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ARTICLE INFO ABSTRACT
Keywords: Viscosity is a crucial parameter for heat transfer systems, governing pumping power, Rayleigh number, and
Machine learning algorithms Reynolds number; thus, viscosity prediction for hybrid nanofluids is important. Although some studies have

Non-Newtonian hybrid nano- antifreeze

Viscosi employed ML algorithms for predicting viscosity, limited ML algorithms or specific nanofluid types were
iscosity

examined in previous studies, disregarding the complexities involved in the rheological behavior of a complex
nanofluid system such as non-Newtonian hybrid nanofluids. To overcome this limitation, this study offers a
practical contribution by utilizing 20 different machine-learning models to predict the viscosity of iron-CuO/
water-ethylene glycol non-Newtonian hybrid nanofluids. The influences of the input variables: solid volume
fraction (SVF), temperature, and shear rate on viscosity prediction are systematically assessed. We evaluate the
prediction accuracy and reliability of algorithms using ten performance metrics including RMSE, MAE, R? and
NSE. Multivariate Polynomial Regression (MPR) outperforms the other algorithms, which is evident in the
highest correlation coefficient (R2 = 0.992) and lowest error metrics. At the other end, is the Extreme Learning
Machine (ELM), which turns out to be the worst performer. A unique contribution of this paper is that we extract
a mathematical equation from the MPR model that allows for straightforward calculation of viscosity, avoiding
non-trivial ML computations. This simplicity aids in practical applications and increases usefulness for engineers
and researchers alike. Using advanced data visualization techniques (heatmaps, box plots, KDE plots and Taylor
diagrams), the relationships between input variables and viscosity as well as the model performance are
explored. These results give a better understanding of the non-Newtonian hybrid nanofluid behavior and a solid
predictor of design-efficient heat transfer systems.
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Nomenclature
Solid volume fraction (SVF) @ (%) Viscosity Mot (cP)
Temperature T (°C) Shear rate v
(RPM)

