Analysis 

 The energy equation defined by Eq.3.11 also can be used for this 

case and could be transformed to dimensionless form  
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by using the dimensionless form  
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uum      (see Appendix E) 

For pulsating flow the temperature distribution form is assumed as 
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Substituting u  defined in Eq.3.60 and T   defined in Eq.3.72 into 

Eq.3.70 and using superposition gives 
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with boundary conditions  
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For steady part the solution of Eq.3.73 is assumed as
[20]
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insignificance value, leaving only 22 YXTs  . Substituting Eq.3.76 

and Eq.3.64 into Eq.3.73 and taking into account the above 

consideration, Eq.3.73 becomes  
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Integrating Eqs.3.79a & 3.79b gives 
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From boundary condition Eq.3.75a C2=0, and the boundary condition 

Eq.3.75b gives  
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where   314 CCC   

Using the definition of bulk temperature (for channel)  
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su (Eq.3.64) and 

sT  (Eq.3.82) into Eq.3.83 and using 

boundary condition  Eq.3.75c gives 
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Then, the steady dimensionless temperature distribution becomes, 
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The unsteady part of temperature distribution defined by Eq.3.74 is 

simplified by substituting the value of 
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which is equal to  
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Eq.3.67b to get 
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Assuming similarity transformation solution as  
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and substituting in the above equation the ordinary differential 

equation can be obtained as  
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Solving above equation with boundary conditions Eqs.3.75a & 3.75b 

yields 
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Using the identify 
2

1 i
i


 , the real part of  
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where 11211211 ,,,,,, PandQCZYUFE  functions defined in the 

Appendix F.  



Then, the total dimensionless temperature distribution )(   ts TT  

becomes  
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The instantaneous-local Nusselt number is defined as 
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and the time averaged-local  Nusselt number is defined as 
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3.4 Analytical Model of Pulsating Flow and Heat Transfer in          

        the Pipe   

3.4.1 Hydrodynamics Analysis 

 The momentum equation for pulsating flow in pipe Fig.3.4, with 

previous assumptions could be written as 
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 with boundary and initial conditions 
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Using the dimensionless form 
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Eq.3.42 becomes  
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Fig.3.4 Physical model of the pulsating flow in pipe. 
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The velocity of pulsating flow is divided into a two parts: steady part 



su   and  fluctuation part 

tu   thus 
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Substituting of Eq.3.95 into Eq.3.94 , and using superposition, two 

differential equations are obtained 
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Integrating Eq.3.96a with boundary conditions Eq.3.97a and Eq.3.97b 

gives 
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For unsteady part, assuming a similarity transformation solution as 
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Substituting f Eq.3.99 into Eq.3.96b, the ordinary differential equation 

can be obtained as  
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Using the general form of Bessel function and applying the boundary 

conditions Eqs.3.97a & 3.97b one can get  
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For small value of λ (λ < 2) the following definition of complex Bessel 

function can be used  
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Eq.3.102 can be simplified and the real part will be 
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The total velocity u , is equal to summation the of the steady part 

su  

and fluctuation part 

tu  as 
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For large value of λ (λ > 2) asymptotic Bessel function for complex 

variable Eq.3.38 can be used to simplify Eq.3.102b , the total velocity 

u  can be obtained (see Appendix G) 
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4.4.2 Heat Transfer Analysis 

 Energy Equation for pulsating flow could be described by 

Eq.3.41 or in dimensionless form as 
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Assuming a solution for 
T  compose of two parts: the steady part, and 

unsteady part as  
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Substituting Eq.3.108 into Eq.3.107 and using the superposition gives 
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with boundary conditions  
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For steady part Eq.3.109, the following solution is assumed  
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Using the separation of variables to solve the Eq.3.113 as 
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where k: is constant. 



Separating  Eq.3.114 yields 
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Integrating both Eqs.3.115a & 3.115b gives  
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According to Eqs.3.115a & 3.115b  the temperature 

sT  will be  
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from boundary condition Eq.3.111a, C2=0, and from boundary 
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Using the definition of bulk temperature for pipe  
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with the boundary condition Eq.3.111c the constant 4C  is 
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for unsteady part of  T , a similarity transformation solution is 

assumed as  
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Substituting the similarity transformation solution Eq.3.122 and the 

value of  









x

Ts  obtained from Eq.3.121, which is equal to  
PrRe

4

m

, and the 

value of 

tu  from Eq.3.102 into the Eq.3.110 gives  

  

 
 

)123.3(1
232

Pr4
1

2/3

0

2/3

0

2

23
















 








iJ

riJi
gi

r
g

 

Solving Eq.3.123 with boundary conditions Eqs.3.111a & 3.111b 

yields  
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and the total dimensionless temperature distribution is 
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where 10 JandJ  Bessel function of first and second types (see 

Appendix C). 

The final real value of T  is  
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where 332211 ,,,, IMandREIMREIMRE functions defined in 

Appendix C. 

For large value of  Pr λ, asymptotic complex Bessel function defined 

in Eq.3.38  (see Appendix D) could be used to obtained the final 

relation of 
T  as 
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The instantaneous-local Nusselt number defined as  
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3.5 Numerical Model for Oscillatory Flow 

3.5.1 Numerical Model of Reciprocating Flow in the Channel  

 Eq.3.5 and Eq.3.13 for reciprocating flow in the channel are 

solved numerically using the finite volume method
[51]

, at the same 

boundary and initial conditions of analytical solutions. In general the, 

the differences that are used: a forward difference for time, a central 

difference for dimensions and linear interpolation for medium values. 

The main steps of the finite volume method are proposed as 

  

Step1 Grid Generation   

  To start the procedure of finite volume method, the control 

volume and nodal points are drawn in the Fig.3.5. The first step in the 

finite volume method is to divide the domain into discrete control 

volumes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.5 Control volume and nodes of finite volume solution for 1D  

             Channel.    
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Step2  Discretisation 

 Integrating the governing equation (Eq.3.5) over the control 

volume and time to obtain a discretised equation at its nodal point P as

  

)130.3(
1

cos

2

2

.

2

..


































 

  












dVdt
y

u

dVdttdtdV
y

u

tt

t VC

tt

t VC

tt

t VC



 Using the forward difference for the time t  and central difference for 

dimension y , to get a general form as 
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and 

θ: weighting parameter between 0 and 1 and has the values 

θ=0   for explicit  

θ=1   for  full implicit  

θ=1/2   for Crank-Nicolson 



Repeated the above steps for energy equation to obtain  
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3.5.2 Numerical Model of Reciprocating Flow in the Pipe 

 The steps of section 3.5.1  are repeated, for case of reciprocating 

flow in the pipe with a control volume as shown in Fig.3.6. The 

Eq.3.32 is solved numerically using a finite volume method to get a 

general form as (for r >0) 
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Fig.3.6 Control volume and nodes of finite volume solution for 1D  

             pipe.    
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For 0r , a special form of the equation must be obtained  by letting 

0r  in the Eq.3.32 then becomes 
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When L’Hospital rule
[52]

 is applied to the last term on the right side 

Eq.3.137 gives 
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The general form of finite volume method for the above equation can 

be written  as  
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 The energy equation (Eq.3.43) is solved numerically using the 

finite volume method to get a general form )0( rfor   
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For 0r  applying L’Hospital’s rule for energy equation (Eq.3.43) to 

get  
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The general form of the finite volume expression for the above 

equation can be written as   
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3.5.3 Numerical Model of Pulsating Flow in the Channel 

 Momentum equation of pulsating flow (Eq.3.61) in the channel 

Fig.3.7  is rearranged using finite volume method  in the similar maner 

to get the following general form 
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Fig.3.7 Control volume and nodes of finite volume solution for 2D  
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 The energy equation of pulsating flow in the channel (Eq.3.70) is 

written in the general form of finite volume method  (using a control 

volume is shown in Fig.3.7) as 
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3.5.4 Numerical Model of Pulsating Flow in the Pipe 

 Eq.3.94 is rearranged using the finite volume method  to obtain 

the general form (for 0r ) 
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Fig.3.8 Control volume and nodes of finite volume solution for 2D  
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 The energy equation (Eq.3.10) with control volume and nodes is 

shown in the Fig.3.8 is formed in the finite volume method for 0r  

as  

   
 
