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Abstract—Gait parameter assessment is important

when determining participants’ health status and
developing therapeutic interventions. This paper
discusses the smartphone technique design and
implementation for measuring and studying
participants’ gait parameters. In this work, a new
methodology is developed to study the spatiotemporal
parameters of healthy people: step time, stride time,
cadence and walking speed, using both insole sensors
and smartphones. The purpose of this study is first to
investigate the efficacy of a pair of Android
smartphones (one for each leg) two Android
smartphone as opposed to an insole sensor in
determining spatiotemporal gait parameters. Second,
the study evaluates the validity of a smartphone-based
tri-axial accelerometer to assess gait characteristics.
The spatiotemporal gait parameters of twenty healthy
participants (10 male, 10 female, age >18) were
assessed with insole sensors and smartphones. Each
participant was asked to walk five trials. Data were
collected from the insole sensors and the smartphones.
Six statistic measures: Pearson correlation coefficient,
linear regression, mean, standard deviation (SD), p-
value, and Bland-Altman, were used to evaluate the
validity of the smartphones. The correlation coefficient
using the developed method ranged from 0.79 to 0.92
for both left and right legs. Based on the obtained
results of the study with four parameters: step time,
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stride time, cadence, and walking speed, it was
observed that there was agreement between the
smartphones and the insole sensors measuring gait
parameters. Furthermore, these results demonstrated
that the smartphone sensor is efficient in its
measurement of the spatiotemporal gait parameters of
healthy adult participants. Thus, it can provide
reliable data without the need for expensive devices.
Finally, the developed method may help an expert to
objectively and effectively evaluate gait.

Keywords—smartphone, spatiotemporal, insole sensor,

standard deviation (SD)

l. INTRODUCTION

The study of human gait is considered to be a
significant component of medical diagnosis related
to many aspects of people’s health. The insights into
human gait have many applications in exercise
training and, therefore, in rehabilitation and therapy
[1-3]. Different factors, such as pathological disease
or injuries, may have an effect on the people’s walk
or locomotion, either permanently or temporarily
[4]. Spatiotemporal gait parameters are related to
adverse health issues such as risk of falls [5, 6].

Recently, gait analysis researchers have used

different instruments to evaluate gait parameters to
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study the risk of falling. Several technologies use
insoles for specially designed shoes [7]. An insole
sensor was shown to be suitable to determine human
movement parameters such as the stance and swing
phases [8]. The insole sensor is also able to measure
a number of spatiotemporal gait parameters: swing
time, stride length, step time and cadence [9]. Other
studies using an insole pressure sensor data enable
the planning of ways to reduce plantar pressure
among diabetic patients [10].

A smartphone application has shown that an
accelerometer sensor can be used for gait parameter
analysis. The smartphone has been demonstrated to
be an effective tool for monitoring human
movement [11]. Other studies have shown that a
smartphone-based fall detection system may be used
for such different problems as fall detection
[12] and rheumatoid arthritis [13].

[14] developed a method to validate the smartphone-
based accelerometer for quantifying spatiotemporal
gait parameters with other gait analysis devices such
as GAITRite. In their study, 34 participants were
recruited. Participants walked at slow and fast
speeds over a 10-m distance while carrying a
smartphone. Parameters such as step length, step
time, gait velocity, and cadence were determined
using smartphone-based accelerometers and then the
study was validated with GAITRite. Their results
were evaluated using the correlations coefficient
(CC). An average CC between the smartphone-
based and GAITRite-based systems was 0.89, 0.98,
0.96, and 0.87 for step length, step time, gait
velocity, and cadence, respectively.

[15] presented a method to evaluate the concurrent
validity of a smartphone. In that study, 16 healthy
participants were used and the smartphone was
attached first to the lower back and then to the
sternum. Then, the reference standard and the
smartphone were used to record vertical ground

reaction forces and vertical acceleration. In this

study, the correlation coefficient and standard error
were used to evaluate the proposed method. A
strong reliability (ICC > 0.75) was reported,
showing Pearson correlation coefficients between
vertical ground reaction forces and vertical
acceleration. The authors concluded that the
smartphone could be used as a reliable and valid tool
for the quantification of the sit-to-stand movement
in healthy seniors.

More recently, [16], proposed a reliable and efficient
method to assess spatiotemporal gait parameters
using smartphone data based on an accelerometer
and 3000E F-scan. In this study, 10 healthy adults
walked three times with two smartphones and two
insole sensors attached. Three parameters: step time,
stride time, and cadence were calculated. The study
reported that the smartphone accelerometer sensor
could be an effective and efficient tool for assessing
gait.

