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An efficient study comparing the measure of 

spatiotemporal gait parameters between 

smartphone and insole sensors 

Abstract—Gait parameter assessment is important 

when determining participants’ health status and 

developing therapeutic interventions. This paper 

discusses the smartphone technique design and 

implementation for measuring and studying 

participants’ gait parameters. In this work, a new 

methodology is developed to study the spatiotemporal 

parameters of healthy people: step time, stride time, 

cadence and walking speed, using both insole sensors 

and smartphones. The purpose of this study is first to 

investigate the efficacy of a pair of Android 

smartphones (one for each leg) two Android 

smartphone as opposed to an insole sensor in 

determining spatiotemporal gait parameters. Second, 

the study evaluates the validity of a smartphone-based 

tri-axial accelerometer to assess gait characteristics. 

The spatiotemporal gait parameters of twenty healthy 

participants (10 male, 10 female, age >18) were 

assessed with insole sensors and smartphones. Each 

participant was asked to walk five trials. Data were 

collected from the insole sensors and the smartphones. 

Six statistic measures: Pearson correlation coefficient, 

linear regression, mean, standard deviation (SD), p-

value, and Bland-Altman, were used to evaluate the 

validity of the smartphones. The correlation coefficient 

using the developed method ranged from 0.79 to 0.92 

for both left and right legs. Based on the obtained 

results of the study with four parameters: step time, 

stride time, cadence, and walking speed, it was 

observed that there was agreement between the 

smartphones and the insole sensors measuring gait 

parameters. Furthermore, these results demonstrated 

that the smartphone sensor is efficient in its 

measurement of the spatiotemporal gait parameters of 

healthy adult participants. Thus, it can provide 

reliable data without the need for expensive devices. 

Finally, the developed method may help an expert to 

objectively and effectively evaluate gait.  

Keywords—smartphone, spatiotemporal, insole sensor, 

standard deviation (SD) 

 

 

I. INTRODUCTION 

The study of human gait is considered to be a 

significant component of medical diagnosis related 

to many aspects of people’s health. The insights into 

human gait have many applications in exercise 

training and, therefore, in rehabilitation and therapy 

[1-3]. Different factors, such as pathological disease 

or injuries, may have an effect on the people’s walk 

or locomotion, either permanently or temporarily 

[4]. Spatiotemporal gait parameters are related to 

adverse health issues such as risk of falls [5, 6]. 

Recently, gait analysis researchers have used 

different instruments to evaluate gait parameters to 
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study the risk of falling. Several technologies use 

insoles for specially designed shoes [7]. An insole 

sensor was shown to be suitable to determine human 

movement parameters such as the stance and swing 

phases [8]. The insole sensor is also able to measure 

a number of spatiotemporal gait parameters: swing 

time, stride length, step time and cadence [9]. Other 

studies using an insole pressure sensor data enable 

the planning of ways to reduce plantar pressure 

among diabetic patients [10].  

A smartphone application has shown that an 

accelerometer sensor can be used for gait parameter 

analysis. The smartphone has been demonstrated to 

be an effective tool for monitoring human 

movement [11]. Other studies have shown that a 

smartphone-based fall detection system may be used 

for such different problems as  fall detection 

[12] and rheumatoid arthritis [13].  

[14] developed a method to validate the smartphone-

based accelerometer for quantifying spatiotemporal 

gait parameters with other gait analysis devices such 

as GAITRite. In their study, 34 participants were 

recruited. Participants walked at slow and fast 

speeds over a 10-m distance while carrying a 

smartphone. Parameters such as step length, step 

time, gait velocity, and cadence were determined 

using smartphone-based accelerometers and then the 

study was validated with GAITRite. Their results 

were evaluated using the correlations coefficient 

(CC). An average CC between the smartphone-

based and GAITRite-based systems was 0.89, 0.98, 

0.96, and 0.87 for step length, step time, gait 

velocity, and cadence, respectively.   