  )154.3()1(

)1(

)1()1(

bTaTuTua

TuTua

TTaTTaTa

P

o

P

o

W

o

PWPW

o

E

o

PEPE

o

SSS

o

NNNPP



















  

 

where 

)155.3(Pr4 2 aVao  

 

)155.3(
2

bt
r

A

r

A
a

PN

n

P

n
N
















 

)155.3(
2

ct
r

A

r

A
a

SP

s

P

s
S




















 

)155.3(PrRe2 dVta mW  

 

)155.3(PrRe2 eVta mE  

 

)155.3(
2

2
PrRe2

ft
AA

r

t
r

A

r

A
t

AA
uaa

sn

P

SP

s

PN

nwe
PmoP


















 


























 







 



)155.3(
2

)1(

)1(
2

PrRe2)1(

gt
AA

r

t
r

A

r

A
t

AA
uaa

sn

P

SP

s

PN

nweo

Pmo

o

P


















 


























 







 

and 

)155.3(0 hb   

0rfor       

   

 

  )156.3()1(

)1(

)1()1(

111

11

00221

bTaTuTua

TuTua

TTaTTaTa

o

P

o

W

o

WW

o

E

o

EE

o

S

o

NP



















  

where 

)157.3(Pr4 2 aVao    

)157.3(
2

bt
r

A
a

PN

n
N








 

)157.3(
2

ct
r

A
a

SP

s
S








 

)157.3(PrRe2 dAta wmW



 

)157.3(PrRe2 eAta emE



 



)157.3(2
2

PrRe2 1 ft
r

A

r

A
t

AA
uaa

SP

s

PN

nwe
moP





 























 





 

)157.3()1(2

2
PrRe2)1( 1

gt
r

A

r

A

t
AA

uaa

SP

s

PN

n

weo

mo

o

P
























 







 

and 

)157.3(0 hb 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

In this chapter the hydrodynamics and heat transfer characteristics 

due to  oscillatory flow is presented. The effects of parameters  with 

various values in the solution of governing equations will be introduced. 

The results of both types of oscillating flow: reciprocating and pulsating 

for internal flow inside a channel and a pipe subjected to a constant heat 

flux will be discussed. 

The main parameters characterize the flow and heat transfer are: 

dimensionless velocity u  , dimensionless temperature T  , 

dimensionless bulk temperature 

bT , dimensionless center temperature 



cT , instantaneous-local Nusselt number xNu  and time average-local 

Nusselt number xNu . The results are presented in three sections: 

1- Analytical solution of the new model. 

2- Numerical solution for checking the new model. 

3- Comparison of the new model with experimental results of other 

authors.  

 

4.1 Analytical Solution of the New Model   

The  results  of the  solution  of the new model will be divided into  

four categories depending on a type of flow and duct shape: 

1- Analytical results of reciprocating flow and heat transfer in the 

channel. 

2- Analytical results of reciprocating flow and heat transfer in the pipe. 

 



3- Analytical results of pulsating flow and heat transfer in the channel. 

4- Analytical results of pulsating flow and heat transfer in the pipe. 

 

4.1.1 Analytical Results of Reciprocating Flow and Heat Transfer in         

         the Channel. 

 Analytical solution of momentum and energy equations for 

reciprocating flow inside horizontal channel shows that four parameters 

have influence on the flow and heat transfer and these are: Womersly 

number λ, dimensionless amplitude of fluid displacement oA , Prandtl 

number Pr and the ratio of distance to hydraulic diameter hDx / . 

 The values of λ and oA  are taken not greater than the critical 

values cri  [7]
. To avoid the limit of turbulence intensity region, the 

values of cri  is taken to be less or equal to 400 as the most of the 

authors  used (table 2.1), and the values of λ and oA  are related to it. 

The Prandtl number Pr is taken equal to 0.7 (for the air ) in the various 

calculations. The hydraulic diameter for very wide channel (width >> 

height) is equal to 4h, which makes the ratio hDx /  has the values of  0<

hDx / <100. Usually, a large value of   hDx /  is used, such as  hDx /

=10-50, to avoid the negative value of dimensionless  temperature 

distribution which  occurs when the mean value of  dimensionless 

temperature )( x  becomes less than the fluctuation value  

  iteyg )( . The large values λ and oA  give a similar results (negative 

values of dimensionless temperature distribution) , therefore , in order to 

keep away from such behavior, the small values of  λ and oA  should be 

taken (Eq.3.24 shows the relation between γ and λ & oA  ). 



 Reciprocating flow require interchange between the inflow and 

out flow boundaries along the length of pipe or channel during a cycle. 

It is assumed that the fluid particles during a cycle exiting the flow 

domain, i.e. the time required for the flow to go along the length equal 

to the half time of cycle for coming back  flow. 

 Starting from the velocity distribution, Fig.4.1 illustrates the 

variation of dimensionless velocity u  with dimensionless channel 

height during a half cycle π. The velocity profile is represented at 

different times (30º between each time used). The figures clarifies that 

the velocity profile is varied depending on the time at which the velocity 

is taken for constant controlling parameters (λ=4, oA =15, Pr=0.7 and   

hDx / =20), therefore at a certain time the u  becomes parabolic 

(unidirection) and in the other time changes specially at the region near 

the wall. This effect is due to the oscillation of  the flow which makes 

the region near the wall faster than at the core region and this is called 

Richardson annular effects
[7]

. At approximately  130º the flow begins to 

reverse its direction (the fluid flowing near the wall starts to reverse its 

direction as much as  30º  approximately sooner than the flow reversal 

in the center of the channel. 

 In the second half of the cycle, the change of direction of the flow 

has no influence on the shape or  magnitude of u  at the  same cyclic  

time (   , where θ is the crank angle), but only on the direction of 

distribution  u . 

 Fig.4.2 shows the distribution of dimensionless temperature 
T  

with dimensionless channel height  over a half cycle π. The controlling 

parameters are kept constant as (λ=4, oA =15, Pr=0.7 and   hDx / =20). It 



is cleared from shape of temperature distribution, that the wall 

temperature is greater than at the center temperature since the heating is 

at the wall. The sharp  velocity gradient near the wall leads to change in 

the temperature distribution along the channel height, i.e. the annular 

effect of velocity gives annular effect in the temperature distribution. It 

is also clear from the shapes of velocity and temperature distributions 

that, increasing the velocity causes a decreasing in the temperature 

(when the velocity is increased, allowing more fluid flow per unit time 

being passed  which makes the value of temperature  decreased). 

 The two Figs. 4.1 & 4.2 show the phase shifting between the 

velocity and temperature distributions. 

 Figs.4.3 & 4.4 indicate the influence of Womersly number λ on 

the dimensionless velocity u  profile and dimensionless temperature T  

profile respectively with dimensionless channel height  at the 

dimensionless time 60º, for ( oA =15, Pr=0.7 and   hDx / =30), where 

λ=4, 8 & 12. For high Womersly number λ of flow, the velocity and 

temperature distribution is significantly affected by the Richardson’s 

annular effect. 

 

 Fig.4.5 & 4.6 present the effects of  Womersly number λ and 

dimensionless amplitude of the fluid displacement oA  on the 

dimensionless bulk temperature 

bT  over a one cycle 2π.  Fig.4.5 

illustrates the influence of increasing Womersly number λ during a one 

cycle 2π on 

bT  at constant values of the controlling parameters ( oA =15, 

Pr=0.7 and   hDx / =20). The values of λ are equal to: 4, 8, and 12. Its  

shows  declining  in 

bT  with increasing Womersly number, because of 



increasing the velocity of flow  due to increase the frequency, which 

makes the magnitude of temperature is decreased. The effect of 

dimensionless amplitude of fluid displacement oA  on the dimensionless 

bulk temperature  

bT  along one cycle 2π is presented in the Fig.4.6. oA  

equal to 10 and 15, while λ=4, Pr=0.7 and   hDx / =20. It is illustrated 

that 

bT  decreases with increasing oA , which belong to increase quantity 

of flow (velocity or volumetric flow rate) with increasing  oA . 

 The periodical change of the velocity with time for reciprocating 

flow where the mean value of flow rate equal to zero which requires that 

the velocity at the certain time reach zero also, makes the value of 

dimensionless bulk temperature 

bT  go  to infinite at the certain time. 

This behavior makes a clear discontinuity in the distribution of  

bT  with 

time. 