Current validation data for smartphone usually use
only one phone to assess gait parameter.
Furthermore, these studies have employed one or
two assessment tools to evaluate performance
results. Thus, the purpose of this research is to: (1)
investigate two  Android  smartphones  for
determining spatiotemporal gait parameters (step
time, stride time, cadence and walking speed) and
(2) evaluate the validity of a smartphone-based tri-

axial accelerometer to assess gait characteristics.

1. RESARCH METHODOLOGY
DESCRIPTION

In this work, 20 healthy participants were recruited
for the proposed method to study the spatiotemporal
parameters: step time, stride time, cadence, and
walking speed of the insole and smartphone for

healthy people.
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A. Participants

The twenty healthy adult subjects (10 males, 10
females) were aged between 20 and 40 years. The
other characteristics of the 20 subjects were mass
and height 60 to 95 kg and 156 to 180 cm,
respectively. All subjects were able to walk
continuously for at least ten meters without help or
assistance  devices.  Some  demographic
information was obtained from each participant;
namely age, gender, height, weight and shoe size.
All subjects gave written consent at the beginning
of the trials. A human ethics application was
approved by the Human Research Ethics
Committee at the University of Southern

Queensland.

B. Equipment

In this study, each subject wore an insole sensor
3000E F-scan in suitably sized shoes, connected to
a computer to capture the data through the
software F-Scan research. At the same time, each
subject wore two  smartphones,  both
Samsung Galaxy S9, which has a height of 5.81”
(147.7 mm), width of 2.7” (68.7 mm), depth of.
33” (8.5 mm), weight of 163 g and screen size of
5.8” (147.3 mm). The smartphones were placed on

both legs as shown in Fig 1, a and b. Smartphones

a. Subject wore insole sensors with

were placed here because the upper area of the
human body is complicated; thus, the process of
obtaining accurate estimates is very difficult.

Fig 2 shows an example of one-step starting from
the left side with heel strike, flat foot, midstance
and toe off. All subjects walked along a 9 m
straight pathway, with all gait measuring devices
(insole shoes and smartphones) attached, five
times. Each time (trial), the data were recorded
individually for each device and each leg.
Participants were asked to walk normally, and to
start and stop walking when they heard the tester’s

instructions.

C. Procedures

In this work, an efficient method was used to study
the spatiotemporal parameters of healthy people
with the insoles and smartphones and to analyse and
compare of spatiotemporal gait parameters between
smartphone and insole sensors. The researcher
followed a set procedure. Each participant signed a
consent form. Next, explain the walking way, start
and end point and how to hold the wires of the insole
sensors to each individual. Then, data was recorded
for all the participants. They were asked to start and

stop walking when they heard the instructor

b. Insole sensor

Fig.1. a and b show an example for one person who wore insole sensors and smartphones during the test
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Fig.2. An example of flat foot, midstance and toe off pressure characteristics

give the instruction.
D. Data collection and processing

Reliable data were sought for the gait spatiotemporal
parameters: step time, stride time, cadence and
walking speed used in the study. Each subject’s foot
strike location was verified to ensure it was on the
right way in the shoes after choosing the correct
shoes size. Each trial represented the average time
for three middle steps (from steps 5-7). From the
foot pressure map obtained by the Tekscan data and
the plots from the smartphone accelerometer, the
three middle steps were used to calculate the stride
time, step time and cadence, as shown in Figs. 3 a
and b.

The acceleration data for nine steps in the normal
walk are presented in Fig 4. The test for device,
smartphone and insole sensors, were completed at
the same time. The difference between them was
observed. We noticed these differences in the
patterns for the insole sensor and accelerometer
sensor such as the noise and negative signal in
accelerometer sensors but nothing like that in the

insole sensors reading. In addition,

E. Statistical analysis

Blind-Altman plots were used to provide the bias
and limit of agreement (LOA) between smartphone
sensor and insole sensor data as well as to evaluate

the developed study method.
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Fig.3. a and b show the heel strike insole sensor and heel strike for the fifth step, respectively
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Fig.4. Heel strike start with the positive peaks acceleration from smartphone accelerometer

To assess the validity between the insole sensors and
smartphones for each trial, the Pearson correlation
was also used in this analysis. We used the following
value to check the agreement between the device
results: .90 to 1.00 as very high, 0.70 to 0.90 as high,
and 0.50 to 0.70 as moderate, 0.30 to 0.50 as low,
and less than 0.30 as insignificant. These metrics and
ranges have been used by a number of studies [17-
19].