Machine Learning Algorithm MLA Decision Tree DT

Multi-Layer Perceptron MLP Adaptive Neuro-Fuzzy ANFIS
Inference System

Gradient Descent GD Group Method of Data GMDH
Handling

Radial Basis Function RBF Back Propagation Neural BPNN
Network

BFGS Quasi-Newton BFGS Levenberg-Marquardt LM

Support Vector Machine SVM Bayesian network BN

Extreme Learning Machine ELM Elastic Component ECR
Regression

Multiple Linear Regression MLR Gaussian Process GPR
Regression

XGBoost XGB Multivariate Polynomial MPR
Regression

Partial Least Squares PLR Least Absolute Shrinkage Lasso

Regression and Selection Operator

Evaluation Criteria EC Analysis Plots AP

Mean Absolute Relative Error MARE Root Mean Squared Error RMSE

Nash-Sutcliffe Model NSE Correlation Coefficient R

Efficiency Coefficient

Mean Squared Error MSE Mean Absolute MAPE
Percentage Error

R squared R? Kernel density estimate Kde

Standard Deviation STD Root Mean Squared RMSD
Deviation

Mean Absolute Error MAE Mean Bias Error MBE

Coefficient of the Variation of CvRMSE

the Root Mean Square Error

1. Introduction

Heat exchanger performance is a function of a number of variables
including heat transfer coefficient, cross-sectional area, and temperature
difference. Water, ethylene glycol, and oils are only some of the working
fluids being utilized in industry and engineering. The main problem with
these fluids is that they have poor heat transfer and low thermal con-
ductivity. One of the new methods that have been utilized in order to
increase the TC of such fluids is suspending nanoparticles (NPs) with
enhanced thermal properties in the working fluid to create a material
called nanofluid (NF). Choi [1] coined the term “nanofluid” to refer to a
fluid that suspends extremely small particles (NPs with a diameter
smaller than 100 nm). NFs involve the addition of one or more solid
phases to a fluid, resulting in an enhanced heat transfer rate and altered
viscosity. Certain NPs, like aluminum oxide and magnesium oxide, exist
as metal oxides and can be readily distributed and suspended in liquids.
Diamond, carbon nanotubes, and other materials will greatly enhance
heat transfer in comparison to oxide NPs. Hence, the simultaneous use of
these nanomaterials can result in a steadfast amalgamation with distinct
and coveted thermal characteristics. The heat transfer coefficient is
significantly influenced by viscosity, which is a key factor in the re-
lationships that govern heat transfer. The incorporation of nanoparticles
into base fluids significantly alters the thermophysical properties of
nanofluids, particularly their viscosity [2-4]. It has been shown that
viscosity plays a crucial role in determining pumping power, Rayleigh
number, Reynolds number, and consequently, heat transfer. Numerous
experiments and studies have been conducted to investigate the vis-
cosity and heat transfer in NFs. Bashirnezhad et al. [5], Koca et al. [6],
and Murshed and Estellé [7] highlighted that the viscosity of NFs is
influenced by factors such as temperature, NP type, solid volume frac-
tion (SVF), particle size, and base fluid (BF) type. While investigating
heat transfer, Selvarajoo et al. [8] experimented with different volume
concentrations of mono NFs Al,Os/water and GO/water and hybrid
nanofluid (HNF) Al,03-GO/water to evaluate their thermophysical
properties. Viscosity and TC were examined in the temperature range of
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30-50 °C. An analytical regression model was used to predict the ther-
mal conductivity and dynamic viscosity of an AlpO3-GO HNF. The TC
improvement of the HNF was around 4.30 % higher than that of pure
Aly03 and 4.34 % higher than GO mono NF. Khouri et al. [9] investi-
gated the heat transfer properties of water-based graphene oxide (GO)
nanofluids in a heat exchanger. They analyzed the nanofluid’s thermal
conductivity, specific heat capacity, and viscosity at different tempera-
tures and GO concentrations. The TC increased with both temperature
and NP concentration, enhancing heat transfer through conduction and
convection. However, the specific heat capacity increased with tem-
perature but decreased with higher GO concentrations. Additionally, the
viscosity of the nanofluid rose with higher NP concentrations. Ajeena
et al. [10] investigated the dynamic viscosity of an HNF with ZrO,-SiC
(50 %-50 %) and distilled water. To do so, a two-step process was used
to disperse NPs in the BF. The viscosity of SVFs in the range of 0.025 %-—
0.1 % was measured at temperatures from 20 to 60 °C. The study
exhibited a relationship between NF viscosity and temperature, as well
as SVF parameters. The results showed that there was an increase in the
dynamic viscosity value at greater solid concentrations and lower tem-
peratures. The dynamic viscosity of NF at 20 and 60 °C was measured
and showed an increase in viscosity by 29.6 % and 64.2 %, respectively,
with 0.025 % NPs. This indicated that NP viscosity was more sensitive at
higher temperatures. The experiments also indicated that the ZrO,-SiC
HNF was Newtonian across a range of temperatures. The research also
suggested a new correlation through which the dynamic viscosity of
HNF could be calculated based on the experimental parameters (tem-
perature and SVF) with a 98.92 % error. Sepehrnia et al. [11] investi-
gated the rheological efficiency and dynamic viscosity of an HNF made
of Si0; and MWCNTSs NPs (90:10) with 5W30 engine oil as BF at various
SRs (50-1000 rpm) experimentally. The SVFs and temperatures were
assessed within the ranges of 0.05-1.00 vol% and 5-65 °C, respectively.
The HNF exhibited characteristics of a non-Newtonian fluid. Further-
more, the HNF exhibited pseudoplastic characteristics in all SVFs and
temperatures, as the calculated power law index was less than unity. It
was noted that the dynamic viscosity decreased as the NF’s temperature
increased, whereas the dynamic viscosity increased as the NF’s SVF
increased. A three-variable association was found. Dynamic viscosity
sensitivity to temperature, SVF, and SR was also assessed. With a con-
stant SR of 800 rpm, dynamic viscosity sensitivity increased with NF’s
temperature and concentration. Wanatasanappan et al. [12] conducted
experimental investigations on the rheological and viscosity character-
istics of an Al,O3-Fe;O3 HNF. After determining a correlation for vis-
cosity prediction, they investigated how the Al,O3-Fe,O3 mixture ratio
affected the viscosity property. The BF was a 60/40 mixture of water and
ethylene glycol. Five distinct Al;O3-FeyO3 NP compositions were
examined at temperatures ranging from 0 to 100 °C. The 40/60
Aly03-Fe;03 composition exhibited the highest viscosity value at all
temperatures examined, according to the experimental data.
Conversely, the 60/40 composition exhibited the lowest viscosity value.
Additionally, the viscosity decreased by 87.2 % as the temperature was
raised from O to 100 °C. Furthermore, the Newtonian characteristic was
observed in all Al,O3-Fe,O3 compositions. Sepehrnia et al. [13] exam-
ined the thermophysical and rheological properties of hydraulic oil HLP
68 as the BF with a ternary combination of FegO4, TiOs, and GO
nano-additives in a variety of nanomaterial mixing ratios (MRs) (1:1:1,
2:1:1,1:2:1, and 1:1:2), SVFs (0-1 %), and temperatures (15-65°). Their
analysis of all MRs showed Newtonian THNF behavior. At 15 °C, the BF
viscosity increased by 345 %, 1821 %, 1763 %, and 1990 % for MRs of
1:1:1, 1:2:1, and 2:1:1, respectively, when a 1 % SVF of GO: Fe304: TiO»
was present. In addition, at the highest SVF, the MRs of 1:1:1, 1:2:2, and
3:1:1 showed a 66 %, 75 %, 60 %, and 70 % rise in viscosity with a
temperature decrease from 65 °C to 15 °C, respectively. The experi-
mental, statistical, and numerical viscosity of a MWCNT (50 %)-MgO
(50 %)/SAE40 HNF was measured by Esfe et al. [14]. Temperatures,
SVFs, and shear rates were assessed within the ranges of 25-50 °C,
0.0625-1 %, and 666.5-9331 s !, respectively. According to their
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findings, the HNF exhibited properties of a non-Newtonian fluid that
was pseudo-plastic. At a specific amount of SVF (0.0625 %), tempera-
ture (25 °C), and specific rate (3999 s’l), the maximum viscosity
decrease was 5.91 % and the maximum viscosity rise was 28.70 %. In
another study by Ajeena et al. [15], the viscosity of ZrO,/DW and
SiC/DW NFs was measured over a temperature range of 20-60 °C with
various SVFs (0.025, 0.05, 0.075, and 0.1 %). The dynamic viscosity of
the sample was enhanced by increasing the SVF of the NPs while
lowering the temperature. Consequently, NPs had a more noticeable
effect on the viscosity as the temperature increased. The results
demonstrated that the viscosity increase for the ZrO,/DW NF topped at
226.3 %, while for the SiC/DW NF, it was 110.5 %. Thermophysical
properties of MWCNT-ZnO (30-70 %)/SAE40 HNF were studied by Esfe
et al. [16] over a variety of SVFs, temperatures, and SRs. At T =
31.156 °C, SVF = 0.063 %, and SR = 933.923 s, their results
demonstrated that the ideal viscosity value was 209.53 mPa.sec. At
temperatures ranging from 10 to 50 °C, with five SVFs of magnetocaloric
NF and varying SRs, Abbasian et al. [17] investigated the rheological
properties of CoFeyO4 superparamagnetic NPs dispersed in
water-ethylene glycol (EG) coolant. Dispersed in a 50:50 mixture of EG
and water, the cobalt ferrite metallic complexes were prepared by sol-
vothermal methods. The experimental results of the magnetocaloric NF
demonstrated non-Newtonian dynamics. An increase in NP mass con-
centration from 0.05 % to 0.8 % increased viscosity by almost 80 % at
10 °C. Furthermore, TC was enhanced with increasing temperature,
reaching a high of 9.4 % at 50 °C. In their study, Hafeez et al. [18]
investigated the effects of Cu-Al;03 NPs on the rheological properties,
dynamic viscosity, and TC of HNFs based on kerosene oil. For numerical
analysis, a mathematical model of an HNF was derived from PDEs,
which were then transformed into ODEs using similarity conversion.
Both the friction coefficient and the heat transfer rate were shown to be
enhanced by the introduction of NPs. Esfe et al. [19] used different RSM
models to figure out the dynamic viscosity of a SiO;-MWCNT HNF in
SAE40 oil, where 60 % SiO5 and 40 % MWCNT made up the HNF. The
study was performed under the following conditions: temperature =
25-50 °C, SVF = 0-1% and SR = 666.5-9331 s, The viscosity of HNFs
was determined using the correlation functions of several models. The
impact of various parameters on HNF viscosity was examined. SR and
temperature had the least and most significant effects, respectively.
While molecular dynamics simulations and laboratory investigations
have yielded efficient and practical insights into NF characteristics, the
time and money required to run these models have prompted academics
to seek other modeling approaches. Fuzzy logic, adaptive neuro-fuzzy
inference system (ANFIS), genetic algorithm (GA), and artificial neural
network (ANN) are some of the methods classified under this category.
Their adaptability, superior effectiveness, and accuracy have been
demonstrated in several scientific domains [20-23]. The described
predictive models are self-improving and data-driven; thus, they can
anticipate process outcomes with high accuracy. They also have great
correlation results and can model nonlinear relationships with a variety
of input variables. Concurrently, it saves time and money by not
requiring any more experiments. In this regard, Esfe et al. [23] carried
out an investigation in which they employed an ANN to predict the
viscosity (jnf) of an NF composed of MWCNT-MgO/SAE40 engine oil at
different temperatures, SVF, and SR. The Levenberg-Marquardt (ML)
learning algorithm was employed in an MLP ANN consisting of two
hidden layers. The first layer contained the optimum structure of 10
neurons, while the second layer contained 4 neurons. Concentration, SR,
and temperature were used as input parameters for ANN modeling,
while the predicted ppr was observed as the output parameter. The op-
timum ANN, as per the data, possessed the least mean square error and
consisted of eight neurons in both of the layers. As per their observation,
ANN prediction of data was much better compared to correlation. By
applying a mix of heuristic techniques and an ANFIS, Wang et al. [24]
identified the optimal temperature and SVF pair for an HNF made of
silicon oxide, MWCNT, aluminum, and water with the highest TC (kp)
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and the lowest dynamic viscosity. Four elite algorithms—strong Pareto
evolutionary algorithm II, Pareto envelope-based selection algorithm II,
non-dominated sorting GA II, and multi-objective particle swarm opti-
mization—were applied in the selection of the most significant set of
input parameters. Zhang et al. [25] proposed a hybrid method
combining ML, MOO, and MCDM to select the optimum parameters of
MWCNTs-oxide HNFs based on water. They used two effective ML
methods, the group method of data handling neural network
(GMDH-NN) and the combinatorial (COMBI) algorithm, to simulate four
important TPPs: density ratio, viscosity ratio, specific heat capacity
ratio, and TC ratio. The optimization variables that were considered
were the type of oxide NP, SVF, and system temperature. Different types
of oxide-NPs showed substantially different distributions of optimum
points over various temperature ranges. To model the relationship be-
tween the dynamic viscosity of the MgO-SAE 5W30 Oil HNF and three
critical parameters, namely the SVF, temperature, and SR, Gao et al.
[26] employed an RBF-ANN. Their findings demonstrated that the dy-
namic viscosity of this NF was reduced as the temperature and SR were
increased. Contrarily, although this result can be ignored, the produc-
tion was directly affected by the volume proportion of NPs. A drop in
dynamic viscosity would result from a temperature increase of 5-55 °C.
The dynamic viscosity dropped from 400 cP to 25 cP when the SR was
increased from 50 rpm to 1000 rpm. In their study, Fadhl et al. [27]
modeled the dynamic viscosity of NFs containing MgO NPs using two
intelligence approaches: ANFIS and GMDH. Their findings indicated
that GMDH had better precision. Utilizing various machine learning
models including SVR, ANN, and ANFIS, AbuShanab et al. [28] aimed to
forecast the dynamic viscosity of NFs, namely Polyalpha-
Olefin-hexagonal boron nitride. There were 540 points of experi-
mental data used to train and evaluate the models. While all three
models were able to correctly estimate the viscosity of NFs, the ANFIS
and ANN models performed better than the SVR model. Although both
the ANFIS and ANN models performed similarly, the ANN model was
chosen because it trained and computed faster. As the SR parameter was
removed from the input layer, the ANN model became more accurate.
Their research proved that ANN and other machine learning models
could accurately predict the dynamic viscosity of the NF. Hua et al. [29]
evaluated the dynamic viscosity of a hybrid antifreeze with MWCNTs,
aluminum oxide, and water and ethylene-glycol in response to SVF and
temperature. The NF’s anticipated viscosity was determined using an
ANN trained on samples at temperatures of 25-50 °C, and SVFs of
0.25-1 %. The NF’s viscosity was impacted in various ways by SR and
SVF. While rising SR greatly lowered viscosity mean and variance,
increasing SVF increased deviation and mean values. The change in
viscosity due to temperature was smaller compared to the variations
caused by SR and SVF. The two-layer network and thirteen neurons with
nonlinear activation functions in the hidden layer of the suggested ANN
model predicted viscosity versus inputs accurately. To improve the dy-
namic viscosity of an HNF composed of MWCNT-Al,O3 (40:60)/0il
5W50, Esfe et al. [30] employed ANN. To determine which parameters
of MWCNT-AI,03 (40:60)/0il 5W50 HNF were most important for dy-
namic viscosity, a sensitivity analysis was performed. The results
showed that dynamic viscosity values were highest at temperatures
lower than 5 °C. Changes in SR between zero and eight hundred revo-
lutions per minute also decreased the dynamic viscosity. Dai et al. [31]
used ANN to evaluate the effects of SVF, SR, and temperature on the
dynamic viscosity and torque of SiO2/EG NF. Rheological properties
were predicted using many machine learning (ML) models, and the best
model was picked. All samples showed that torque increased linearly
with SR, steeper at lower temperatures. Gaussian Process Regression
(GPR) models with the Matérn covariance function predicted dynamic
viscosity well on both datasets. Singh and Ghosh [32] suggested a single
feed-forward MLPNN to predict the density and dynamic viscosity of
graphene NP/DW, aluminum oxide/DW, and MWCNT NFs over
30-80 °C. Dynamic viscosity and density were output from temperature,
volume concentration, and NFs that were input. As NF concentration
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grew, density and viscosity decreased, and vice versa as temperature
climbed. Experimental findings were compared to MLPNN and mathe-
matical model results. The greatest viscosity and density errors were less
than 1 % and 0.2 %, respectively. In another study, Said et al. [33]
generated ethylene glycol (EG) NFs utilizing rGO-Fe304-TiO5 ternary
hybrid nanocomposites. To measure density and viscosity, they varied
temperatures from 25 to 50 °C and weight fraction from 0.01 to 0.25 %.
Modern machine learning techniques including ANN, BRT, and SVM
were used to build the forecasting model. It was found that SVM, ANN,
and BRT could accurately duplicate lab density and viscosity data. Kanti
et al. [34] research examined the effects of concentration and temper-
ature on the viscosity and thermal conductivity of graphene oxide, sil-
icon dioxide, and titanium dioxide water-based nanofluids. Thermal
conductivity and viscosity were found to be higher in the nanofluids
compared to water, with graphene oxide recording the best result. Deep
learning, deep neural networks, and a high gradient amplification
approach were utilized in the study to handle complex data properly.
The extreme slope model of the viscosity model had a lower R? value
(0.9122) and mean squared error (0.010) than the deep neural
network-based model (0.3329). In another study, Kanti et al. [35]
investigated silicon dioxide, graphene oxide, titanium dioxide, and
hybrid water-based nanofluids and observed elevated viscosity and
thermal conductivity, in addition to improved performance. Optimum
thermal conductivity and viscosity ratio for graphene oxide nanofluids
were reported at 60 °C and 30 °C, respectively, with an enhancement of
52 and 177 % relative to the base fluid. Graphene oxide-TiO2 hybrid
nanofluids exhibited thermal conductivity and viscosity ratios of 43 %
and 144 % higher than the base fluid under the same conditions.
Thermophysical properties of hybrid nanofluids were predicted by
state-of-the-art machine learning models, with the random forest model
being the most versatile. Nanofluid concentration played a significant
role in the prediction of the TC ratio but not the viscosity ratio. Akilu
et al. [36] investigated the heat transfer behavior and friction factor of
silicon dioxide and glycerol-based ethylene glycol nanofluids, which
were higher than the base fluid. It was observed from the study that
ethylene glycol-based glycerol and silicon dioxide nanofluid exhibited
maximum heat transfer improvement by 5.4 % and 8.3 %, respectively.
The research employed five machine learning methods for the predic-
tion of intricate experimental data, which were linear regression,
random forest, steep gradient boosting, adaptive boosting, and decision
trees. The models successfully predicted nanofluid thermal perfor-
mance, which played a part in the development of efficient cooling
systems and the stability of energy systems. Sharma et al. [37] explored
the thermophysical characteristics of polydisperse SiO, nanoparticles in
a glycerol-water mixture. A two-step method was used to prepare
aqueous glycerol nanofluid containing 30 % glycerol (30 GW) and SiO,
with particle sizes of 15, 50, and 100 nm. The study measured the
properties of nanofluids at 30-100 °C, revealing a stable single-phase
liquid, decreased viscosity and density, increased thermal conductiv-
ity, and slightly increased specific heat. At 60 °C, the thermal conduc-
tivity and viscosity of a 0.5 % SiO solution changed by 11.1 % and 32 %,
respectively, compared to the base liquid. The Gaussian process
regression optimization Bayesian approach, an explainable artificial
intelligence technique, was used to develop a predictive model for
nanofluid properties, enhancing predictability and explainability
through kernel functions and historical data representation, resulting in
high correlation values and minimal modeling errors.