 Fig.4.7 indicates the variation of instantaneous-local Nusselt 

number   xNu  with time(one cycle 2π) for different value of  Womersly 

number (λ =4, 8 and 12), while the other parameters are kept constant 

( oA =15, Pr=0.7 and   hDx / =20). The increment of  Womersly number 

(frequency)  rise xNu , which is attributed  to thinner boundary layer and 

therefore the thermal resistance becomes small. The values of xNu  go to 

infinite at the certain time, which is resulting from the value of  

bT . It is 

clearly shown from the figure  that  the  value of  xNu  for reciprocating 

flow is more than for steady fully developed flow in the channel which 

equals to 235.8Nu
[20]    

by the order of magnitude. This is 

enhancement making the  application of oscillatory flow or 



reciprocating flow is very effective means for enhancement of heat 

transfer and can be  used in the wide field of industrial application. 

 Fig.4.8 illustrates the effect of dimensionless amplitude of fluid 

displacement oA (  oA =10 and 15, and λ=4, Pr=0.7 and   hDx / =20). On 

the instantaneous-local Nusselt number xNu  over a one cycle 2π. It is 

shown that oA  has no effect on  xNu , because the varying of oA  means 

the change of  velocity or volumetric flow rate which has no effect on  

xNu  for fully developed flow. 

 

 Fig.4.9 shows the variation of the dimensionless center 

temperature 

cT  at 0y  over a on cycle 2π for different locations 

hDx /  (  hDx / =20, 25& 30) while the other parameters are fixed  (λ=4, 

oA =15 and Pr=0.7). It shows that 

cT  is increased with increasing  hDx /

, due to accumulate heat supplied  along the channel. It also shows that 



cT  is varied periodically with time and becomes minimum at the certain 

time because of varying the velocity with time. Fig.4.10 demonstrates 

the effect of dimensionless amplitude oA  (  oA =10, 15 & 20 , and λ=4, 

Pr= 0.7 and hDx / =20), on  

cT  with time (one cycle 2π). It refers to 

decrease  

cT  with increasing oA , because of increasing the volumetric 

flow rate with increasing oA , which effects on the temperature profile. 

 Fig.4.11 illustrates the variation of the instantaneous-local Nusselt 

number  xNu  over a  one cycle 2π for different ratio of distance to 

hydraulic diameter  hDx /  ( x =10, 20 & 25) and the other parameters 

are (λ=4, oA =15 and Pr=0.7). It is seemed from the figure that hDx /   



has no effect on  xNu , this is return to the  fully developed flow along 

the flow direction. 

 Finally, the influence of Prandtl number Pr on the time averaged-

local Nusselt number xNu   during a one cycle 2π, is presented in the 

Fig.4.12, for two value of λ (λ=4 and 8) while the other controlling 

parameters are kept constant ( oA =15 and x =20). The increment of  

Prandtl number Pr increases  xNu  due to increase the hydrodynamics 

diffusivity of the fluid or due to increase the specific  heat capacity of 

the fluid (



Pr ). Also, the figure shows the effect of Womersly 

number  λ on the time averaged-local Nusselt number xNu , which 

increases with increasing the  Womersly number  λ. 

 

4.1.2 Analytical Results of Reciprocating Flow and Heat Transfer in         

         the Pipe. 

 Similarly as in channel flow, the main parameters that influence 

the reciprocating flow and heat transfer in the pipe that are found in the 

solution of momentum and energy equations are: Womersly number λ, 

dimensionless amplitude of fluid displacement oA , Prandtl number Pr 

and the ratio of distance to diameter Dx / . The parameters ranges used 

in calculations are:  

Womersly number                                                  λ              1 - 12  

Dimensionless amplitude of fluid displacement   oA             5 - 35  

Prandtl number                                                      Pr               0.7   

The ratio of distance to diameter                         Dx /           1 - 60   



 Firstly, the effect of oscillation on the velocity profile will be 

discussed. Figs.4.13 and 4.14 are drawn for a half cycle π because of 

similarity between two halves of cycle. Fig.4.13 illustrates the variation 

of dimensionless velocity u  along a half cycle π, with step between 

each time and other equal to 30º. The values of  the controlling 

parameters are fixed as (λ=8, oA =15, Pr=0.7 and   Dx / =30). It is clear 

from this figure that (i) The clear effect of oscillation is seemed at the 

region near the wall.(ii) The particles of fluid in the region near the wall 

reverse their velocity faster than at the core region.  

 Fig.4.14 indicates the variation of temporal  dimensionless 

temperature T   over a half cycle π with 30º between each time used. 

The controlling parameters are kept constant (λ=8, oA =15, Pr=0.7 and   

Dx / =20) . It is clear that for all times the wall temperature is greater 

than that of other regions because of heating source located at the wall 

and the low velocity in this region. The effect of  reciprocating flow is 

clearly started at the boundary layer near the wall, while the core region 

becomes more uniform. The Richardson’s annular effect of oscillation 

has a common effect on both velocity and temperature distribution. 

These variation in the temperature distribution may be  useful in a 

special applications. 

 The trends of   
T  profiles in different times are   similar, the 

maximum slope of temperature curves at the wall and zero at the center. 

The discontinuity in the 
T  at the center point for all curves, because of 

consequence of  the obtained analysis   (the denominators of a three 

terms of Eq.3.52 contain the    variable 
r , which goes to infinite    at 



r =0).To overcome this discontinuity, the points just very near the 

center are taken.  

The temperature distribution for the reciprocating flow is different 

from that for steady laminar fully developed flow, since at the certain 

time the temperature in the core region is greater than the temperature at 

the region near the wall. This may be attributed to the cooling effect 

which is different near the wall than from the core due to the velocity 

behavior. 

Figs.4.15 and  4.16 illustrate the effect of Womersly number λ on 

the dimensionless velocity  and temperature distributions respectively at 

the time 60t , for constant parameters xandAo Pr,  ( oA =15, 

Pr=0.7 and   Dx / =30). These figures show the annular effect of 

oscillation with increasing the Womersly number λ. The core region 

becomes wider than the regions near the wall for both  u  and  T  at 

high Womersly number and the annular effect in the velocity profiles 

makes the boundary layer thinner. 

Fig.4.17 presents the variation of dimensionless bulk temperature 



bT   over a  one cycle 2π, for different values of Womersly number 

(λ=4, 8 and 12) while the parameters xandAo Pr, are fixed  ( oA =15, 

Pr=0.7 and   Dx / =30). It shows that 

bT  is decreasing with increasing 

Womersly number, the reason for that  is explained in the section 4.1.1 . 

The effect of dimensionless amplitude of fluid displacement oA   on  

bT  

is shown in the Fig.4.18.  The behavior can be explained as: 

bT  is 

decreasing with increasing oA  , since the increment of oA  means higher 

flow rate. 



Figs.4.19 and 4.20 show the effect of Womersly number λ and 

dimensionless amplitude of fluid displacement oA  on the instantaneous-

local Nusselt number xNu . Fig.4.19 illustrates behavior of three curves 

of xNu  for three values of  Womersly number (λ=4, 8 and 12), where 

other controlling parameters are equal to ( oA =15, Pr=0.7 and   x =30). 

The effect of λ on   xNu  of the pipe is similar to effect of λ on  xNu  in 

the channel  which showed in the Fig.4.7.   Its also indicates that  xNu  is 

doubled with varying λ from 4 to 8 or from 8 to 12. The point of 

discontinuity in the curves is repeated in   xNu , because of the previous  

mentioned reason in the section 4.1.1. 

The variation of instantaneous-local Nusselt number xNu  for two 

values of dimensionless amplitude oA  that equal to (15 and 25) is 

represented in the Fig.4.20 . The parameters Pr,  and x/D are kept 

constant (λ=4, Pr=0.7 and   Dx / =30). It shows that the variation  oA  

has no effect on the  xNu  since the flow is fully developed. 

The effect of dimensionless distance Dx /  on the dimensionless 

temperature of the center 

cT   is represented in the Fig.4.21. The values 

of  oA,  and  Pr are fixed (λ=4, oA =15 and Pr=0.7) and  

cT  is drawn 

for three values of  Dx /  ( x =20, 25 and 30). It shows that  

cT   is 

increasing with increasing the distance x , due to accumulative heat or  

energy with axial distance. Basing on this figure indirectly one can 

conclude that the periodic effect of  oscillation is extending to   bulk 

temperature and center temperature and temperature of  all radial points. 