Based on Fig 4, it could be seen that the insole
pattern in the forward and upward directions was
more stable most of the time because it depends on
the leg pressure sensor.  However, with the
smartphone, most of the patterns showed more
stable steps in 5-7 because the accelerometer data
depends on the walking action. In other words,
walking speed differs at the beginning of walking
and when preparing to stop. Moreover, the data of
the smartphone accelerometer in the forward and
upward directions showed some noise and negative
signals in the pattern, although we used only the

positive signals.

The change of sign of the positive peak in the
acceleration signal in the anterior-posterior direction
is taken as the instance of the foot contact [20]. In
step time and stride time, the average of the time for
the three middle steps (5-7) steps was calculated. In

other words, in this paper, we added the time of three

steps and then divided it by 3, and the same for stride
time but for three strides. The processing of cadence
was carried out similar to [21] but we converted the
time to seconds because the time of both devices
(smartphone and insole sensor) was measured by
seconds. To validate the accelerometer’s ability to
detect the number of steps, the subject walked 10
meters depending on the lap distance on a flat floor

indoors.

I1. EXPERIMENT RESULTS AND
DISCUSSIONS

The purpose of this study was to compare and
quantify the wvalidity of spatiotemporal gait
parameters between smartphone and insole sensors.
For that purpose, in this paper, a series of
experiments were conducted to evaluate the
performance of the smartphone device to study the
spatiotemporal parameters. In this test twenty
participants: healthy young adults (10 males and 10
females; aged between 20 and 40 years; mass and
height 60 to 95 kg and 156 to 180cm, respectively),
were recruited and they successfully completed the
testing in the laboratory environment. Different sets
of parameters: step time, stride time, cadence and
walking speed, were collected in this study. each
subject completed 5 trials. Then, spatiotemporal gait

parameters were collected and utilising two
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smartphones and two insole shoes sensors. In the
trials, the smartphone showed similar results when
compared with those of the insole. The results of
each subject (left and right) were reported in terms
of mean and standard deviation (SD), as shown in
Tables 1 and 2. These statistical measures have been
used by many researchers to evaluate their methods
[14, 22]. Results of all the experiments were
analysed using SPSS. Tables | and Il show the
average (for 20 subjects) of four parameters for left
and right insole sensor and smartphone, based on

mean and SD.

smartphone has the ability to study the
spatiotemporal parameters for healthy people.

To highlight more evaluation of the proposed study
in term of the comparison between smartphones and
insole sensors, the 25 trials were also used in this
study to investigate the relationship between the
insole and smartphone. The results for each subject
is based on four parameters: step time, stride time,
Cadence and walking time, and are reported in terms
of mean + standard and then the average of mean £

standard was calculated for all subjects, as shown in

TABLE I. The performance of the proposed method based on four parameters - left insole sensor
and smartphone for five trials m/s

Variable Insole Smartphone
Mean SD Mean SD
Step time 0.68 0.03 0.67 0.03
Stride time 1.22 0.06 1.22 0.06
Cadence 50.05 0.92 49.35 1.03
Walking time 1.03 0.05 1.02 0.05

TABLE Il. The performance of the proposed method based on four parameters - right insole sensor
and smartphone for five trials m/s

Variable Insole Smartphone
Mean SD Mean SD
Step time 0.68 0.02 0.69 0.03
Stride time 1.21 0.05 1.21 0.05
Cadence 49.81 0.78 4941 0.96
Walking time 1.01 0.05 1.01 0.05
The mean and SD for each subject based on the four Table 1Il. The results for the smartphone

parameters were computed. The average was
calculated for each parameter for both insole sensors
and smartphones. Based on the results in Tables |
and II, the mean and SD for insole and smartphone
based on four parameters yielded approximately the

same results. The results demonstrated that the

demonstrate that the proposed study achieved better
performance when comparing smartphone and
insole sensors. Of the four parameters, the step time
results performed best in term of average of mean
and SD for all subject compared with other
parameters. From Table Ill, one can see that the