The present study introduces a novel and comprehensive approach to
predict the viscosity of iron-CuO/water-Ethylene glycol non-Newtonian
hybrid nanofluids, employing a diverse array of machine learning al-
gorithms. The innovation resides in the systematic and meticulous
evaluation of twenty distinct machine learning algorithms, each with
unique strengths and applications, to identify the most optimal model
for viscosity prediction. This approach not only enhances prediction
accuracy but also elucidates the complex interactions between input
variables (SVF, temperature, and shear rate) and the output variable
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(viscosity). The comprehension of input variable behavior through
advanced data analysis techniques such as heat maps and box plots is a
requirement, and this study contributes greatly to such an important
relevance. These techniques ease feature selection and ensure that useful
data are used to train ML models that could enhance the latter’s pre-
dictive ability. The critical result obtained from this study is the math-
ematical formula describing the relationship between the dynamic
viscosity of hybrid nanofluids and the following parameters; tempera-
ture, shear rate, and SVF. All this was made possible by thorough
analysis of the employed experimental data along with graphical tools
like error histograms, KDE plots, and Taylor diagrams, and sophisticated
error assessment methods like RMSE, MAE, and R. With these in-
struments, the precision, reliability, and error distribution from opti-
mization algorithms to machine learning models can be assessed.

e In this instance, work scrutinizes, in-depth, twenty different machine
learning algorithms to perhaps more accurately forecast the viscosity
of a non-Newtonian hybrid nanofluid. Few works manage such
painstaking comparisons, since most discussions focus only on a
limited set of algorithms. The research recommends valuable insights
into the best algorithms for viscosity prediction of the nanofluids;
this is achieved by investigation across a broad range of alternatives.
The study also employs heatmaps, box plots, error histograms, KDE
plots, and Taylor diagrams for enhanced data analysis and inter-
pretation. Understanding how the input factors interact also allows
for optimizing nanofluids’ performance in real applications.

This study presents a new approach to formulate a relationship be-
tween viscosity and its input parameters (SVF, temperature, and
shear rate). It also acts as an ancillary benchmark, in that it can now
provide viscosity values without the burden of applying complex
machine learning models.

This research goes beyond basic accuracy measurements to provide a
more detailed picture of how well each machine learning algorithm
performed by introducing ten assessment variables.

The majority of previous studies have trained a few machine
learning algorithms (ANN, SVM, or ANFIS) to predict viscosity. On the
other side, this paper assesses 20 unique machine learning models for
the first time and offers a complete benchmark for approximate vis-
cosity estimation. In previous research, this kind of comprehensive
comparison has never before been conducted, leading to more insights
into how algorithms perform on different metrics. In previous works,
models were typically evaluated using a small number of performance
metrics, such as RMSE or R Singh and Ghosh, for example, focused
on using RMSE and MAPE. However, 10 evaluation criteria include not
only RMSE, MAE, NSE, MBE, and CvRMSE to comprehensively analyze
the accuracy and reliability of the models ensuring a deep-
er examination of the strengths and weaknesses of each algorithm.
While some research studies have suggested correlations or models for
viscosity prediction, most do not provide an explicit mathematical
equation derived from the machine learning outputs. The mathematical
equation obtained in this study by employing the MPR algorithm allows
us to easily compute the viscosity without the need for endless complex
computation which the ML approaches require; thus greatly improving
the practical implementation status of this algorithm, and making it very
useable for engineers and researchers. Most of the existing studies are
well-trained in predicting the viscosity without examining the link be-
tween the input and output variables like SVF, temperature, and shear
rate and viscosity. In this regard, the current study utilizes advanced
data visualization techniques such as heatmaps, box plots, error histo-
grams, KDE plots and Taylor diagrams to illustrate the influence of input
variables on viscosity, and ultimately offer a more insightful perspecti-
ve regarding the underlying physical phenomena governing nanofluid
rheology. Even though many studies have been conducted for predicting
the viscosity of mono-nanofluids or Newtonian fluid, the number of
researches is limited for predicting viscosity in non-Newtonian hybrid
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Fig. 1. The schematic of the stages of this study.

nanofluids. Despite a significant amount of research on hybrid nano-
fluids, this particular study focuses on a less-explored area in the liter-
ature, iron-CuO/water-ethylene glycol non-Newtonian hybrid
nanofluids, which will provide further insight into their complex rheo-
logical behaviors as evidenced by the results obtained. Some research is
limited to theoretical modeling and not used in real-world applications.
Practical applications of the machine learning regression (MPR) model
in designing heat exchangers, cooling systems, etc. are reported in this
study. Industrial relevance is further augmented by the provision of an
easy prediction methodology that could be implemented in real-time
monitoring systems. ML approaches are also not transparent, and so
their results can be difficult to interpret. Furthermore, this study em-
ploys explainable AI methods like Taylor diagrams and mathematical
models to ensure clarity and interpretability, in line with contemporary
trends in machine learning research, where explainability is becoming a
vital concern. Our study thus makes several contributions that set it
apart from previous work: extensive analysis of 20 machine learning
algorithms, thorough model comparison based on ten performance
metrics, derivation of a mathematical equation for predicting viscosity,
utilization of advanced data analysis techniques to investigate variable
interactions and the consideration of practical applications and real-
world usability of prediction results through a focus on nanofluids
with strong non-Newtonian properties and hybrid additives as well as
explainable AI methods for greater transparency in the trained models.
Overall, this enhances the novelty of the study, as well as emphasizes
the importance of this work to the existing literature on nanofluid vis-
cosity prediction.

2. Methodology

Nanofluids have been used extensively in many contexts and set-
tings, greatly advancing both commercial operations and scientific
research. However, conducting research in a controlled laboratory
setting requires a large time and money commitment because many
studies are experimental. However, using strong Al systems could alle-
viate these difficulties [38-43]. In data analysis, a wide range of tech-
niques and strategies are used to make forecasts, with ongoing
improvements and additions to these tools being common. Within the
topic of machine learning, numerous subsets may be made from the
techniques provided here. Many different mathematical techniques are
covered by these subgroups, including algorithms, linear equations, and

polynomials with one or more variables. However, given their inherent
complexity, it’s crucial to recognize that these techniques could not be
as straightforward as supervised algorithms and other neural networks.
In this study, in the most basic section, 20 machine learning algorithms
(MLA) are introduced. Then 10 indicators of machine learning algorithm
evaluation are introduced. The data analysis is then handled initially to
ascertain how the input data behaves on the result. The data is then sent
to machine learning algorithms and predictive operations are per-
formed. Finally, using evaluation indicators and data analysis charts, the
best machine learning algorithm and its mathematical equations are
extracted. The schematic of the stages of this study is according to Fig. 1.

This research utilizes machine learning methods for several key
reasons. Various parameters, including the SVF (¢), temperature (T),
and shear rate (y), influence the rheological behavior and viscosity of
non-Newtonian hybrid nanofluids, such as nanofluids containing iron,
copper oxide, water, and ethylene glycol. The viscosity is influenced in a
complex, nonlinear manner by these parameters, making it challenging
for traditional modeling methods to accurately represent this behavior.
The capacity of machine learning algorithms to describe complicated
and nonlinear connections between variables makes them ideal in-
struments for precise viscosity prediction. It is time-consuming and
expensive to conduct experimental procedures to assess the viscosity of
nanofluids under various circumstances. To save time and money, ma-
chine learning algorithms can precisely estimate viscosity, which means
fewer tests are needed. Machine learning algorithms, especially more
complex ones like artificial neural networks (ANN) and multivariate
polynomial regression (MPR), may learn from experimental data and
provide incredibly precise predictions. This degree of accuracy is
required for engineering equipment design and heat transfer system
optimization. Several dimensions and parameters, such as temperature,
shear rate, and SVF, are frequently included in nanofluid data. Machine
learning algorithms may discover relationships that were previously
undiscovered by examining this enormous volume of data. Because
machine learning algorithms are flexible, they may be adjusted to
accommodate new data or shifting test conditions. Examples of actual
industrial applications that considerably benefit from these techniques
are the design of heat exchangers and cooling systems. With accurate
estimates of nanofluid viscosity, engineers may more effectively design
heat transfer systems. As a result, engineering systems operate better
overall and use less energy and fuel. By using different evaluation
criteria, such as mean square error (MSE), coefficient of determination
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(R2), and mean absolute error (MAE), the performance of multiple al-
gorithms can be compared, and the best approach for viscosity predic-
tion can be selected. This comparison can be used by researchers to
choose the most accurate and error-free model for practical uses. The
results of this work could be expanded upon by researchers who are
interested in heat transfer systems and nanofluids. Additionally, the
provided models may be advantageous for both technical equipment
and cutting-edge cooling systems in the workplace. The intricacy of
nanofluid behavior, the need to reduce the time and cost of experimental
tests, the aim to increase prediction accuracy, the ability to handle data
with multiple dimensions, the study’s adaptability, and the study’s real-
world industrial applications all make the use of machine learning al-
gorithms in this study completely justified. These techniques not only
improve viscosity prediction but also offer a workable solution for en-
gineering equipment design and heat transfer system optimization.
The present work adopts a novel approach by leveraging 20 different
machine learning algorithms for the prediction of non-Newtonian
hybrid nanofluids viscosity. These algorithms are selected based on
their strengths and applications, as they improve prediction accuracy
and offer insights into the complex relationships between the input
variables (solid volume fraction (SVF), temperature and shear rate) and
the target variable (viscosity). The selected algorithms include a variety
of machine learning techniques, such as regression models, e.g. Ridge
Regression, Lasso Regression, and Elastic Component Regression (ECR),
tree-based models, e.g. Decision Tree (DT) and XGBoost (XGB), neural
networks (e.g. Multi-Layer Perceptron (MLP) and Back Propagation
Neural Network (BPNN)) and ensemble methods (e.g. Gaussian Process
Regression (GPR) and Support Vector Machine (SVM)). This makes both
linear and nonlinear relationships in the data explored. The rheological
behavior of non-Newtonian hybrid nanofluids is complex and nonlinear
as it depends on various parameters. The intricate interactions observed
in these datasets can be identified by algorithms like Multivariate
Polynomial Regression (MPR), which outperformed others in our test as
they can model polynomial behavior between inputs and outputs. Al-
gorithms like MPR, ANFIS (Adaptive Neuro-Fuzzy Inference System),
and GMDH (Group Method of Data Handling) had prevailed in previous
studies with similar datasets, providing accurate and robust predictions
with computational efficiency. The study compares algorithms by
testing 20 algorithms, providing researchers with a comprehensive
benchmark for relatively simple and advanced algorithms and high-
lighting the most suitable algorithm(s) for any application. We centered
the evaluation of the performance of each algorithm on ten metrics
including, but not limited to, Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Coefficient of Determination (R2), and metrics
related to recall, precision, f-measure. This thorough evaluation not
only highlights the best algorithm but also its strengths, weaknesses,
and where improvements can be made. The algorithms are commonly
adopted for industrial cases such as heat transfer systems and cooling
technologies. SVM and ANN models’ expressiveness has made them
popular choices for predicting nanofluids’ thermal properties, making
them relevant for this study. Moreover, MPR and DT provide inter-
pretable results via mathematical equations and decision rules,
respectively, which is key for engineers and scientists who want to
know which mechanisms affect viscosity. Thus, the choice of these 20
algorithms was motivated by their potential to accurately and consis-
tently predict viscosity for hybrid nanofluids while also providing a
benchmark for further research in the area. Overall, the ranges do a
thorough job of exploring the published requirements, and emphasizing
the balance of the MPR as the best algorithm - this says a lot about why
it is vital to choose the correct tool for the job. Making selections will-
become even better in future work as more influences like computa-
tional cost and scalability are added.