Its shows at the time 0t , the value of 

cT  is not a maximum, because  



of the phase shifting between the temperature and velocity as well as the 

pressure gradient of driven flow. 

Fig.4.22 shows the variation of dimensionless center temperature 



cT  with Womersly number (λ=4, 6 and 8), while the other parameters 

are kept constant ( oA =15, Pr=0.7 and   x =30). The figure illustrates 

that the increment of λ leads to decrease the dimensionless central 

temperature  

cT . The reason of this behavior is similar to that affecting 

the bulk temperature which is mentioned  in the section 4.1.1. Also, the 

figure indicates phase shifting between the maximum or minimum 

values of  

cT  for different values of Womersly number because the 

phase shifting between the temperature and velocity which is affected 

by varying Womersly number. 

Finally, Fig.4.23 illustrates the variation of time average-local 

Nusselt number xNu , with Prandtl number  at constant oA  and Dx /  

( oA =15 and x =30) and two values of λ 4 and 8. This figure shows that 

xNu  is increasing  with increasing Prandtl number which is due to the 

increment in the hydrodynamics diffusivity of the fluid  or specific heat 

capacity.  

 

4.1.3 Analytical Results of Pulsating Flow and Heat Transfer in         

         the Channel.  

 The analytical solution of momentum and energy equations with 

previous simplifications and conditions for pulsating flow in the 

channel, gives the following effecting parameters with chosen range 

values used for calculations:  

 



Womersly number                                                  λ              1 - 8   

Dimensionless amplitude of pressure gradient                   0 - 0.5 

Mean Reynolds number                                        mRe            2300  

Prandtl number                                                      Pr               0.7    

The ratio of distance to hydraulic diameter         hDx /           1 - 60    

 

 The value of Womersly number λ is varied from 1 to 8 to avoid 

the transition from the laminar to turbulent flow. The magnitude of   is 

taken to be less than 0.5 to avoid the relaminarization phenomena and 

reversion of the flow
[27]

. There is a relation among the parameters 

mo andA Re, ,   used to detect the criteria of transition from laminar to 

turbulent in the pulsating flow defined as 
m

oA

Re3

8
4

  , where  mRe  

2300 (see Appendix H). Prandtl number is taken to be constant and 

equal to 0.7 for air. Reynolds number is calculated for the mean velocity 

(steady state), and it should be less than the critical value of internal 

flow mRe   2300 . 

 First, the velocity profile is drawn over a half cycle π. Fig.4.24 

shows the variation of dimensionless velocity u  with step equal to 60º 

between each time and other. The parameters mRe,,   , Pr  and hDx /  

are kept constant as ( 4 , 3.0 , 1200Re m , 7.0Pr   and 

20/ hDx . The general trend of profiles of  u  are parabolic shape, this 

is because the flow has mean  velocity which makes the effects of 

oscillation is not distinct in the low frequencies. 

 The distribution of dimensionless temperature over a half cycle π 

for various values of time starting from 0º crank angle and 60º step, is 



illustrated in the Fig.4.25. the controlling parameters are equal to: 4 , 

3.0 , 1200Re m , 7.0Pr   and 20/ hDx . It indicates that the 

parabolic profile for temperature distribution due to  (i) Symmetric 

boundary conditions (ii) The velocity profile is parabolic (iii) The flow 

rate has mean value only. 

 Effect of Womersly number λ on the dimensionless velocity u  

and temperature T  are shown in the Figs.4.26 & 4.27 respectively. 

Fig.4.26 illustrates the influence of λ (λ=2, 4 and 10) on u  with 

constant values of parameters  ( 3.0 , 1200Re m , 7.0Pr   and 

30/ hDx ). The main effect of λ on the u  and T  are represented by 

making the core  region  more  uniform (tip of parabolic) with 

increasing  λ. 

 Figs.4.28, 4.29 & 4.30 show the variation of temporal 

dimensionless bulk temperature 

bT  with the parameters  , and mRe  

respectively. Fig.4.28 illustrates the effect of Womersly number λ on 

bT  

during a one cycle 2π, for three values of  λ (4, 8 and 12) and the 

parameters  , mRe , Pr and hDx /  are kept constant ( 3.0 , 

1500Re m , 7.0Pr   and 20/ hDx ). The amplitude of 

bT  is 

decreased with increasing λ. This behavior occurs because the variation 

of velocity with varying λ. The mean value of all profiles are stilled 

constant value and equal to steady value for laminar fully developed 

convection. 

 Fig.4.29 shows the variation of  dimensionless bulk temperature 



bT  over a one cycle 2π for different value of ratio of amplitude to 

steady pressure gradient  (  =0.1, 0.3 & 0.5), while the other 



controlling parameters are remained constant as ( 4 , 1200Re m , 

7.0Pr   & 30/ hDx . The amplitude of 

bT  is increased with 

increasing  . This can be explained as: the increment of   means 

increasing or decreasing the magnitude of pressure gradient 

(periodically change with time), which leads to  large cyclic difference 

in the thickness of boundary layer which produces from the variation the 

velocity with varying   . The mean value of 

bT  is remained constant 

and equal to steady value because Reynolds number is kept constant. 

 Fig.4.30 illustrates the effect of mean Reynolds number  mRe  on 

the dimensionless bulk temperature 

bT  during a one cycle 2π, at 

constant   parameters  λ,  ,  Pr and hDx /  ( 4 , 3.0 , 7.0Pr   & 

30/ hDx ). The values of mean Reynolds number are:1000, 1500 & 

2000. The increment of mean Reynolds number  makes  the mean value 

of  dimensionless bulk temperature 

bT  to be decreased. This behavior 

occurs because increasing the velocity with increasing  mRe  , which 

causes decrement in 

bT . 

 Fig.4.31 shows the effect of Womersly number λ on the 

instantaneous-local Nusselt number xNu  over  a one cycle 2π at 

constant controlling parameters   , mRe , Pr & hDx / are ( 3.0 , 

1500Re m , 7.0Pr   & 20/ hDx ), while λ=2, 4 and 8. It illustrates 

that the time average of xNu  is not affected  by the variation frequency 

of pulsation and it is equal to the value of steady laminar fully 

developed flow for the channel with width >> height which equal to 

8.235
[20]

. The amplitude of xNu  is decreased with increasing λ. This 



behavior occurs because the variation of thickness of boundary layer 

with varying λ, hence the thermal resistance. 

 Fig.4.32 shows the effect of ratio of amplitude to steady pressure 

gradient  (  =0.1, 0.3 & 0.5), on the instantaneous-local Nusselt 

number xNu  during  a one cycle 2π, while the other controlling 

parameters  are kept constant ( 4 , 1500Re m , 7.0Pr   & 

20/ hDx ). The amplitude of xNu  is increased with increasing    due 

to increase or decrease the magnitude of pressure gradient (periodically 

change with time), which leads to  large periodically difference in the 

thickness of boundary layer which produces from the variation the 

velocity with varying   .  

 Fig.4.33 shows the variation of instantaneous-local Nusselt 

number xNu  during  a one cycle for different values of Prandtl number 

(Pr=0.1, 0.7 & 10). The other controlling parameters are kept constant 

( 4 , 3.0 , 1500Re m  & 20/ hDx ). It is shown that the 

amplitude of  xNu  is decreased with increasing Prandtl number because 

of increasing hydrodynamics diffusion or decreasing the specific heat 

capacity.   

 Figs.4.34 & 4.35 show the effect of Womersly number λ and the 

ratio of amplitude to steady pressure gradient   on the time-averaged 

bulk temperature 


bT , respectively. Fig.4.34  illustrates that the 

increment of λ  has no effect on 


bT  for the values of λ greater than 2, 

while the percent of enhancement reaches to 4% for  values of λ less 

than 2. 



 Fig.4.35 illustrates the effect of  the ratio of amplitude to steady 

pressure gradient   on the time-averaged bulk temperature 


bT . It can 

be noticed that  


bT  is constant    with varying   . The reason of this 

behavior may be attributed to the fluctuation of 

bT  about mean value 

with varying  Fig.4.29. 