[15] presented a method to evaluate the concurrent 

validity of a smartphone. In that study, 16 healthy 

participants were used and the smartphone was 

attached first to the lower back and then to the 

sternum. Then, the reference standard and the 

smartphone were used to record vertical ground 

reaction forces and vertical acceleration. In this 

study, the correlation coefficient and standard error 

were used to evaluate the proposed method.  A 

strong reliability (ICC ≥ 0.75) was reported, 

showing Pearson correlation coefficients between 

vertical ground reaction forces and vertical 

acceleration. The authors concluded that the 

smartphone could be used as a reliable and valid tool 

for the quantification of the sit-to-stand movement 

in healthy seniors. 

More recently, [16], proposed a reliable and efficient 

method to assess spatiotemporal gait parameters 

using smartphone data based on an accelerometer 

and 3000E F-scan. In this study, 10 healthy adults 

walked three times with two smartphones and two 

insole sensors attached. Three parameters: step time, 

stride time, and cadence were calculated. The study 

reported that the smartphone accelerometer sensor 

could be an effective and efficient tool for assessing 

gait. 

Current validation data for smartphone usually use 

only one phone to assess gait parameter. 

Furthermore, these studies have employed one or 

two assessment tools to evaluate performance 

results.  Thus, the purpose of this research is to: (1) 

investigate two Android smartphones for 

determining spatiotemporal gait parameters (step 

time, stride time, cadence and walking speed) and 

(2) evaluate the validity of a smartphone-based tri-

axial accelerometer to assess gait characteristics.  

 

II. RESARCH METHODOLOGY 

DESCRIPTION 

In this work, 20 healthy participants were recruited 

for the proposed method to study the spatiotemporal 

parameters: step time, stride time, cadence, and 

walking speed of the insole and smartphone for 

healthy people.  
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A. Participants 

The twenty healthy adult subjects (10 males, 10 

females) were aged between 20 and 40 years. The 

other characteristics of the 20 subjects were mass 

and height 60 to 95 kg and 156 to 180 cm, 

respectively. All subjects were able to walk 

continuously for at least ten meters without help or 

assistance devices. Some demographic 

information was obtained from each participant; 

namely age, gender, height, weight and shoe size. 

All subjects gave written consent at the beginning 

of the trials.  A human ethics application was 

approved by the Human Research Ethics 

Committee at the University of Southern 

Queensland. 

 

B. Equipment  

In this study, each subject wore an insole sensor 

3000E F-scan in suitably sized shoes, connected to 

a computer to capture the data through the 

software F-Scan research. At the same time, each 

subject wore two smartphones, both 

Samsung Galaxy S9, which has a height of 5.81” 

(147.7 mm), width of 2.7” (68.7 mm), depth of. 

33” (8.5 mm), weight of 163 g and screen size of 

5.8” (147.3 mm). The smartphones were placed on 

both legs as shown in Fig 1, a and b. Smartphones  

 

 

 

 

 

 

 

 

 

 

 

 

 

were placed here because the upper area of the 

human body is complicated; thus, the process of  

obtaining accurate estimates is very difficult. 

 Fig 2 shows an example of one-step starting from 

the left side with heel strike, flat foot, midstance 

and toe off. All subjects walked along a 9 m 

straight pathway, with all gait measuring devices 

(insole shoes and smartphones) attached, five 

times. Each time (trial), the data were recorded 

individually for each device and each leg. 

Participants were asked to walk normally, and to 

start and stop walking when they heard the tester’s 

instructions. 

 

C. Procedures 

In this work, an efficient method was used to study 

the spatiotemporal parameters of healthy people 

with the insoles and smartphones and to analyse and 

compare of spatiotemporal gait parameters between 

smartphone and insole sensors. The researcher 

followed a set procedure. Each participant signed a 

consent form. Next, explain the walking way, start 

and end point and how to hold the wires of the insole 

sensors to each individual.  Then, data was recorded 

for all the participants. They were asked to start and 

stop walking when they heard the instructor  

 

 

 

 

 

 

 

 

 

Fig.1. a and b show an example for one person who wore insole sensors and smartphones during the test    

a. Subject wore insole sensors with  
b. Insole sensor  
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give the instruction. 