2.1. MLA

Ridge Regression cannot be discussed unless regularization is
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defined. The phenomenon of both underfitting and overfitting is well-
known to occur in the multiple regression area. Making regulations is
a practical way to handle and lessen these problems. This entails
measuring the regression model’s parameters and penalizing them to get
an optimal value. The result is a reduction in complexity while main-
taining the model’s efficacy. Under these conditions, the decision is
fairly favorable.

e Remarkably high number of descriptive variables

e Because of their enormous quantity, there are more variables than
observations.

e The descriptive variables exhibit one or more collinearities.

A “ridge regression” is a sort of linear regression model whereby the
coefficients are not estimated using ordinary least squares (OLS) but
rather a biassed estimator known as the “ridge estimator,” with a
reduced variance than the OLS estimator. Sometimes the mean squared
error of the ridge estimator—the result of its variance times square of
bias—is less than the OLS estimator’s. Ridge Regression and Lasso
Regression punish the absolute value of the regression coefficients in
somewhat similar ways. Another name for Lasso regression is L1 regu-
larization, a frequently used technique in statistical modeling and ma-
chine learning that forecasts and assesses the correlations between
variables. The basic goal of LASSO regression is to compromise model
accuracy with simplicity. This is achieved by adding a penalty compo-
nent to the traditional linear regression model, therefore encouraging
sparse solutions whereby some coefficients must be exactly zero. Lasso is
quite useful for feature selection because of this quality since it can
automatically identify and remove extraneous or redundant variables.
Lasso and Ridge Regression are used in the linear regression method
known as ECR. ECR incorporates a regularization factor and, like Lasso
and Ridge Regression, seeks to minimize the sum of squared errors be-
tween observed and predicted values. But what distinguishes ECR is its
combination of L1 and L2 regularization methods. PLR is a covariance-
based regression technique that is quick, effective, and ideal. It is
advised in regression scenarios with a high number of explanatory fac-
tors and a high probability of multicollinearity, or the correlation be-
tween the explanatory variables. The PLR is a technique that narrows
down the collection of predictors from the original set of variables. A
regression is then carried out using these predictors. Similar to k-Nearest
Neighbors, GPR makes predictions using training data. It delivers a
prediction together with a quantification of uncertainty and performs
well with tiny data sets. It is necessary to specify the previous mean and
prior covariance. It specifies the covariance as a kernel object. One kind
of probabilistic model that can be applied to regression tasks is the GPR
model. This non-parametric approach is predicated on the idea that the
function that needs to be learned comes from a Gaussian process. The
model can produce predictions with a well-defined uncertainty thanks to
this assumption, which is helpful for tasks like active learning and
uncertainty-aware decision-making. Multiple regression, or MLR for
short, is a statistical method that predicts a response variable’s value
using several explanatory variables. Modeling the linear relationship
between the explanatory (independent) factors and response (depen-
dent) variables is the aim of multiple linear regression. Since multiple
regression uses more than one explanatory variable, it is essentially an
extension of ordinary least-squares (OLS) regression. MPR, sometimes
referred to as simple polynomial regression, can be used to examine one
variable in a univariate scenario. Nevertheless, multiple polynomial
regression allows it to be applied to analyses involving many variables.
The structure of real trees, which have a root that spreads out until it
reaches a leaf, is the model for DT algorithms. The above-described
method is widely used for both the classification of discrete and
continuous data, as well as for regression methods that use real or
continuous input data [44,45]. The reduction of the subgroups is the
first requirement for data segmentation. This technique performs well
when dealing with complex data; but, when the data grows in size, more
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branches and leaves develop in the data, causing the data processing to
slow down. A method for reducing the leaf count was added to the al-
gorithm to circumvent this issue. Other methods could be used, like
branch trimming and segmenting the total number of branches. In ma-
chine learning, support vector machines (SVM) [46,47] are frequently
utilized for classification tasks. However, SVM may also be utilized for
regression tasks using Support Vector Regression (SVR). SVR and SVM
share similar principles, but instead of classifying data points, SVR
concentrates on forecasting continuous outputs. In this lesson, the
principles of SVR will be examined, with a focus on sigmoid kernels, and
quadratic, and radial basis functions. SVR is capable of handling com-
plex, non-linear relationships in data by utilizing these kernels. One of
the key varieties of deep neural networks is multi-layer neural networks,
or MLPs (Multi-Layer Perceptrons), which include three levels mini-
mum: an input layer, a hidden layer (or hidden layers), and an output
layer. Each neuron, or unit, in these networks, is made up of several
different weights and is in charge of translating input into output. MLP
consists mostly of the following elements.

e Despite its multi-layered architecture and great number of neurons,

MLP can learn intricate and non-linear patterns [48].

MLP can fit fresh data and environmental changes [49].

MLP moves data across layers using activation functions including

sigmoid or ReLU [50].

e The MLP training method uses [51] the error backpropagation
method to update network weights. Ultimately, MLP is a useful
neural network model capable of spotting complex patterns and
applied for a variety of problems including picture recognition and
price prediction.

A machine learning method functioning as a nonlinear model is the
Radial Basis Function (RBF) algorithm [52,53]. This method rests on
radial basis functions, used as activation functions in the buried layers of
the neural network. Important features of the RBF algorithm are as
follows.

e Radial Basis Functions: RBF uses the Gaussian function among others
to translate input to output.

e Capacity to learn intricate patterns: radial basis functions let RBF
learn non-linear and complex patterns.

e Dimension reduction technique: RBF usually reduces input di-
mensions and increases algorithm efficiency by using PCA or another
dimension-reducing technique.

e Usually utilized in RBF training are adaptive techniques including
the adaptive nearest neighbor (KNN) algorithm.

Simply said, the RBF approach is a non-linear machine learning
method based on radial basis functions to address challenging pattern
issues. Rapid and efficient training of neural networks is accomplished
using an Extreme Learning Machine, or ELM, machine learning method.
This method consists of a single hidden layer whose weights are selected
at random then support vector amplification (SVR) or linear regression
to maximize the weights of the output layer. The main elements of the
ELM algorithm are.

e Fast training: ELM can train models quickly due to its use of random
weights and a short training procedure.

e High efficiency: By employing the support vector amplification
technique or linear regression, ELM can forecast and adapt to new
data with high efficiency.

e ELM runs automatically and does not need the configuration of
challenging factors like the number of layers or neurons.

e Reiterability in several issues: ELM is simple and efficient so it may
be used in many different fields, from prediction to pattern
recognition.
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The minimum value of an objective function is found using a
gradient descent optimizing method. The gradient reduction or inverse
gradient reduction principle—which holds that the algorithm moves in
the direction of the inverse gradient of the objective function at each
step—defines the basis of this method’s operation. The salient features
of the gradient descent method are as follows.

e Ability and simplicity implementation: Relatively simple on this al-
gorithm to be able to understand and easy to implement.

e Optimization efficiency: Gradient descent is a powerful optimization
technique for finding the minimum of highly complex functions.

e Broad Range of Services: This technique is used in the fields of
machine learning, neural networks, parameter optimization, and
optimization problems.

e Local minimum: One of the problems with this algorithm is that it
often gets stuck at local minimums. This is corrected by
applying better heuristics like stochastic gradient descent.

The gradient Descent method is a powerful optimization technique
and is used extensively for parameter optimization and in machine
learning. The least value of an objective function is what we want to
find. To solve the parameter estimation optimization problem presented
in the model, a nonlinear optimization algorithm, the Levenberg-Mar-
quardt method, is employed. This method builds upon the gradient
Lloyd method to overcome issues of fitting parameters to data. The
features of the Levenberg-Marquardt algorithm are as follows.

e Great efficiency: This algorithm is highly accurate and fast in getting the
solutions to parameter optimization problems.

e Levenberg-Marquardt is a solution for estimating parameters in
nonlinear models and determining nonlinear problems.

e Stability: As a result of integrating gradient reduction and other tech-
niques, this algorithm solves hard problems with a high degree
of stability.

e Flexibility: Levenberg-Marquardt models can be improved with new data
over time.

BFGS (for Broyden-Fletcher-Goldfarb-Shanno) is an optimization
method for solving unconstrained optimization problems. This strategy
requires Quasi-Newton methods which is an upgrade of Newton’s
method which solves non-linear optimization problems. The essen-
tial components of the BFGS algorithm are as follows.

e High efficiency: BFGS is among the high-performance algorithms to solve
parameter optimization problems with high speed and accuracy.

e Application in non-linear problems: This is the second area in which,
estimating parameters in non-linear models and solving non-linear opti-
mization problems is performed efficiently.

e Stability: BFGS, being a quasi-Newton method, provides a higher level of
stability when working with hard-to-solve problems.

e Customization: As time passes, the algorithm can optimize its models and
make needed modifications to the data sets.

Thus, the BFGS algorithm is an Unconstrained optimization algo-
rithm that is configured based on the Quasi-Newton method to optimize
parameters. Hence, due to its excellent efficiency, stability, and adapt-
ability, it can be employed to address complex problems. A back-
propagation perceptron neural network (BPNN) is an artificial
neural network that takes in data to solve classification and prediction
problems. This method utilizes a multilayer neural network (MLP) ar-
chitecture which contains at least three layers: an input layer, a hidden
layer, and an output layer. The key ingredients of BPNN algorithm are
as follows.

e Capacity for learning: BPNN can learn complex patterns and relation-
ships in data to improve prediction.
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e Feature Selection: A Large Amount of Flexibility in the tuning of the al-
gorithm can be applied to a given problem (or challenge) & alteration in
the data.

e Parallelism: The ability of BPNN to process information in parallel allows
for rapid training and prediction.

e Wide application: This method is used in multiple domains like pattern
recognition, image processing, text processing, and data analysis.

The ability to carry out nonlinear mapping through multi-
layer networks with learning, adaptability, and parallel processing
gives the backpropagation algorithm an advantage in classification and
prediction problems. XGBoost, a tree-based machine learning method, is
used on prediction and classification problems [54,55]. This method
uses gradient boosting architecture and offers an improvement over
more traditional boosting techniques such as AdaBoost. The main fea-
tures of the XGBoost algorithm are.

e XGBoost is one of the machine learning algorithms with excellent per-
formance that might be applied to handle challenging problems due to its
remarkable speed and accuracy.

e Resistance to overfitting: This method uses reasonable parameter selection
and expectations (regularization) as control systems against overfitting.

e XGBoost can adapt to many facts and difficulties and generate better
forecasts with a great degree of accuracy.

e Two traits this method supports are reproducibility and parallel distri-
bution, which define features.