Figs.4.36 & 4.37 indicate the variation of xNu   with λ and    

respectively, with kept other parameters constant. Fig.4.36 illustrates the 

variation of  xNu  with Womersly number, which shows the 

enhancement reaches to only 2%  for λ  less than 2. Fig.4.37 shows the 

variation of  xNu  with   , which illustrates  that  xNu   is not varying 

with  . 

Fig.4.38 shows the variation of instantaneous-local Nusselt 

number xNu  during  a one cycle for different values of mean Reynolds  

number ( 1000Re m , 1500 & 2000). The other controlling parameters 

are kept constant ( 4 , 3.0 , Pr=0.7 & 20/ hDx ). It indicates 

that there is no effect for mean Reynolds number on   xNu , because of 

the flow is fully developed. 

 

4.1.4 Analytical Results of Pulsating Flow and Heat Transfer in         

         the Pipe.  

 Both energy equation and momentum equations are solved for 

pulsating flow in the horizontal pipe to give the velocity and 

temperature distributions as given in Eqs.3.105 & 3.126 respectively, 

and the following controlling parameters together with the chosen range 

values of these parameters are used for calculation:   



Womersly number                                                  λ              1 - 8   

Dimensionless amplitude of pressure gradient                   0-0.5 

Mean Reynolds number                                        mRe            2300  

Prandtl number                                                      Pr               0.7    

The ratio of distance to diameter                         Dx /           1 - 60   

  

 The values of λ,  , mRe , Pr & Dx /  that it is used in this section 

have a similar considerations as in section 4.1.3, but the criteria of 

transition from laminar to turbulent becomes 
m

oA

Re4

4
  , where  mRe  

2300 (see Appendix I). 

 Figs.4.39 & 4.40 show the distribution of dimensionless velocity 

u  and dimensionless temperature T  over a half cycle π with time step 

equal to 60º between each other.   The controlling parameters are equal 

to: 4 , 3.0 , 1200Re m , 7.0Pr   and 40/ Dx .  The general 

behavior of these figures are similar to that of the pulsating flow in the 

channel (section 4.1.3), except the difference in the maximum value at 

the tip of parabolic profiles, due to the difference in the geometry. These 

figures show discontinuity in the center of pipe, because of the 

consequence of  the used analysis.  

Effect of Womersly number λ on the dimensionless velocity u  

and temperature T  are shown in the Figs.4.41 & 4.42 respectively. 

Fig.4.41 illustrates the influence of λ (λ=2, 4 and 8) on u  at 60t  

with constant values of parameters  ( 3.0 , 1200Re m , 7.0Pr   and 

40/ hDx ). The main effect of λ is represented by making the core 

region more uniform (tip of parabolic) with increasing  λ. Fig.4.42 



indicates the influence of λ on the dimensionless temperature profile T

at 60t . It shows that the core region is affected  by the pulsating 

flow at high frequency or λ because the varying of velocity with 

increasing Womersly number. 

 Figs.4.43 illustrates the effect of Womersly number λ on the 

instantaneous dimensionless bulk temperature 

bT  for constant 

controlling parameters ( 3.0 , 1000Re m , 7.0Pr   and 30/ Dx ), 

where λ equal to 2, 4 and 8. It shows that the amplitudes of  

bT  are 

increased with decreasing the Womersly number  λ, while the mean 

value is constant. The reason of this behavior is similarly explained in 

the section 4.1.3.  

 The effect of  dimensionless amplitude of pressure gradient     on 

the 

bT  is represented in Fig.4.44. the parameters are equal to ( 4 , 

1000Re m , 7.0Pr   and 30/ Dx ), while    is taken the values 0.1, 

0.3 and 0.5. This figure is similar to Fig.4.29 for pulsating flow in the 

channel except the difference in the magnitude of 

bT  because the 

difference between the parameters of pulsating flow in the channel and 

pipe. 

 Fig.4.45 indicates the variation of the instantaneous-local Nusselt 

number xNu  with Womersly number λ=2, 4 & 8, while the other 

parameters   , mRe , Pr & Dx /  are kept constant (where: 3.0 , 

1000Re m , 7.0Pr   and 30/ Dx ). It shows that the amplitude of  

xNu  is decreased with increasing  Womersly number, while the mean 

value remains constant. This is owing to increase the diffusivity with 

increasing Womersly number which makes the temperature field more 



uniform. In general the pulsating of flow has no effect on the mean 

value of  xNu , as it is observed in Fig.4.45 the average value of xNu  is 

equal to 4.364 as in steady flow in the pipe. 

Fig.4.46 shows the variation of instantaneous-local Nusselt number xNu  

during  a one cycle for different values of Prandtl number (Pr=0.1, 0.7 & 

10). The other controlling parameters are kept constant ( 4 , 3.0 , 

1000Re m  & 30/ Dx ). This   figure shows that the amplitude of  

xNu  is decreased with increasing Prandtl number.  

The effect of dimensionless amplitude of pressure gradient    on 

the instantaneous-local Nusselt number xNu   is presented in Fig.4.47. 

the parameters λ, mRe , Pr & Dx /   are kept constant ( 4 , 

1000Re m  Pr=0.7 & 30/ Dx ). The increment of     increase the 

amplitude of   xNu , which explains by increasing the pressure gradient 

with  . The mean value of  xNu  is constant and equal to 4.364. 

The variation of time-averaged bulk temperature 


bT  with λ and    

for different values of mean Reynolds number 1000Re m , 1500 & 

2000, are shown in Figs.4.48 & 4.49 respectively. The parameters λ  or 

 , Pr & Dx /  are fixed ( 4 or 3.0 , Pr=0.7 & 30/ Dx ). Its 

show that there is no effect of  λ or   on 


bT , while 


bT  is decreased 

with increasing Reynolds number. 

Fig.4.50 shows the influence of Womersly number on the time 

averaged-local Nusselt number xNu  for different values of mean 

Reynolds number mRe  with the other parameters are  kept constant 



( 3.0 , 7.0Pr   & 30/ Dx ). This figure illustrates that both the 

mean Reynolds number and Womersly number have no effect on xNu . 

Fig.4.51 shows the variation of  xNu  with   for various values of 

mRe   and constant λ, Pr & Dx /  ( 4 , 1500Re m  Pr=0.7 & 

30/ Dx ). It is clear from this figure that, there is a decrement in xNu  

with increasing  , which equal to 0.5%, which is not important from 

the practical point of view. 

 

4.2 Numerical Solution for Checking the Analytical Model. 

 The numerical solution based on the finite volume method has the 

following considerations: 

1- The solution of the general form of the governing equations is done 

by iteration method (see Appendix J). 

2- The weighting parameters θ is taken for explicit method θ=0.  

3- The area of the four sides of control volume are equal 

ewns AAAA   for 2D or ns AA   for 1D. 

4- The steps of the time chosen is equal to 0.001 second. 

5- The criteria of convergence for both calculations of velocity and 

temperature is equal to 410*1  . 

6- The small value of  dydr ,  and dx  are taken equal in both sides of 

point P (i.e. SPPN yy   , SPPN rr   ). 

 The discussion of the numerical results  is divided into four 

sections depending on the type of flow and duct shape. 

 

 

 



4.2.1 Numerical Results of the  Reciprocating Flow in the Channel. 

   Eq.3.5 is solved numerically using the finite volume method to 

give the general form of F.V.M which is defined in Eq.3.131 with dy

=0.05 and the number of nodes equal to 21 at the 05.0t . The 

controlling parameters are: 4 , 15oA  Pr=0.7 & 20/ hDx . 

Fig.4.52 shows the analytical and numerical solution of Eq.3.5, which 

gives a very good agreement. Fig.4.53 illustrates the analytical and 

numerical solution of T  ( solution of  Eq.3.13) for controlling 

parameters as: 4 , 15oA  Pr=0.7 & 20/ hDx . This figure shows a 

very good identification between analytical and numerical model. It is 

shown that in the region near the wall a less agreement is obtained, 

because of the annular effect or the oscillation flow which is occurred in 

the region nearest to the wall.   

 

4.2.2 Numerical Results of the  Reciprocating Flow in the Pipe. 

 Eq.3.32 is solved numerically using F.V.M to give a general form 

of finite volume method as in Eq.3.135. The number of nodes of domain 

are 21, and the controlling parameters are: 4 , 15oA  Pr=0.7 & 

20/ Dx  at the time t =0.05. Fig.4.54 illustrates the analytical and 

numerical solution of u . It indicates that there is a very good 

agreement between both solutions.  