D. Data collection and processing 

Reliable data were sought for the gait spatiotemporal  

parameters: step time, stride time, cadence and  

walking speed used in the study.  Each subject’s foot 

strike location was verified to ensure it was on the 

right way in the shoes after choosing the correct 

shoes size. Each trial represented the average time 

for three middle steps (from steps 5-7). From the 

foot pressure map obtained by the Tekscan data and 

the plots from the smartphone accelerometer, the 

three middle steps were used to calculate the stride 

time, step time and cadence, as shown in Figs. 3 a 

and b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The acceleration data for nine steps in the normal 

walk are presented in Fig 4.  The test for device, 

smartphone and insole sensors, were completed at 

the same time. The difference between them was 

observed. We noticed these differences in the 

patterns for the insole sensor and accelerometer 

sensor such as the noise and negative signal in 

accelerometer sensors but nothing like that in the 

insole sensors reading. In addition,  

 

E. Statistical analysis 

Blind-Altman plots were used to provide the bias 

and limit of agreement (LOA) between smartphone 

sensor and insole sensor data as well as to evaluate 

the developed study method.  

 

 

 

 

 

 

 

 

 

 

 

 

      

        Fig.2. An example of flat foot, midstance and toe off pressure characteristics 

b a 

Fig.3. a and b show the heel strike insole sensor and heel strike for the fifth step, respectively 
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To assess the validity between the insole sensors and 

smartphones for each trial, the Pearson correlation 

was also used in this analysis. We used the following 

value to check the agreement between the device 

results: .90 to 1.00 as very high, 0.70 to 0.90 as high, 

and 0.50 to 0.70 as moderate, 0.30 to 0.50 as low, 

and less than 0.30 as insignificant. These metrics and 

ranges have been used by a number of studies [17-

19].    

Based on Fig 4, it could be seen that the insole 

pattern in the forward and upward directions was 

more stable most of the time because it depends on 

the leg pressure sensor.  However, with the 

smartphone, most of the patterns showed more 

stable steps in 5-7 because the accelerometer data 

depends on the walking action. In other words, 

walking speed differs at the beginning of walking 

and when preparing to stop. Moreover, the data of 

the smartphone accelerometer in the forward and 

upward directions showed some noise and negative 

signals in the pattern, although we used only the 

positive signals.  

The change of sign of the positive peak in the 

acceleration signal in the anterior-posterior direction 

is taken as the instance of the foot contact [20]. In 

step time and stride time, the average of the time for 

the three middle steps (5-7) steps was calculated. In 

other words, in this paper, we added the time of three  

 

 

 

 

 

 

 

 

steps and then divided it by 3, and the same for stride 

time but for three strides. The processing of cadence 

was carried out similar to [21] but we converted the 

time to seconds because the time of both devices 

(smartphone and insole sensor) was measured by 

seconds. To validate the accelerometer’s ability to 

detect the number of steps, the subject walked 10 

meters depending on the lap distance on a flat floor 

indoors. 

III. EXPERIMENT RESULTS AND 

DISCUSSIONS  

The purpose of this study was to compare and 

quantify the validity of spatiotemporal gait 

parameters between smartphone and insole sensors. 

For that purpose, in this paper, a series of 

experiments were conducted to evaluate the 

performance of the smartphone device to study the 

spatiotemporal parameters.  In this test twenty 

participants: healthy young adults (10 males and 10 

females; aged between 20 and 40 years; mass and 

height 60 to 95 kg and 156 to 180cm, respectively), 

were recruited and they successfully completed the 

testing in the laboratory environment. Different sets 

of parameters: step time, stride time, cadence and 

walking speed, were collected in this study. each 

subject completed 5 trials. Then, spatiotemporal gait 

parameters were collected and utilising two 
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Fig.4. Heel strike start with the positive peaks acceleration from smartphone accelerometer   
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smartphones and two insole shoes sensors. In the 

trials, the smartphone showed similar results when 

compared with those of the insole.  The results of 

each subject (left and right) were reported in terms 

of mean and standard deviation (SD), as shown in 

Tables 1 and 2.  These statistical measures have been 

used by many researchers to evaluate their methods 

[14, 22]. Results of all the experiments were 

analysed using SPSS. Tables I and II show the 

average (for 20 subjects) of four parameters for left 

and right insole sensor and smartphone, based on 

mean and SD. 