In conclusion, the XGBoost algorithm is a well-liked machine
learning algorithm due to its high performance, resistance to overfitting,
adaptability, and support for repeatability features. It is an incremental
gradient architecture-based high-performance algorithm for prediction
and classification problems. A probabilistic model for modeling and
displaying probabilistic interactions between variables is the Bayesian
network. Conditional probabilities between variables and prior proba-
bilities are represented in this model by the use of Bayesian probability
theory [56-58]. The following are the Bayesian network’s key
characteristics.

e Visual representation: A directed graph with nodes for variables and
edges for probabilistic correlations between variables is used to
illustrate a Bayesian network.

e Complex probabilistic relationships between variables can be prop-
erly displayed and modeled by this approach, which can also fully
represent conditional probabilities.

e Application of Bayesian rules: To update posterior probabilities in
response to fresh data, a Bayesian network employs Bayesian rules.

e Use in decision-making: This model works effectively when making
decisions in complex and unpredictable situations.

To put it briefly, a Bayesian network is a probabilistic model that
represents and models probabilistic relationships between variables
using Bayesian probability theory. This model is appropriate for
modeling and analyzing data in complicated and uncertain situations
because it makes use of visual representation, probabilistic connection
modeling, Bayesian rule application, and application in decision-
making. The Adaptive Neuro-Fuzzy Inference System, or ANFIS [59,
601, is a hybrid model that models and predicts data by combining fuzzy
systems and neural networks [61]. This algorithm can learn from data
and is automatically adaptive [62]. The following are ANFIS’s key
characteristics.

o ANFIS combines fuzzy systems and neural networks: Fuzzy systems
allow for the accurate representation of fuzzy concepts, while neural
networks can learn complex patterns.

e Flexibility: This approach can self-adjust its parameters in reaction to
both data changes and environmental changes.
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e It makes accurate predictions: The power of neural networks and
fuzzy systems, gives ANFIS the ability to make accurate predictions,
regarding data.

e Versatility: The algorithm can be applied in various fields, including
control, decision-making, prediction, and optimization.

Simply put, ANFIS is a predictive model that predicts an interme-
diary through a sum-out of the output fuzzy set from the input neural
networks by combining fuzzy systems and Artificial Neural Networks
(ANNSs). This algorithm finds applications in several areas like as opti-
mization, control and prediction, etc. It is highly adaptive and precise
in predicting data. The Group Method of Data Handling, or GMDH al-
gorithm is a machine learning algorithm for data modeling and pre-
diction. This program is used to create complex and lethal prediction
models using hybrid techniques. The main components of the
GMDH algorithm are.

e Creating groups helps GMDH to create complex and all-
encompassing models. This approach creates prediction models by
aggregating many feature groups gradually.

GMDH can automatically update its settings and adjust to changes in
data and other situations.

e Accurate prediction: This algorithm can forecast data with accuracy
utilizing group building and algorithms combined.

e Wide application for GMDH spans control, optimization, prediction,
and decision-making among other fields.

The GMDH algorithm is, all things considered, a machine-learning
method that groups data to create sophisticated and exact prediction
models. Wide-ranging applications for this method abound in many
different industries; it also has the ability to learn dynamically and yield
precise forecasts.

2.2. Tr and HP

Setting some parameters (like the activation function) to designated
values helps a machine learning model to generalize to different data
usage patterns [48-50,63]. The goal is to optimize the model’s solution
by adjusting these parameters, also known as hyperparameters. The
selection pressure coefficient, neuron count, and number of layers in a
GMDH neural network are referred to as hyper-parameters. The optimal
number of neurons and layers, as well as the activation function of the
hidden layers for the LM, BFGS, BPNN, MLP, BN, and GD algorithms, are
tansig and purelin, respectively. The kind and quantity of membership
functions affect the ANFIS algorithm’s performance. The SVM algorithm
is a polynomial kernel function type, and its HP support vectors are
determined by the epsilon value. HPs for other algorithms are set in the
same manner. Seventy percent of the data are utilized as Tr data to begin
the regression, with the remaining portion being used as test and vali-
dation data. Aiming to estimate the objective functions, different re-
gressions use different paths and establish various mathematical
relationships between the input variables to do so.

2.3. EC

Regression algorithms’ performance needs to be assessed using a
range of indicators. The NSE, MARE, R, MSE, RZ, MAPE, MAE, RMSE,
MBE, and CvRMSE were the ten criteria that were used in this study. The
MSE quantifies how far the model deviates from actual values. This
criterion aids in selecting the ideal model. A lower mean square error
(MSE) indicates that the model is doing better when there is less of a
difference between the predicted and actual outputs. The RMSE criteria
is the square root of the error that is obtained by taking the square root
of the MSE. Although MAE and MSE are similar, MAE calculates the
error’s absolute value as opposed to its mean squared error. MAE offers a
more accurate picture of the overall error since it rates mistakes
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differently than MSE. Dividing the mistake by the real amount and then
multiplying the outcome by 100 yields the MAPE—a percentage vari-
ance. This percentage technique offers a consistent image of the ex-
pected mistakes and helps one understand more easily. MAPE gives a
more exact estimate of the error rate than MSE. The linear correlation
between two variables is measured by R2. It computes the fraction of the
dependent variable’s fluctuations that might be ascribed to the inde-
pendent variable. In currently in-use definitions, R? is referred to as the
coefficient of determination or the coefficient of detection. Thus, a high
or low correlation coefficient indicates a strong or weak relationship
between the input variables and the goal functions. The lack of a link is
indicated by a number close to 0. The Nash-Sutcliffe efficiency is
calculated as the ratio of the observed time-series variance divided by
the variance of the modeled time-series error variance. The Nash-
Sutcliffe Efficiency that arises when a model is perfect and has no esti-
mated error variance is 1 (NSE = 1). An indicator of the average bias in a
model’s predictions is the MBE. Even while MBE isn’t usually used as the
only way to assess model error since it might not be able to catch very
high individual prediction errors, it’s important for determining and
measuring the average bias in the model’s outputs. A variable with
positive bias represents an overestimation of data from datasets,
whereas a variable with negative bias represents an underestimation.
Combining the evaluation of MBE with other metrics, such as correlation
coefficients, contributes to a more thorough comprehension of model
performance. Better model accuracy is shown by lower error values and
greater correlation coefficients, especially for directional variables. The
coefficient of the Variation of the Root Mean Square Error is referred to
as CVRMSE. When calibrating models for measured nanofluid perfor-
mance, the CVRMSE is employed. This statistic reveals the unstable
observed correlation between the baseline period’s variables. It is the
coefficient of variance of the expected input series concerning the
observed one. If the CV(RMSE) is 10 %, the average distance between a
point and the fit line is 10 % of the fit line. The Efficiency Valuation
Organization (EVO) advises that for linear regressions the coefficient of
determination (RMSE) should be less than half of the expected savings
fraction. Equations 29-38 [64,65] form the mathematical formulations
for these evaluation indices.
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2.4. AP

Taylor diagram is one of the most significant and generally imple-
mented tools in scientific and engineering data analysis, thus making an
important contribution in forecasting the behavior of nanofluids. Such a
diagram is often utilized by researchers when investigating properties of
nanofluids that have gained special interest on account of their distinct
thermal and physical properties in a wide array of applications ranging
from electronics to medicine and the energy sectors. There are multiple
reasons why the Taylor diagram is highly significant for the prediction
of nanofluids.

e Very accurate and efficient: Taylor’s diagram provides a com-
pound representation of multiple statistics such as the correlation
coefficient, standard deviation, and RMSD (root mean square error)
with high accuracy in the evaluation of forecasting models. This
feature allows researchers to further assess their model performance
more thoroughly and accurately.

Integrated visualization: A key characteristic of Taylor’s diagram
is the ability of integrated visualization. This graph allows you not
only to compare both models visually but also to observe differences
and similarities. This ability is particularly advantageous in studies
of nanofluids, which contain many complexities.

Ability to compare models: Taylor’s chart offers a comparison of
different forecasting models. By using this tool, researchers can
pinpoint and fine-tune the models that yield the most accurate pre-
dictions. This is a great success in improving the accuracy of pre-
dictions for the type of nanofluid behavior.

Other applications: Besides using the Taylor diagram for pre-
dictions about various nanofluid thermal and physical behavior,
applications in the simulation of fluid flows, heat transfer analysis
and other complex systems also utilize this method. The spectrum of
these applications demonstrates the significance and high potential
of this tool in the research for nanofluids.

The stability of the Taylor diagram [66] requires the geometric
relationship of RMSD, STD, and R. The RMSD indices and standard
deviation are retrieved using Equations (39) and (40) [66].

1 L \2
UANN.Exp2 = ﬁ Z (ypred.Em ®— ypred.Exp (U) (39)
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The Taylor diagram comes in two varieties [66]: a semicircle that
displays both positive and negative correlation, and a quarter circle that
only shows positive correlation. In both cases, the R values are repre-
sented by the circle’s radius on its arc, and the STD values are repre-
sented by concentric circles in the circle’s center. The RMSD values are
displayed on the faces of concentric circles drawn concerning the hori-
zontal reference point on the axis of the hollow circle. The reference
point is the value of the experimental data as shown by the STD. The
image indicates that the position of the data is determined by the RMSD,
the STD, and the R between the analyzed and experimental data. Any
experimental data that is found nearer the diagram’s reference point is
considered to be more precise when determining its value.
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Fig. 2. Diagramming data input and output behavior with a heatmap.

The following formula can be used to compute the ¢ error analysis
to assess the precision of values predicted by MLA [67]:

Error= 41)

M f Exp - p'"f pred

Another graph is the error histogram. The higher the frequency of the
error column is closer to zero, which means that the machine learning
algorithm has been able to perform the prediction well.

3. Results and discussion
3.1. The study of data behavior

This study incorporates the method and findings of Bahrami et al.
[68]. Fe-CuO/water-ethylene glycol hybrid NFs flow was all thoroughly
investigated in their thermophysical property studies. Important metrics
such as DV is tested within the 25-50 °C temperature range, shear rate
(y) range of 3-100 Rpm and VF range of 0-1.5 %. To be more specific,
204 points were taken from Bahrami et al.’s experimental dataset [68].

This section of the work explores the behavior of the dataset used to
predict the viscosity of a hybrid nanofluid devoid of Newtonian char-
acter. The output variable in the dataset is viscosity (pnf), which addi-
tionally incorporates shear rate (y), temperature (T), and SVF(g).
Analysis of this data is necessary for numerous reasons.

o The study particularly shows how the input variables are linked with
the output variable (viscosity) via a heatmap. This helps one to
identify the most influencing input parameters on viscosity.

e Box charts are a helpful tool for a better knowledge of how the input

elements influence viscosity. These graphs show the effects on the

viscosity of the nanofluid of temperature, shear rate, and nano-
particle concentration.

Knowledge of the distributions and correlations of the input vari-

ables helps one identify the optimal features to teach machine

learning models. In this sense, the models will be more accurate
predictors since they might be trained on data relevant for the
output.

Understanding the effect of input parameters on viscosity will help

one to maximize the efficiency of nanofluids in useful environments

like heat exchangers and cooling systems. Engineers must find the
primary factors influencing viscosity if they are to maximize the
enhanced thermal properties of nanofluids.