 The numerical solution of Eq.3.43 is represented in the Eq.3.141. 

The solution is based on 21x30 nodes, at the time t =0.05 for 

parameters as: 4 , 15oA  Pr=0.7 & 20/ Dx . Fig.4.55 shows the 

checking of analytical solution with numerical solution of 
T , which 

gives a good identification. 



4.2.3 Numerical Results of the  Pulsating  Flow in the Channel. 

 The momentum equation (Eq.59) is solved numerically to obtain a 

general form of finite volume solution Eq.3.146. The domain is divided 

into 20 node and the  parameters used are: 4 , 3.0 , 1500Re m , 

Pr=0.7 & 20/ hDx  at the time t =0.10. The comparison between 

analytical and numerical solution of u  are shown in the Fig.4.56 which 

yields an excellent agreement. 

 Eq.3.70 is transformed to the general form of finite volume 

method and expressed  by Eq.3.148. The calculation was done using 

controlling parameters : 4 , 3.0 , 1500Re m , Pr=0.7 & 

30/ hDx  at the time t =0.40. The domain is divided into 20x30 

nodes. Fig.4.57 shows the comparison between the analytical and 

numerical solution of T , which gives a reasonable  agreement between 

them. 

 

 

4.2.4 Numerical Results of the  Pulsating  Flow in the Pipe. 

 The general form of numerical solution of Eq.3.94  is represented 

in Eq.3.150. The domain has 20 node and the parameters used in the 

calculation are equal to: 4 , 3.0 , 1000Re m , Pr=0.7 & 

30/ Dx  at the time t =0.05. Fig.4.58 shows excellent identification 

between numerical and analytical solution of Eq.3.94. 

 The temperature distribution 
T  is obtained from numerical 

solution the general finite volume form given by  Eq.3.154. The domain 

has 20x30 nodes and the parameters used for calculation are equal to: 

4 , 3.0 , 1000Re m , Pr=0.7 & 31/ Dx  at the time t =0.05. 



Fig.4.59 shows the comparison between the analytical and numerical 

solution of temperature distribution, which gives a good agreement 

between them. 

 

4.3 Comparison of the New Model with Experimental Results 

of Other  Authors  

In order  to    demonstrate  the   validity  of  the  present  analytical  

model, a comparison between the experimental work for other authors 

and the new model is carried out. The main parameters that used in the 

comparison are: time averaged-local Nusselt number xNu  and space-

cycle averaged Nusselt number Nu . Because of non identification 

between the parameters of  a new model and the works that is used for 

comparison, the parameters are simplified. 

 Heat transfer in reciprocating flow in the channel of the new 

model is compared with experimental investigation for convective heat 

transfer in a rectangular duct heated from the below and subjected to a 

periodic flow, which is investigated by Copper et al. and cited by Zhao 

and Cheng
[7]

 . This experimental work was done for turbulent flow and 

the results were correlated by suitable relation for Nu  and since no 

experimental work done for laminar flow therefore the comparison will 

be made at critical oscillatory parameter cri  only. The parameter that 

used in the comparison is space-cycle averaged Nusselt number Nu  

which is defined in Eq.2.27. Fig.4.60 shows this comparison between 

the value of  Nu obtained from the new model and with the 

experimental correlation obtained by Copper et al.
[7] 

for various values 

of Womersly number. The behavior of the results obtained from both 



work have a similar trend, the observed difference between them may be 

attributed the flow region that used in the experimental correlation 

(transition and turbulent regions). 

 Analytical solution of a new model for heat transfer in the 

reciprocating flow in the pipe is compared also with the study for 

oscillatory heat transfer in a pipe subjected  to a laminar reciprocating 

flow investigated by Zhao and Cheng
[34]

. The values of kinetic Reynolds 

number is varied from 23 to 464 and oA  is varied from 8.54 to 34.9 and 

L/D=44.8 and the fluid used for comparison is air. Fig.4.61 illustrates 

this comparison for  Nu  against Womersly number for both the present 

analytical solution and the experimental correlation  defined in the 

Eq.2.31 which  gives a qualitative  reasonable agreement. The difference 

between the two curves  may be attributed to that, the correlation of 

experimental data based on conjugate heat transfer (convection in the 

fluid and conduction in the tube) in which the temperature at outer wall 

is used instead of at the inner wall which is equal to fluid temperature, 

while the present study is made for convection in the fluid only.  

 The solution of pulsating flow in the channel for the new model is 

compared using  the heat transfer enhancement factor 
s

p

Nu

Nu
which 

defined as the ratio between time-averaged Nusselt number for pulsating 

flow to time-averaged Nusselt number for steady flow  which is 

obtained by Moon et al.
[48]

 . Fig. 4.62 shows a good agreement  between 

the analytical results and experimental results  for fully developed 

laminar flow,  Reynolds  number equal to 700, the ratio of amplitude of 

fluctuate to steady velocity equal to 0.2 and different frequencies (hence 



the standard deviation of   
s

p

Nu

Nu
  is 0.061). Also the curve shows the 

fluctuating of the experimental results about the analytical results of a 

new model. 

 The analytical solution of a new model for pulsating flow in the 

pipe is compared with experimental study for convective heat transfer 

characteristics of laminar pulsating flow pipe air flow by Habib et al
[45]

. 

The parameter of comparison is the relative mean Nusselt number  rNu  

which is defined as 
om

pm

r
Nu

Nu
Nu  , where pmNu : is the pulsated mean 

Nusselt number and omNu : is the mean Nusselt number without 

pulsation. The range of mean Reynolds number used are from 780 to 

1366, and Stokes number Ω is in the range from 12 to 17.5 where 





22

D
 . The relative mean Nusselt number defined in Eq.2.34b is 

used for comparison. The values used for calculation are 5.0 , 

Pr=0.7, 1000Re m  for various values of  λ. Fig.4.63 shows that rNu  is 

remained constant and equal to 1 for the present analytical solution of a 

new model while rNu  for experimental works of Habib et al.
 [45]

  is  

fluctuated  about  1 (increased or decreased relative to 1), where the 

standard deviation of rNu  is  0.114. 
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Fig.4.1 The Variation of the dimensionless velocity profile for λ=4, oA =15, 

Pr=0.7 and hDx / =20. (Reciprocating flow in the channel) 
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Fig.4.2 The Variation of the dimensionless temperature profile for λ=4, oA

=15, Pr=0.7 and hDx / =20. (Reciprocating flow in the channel) 
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Fig.4.3 The Effect of Womersly number λ on the  dimensionless velocity 

profile at  t =60º, for oA =15, Pr=0.7 and hDx / =20. (Reciprocating flow in 

the channel) 
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Fig.4.4 The Effect of Womersly number λ on the  dimensionless temperature 

profile at  t =60º, for oA =15, Pr=0.7 and hDx / =20. (Reciprocating flow in 

the  channel) 
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Fig.4.5 The Effect of Womersly number λ on the  instantaneous 

dimensionless bulk temperature at oA =15, Pr=0.7 and hDx / =20. 

(Reciprocating flow in the channel) 
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Fig.4.6 The Effect of dimensionless amplitude of fluid displacement on the 

instantaneous dimensionless bulk temperature at λ=4, Pr=0.7 and hDx / =20. 

(Reciprocating flow in the  channel) 
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Fig.4.7 The Effect of Womersly number on the instantaneous-local Nusselt 

number at oA =15, Pr=0.7 and hDx / =20. (Reciprocating flow in the channel) 
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Fig.4.8 The Effect of dimensionless amplitude of fluid displacement  on the 

instantaneous-local Nusselt number at λ=4, Pr=0.7 and hDx / =20. 

(Reciprocating flow in the channel) 

  xNu  

xNu  

          λ=4 

          λ=8 

          λ=12 

       oA =10 

       oA =15 

 



      
t  (degree) 

Fig.4.9 The Effect of ratio of the distance to the hydraulic diameter on the 

instantaneous dimensionless center temperature at λ=4, oA =15 and  Pr=0.7. 