 

 

 

The mean and SD for each subject based on the four 

parameters were computed. The average was 

calculated for each parameter for both insole sensors 

and smartphones. Based on the results in Tables I 

and II, the mean and SD for insole and smartphone 

based on four parameters yielded approximately the 

same results. The results demonstrated that the 

smartphone has the ability to study the 

spatiotemporal parameters for healthy people.  

To highlight more evaluation of the proposed study 

in term of the comparison between smartphones and 

insole sensors, the 25 trials were also used in this 

study to investigate the relationship between the 

insole and smartphone. The results for each subject 

is based on four parameters: step time, stride time,  

Cadence and walking time, and are reported in terms  

of mean ± standard  and then the average of mean ± 

standard  was calculated for all subjects, as shown in  

 

 

 

 

 

Table III. The results for the smartphone 

demonstrate that the proposed study achieved better 

performance when comparing smartphone and 

insole sensors. Of the four parameters, the step time 

results performed best in term of average of mean 

and SD for all subject compared with other 

parameters. From Table III, one can see that the 

smartphone pair 

TABLE I.  The performance of the proposed method based on four parameters - left insole sensor 

and smartphone for five trials m/s 

Variable 
 

Insole         Smartphone 

Mean SD        Mean SD 

Step time  0.68 0.03  0.67 0.03 

Stride time  1.22 0.06  1.22 0.06 

Cadence  50.05 0.92  49.35 1.03 

Walking time  1.03 0.05  1.02 0.05 

TABLE II.  The performance of the proposed method based on four parameters - right insole sensor 

and smartphone for five trials m/s 

Variable 
 

Insole             Smartphone 

Mean SD  Mean SD 

Step time  0.68 0.02  0.69 0.03 

Stride time  1.21 0.05  1.21 0.05 

Cadence  49.81 0.78  49.41 0.96 

Walking time  1.01 0.05  1.01 0.05 
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achieved acceptable results compared with that of 

the insoles. The P-value was used to determine 

significance by presenting the agreement between 

the smartphones and insoles. The differences 

between the data derived from the insole sensor and 

smartphone were not-significant for all indicators 

(P-value >0.05), reflecting the similarity between 

these two devices, as shown in Table IV. Results 

confirm the hypotheses formulated prior to this 

study and therefore are supportive of increased 

adoption of smartphones for collecting 

spatiotemporal data instead of insole sensors.  

Table 4 shows the summary of results based on the 

Pearson correlation coefficient (r) and P-value 

between the smartphones and insole sensors for all 

subjects with 25 trials. For (r) values 0.90-1.00 

considered very high, 0.70-0.90 high, 0.50-0.70 

moderate, 0.30-0.50 low and less than 0.30 

considered negligible.  The P-value was calculated  

 

 

 

 

 

 

 

 

 

 

 

 

 

for all parameters through insole and smartphone 

(Left and right). The results in Table IV show that 

each parameter of insole and smartphone could be 

presented by a specific set of P-value.  

 

A. Performance of the study based on Bland 

Altman plots 

Bland Altman plots were used to assess this study’s 

ability to investigate the effectiveness of the 

variables (step time, stride time, cadence, and 

walking speed). Bland Altman plots are another way  

to examine the agreement and systematic error 

between the smartphones and insoles [19].The x-

axis represents the average of the two systems’ 

values while the y-axis represents the difference 

between the two values. The Bland Altman graph 

has three horizontal lines that provide more 

information about the acquired data.  The solid line, 

TABLE III.   The results for mean ± standard of 25 trials  

 
Parameters   

 

Insole  Smartphone  

Right  Left    Right      Left  

 mean ± standard  mean ± standard  mean ± standard  mean ± standard 

Step time  0.76 ± 0.03  0.74 ± 0.03  0.78 ± 0.03                            0.73 ± 0.03  