Machine learning techniques must first examine the behavior of the
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data to forecast the nanofluid set-back. The dataset for this study com-
prises of the output group itself as well as the input elements influencing
behavior of the output. The study outputs py¢ and has ¢, T, and vy as its
inputs specifically. First of all, one must look at the link between the
inputs and outputs. One good way to show the scope of these in-
teractions is with a heat map graph. The output is least affected if a
desired input has little to no link with the output. On the other hand, a
negative correlation value—that which is near to one—indicates that
the input clearly affects the output. Fig. 2 displays the heatmap that il-
lustrates how inputs influence outputs. The correlation matrix between
the input variables— SVF (¢), temperature (T), and shear rate (y)—and
the output variable, viscosity (pnf), is graphically shown in Fig. 2’s
heatmap. Each pair of variables in the heatmap is given a numerical
value and a color gradient, with —1 representing a strong negative
connection and +1 representing a strong positive correlation. If the
value is positive, then there is a positive correlation between the two
variables, and if the value is negative, then there is an inverse correla-
tion, where a reduction in one variable is correlated with a rise in the
other. The correlation value of 0.79 indicates that ¢ has the greatest
positive relationship with pi,f, as seen by the heatmap. This proves that
the viscosity of the fluid grows exponentially with the SVF. We antici-
pate this result because the introduction of nanoparticles increases the
barrier to flow by strengthening intermolecular forces and obstructing
the velocity of the fluid. On the other hand, there is a modest negative
association shown by the correlation coefficient of —0.13 between
temperature (T) and pp. Consistent with the idea that greater temper-
atures lessen intermolecular tensions and enhance fluidity, the negative
sign indicates that viscosity reduces somewhat with increasing tem-
perature. Likewise, y is negatively correlated with pys, with a value of
—0.47, indicating that a considerable decrease in viscosity occurs when
the shear rate is increased. Because the nanofluid’s particles align under
shear, the flow resistance is reduced, and this behavior is a reflection of
that characteristic. Since temperature and shear rate are inversely
related to viscosity, the negative sign in their correlations is a result of
this inverse connection. A decrease in viscosity and a weakening of
intermolecular cohesion result from an increase in the thermal energy of
fluid molecules as the temperature rises. The negative association be-
tween shear rate and viscosity is a result of nanoparticle structural
rearrangement caused by strong shear, which reduces internal friction.

If the correlation coefficient (R) is between —1 and +1, then the
value represents both the strength and direction of the degree of the
linear relationship between two random variables. Positive value (R >
0) means that as the first variable rises, the second variable rises too,
while negative value (R < 0) means that as the first variable rises the
second variable falls. These characteristics are seen in hybrid-

nanofluids. The negative correlation between temperature (T) and
viscosity (R = —0.13) represents the established inverse relationship,
wherein the viscosity is known to decline as temperature increases.
However, as the temperature increases, due to the increase in thermal
energy of the fluid molecules, the attractive forces between the mole-
cules are overcome, thus reducing resistance to flow. The shear rate (y) is
also more strongly inversely correlated with viscosity (R = —0.47),
which corresponds to the shear-thinning behavior of non-Newtonian
fluids. Nanoparticles orient with velocity field and this orientation re-
duces the internal friction, thus decreasing the viscosity at high shear
rates. On the other hand, the volume fraction of nanoparticles, ¢ highly
influences the viscosity (R = 0.79); as the number of nanoparticles in-
creases, intermolecular interaction and hindrance within the flow path
also increase and lead to increasing viscosity.

The heat map of relationships between inputs and outputs is illus-
trated in Fig. 2, where correlation coefficients between input variables,
solid volume fraction (¢), temperature (T), and shear rate (y), and
output variable, viscosity (jin), are shown. The main outcomes indicate
that ¢ correlates positively (R = 0.79) with viscosity due to the nano-
particle concentration, which if increased, viscosity substantially.
Temperature (T) has a weak inverse correlation (R = —0.13), meaning
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Fig. 3. Box plot to see the behavior of a) ¢ b) Temperature c) y

that an increased temperature reduces viscosity by loosening intermo-
lecular forces. Also, shear rate (y) was negatively correlated (R = —0.47)
which is more negative than the second and third ones, but for non-
Newton fluids such as paint till now we handle them as Newton fluids
to do so when viscosity becomes smaller with the increase of y. Some ML
models work better because they are based on the fundamental prop-
erties of the data. For instance, a mad scientist’s right algorithm like
multivariate polynomial regression (MPR) works well due to its ability
to model polynomial relationships between input variables to output
variables. In comparison, many non-linear models like elastic compo-
nent regression (ECR) fail when the interactions are higher-degree, the
relationships being considered. To some extent, the non-Newtonian
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behavior of composite nanofluids is closely related to particle aggre-
gation, Brownian motion, and van der Waals forces, which is an inherent
characteristic of composite nanofluids. The MPR is a good model for
such data because it allows us to model the complex interactions be-
tween these variables. First, the model is grounded in mathematical
equations and can be well generalized to the dataset. Simples’ linear
models would not be able to capture many complicated dependencies
between the variables.

According to the sensitivity analysis carried out in this work, shear
volume fraction (SVF) has the most impact on viscosity, followed
closely by shear rate and then temperature. The heat map (Fig. 2) con-
firms this result with correlation coefficients. The correlation coefficient
between viscosity (pf) and nanoparticle volume fraction (¢) is 0.79 and
with increasing nanoparticle volume fraction, intermolecular forces are
strengthened, resulting in increasing viscosity. The shear rate (y) shows
a moderate negative coefficient of correlation of —0.47, in which at
higher shear rates the nanoparticles were arranged with the flow and the
value of internal friction was less, where viscosity is decreased. Tem-
perature (T) has a correlation coefficient of —0.13; that is, it has a weak
positive correlation; Viscosity decreases as temperature increases; As
intermolecular cohesion weakens, its effect is small compared with the
volume fraction of nanoparticles and shear rate. Thus, the volume
fraction of nanoparticles is the dominant factor influencing viscosity,
followed by shear rate and temperature.

Fig. 3 shows box plots that show how the input variables, heat (T),
shear rate (y), and SVF, behave and how they affect the output variable,
viscosity (jn). You may learn a lot about the inputs’ effects on the vis-
cosity from box plots, which show the distribution, variability, and re-
lationships of the data. Fig. 3 shows that when the temperature
increases, ppf drops. The reason for this tendency is that when the
temperature of the fluid molecules rises, their thermal energy also in-
creases, which weakens the intermolecular interactions and reduces the
flow resistance. As a result, the viscosity of the fluid decreases. On the
contrary, there is a significant increase in nanofluid viscosity as ¢ be-
comes larger. The presence of nanoparticles intensifies the interactions
between molecules, leading to the formation of bigger clusters as a result
of van der Waals forces. These clusters, in turn, increase the viscosity of
the fluid and hinder its movement. It has been noted that the impact of y
on ¢ is not linear. According to the box plot, viscosity initially rises as y
increases, but after reaching an ideal value, it steadily decreases. The
shear-thinning behavior of non-Newtonian fluids—in which the align-
ment of nanoparticles at higher shear rates decreases internal resistance
to flow—can be used to explain these phenomena. You can see the data’s
spread and variability clearly in the box plots as well. The higher vari-
ation of viscosity values for ¢ indicates the high effect of particle con-
centration on the behavior of the fluids. T has a smaller but significant
effect, as indicated by its smaller range and constant decrease
in viscosity. Thus, the relationship between y and viscosity is condi-
tional on the shear rate and other mixing factors, which results in a
large data dispersion. These trends illustrate relationships between
factors-influencing input and viscosity where ¢ is the most sensitive
input when compared to y and T, which are less correlated with vis-
cosity; in some cases, the box plots also reflect outliers representing
abnormal behavior of viscosity caused by high ¢, T, or y values. This
proves the fact that the rheological properties of the nanofluid are
nonlinear and complex. To optimize the performance of non-Newtonian
hybrid nanofluids in real-world applications, it is vital to consider the
viscosity of these fluids, and Fig. 3 shows how these elements interact
critically.

These figures demonstrate that the lowest ppr happens at the highest
temperature together with the lowest y and ¢. This phenomenon is
explained by the following theories.

e The random movement of nanoparticles inside the base fluid, or
Brownian motion, is one of the elements influencing viscosity. The
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Table 1

Values of 10 EC for 20 MLA algorithms.
Algorithm R R? RMSE NSE MAE MBE MSE MARE MAPE CvRMSE
ANFIS 0.9827 0.9657 3.498 0.975 1.338 —2.132 12.233 0.075 11.5 23.14
MPR 0.9961 0.992 1.66 0.994 1.146 —5%10-12 2.753 0.129 7.61 9.98
BN 0.9888 0.9777 2.84 0.983 2.25 5.2 8.056 0.228 25.32 18.775
BFGS 0.9927 0.985 2.28 0.989 1.777 —9.53 5.22 0.198 22.582 15.11
GD 0.9888 0.9776 2.822 0.984 2.15 2.766 7.965 0.223 24.93 18.67
LM 0.9888 0.9778 2.81 0.984 2.194 5.015 7.89 0.228 25.13 18.581
BPNN 0.9087 0.826 7.97 0.87 3.97 —49.89 63.58 0.184 21.143 52.744
DT 0.9808 0.962 3.676 0.972 1.707 —6*1071° 13.52 0.083 8.4 24.32
ECR 0.229 0.227 16.6 0.435 10.874 —2¥10712 275.567 0.443 112.11 109.81
PLR 0.8069 0.651 11.15 0.75 7.072 9¥10 "1 124.4 0.03 63.23 73.777
ELM 0.9641 0.929 17.06 0.402 16.365 —1631 291.28 0.619 221.76 112.9
GMDH 0.9903 0.981 2.65 0.986 1.941 30.22 7.026 0.19 20.55 17.53
GPR 0.984 0.968 3.4 0.976 1.877 0.393 11.575 0.144 12.49 22.5
Lasso 0.7996 0.64 12.43 0.683 6.714 —3%107 12 154.5 0.534 51.17 82.22
MLP 0.9877 0.976 3.01 0.981 2.34 —18.9 9.056 0.23 24.31 19.91
MLR 0.8068 0.651 11.153 0.745 7.071 0.0184 124.395 0.031 63.232 73.777
RBF 0.9913 0.983 2.505 0.987 1.691 19.4 6.27 0.021 18.61 16.57
Ridge 0.9708 0.942 10.283 0.783 4.6 444 105.73 0.291 19.55 68
SVM 0.931 0.867 8.93 0.836 2.703 193.43 79.73 0.099 8.18 59.06
XGB 0.9946 0.942 4.55 0.958 2.48 224.4 20.695 0.166 14.25 30.09

constant collisions between the molecules of the base fluid and the
nanoparticles are what create this chaotic motion.

e The addition of the nanoparticles causes the nanomaterials to scatter
and aid in the formation of bigger, symmetrical nanoclusters through
the base fluid’s van der Waals contact with the nanoparticles. Vis-
cosity rises because ethylene-glycol molecules are prevented from
rubbing against one another by these nanoclusters.

e Nanostructures lose some of their key properties, such as density, due
to their small size and relatively low mass, making them primarily
dependent on surface and intermolecular interactions. This results in
an extraordinarily high surface-to-volume ratio.

e Viscosity rises in a base fluid containing nanomaterials as intermo-
lecular forces rise.

e Viscosity, a feature of liquids that depends on temperature, is caused
by cohesive forces between molecules. A rise in temperature causes
liquids to become less viscous. At higher temperatures, liquid mol-
ecules have more energy and can overcome the forces of molecular
cohesiveness. Consequently, molecules that are energetic move more
quickly. The intermolecular connections become weaker and the
flow resistance reduces as temperature rises. Newtonian nanofluid
viscosity consequently falls as temperature rises.