smartphone pair
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TABLE I1l.  The results for mean + standard of 25 trials
Insole Smartphone
Parameters Right Left Right Left
mean * standard mean * standard mean * standard mean * standard
Step time 0.76 £ 0.03 0.74+0.03 0.78 +0.03 0.73+0.03
Stride time 1.30+£0.05 1.31+0.05 1.27+0.24 1.31+0.05
Cadence 4541 +1.75 45.78 + 1.62 45.75+1.60 4573+ 1.74
Walking time 0.92 £ 0.09 0.89+0.08 0.90 + 0.06 0.89 + 0.07
TABLE IV. Summary of result agreement between smartphones and insoles
for two subjects with 25 trials
Variable Right Left
Pearsonr P-value Pearsonr P-value
Step time 0.79 0.42 0.79 0.26
Stride time 0.92 0.31 0.88 0.08
Cadence 0.80 0.47 0.88 0.08
Walking time 0.82 0.46 0.80 0.94

achieved acceptable results compared with that of
the insoles. The P-value was used to determine
significance by presenting the agreement between
the smartphones and insoles. The differences
between the data derived from the insole sensor and
smartphone were not-significant for all indicators
(P-value >0.05), reflecting the similarity between
these two devices, as shown in Table 1V. Results
confirm the hypotheses formulated prior to this
study and therefore are supportive of increased
adoption  of  smartphones  for  collecting
spatiotemporal data instead of insole sensors.

Table 4 shows the summary of results based on the
Pearson correlation coefficient (r) and P-value
between the smartphones and insole sensors for all
subjects with 25 trials. For (r) values 0.90-1.00
considered very high, 0.70-0.90 high, 0.50-0.70
0.30-0.50 less than 0.30

considered negligible. The P-value was calculated

moderate, low and

for all parameters through insole and smartphone
(Left and right). The results in Table IV show that
each parameter of insole and smartphone could be

presented by a specific set of P-value.

A. Performance of the study based on Bland

Altman plots

Bland Altman plots were used to assess this study’s
ability to investigate the effectiveness of the
variables (step time, stride time, cadence, and
walking speed). Bland Altman plots are another way
to examine the agreement and systematic error
between the smartphones and insoles [19].The x-
axis represents the average of the two systems’
values while the y-axis represents the difference
between the two values. The Bland Altman graph
has three horizontal lines that provide more

information about the acquired data. The solid line,
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called the bias, represents the average differences
between the two values and the two dashed lines
represent the limit of agreement (LOA). Bland
Altman plots provide bias and 95% limits of
agreement when comparing the spatiotemporal gait
parameters derived from the smartphones and insole
sensors, as shown in Fig 5. If 95% of the values fall
between the dashed lines, the difference is normally
distributed [23]. Based on the obtained results in Fig
5, we can observe that there are no big differences in
the obtained results when the smartphones and
insole sensors were used, indicating that there is an

agreement between both devices. From these results,
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it is evident that the smartphone has the ability to
determine spatiotemporal gait parameters, and to
evaluate the validity of a smartphone-based tri-axial

accelerometer to assess gait characteristics.

B. Performance of the proposed study based on

25-cross validation

To investigate the effectiveness of the smartphones
as opposed to the insole sensors in determining
spatiotemporal gait parameters (step time, stride
time, cadence, and walking speed), box plots were
used based on the Pearson correlation coefficient.

The box plots consist of three parts: upper, lower,
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Fig. 5. Bland-Altman plot for the Samsung smartphone attached to subject body and insole sensors for two
subjects with 25 trials. Each dot represents a single step. The solid line is the bias, with dashed lines
representing the upper and lower of error LOA
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Fig. 6. Box plot for Pearson correlation coefficient of smartphones and insole
sensors: A present the left leg and B show the right leg

and middle Figs 6. The upper part of the plot box
denotes the 75th percentile, and the lower part
presents the 25th percentile, while the central part
refers to the median 50th percentile which is
sometimes called the centre. The highest and lowest
values in the box plot are marked using a line
extending from the top to the bottom of the box. The
box plot shows agreement between smartphones and
insole sensors at the same time point based on the
Pearson correlation coefficient. In  further

investigations, the performance of the proposed

method through 25- cross validation using
smartphone device was used in this study. The
proposed method was tested 25 times and all the
results were recorded. From Figs 6 a and b we can
see that Pearson correlation coefficient ranged
between 0.79 and 0.92 for left and right. In the
results in Fig 6 a, the value of the maximum Pearson
correlation coefficient was 0.98% for stride time
left, while the minimum value was 0.68% for
walking speed left. On the other hand, the maximum

and minimum Pearson correlation coefficient for the
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Fig. 7. shows the scatterplot of the smartphone device (G*9) vs Insole sensor (G*) for the left and right legs.