Stride time  1.30 ± 0.05  1.31 ± 0.05  1.27 ± 0.24         1.31 ± 0.05  

Cadence  45.41 ± 1.75   45.78 ± 1.62   45.75 ± 1.60  45.73 ± 1.74  

Walking time  0.92 ± 0.09     0.89 ± 0.08  0.90 ± 0.06  0.89 ± 0.07  

TABLE IV.  Summary of result agreement between smartphones and insoles 

for two subjects with 25 trials 

Variable 
 

Right   Left  

Pearson r P-value   Pearson r P-value  

Step time 0.79 0.42  0.79 0.26 

Stride time 0.92 0.31  0.88 0.08 

Cadence 0.80 0.47  0.88 0.08 

Walking time 0.82 0.46  0.80 0.94 
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called the bias, represents the average differences 

between the two values and the two dashed lines 

represent the limit of agreement (LOA).  Bland 

Altman plots provide bias and 95% limits of 

agreement when comparing the spatiotemporal gait 

parameters derived from the smartphones and insole 

sensors, as shown in Fig 5. If 95% of the values fall 

between the dashed lines, the difference is normally 

distributed [23]. Based on the obtained results in Fig 

5, we can observe that there are no big differences in 

the obtained results when the smartphones and 

insole sensors were used, indicating that there is an 

agreement between both devices. From these results,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it is evident that the smartphone has the ability to 

determine spatiotemporal gait parameters, and to 

evaluate the validity of a smartphone-based tri-axial 

accelerometer to assess gait characteristics.  

 

B. Performance of the proposed study based on 

25-cross validation 

To investigate the effectiveness of the smartphones 

as opposed to the insole sensors in determining 

spatiotemporal gait parameters (step time, stride 

time, cadence, and walking speed), box plots were 

used based on the Pearson correlation coefficient. 

The box plots consist of three parts: upper, lower,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Bland-Altman plot for the Samsung smartphone attached to subject body and insole sensors for two 

subjects with 25 trials. Each dot represents a single step. The solid line is the bias, with dashed lines 

representing the upper and lower of error LOA 
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and middle Figs 6. The upper part of the plot box 

denotes the 75th percentile, and the lower part 

presents the 25th percentile, while the central part 

refers to the median 50th percentile which is 

sometimes called the centre. The highest and lowest 

values in the box plot are marked using a line 

extending from the top to the bottom of the box. The 

box plot shows agreement between smartphones and 

insole sensors at the same time point based on the 

Pearson correlation coefficient. In further 

investigations, the performance of the proposed  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

method through 25- cross validation using 

smartphone device was used in this study. The 

proposed method was tested 25 times and all the      

results were recorded. From Figs 6 a and b we can 

see that Pearson correlation coefficient ranged 

between 0.79 and 0.92 for left and right. In the 

results in Fig 6 a, the value of the maximum Pearson 

correlation coefficient was 0.98% for stride time 

left, while the minimum value was 0.68% for 

walking speed left. On the other hand, the maximum 

and minimum Pearson correlation coefficient for the  
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Fig. 6. Box plot for Pearson correlation coefficient of smartphones and insole 

sensors: A present the left leg and B show the right leg 
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right limb was 0.98% and 0.65% for stride time and 

step time, respectively. These results support the 

research findings summarised in  

For further evaluation of the study, the behaviours of 

the smartphones and insole sensors were analysed 

and tested for spatiotemporal gait parameters using 

R-squared (R2). Fig 7 shows the scatterplot of the 

insole sensor (Gse) vs smartphone device (Gsd) with 

the least square regression, line, [y (GI
sd )= aGI

se +b],  

and correlation of determination (R2) which is used 

to evaluate as well as to show the agreement between 

smartphones GI
sd  and insole sensors GI

se for all gait 

parameters. The constant values of a and y-intercept 

b were used outline the model's performance, with 

the correlation of determination (R2), was 

employed. Reliable results were found for all four  

parameters: step time, stride time, cadence and 

walking, based on the value a, b and R2. 

Furthermore, it was noticed that there is agreement 

between the smartphones and insole sensors, which  

 

 

 

 

reported the same or similar results. The results for 

the left leg were R2= 0.81%, 0.88%, 0.87% and  

0.80% for step time, stride time, cadence and 

walking, respectively, while results for the right leg 

were R2= 0.85% ,0.96%,0.87% and 0.81% for step 

time, stride time, cadence and walking, respectively. 