It makes sense to consider how the viscosity of the nanofluid is

impacted by the temperature-dependent Brownian motion of the

nanoparticles.

Vessel viscosity and flow resistance decrease with increasing tem-

perature because of an increase in the intermolecular distance be-

tween the nanoparticles and the base fluid.

Boxplots are presented in Fig. 3 to examine how the input variables
(¢, T, ) affect viscosity (ppnf). The results, revealed at the same time, are
that the increase of viscosity is qualitative with increasing solid volume
fraction (¢) and that there is little overlap between levels of ¢. Rising T
uniformly produces lowered viscosity, but T (compared to ¢) has a
much smaller range of behavior. For the shear rate (y), a nonlinear trend
was observed that showed the shear rate first increased and then
decreased with viscosity with a specific optimal point, which is in line
with the characteristic of nozzle shear of non-Newtonian fluids. Machine
learning models capable of modeling multilinear relationships, like
multivariate polynomial regression (MPR), Gaussian process regression
(GPR), radial basis functions (RBF), for predictions, outperform models
constrained to linear assumptions — partial least squares regression
(PLR). DTs also perform well because they can split data along thresh-
olds ideal for the piecewise trends observed. Non-Newtonians are
known for their complexity; At low shear rates particles may induce
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clusters that give rise to an increase in viscosity, whereas at high shear
rates, alignment of the particles leads to a reduction of drag. Such dy-
namics require flexible predictors for accurate prediction. Data-wise,
ELM (Extreme Learning Machine) and ECR (Elastic Component
Regression) are over-simplified (parameter-inefficient), resulting in
poor generalizability, while MPR falls somewhere in the middle, able to
reach high accuracy whilst also remaining computationally efficient by
employing a polynomial model that directly incorporates the governing
physical relationships.

3.2. Results for EC

As mentioned, this study aims to predict laboratory data by machine
learning algorithms. For this purpose, 20 machine learning algorithms
ANFIS, BFGS, BN, GD, LM, BPNN, DT, ECR, PLR, ELM, GMDH, GPR,
Lasso, MLP, MLR, MPR, RBF, Ridge, SVM, and XGB were used to achieve
this goal. A 204*4 dataset is introduced to these algorithms, the first 3
columns of which are inputs (T, y, and ¢) and the final column is the
target or output function (p,¢). Then the data was divided and 70 % of it
was assigned to the training data, 15 % to the validation data and the
rest to the test data. In the following, hyperparameters were set and
changed for each algorithm to determine the best state of each algo-
rithm. Finally, a machine learning algorithm predicts a value for each
data. To evaluate the performance of each algorithm, evaluation indices
or EC should be used. In this study, 10 evaluation indicators were used.
Table 1 shows the value of these indicators.

Twenty different machine learning algorithms were tested for their
ability to predict the viscosity of non-Newtonian hybrid nanofluids. The
results of these tests are shown in Table 1. Several metrics are used to
evaluate the models’ accuracy and reliability. These include R-squared,
R%, RMSE, NSE, MAE, MSE, MPE, and CvRMSE, among others. With
higher numbers indicating greater correlations, the R shows the degree
and direction of the linear link between expected and actual values. ECR
has the lowest R-value of 0.229, indicating weak correlation, in contrast
to MPR, which obtains the greatest R-value of 0.9961, indicating greater
prediction accuracy among the methods. R? is a measure of how much of
the observed data variation can be explained by the model. ECR has the
lowest R? of 0.227, showing that it cannot adequately predict the vis-
cosity data, while MPR scores best with an R? of 0.992, showing that it
captures virtually all data variability. Measuring the average size of
mistakes, smaller numbers indicate greater performance according to
the root mean squared error (RMSE) and the mean squared error (MSE).
There is very little discrepancy between the predicted and actual values
when using MPR, as its RMSE is 1.66 and its MSE is 2.753. Alternatively,
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ECR demonstrates substantial prediction errors with an RMSE of 16.6
and an MSE of 275.567, the highest values. The NSE measures how well
the models can predict outcomes in comparison to the average of the
data points. With an NSE of 0.994, MPR is a very effective model, but
ECR’s 0.435 shows that it is not very good at making predictions. As
with RMSE, a smaller number indicates better accuracy when calcu-
lating the MAE, which gives an average of the absolute errors. The MAE
of 1.146 for MPR shows that it makes accurate predictions, but the MAE
of 10.874 for ECR shows that it is quite inaccurate. If the MBE is nega-
tive, then the predictions are underestimated, and if it is positive, then
the predictions are overestimated. This statistic displays the average bias
in predictions. While ECR shows a greater bias, MPR provides unbiased
predictions with a minimal MBE of —5*10~'2. One way to compare the
performance of different models is using the mean absolute percentage
error (MAPE), which represents mistakes as a percentage. In comparison
to ECR’s 112.11 % MAPE, which indicates exceptionally high prediction
errors, MPR’s MAPE is the lowest at 7.61 %. As a last metric, the coef-
ficient of variation of RMSE (CvRMSE) indicates the consistency of
performance compared to the error; lower values show more stable
predictions. With a CvRMSE of 9.98 %, MPR has the greatest prediction
accuracy, while ECR’s CvRMSE of 109.81 % shows that its forecasts are
quite unpredictable. These numbers show that MPR is the top algorithm,
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providing very reliable and accurate predictions. In comparison to MPR,
other algorithms like BFGS, BN, and GPR do decent work; but they do
not achieve MPR’s level of accuracy. On the other hand, algorithms like
ECR, PLR, and ELM perform poorly because they have a hard time
accurately modeling the dataset’s nonlinear connections. Choosing the
right algorithm for predictive modeling is crucial, as shown by MPR’s
ability to capture complicated dynamics and provide very precise vis-
cosity forecasts.

According to Table 1, the value of R is different for each algorithm
and ranges from 0.229 to 0.9961. If this value is close to 1, the best MPR
algorithm and the worst one should be related to the ECR algorithm. The
value of R? is an index like R, whose value varies from 0.227 to 0.992 for
algorithms, the best algorithm is MPR and the worst one is ECR algo-
rithm. Also, the NSE index is following these two indices. Other in-
dicators are related to the amount of error between the predicted points
and the experimental data, the smaller the value, the better. Only the
MPR algorithm has a CvRMSE value below 10 %, which is optimal, and
the rest of the algorithms are more than this value, and this index rea-
ches 112.89 for the ELM algorithm, which is the worst value. MSE and
RMSE are close indicators and the only difference between them is that
one of them is squared. Obviously, if the value of this index is close to
zero, the machine learning algorithm has less error, the lowest error is

Fig. 4. Histogram plot error for a) ANFIS b) BFGS ¢) BN d) GD e) LM f) BPNN g) DT h) ECR i) PLR j) ELM k) GMDH 1) GPR m) Lasso n) MLP o) MLR p) MPR q) RBF r)

Ridge s) SVM t) XGB algorithm.
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Fig. 4. (continued).
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Fig. 4. (continued).
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Fig. 4. (continued).
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Fig. 4. (continued).
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Fig. 4. (continued).
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Fig. 4. (continued).
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Fig. 4. (continued).
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Fig. 4. (continued).
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Fig. 4. (continued).

related to the MPR algorithm, and the highest error is related to the ELM
algorithm. MAE and MARE indices are other indices that are close to
each other, which according to two indices, RMSE and MSE, are related
to the error of the points, and the smaller the error, the better. The MPR
algorithm has the lowest error and the ELM algorithm has the highest
error. The MAPE index is related to the error percentage of the points,
and the lower the error percentage, the better the MPR algorithm with
7.5 % error, and the ELM algorithm with 221.76 % error, are the best
and worst algorithms. According to other indicators, MBE is related to
the error and according to the previous, the best value is related to the
MPR algorithm, and the worst value is related to the ELM algorithm.
Therefore, according to EC analysis, the best algorithm is MPR and the
worst algorithm is ELM.

3.3. Results for AP

In this part, three parts of graphical analysis are discussed. The first
part will deal with the graphical analysis of the error histogram. Ac-
cording to the previous explanations, the histogram chart is more
optimal as long as its error column is close to zero. The error histogram
diagram for all algorithms can be seen in Fig. 4. The error histogram for
each of the twenty ML algorithms included in this research is shown in
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Fig. 4, which sheds light on how well they performed in terms of pre-
diction. With a concentration of error values near zero being the ideal
condition, the histogram shows the frequency distribution of prediction
mistakes. To show the performance disparities, we have underlined the
greatest error for each method. To illustrate its superior accuracy, the
Multivariate Polynomial Regression (MPR) method displays the lowest
maximum error among competing algorithms. The little dispersion of
the error bars centering on zero in the MPR histogram shows that the
experimental and projected viscosity values are quite close to one other.
The Extreme Learning Machine (ELM) method, on the other hand, has
the most error values, which are shown by a larger and more distributed
histogram. This indicates that its predictions are very inaccurate. The
histograms of the Adaptive Neuro-Fuzzy Inference System (ANFIS) and
Gradient Descent (GD) algorithms reveal error distributions that are
somewhat wider than MPRs but smaller than ELMs, indicating inter-
mediate performance. Although it isn’t quite as good as MPR, the De-
cision Tree (DT) method still shows a low error distribution, which
means it’s successful. Bayesian Network (BN), Broyden-Fletcher-
Goldfarb-Shanno (BFGS), and Gaussian Process Regression (GPR) are
three algorithms with histograms that have modest error distributions.
This indicates that these algorithms strike a good compromise between
computing efficiency and accuracy. Algorithms having a broader error
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distribution, such as Partial Least Squares Regression (PLR) and Elastic
Component Regression (ECR), are less effective at accurately predicting
viscosity. With MPR showing the best results for viscosity prediction,
and ELM and ECR the worst, the general trend in the histograms high-
lights the algorithmic performance variability. The dependability of the
findings is directly affected by the distribution and quantity of mistakes;
hence, the error histograms graphically show how important it is to pick
the correct technique for predictive modeling. Consistent with the
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quantitative measures given in Table 1, our study confirms that MPR is a
good fit for forecasting the viscosity of hybrid nanofluids. According to
Fig. 4, the lower the maximum error, the more optimal the algorithm.
For ANFIS, BFGS, BN, GD, LM, BPNN, DT, ECR, PLR, ELM, GMDH, GPR,
Lasso, MLP, MLR, MPR, RBF, Ridge, SVM and XGB algorithms, the
maximum error value is 23, 10, 23, 10, 9, 37,9, 72, 50, 73,13, 17, 63, 9,
50, 6.7, 11, 46, 53 and 25. According to Fig. 4, the lower the maximum
error, the more optimal the algorithm. Therefore, the MPR algorithm has

Fig. 5. Kde plot for a) ANFIS b) BFGS c) BN d) GD e) LM f) BPNN g) DT h) ECR i) PLR j) ELM k) GMDH 1) GPR m) Lasso n) MLP o) MLR p) MPR q) RBF r) Ridge s)

SVM t) XGB algorithm.
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Fig. 5. (continued).
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Fig. 5. (continued).
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Fig. 5. (continued).
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Fig. 5. (continued).
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Fig. 5. (continued).
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Fig. 5. (continued).
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Fig. 5. (continued).
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Fig. 5. (continued).
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Fig. 5. (continued).

the lowest error and the ELM algorithm has the highest error. So, the
best algorithm in terms of histogram is the MPR algorithm and the worst
is the ELM algorithm.