(Reciprocating flow in the channel) 
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Fig.4.10The Effect dimensionless amplitude of fluid displacement on the 

instantaneous dimensionless center temperature at λ=4, Pr=0.7 and hDx /

=20. (Reciprocating flow in the channel) 
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Fig.4.11 The Effect of ratio of the distance to the hydraulic diameter on the 

instantaneous-local Nusselt number at λ=4, oA =15 and  Pr=0.7. 

(Reciprocating flow in the channel) 
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Fig.4.12 The Effect of Prandtl number on the time averaged-local Nusselt 

number at λ=4 and 8, for oA =15 and hDx / =20. (Reciprocating flow in the 

channel) 
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Fig.4.13 The Variation of dimensionless velocity profile for λ=8, 15oA , 

Pr=0.7 and x/D=30. (Reciprocating flow in the pipe) 
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Fig.4.14 The Variation of dimensionless temperature profile for  λ=8, 

15oA , Pr=0.7 and  x/D=30. (Reciprocating flow in the pipe) 
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Fig.4.15 The Effect of Womersly number on the dimensionless velocity 

profile at the time 
60t , for 15oA , Pr=0.7 and  x/D=30. 

(Reciprocating flow in the pipe) 
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Fig.4.16 The Effect of Womersly number on the dimensionless temperature 

profile a the time 
60t , for 15oA , Pr=0.7 and  x/D=30. (Reciprocating 

flow in the pipe) 
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Fig.4.17 The temporal variation of instantaneous bulk temperature for   

various values of Womersly number at 15oA , Pr=0.7  and  x/D=30. 

(Reciprocating flow in the pipe)   
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Fig.4.18 The temporal variation of instantaneous bulk temperature for   

various values of dimensionless amplitude of the fluid displacement at λ=4 , 

Pr=0.7 and x/D=30. (Reciprocating flow in the pipe) 
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Fig.4.19 The temporal variation of instantaneous–local Nusselt number for 

various values of Womersly number at 15oA , Pr=0.7 and  x/D=30. 

(Reciprocating flow in the pipe) 
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Fig.4.20 The temporal variation of instantaneous-local Nusselt number for 

various values of dimensionless amplitude of the fluid displacement at λ=4 , 

Pr=0.7 and  x/D=30. (Reciprocating flow in the pipe)     
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Fig.4.21 The temporal variation of instantaneous center temperature for 

various values of the ratio of the distance to the diameter at λ=4, 15oA  and  

Pr=0.7. (Reciprocating flow in the pipe) 
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Fig.4.22 The temporal variation of instantaneous center temperature for 

various values of Womersly number at 15oA ,  Pr=0.7 and  x/D=30. 

(Reciprocating flow in the pipe) 



cT  



cT  

        λ=4 

         

        λ=6 

        

        λ=8 

                      

          x/D=20 

          x/D=25 

          x/D=30 



           
    Pr 

Fig.4.23 Effect of Prandtl number on the time averaged-local Nusselt number 

for two values of Womersly number at 15oA  and  x/D=30. (Reciprocating 

flow in the pipe) 
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Fig.4.24 The variation of dimensionless velocity profile for λ=4, 3.0 , 

1200Re m , Pr=0.7 and hDx / =20. (Pulsating flow in the channel) 
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Fig.4.25 The variation of dimensionless temperature profile for λ=4, 3.0

, 1200Re m , Pr=0.7 and hDx /  =20. (Pulsating flow in the channel) 
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Fig.4.26 Effect of Womersly number on the dimensionless velocity profile at 

60t , for 3.0 , 1200Re m , Pr=0.7 and hDx / =20. (Pulsating flow 

in the channel) 

y  

y  

           0º 

           60º 

          120º 

          180º 

         λ=2 

 

          λ=4 

 

         λ=10 



      
T  

Fig.4.27 Effect of Womersly number on the dimensionless temperature 

profile at 
60t , for 3.0 , 1200Re m , Pr=0.7 and hDx / =20. 

(Pulsating flow in the channel) 
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Fig.4.28 Effect of Womersly number on the instantaneous dimensionless 

bulk temperature at 3.0 , 1500Re m , Pr=0.7 and hDx / =20. (Pulsating 

flow in the channel) 
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Fig.4.29 Effect of the ratio of the fluctuate to the steady pressure gradient on 

the instantaneous dimensionless bulk temperature for λ=4, 1500Re m , 

Pr=0.7 and hDx / =20. (Pulsating flow in the channel) 

      
          ωt (degree) 

Fig.4.30 Effect of the mean Reynolds number on the instantaneous 

dimensionless bulk temperature for λ=4,  =0.3, Pr=0.7 and hDx / =20. 

(Pulsating flow in the channel) 
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Fig.4.31 Effect of Womersly number on the instantaneous-local Nusselt 

number for 3.0 , 1500Re m , Pr=0.7 and hDx / =20. (Pulsating flow in 

the channel) 
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Fig.4.32 Effect of the ratio of the fluctuate to the steady pressure gradient on 

the instantaneous-local Nusselt number for λ=4, 1500Re m , Pr=0.7 and 

hDx / =20. (Pulsating flow in the channel) 
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Fig.4.33 Effect of Prandtl  number on the instantaneous-local Nusselt number 

for λ=4, 3.0 , 1500Re m  and hDx / =20. (Pulsating flow in the 

channel) 

      
Fig.4.34 Effect of Womersly number on the time-averaged dimensionless 

bulk temperature for 3.0 , 1500Re m , Pr=0.7 and hDx / =20. 

(Pulsating flow in the channel) 
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Fig.4.35 Effect of the ratio of the fluctuate to the steady pressure gradient on 

the time-averaged dimensionless bulk temperature at λ=4, 1500Re m , 

Pr=0.7 and hDx / =20. (Pulsating flow in the channel) 

      
Fig.4.36 Effect of Womersly number on the time averaged-local Nusselt 

number at 3.0 , 1500Re m , Pr=0.7 and hDx / =20. (Pulsating flow in 

the channel) 
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                                                                    

Fig.4.37 Effect of the Ratio of the Fluctuate to the Steady Pressure Gradient 

on the Time Averaged-Local Nusselt Number at λ=4, 1500Re m , Pr=0.7 & 

hDx / =20. (Pulsating flow in the channel) 

         
Fig.4.38 Effect of mean Reynolds  number on the instantaneous-local Nusselt 

number at λ=4, 3.0 , Pr=0.7 and hDx / =20. (Pulsating flow in the 

channel) 
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Fig.4.39 The Variation of dimensionless velocity profile for λ=4, 3.0 , 

1200Re m , Pr=0.7 and x/D=40. (Pulsating flow in the pipe) 
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Fig.4.40 The Variation of dimensionless temperature profile for λ=4, 

3.0 , 1200Re m , Pr=0.7 and x/D=40. (Pulsating flow in the pipe) 
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Fig.4.41 Effect of Womersly number on the dimensionless velocity profile at 
60t  for 3.0 , 1200Re m , Pr=0.7  and Dx / =40. (Pulsating flow 

in the pipe) 
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Fig.4.42 Effect of Womersly number on the dimensionless temperature 

profile at 
60t , for 3.0 , 1200Re m , Pr=0.7 and Dx / =40. 

(Pulsating flow in the pipe) 
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Fig.4.43 Effect of Womersly number on the instantaneous dimensionless 

bulk temperature at 3.0 , 1000Re m , Pr=0.7 and Dx / =20. (Pulsating 

flow in the pipe) 
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Fig.4.44 Effect of the ratio of the fluctuate to the steady pressure gradient on 

the instantaneous dimensionless bulk temperature at λ=4, 1000Re m , 

Pr=0.7 and Dx / =30. (Pulsating flow in the pipe) 
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Fig.4.45 Effect of Womersly number on the instantaneous-local Nusselt 

number at 3.0 , 1000Re m , Pr=0.7 and Dx / =30. (Pulsating flow in 

the pipe) 
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Fig.4.46 Effect of Prandtl  number on the instantaneous-local Nusselt number  

at λ=4, 3.0 , 1200Re m  and Dx / =30. (Pulsating flow in the pipe)  
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Fig.4.47 Effect of the ratio of the fluctuate to the steady pressure gradient on 

the instantaneous-local Nusselt number at λ=4, 1000Re m , Pr=0.7 and 

Dx / =30. (Pulsating flow in the pipe) 
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Fig.4.48 The Variation of time-averaged dimensionless bulk temperature 

with Womersly number for various values of mean Reynolds number at 

3.0 , Pr=0.7 and Dx / =30. (Pulsating flow in the pipe) 
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Fig.4.49 The Variation of time-averaged dimensionless bulk temperature 

with the ratio of the fluctuate to the steady pressure gradient for various 

values of mean Reynolds number at λ=4, Pr=0.7 and Dx / =30. (Pulsating 

flow in the pipe) 
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Fig.4.50 The Variation of time averaged-local Nusselt number with 