Finally, the experimental outcomes indicate that the 

proposed method is capable to study the 

spatiotemporal parameters of healthy people: step 

time, stride time, cadence, and walking speed, using  

both insole sensors and smartphones.  

Regarding the validation study, [15] proposed the 

same method of validation as our study; a 

smartphone device used to compare the motion 

capture systems. In their study, 22 healthy young 

adults were assessed with a smartphone application 

and a motion capture system. The reliability of the 

proposed method was evaluated using the 

correlation coefficient and standard error. The 

validity of the smartphone application and motion 

capture-derived values were compared with the 

Pearson correlation coefficient and Bland-Altman 

Fig. 7. shows the scatterplot of the smartphone device (Gsd) vs Insole sensor (Gse) for the left and right legs.  
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limits of agreement. They demonstrated that there 

was agreement in the obtained results of the systems. 

Another study was presented by [24] in which the 

reliability and validity of a smartphone-based 

accelerometer in quantifying spatiotemporal gait 

parameters of stroke patients when attached to the 

body were confirmed. In their study, the gait 

parameters were measured and evaluated using a 

smartphone accelerometer and GAITRite analysis.  

Thirty participants were asked to walk 10 meters. 

Then three parameters:  gait velocity, cadence, and 

step length were computed using smartphone-based 

accelerometers. The results were validated with a 

GAITRite analysis system. Average excellent 

reliability (ICC2, 1≥.98) of correlation coefficient 

was reported. They observed that the high 

correlation between the smartphone-based gait 

parameters and GAITRite analysis system-based 

gait parameters was achieved. 

Following [25], we used step time, stride time, 

cadence, and walking speed for a comparison of 

spatiotemporal gait parameters between smartphone 

and insole sensors. Furthermore, the Bland-Altman 

95% bias and limits of agreement, linear regression 

and statistical analysis using mean and standard 

deviation were also employed to evaluate the 

obtained measures and to assess the agreement 

between the two systems. The comparison between 

the devices showed excellent agreement. In 

summary, from all the obtained results above, we 

can notice that specific opportunities exist for 

smartphone-based gait assessment as an alternative 

to conventional gait assessment. Furthermore, a 

smartphone-based gait assessment could provide 

reliable information about changes in the 

spatiotemporal gait parameters.  

 

CONCLUSION 

The characteristics of a smartphone application were 

used to study the spatiotemporal parameters: step 

time, stride time, cadence and walking speed of both 

insole sensors and smartphones for healthy people. 

In this work, an innovative method was used to 

extract the most important features from 20 subjects. 

One of the most important findings was that the 

measures of the smartphone device agree with the 

insole shoe sensors when measuring spatiotemporal 

parameters. The effectiveness of the proposed model 

was tested with two Android smartphones and 20 

healthy adult participants. The study used different 

statistical methods (ANOVA, Bland-Altman, linear 

regression, and Pearson correlation coefficient) to 

measure the reliability and validity of smartphone 

use. Smartphone use was also compared with four 

other existing methods. It was demonstrated that the 

developed model achieved the best performance in 

terms of a correlation coefficient.   

The obtained results showed that, by using two 

Android smartphone devices with Insole shoe 

sensors, a high level of agreement was obtained, 

allowing for a good range of acceptable alternatives 

to assess spatiotemporal parameters. Our findings 

also demonstrated that the smartphone can be used 

as a reliable and valid tool in spatiotemporal gait 

analysis of healthy adults. This method can help a 

clinician to work more efficiently and to objectively 

evaluate gait with easy to use and interesting work 

as well as to reduce cost. In the future, additional 

studies will be needed to investigate the ability of 

smartphones to detect the differences between adult 

and older people in their way of walking and to 

ascertain whether it is sensitive enough to detect 

differences in gait patterns. Furthermore, we can 

apply big data and different devices to study the 

spatiotemporal parameters of the insole sensors and 

smartphones for healthy and non-healthy people.  
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