right limb was 0.98% and 0.65% for stride time and
step time, respectively. These results support the

research findings summarised in

For further evaluation of the study, the behaviours of
the smartphones and insole sensors were analysed
and tested for spatiotemporal gait parameters using
R-squared (R?). Fig 7 shows the scatterplot of the
insole sensor (G*) vs smartphone device (G*®) with

the least square regression, line, [y (G )= aG* +b],

and correlation of determination (R?) which is used
to evaluate as well as to show the agreement between
smartphones G/ and insole sensors G, for all gait
parameters. The constant values of a and y-intercept
b were used outline the model's performance, with
(R2),

employed. Reliable results were found for all four

the correlation of determination was
parameters: step time, stride time, cadence and
walking, based on the value a, b and R2
Furthermore, it was noticed that there is agreement

between the smartphones and insole sensors, which

reported the same or similar results. The results for
the left leg were R?0.81%, 0.88%, 0.87% and
0.80% for step time, stride time, cadence and
walking, respectively, while results for the right leg
were R¥ 0.85% ,0.96%,0.87% and 0.81% for step
time, stride time, cadence and walking, respectively.
Finally, the experimental outcomes indicate that the
proposed method is capable to study the
spatiotemporal parameters of healthy people: step
time, stride time, cadence, and walking speed, using
both insole sensors and smartphones.

Regarding the validation study, [15] proposed the
same method of validation as our study; a
smartphone device used to compare the motion
capture systems. In their study, 22 healthy young
adults were assessed with a smartphone application
and a motion capture system. The reliability of the
the
The

validity of the smartphone application and motion

proposed method was evaluated using

correlation coefficient and standard error.

capture-derived values were compared with the

Pearson correlation coefficient and Bland-Altman
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limits of agreement. They demonstrated that there
was agreement in the obtained results of the systems.
Another study was presented by [24] in which the
reliability and validity of a smartphone-based
accelerometer in quantifying spatiotemporal gait
parameters of stroke patients when attached to the
body were confirmed. In their study, the gait
parameters were measured and evaluated using a

smartphone accelerometer and GAITRite analysis.

Thirty participants were asked to walk 10 meters.
Then three parameters: gait velocity, cadence, and
step length were computed using smartphone-based
accelerometers. The results were validated with a
GAITRite analysis system. Average excellent
reliability (ICC2, 1>.98) of correlation coefficient
was reported. They observed that the high
correlation between the smartphone-based gait
parameters and GAITRite analysis system-based

gait parameters was achieved.

Following [25], we used step time, stride time,
cadence, and walking speed for a comparison of
spatiotemporal gait parameters between smartphone
and insole sensors. Furthermore, the Bland-Altman
95% bias and limits of agreement, linear regression
and statistical analysis using mean and standard
deviation were also employed to evaluate the
obtained measures and to assess the agreement
between the two systems. The comparison between
the devices showed excellent agreement. In
summary, from all the obtained results above, we
can notice that specific opportunities exist for
smartphone-based gait assessment as an alternative
to conventional gait assessment. Furthermore, a
smartphone-based gait assessment could provide
reliable information about changes in the

spatiotemporal gait parameters.

CONCLUSION

The characteristics of a smartphone application were
used to study the spatiotemporal parameters: step
time, stride time, cadence and walking speed of both
insole sensors and smartphones for healthy people.
In this work, an innovative method was used to
extract the most important features from 20 subjects.
One of the most important findings was that the
measures of the smartphone device agree with the
insole shoe sensors when measuring spatiotemporal
parameters. The effectiveness of the proposed model
was tested with two Android smartphones and 20
healthy adult participants. The study used different
statistical methods (ANOVA, Bland-Altman, linear
regression, and Pearson correlation coefficient) to
measure the reliability and validity of smartphone
use. Smartphone use was also compared with four
other existing methods. It was demonstrated that the
developed model achieved the best performance in

terms of a correlation coefficient.

The obtained results showed that, by using two
Android smartphone devices with Insole shoe
sensors, a high level of agreement was obtained,
allowing for a good range of acceptable alternatives
to assess spatiotemporal parameters. Our findings
also demonstrated that the smartphone can be used
as a reliable and valid tool in spatiotemporal gait
analysis of healthy adults. This method can help a
clinician to work more efficiently and to objectively
evaluate gait with easy to use and interesting work
as well as to reduce cost. In the future, additional
studies will be needed to investigate the ability of
smartphones to detect the differences between adult
and older people in their way of walking and to
ascertain whether it is sensitive enough to detect
differences in gait patterns. Furthermore, we can
apply big data and different devices to study the
spatiotemporal parameters of the insole sensors and

smartphones for healthy and non-healthy people.
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