Womersly number for various values of mean Reynolds number at 3.0 , 

Pr=0.7 and Dx / =30. (Pulsating flow in the pipe) 
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Fig.4.51 The Variation of the time averaged-local Nusselt number with the 

ratio of the fluctuate to the steady pressure gradient for various values of 

mean Reynolds number at λ=4, Pr=0.7 and Dx / =30. (Pulsating flow in the 

pipe) 
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Fig.4.52 Comparison between the velocity profile of analytical and numerical 

solution of the new model for the reciprocating flow in the channel at  

05.0t , λ=4, 15oA , Pr=0.7 and 20/ hDx .   
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Fig.4.53 Comparison between the temperature profile of analytical and 

numerical solution of the new model for the reciprocating flow in the channel 

at 05.0t , λ=4, 15oA , Pr=0.7 and 20/ hDx .   
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Fig.4.54 Comparison between the velocity profile of analytical and numerical 

solution of the new model for the reciprocating flow in the pipe at 05.0t , 

λ=4, 15oA , Pr=0.7 and  20/ Dx .   
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Fig.4.55 Comparison between analytical and numerical solution of the new 

model for the temperature profile for the reciprocating flow in the pipe at 

05.0t , λ=4, 15oA , Pr=0.7 and 20/ Dx .   
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Fig.4.56 Comparison between analytical and numerical solution of the new 

model of the velocity profile for the pulsating flow in the Channel at 

1.0t , λ=4, 3.0 , 1200Re m , Pr=0.7 & 20/ hDx . 
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Fig.4.57 Comparison between analytical and numerical solution of the new 

model of the temperature profile for the pulsating flow in the channel at 

4.0t , λ=4, 3.0 , 1500Re m , Pr=0.7 and 30/ hDx . 

y  

y  

           Analytical 

 

           Numerical 

           Analytical 

 

           Numerical 



      
u  

Fig.4.58 Comparison between analytical and numerical solution of the new 

model for the velocity profile for the pulsating flow in the pipe at 05.0t , 

λ=4, 3.0 , 1000Re m , Pr=0.7 and  30/ Dx . 
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Fig.4.59 Comparison between analytical and numerical solution of the new 

model for the temperature Profile for the pulsating flow in the pipe at 

05.0t , λ=4, 3.0 , 1000Re m , Pr=0.7  and 31/ Dx . 
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Fig.4.60 Comparison of the  space-cycle averaged Nusselt number between  

present model and the experimental correlation of Copper et al.
[7]

, for the 

reciprocating flow in the channel.  
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Fig.4.61 Comparison of the space-cycle averaged Nusselt number between 

the present model and the experimental correlation of Zhao and Cheng
[34]

, for  

the reciprocating flow in the pipe.  
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Fig.4.62 Comparison of the ratio of the time-averaged Nusselt number for the 

pulsating and steady flow in the channel . 

       
λ 

Fig.4.63 Comparison of the present relative mean Nusselt number with the 

experimental correlation of Habib et al.
[45]

, for  the pulsating flow in the pipe.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS  

 

   

5.1 Conclusions  

 From the present analytical model it can be concluded the 

following remarks: 

1- Analytical modeling for hydrodynamics and heat transfer in the 

oscillatory flow is possible based  on the following considerations: 

laminar, 2D, incompressible, horizontal channel or pipe, no viscous 

dissipation Φ=0 and the flow is driven by reciprocating or pulsating 

pressure gradient. 

2- Both reciprocating and pulsating flow is studied and the obtained 

effecting parameters that control the flow and heat transfer are defined 

(i)for reciprocating flow as: Womersly number λ, dimensionless 

amplitude of fluid displacement oA , Prandtl number Pr and the ratio of 

distance to hydraulic diameter hDx / .(ii) for pulsating flow as: 

Womersly number λ, the ratio of fluctuate to steady pressure gradient    

, mean Reynolds number mRe , Prandtl number Pr and the ratio of 

distance to hydraulic diameter hDx /  . 

3- The effect of oscillation on the velocity and temperature profiles is 

more significant in the reciprocating flow than pulsating flow. 

4- The dimensionless bulk or center temperature and  the instantaneous- 

local Nusselt number xNu are fluctuated periodically with time for 

reciprocating flow. 



5- The instantaneous-local Nusselt number xNu and time averaged-local 

Nusselt number xNu  are clearly increased with increasing Womersly 

number and Prandtl number in the reciprocating flow. 

6- The reciprocating flow gives enhancement in the heat transfer rate 

reaches to order of magnitude for xNu  or xNu  comparing to steady state 

at the same considerations. 

7-  The results show that the an imposed flow pulsation causes both the 

temperature and  Nusselt number fluctuate periodically about the 

solution for steady laminar convection. 

8- The solution of pulsation flow has been demonstrated strongly that 

pulsation has no effect on the time average Nusselt number for pulsating 

convection heat transfer in the channel or the pipe with constant heat 

flux (  Nu =4.364 for pipe and Nu =8.235 for channel with width >> 

height). 

 

5.2 Recommendations 

 In extension of the present study it is recommended for future to 

note the following: 

1- This study can be developed for turbulent and compressible flow. 

2- Heat transfer in the micro channels can be studied in the similar 

manor of the present model. 

3- Entrance region can be investigated. 

4- Investigation can be extended to hydrodynamics and heat transfer in 

oscillating external flow. 

5- The present study can be accompanied with other devices  to enhance 

heat transfer such as wavy wall or surface. 



6- The periodically repeated conditions such as periodic wall 

temperature or periodic heat flux may be applied for future 

investigation.  
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APPENDICES 

Appendix A 

 
The functions that find in the Eq.3.20 are defined as 

  
)1.(1 AWFUEE   

)2.(1 AWEUFF   

)3.(22

2 AWUU   

)4.(1 ADZCYY   

)5.(1 ADYCZZ   

)6(22

3 ADCC   

)7.(1 ADPCQQ   

)8.(1 ADQCPP   

 

and 

 

    )9.(2Pr/cos2Pr/cosh AyyE    

 

    )10.(2Pr/sin2Pr/sinh AyyF    

 

    )11.(2Pr/sin2Pr/sinh AU   

 

    )12.(2Pr/cos2Pr/cosh AW   

 

    )13.(2/cos2/cosh AyyQ    

 

    )14.(2/sin2/sinh AyyP    

 

    )15.(2/cos2/cosh AC   

 

    )16.(2/sin2/sinh AD   

 

    )17.(2/cos2/sinh AY   

 

    )18.(2/sin2/cosh AZ   



Appendix B 
 

The general form of Bessel function with complex variable )( 2/3i is 
[50]
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nJ  : Bessel function of order n. 

n: the order of Bessel function. 
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 : is Gama function defined as  
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for n=0  (zero order) 
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Appendix C 
  

The complex functions in the Eq.3.50 are simplified as 
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Appendix D 

  

 The complex Bessel function in Eq.3.50 are simplified using 

asymptotic Bessel function for complex variable Eq.3.38 as below 
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The Eqs.E.5, E.6 and E.9 are substituted in Eq.3.50 to obtain Eq.3.52. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Appendix E 
 

For steady flow the solution of momentum equation in  x-direction gives 

the velocity distribution as 
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Appendix F 
 

The function which defined in Eq.3.88 are  
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Appendix G 
 

The complex Bessel function of Eq.3.102 are simplified as 
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Appendix H 

 
Momentum equation of steady flow in the horizontal channel is  
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where h: half height of the channel. 

Integrating Eq.H.1 with boundary conditions Eqs.H.2 and H.3 obtain 
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Appendix I 

 
Momentum equation of steady flow in the horizontal pipe is  
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with boundary conditions  
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Integrating Eq.I.1 with boundary conditions Eqs.I.2 and I.3 obtain 
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Appendix J 

 

A simple flow chart of iteration method for numerical solution 

using the finite volume method. 
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