The error histograms in Fig. 4 provide insights into the distribution of
predicted errors across the SVM, RF, and MLP algorithms. The
results indicate a close distribution of error by means of multivariate
polynomial regression (MPR) centered at zero (i.e. when predicted and
actual values deviate the least). While, the error distribution of ELM
(Extreme Learning Machine) and ECR (Elastic Component Regression)
is wide and scattered, which shows that predictions have more differ-
ences and the uncertainties of predictions. The better performing ma-
chine learning models actually capture more complex relationships
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between input and output. MPR is highly accurate, because the algo-
rithm itself directly models the interaction between variables in poly-
nomial equation form that are derived from the data. Methods like
ANFIS (Adaptive Neuro-Fuzzy Inference System) and GPR (Gaussian
Process Regression) also have good accuracy but with comparably lower
than that of MPR because they can handle high-cost complicated
nonlinear data owing to their versatility and ability to learn higher-
dimension functions with the help of kernel. Physically, this means
that we need to have a good understanding of the interaction between
¢, T, and y. MPR does a great job delivering this need with mathematical
equations that reflect these interactions explicitly. On the computa-
tional side, random initialization of the weights leads to a sub-
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Table 2
The performance of 20 machine learning algorithms in this study.
Algorithm  Peak Density Width of Error Max Error Overall
(Near Zero) Distribution Magnitude Accuracy
MPR Highest Narrowest 6.7 Excellent
ANFIS High Moderately 22 Good
Narrow
GPR High Moderate 17.65 Good
DT Moderate Moderate 9 Good
BN Moderate Moderate 23 Average
BFGS High Moderately 10.15 Good
Narrow
GD Moderate Moderate 10.15 Average
MLP Moderate Moderate 9.51 Average
BPNN Moderate Wide 37 Below
Average
RBF High Moderately 11.55 Good
Narrow
ECR Lowest Widest 96 Poor
PLR Low Wide 51.84 Poor
ELM Lowest Widest -11.7 Poor
Lasso Low Wide —64.74 Poor
XGB Moderate Moderately 25 Average
Narrow
Ridge Moderate Wide 46.78 Below
Average
SVM Moderate Wide 54.2 Below
Average
GMDH High Moderate —13.36 Good
LM Moderate Moderate 9.47 Good
ECR Lowest Widest 96 Poor

optimal solution, for example, in algorithms like the extreme learning
machine (ELM). In contrast, MPR solved this issue and achieved much
more precise prediction due to its derivation of constant equations that
were tuned directly to the data set.

Among other analysis charts, there is a Kde chart with error values
indicated. According to this chart, the number of points close to zero
indicates that the chart has less error and is a better algorithm. The error
value is minimal for an algorithm with proper correlation. These values
can be seen in Fig. 5. Fig. 5 shows the error value kernel density esti-
mation (KDE) plots for twenty machine learning algorithms. The
explanation for this figure emphasizes the prediction accuracy and
dependability of the techniques. For each method, these KDE graphs
show the probability density of mistakes; a peak close to zero indicates
little prediction error. The KDE plot of the Multivariate Polynomial
Regression (MPR) method shows a tiny peak near zero, further
demonstrating its excellent performance. This shows that it is quite ac-
curate and reliable, as most of its predictions match the observed vis-
cosity values very well. However, the Extreme Learning Machine (ELM)
algorithm’s prediction performance and considerable departures from
the experimental data are shown by its wide and scattered KDE plot,
which has a peak that is far from zero and a significant error density at
larger magnitudes. As their KDE plots are modestly concentrated around
zero but with larger bases compared to MPR, algorithms like Adaptive
Neuro-Fuzzy Inference System (ANFIS), Gradient Descent (GD), and
Gaussian Process Regression (GPR) show moderate performance. Pre-
dictions made by these algorithms are not as accurate as MPRs, but they
do a decent job of capturing patterns in viscosity data. Bayesian Network
(BN) and Decision Tree (DT) algorithms also do a respectable job; KDE
plots reveal acceptable peaks around zero, albeit error variability is
somewhat larger. Alternatively, KDE graphs generated by Elastic
Component Regression (ECR) and Partial Least Squares Regression
(PLR) are distorted and uneven, indicating poor accuracy and large
predicted errors. Particularly inaccurate is the ECR KDE figure; the error
density there is very non-zero and spans a wide range. In comparison to
the best algorithms, the Radial Basis Function (RBF), Multi-Layer Per-
ceptron (MLP), and Backpropagation Neural Network (BPNN) algo-
rithms display intermediate behavior; their KDE plots show peaks close
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Fig. 6. Taylor diagram for 20 MLA

to zero but with wider dispersion. These trends indicate that these al-
gorithms can make educated guesses, but they can’t compare to MPR in
terms of accuracy and reliability. The wide variation in the error dis-
tributions across the algorithms is shown by the overall analysis in
Fig. 5. SVF, temperature, and shear rate are the input factors, and MPR’s
narrow and clearly defined KDE plot demonstrates its ability to accu-
rately represent the nonlinear interactions between these variables and
the output variable, viscosity. On the other side, ELM and ECR’s scat-
tered KDE plots show that they do a poor job of capturing the data’s
complicated dynamics. Since MPR consistently underperformed in this
investigation, it is clear that using the right algorithm is crucial for
making accurate and dependable viscosity predictions. According to
Fig. 5, the lower the error rate, the more optimal the algorithm. For
ANFIS, BFGS, BN, GD, LM, BPNN, DT, ECR, PLR, ELM, GMDH, GPR,
Lasso, MLP, MLR, MPR, RBF, Ridge, SVM, and XGB algorithms, the
maximum error value is —22, 10.15, 9.53, 10.15, 9.47, —80.48, 9.84, 96,
51.84, —11.7, —13.36, —17.65, —64.74, 9.51, 51.84, —6.59, —11.55,
46.78, 54.2 and 26.27, respectively. Therefore, the MPR algorithm has
the least error and the ECR algorithm has the most error. Therefore, the
best algorithm in terms of the correlation diagram is the MPR algorithm
and the worst is the ECR algorithm. Table 2 shows the performance of
each algorithm.

Another analysis diagram is the Taylor diagram. In this diagram,

Fig. 7. Plot of experimental data with the points predicted by the
MPR algorithm.
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three indicators R, STD and RMSD are specified. Taylor’s diagram can be
seen in Fig. 6. For ANFIS, BFGS, BN, GD, LM, BPNN, DT, ECR, PLR, ELM,
GMDH, GPR, Lasso, MLP, MLR, MPR, RBF, Ridge, SVM and XGB algo-
rithms, the value of R is equal to 0.9827, 0.9927, 0.9888, 0.9927,
0.9889, 0.7054, 0.9948, 0.2299, 0.8069, 0.9641, 0.9903, 0.9839,
0.7996, 0.9877, 0.8069, 0.9961, 0.9913, 0.9708, 0.931 and 0.9946. For
ANFIS, BFGS, BN, GD, LM, BPNN, DT, ECR, PLR, ELM, GMDH, GPR,
Lasso, MLP, MLR, MPR, RBF, Ridge, SVM and XGB algorithms, the value
of RMSD is equal to 3.4975, 2.2826, 2.8378, 2.2826, 2.8085, 13.66,
1.9187, 18.955, 11.1533, 5.02, 2.6335, 3.4022, 12.4295, 3.0034,
11.1533, 1.6593, 2.4972, 9.2743, 8.7171 and 3.9572. For ANFIS, BFGS,
BN, GD, LM, BPNN, DT, ECR, PLR, ELM, GMDH, GPR, Lasso, MLP, MLR,
MPR, RBF, Ridge, SVM and XGB algorithms, the value of STD is equal to
18.6925, 18.7, 15.3369, 18.7, 18.71, 16.054, 18.783, 8.995, 15.234,
18.4112, 18.4683, 18.1558, 10.01, 19.189, 15.234, 18.807, 18.997,
10.236, 12.241 and 15.337. Therefore, the best algorithm in terms of the
correlation diagram is the MPR algorithm and the worst is the ELM
algorithm.

One of the most versatile implicit functions providing a plot of
multiple values of statistical metrics (correlation coefficient (R), stan-
dard deviation (STD), root mean square error (RMSD), etc.) is the Taylor
plot. Furthermore, Taylor plots are useful to assess and compare the
predictive performances of machine learning models in predicting
complex physical properties, e.g. viscosity. Overall, the significance of
this plot is that it gives a condensed general overview of how well the
model predicts, how much it varies around that prediction, and what
systematic bias may exist. In this plot, the correlation coefficient (R) is
the radial distance to each point from the origin. And a reading of val-
ue in a range of 1 reflects a strong relationship between the predicted
values and actual values. As shown in Fig. 6, the MPR algorithm (R =
0.9961) is more effective than ECR (R = 0.2299) and other algorithms.
An STD represents how much variability there is between the predicted
and the actual values. The nearer points to the reference point (empirical
values) are a more significant fit of the model to the data variations. The
value of the standard deviation of MPR (18.807) in the Taylor plot is
nearly identical to the true value, while ELM and ECR are far from the
reference value, indicating little ability to reproduce the variation of the
data. The root mean square error (RMSD) describes the mean deviation
of the predictions, where lower values indicate more accuracy of
the model. The error is lowest in MPR with RMSD = 1.6593, whereas
ELM (5.02) and ECR (18.955) present a much larger error in this
comparison. From a geometric relationship perspective, in a Taylor plot,
the closer the models’ points are to the reference point, the better their
performance, given that proximity signifies high correlation, low root
mean square deviation (RMSD), and STD around a true value. The
distance of the model point from the reference point shows its better
performance, and the position of the MPR close to the reference
point justifies its ability of viscosity prediction. Models with high STD
or RMSD are inaccurate or over/under-predicting viscosity. For
instance, a significant distance of the ECR from the reference point
suggests inherent issues with the accuracy and variability of its pertur-
bative predictions. Some models might outperform (2) on one criterion,
but fail on another. Specifically, ANFIS reported R = 0.9827 but with a
larger error (RMSD = 3.4975) compared to MPR, which shows the trade-
off between the accuracy of the correlation and the amount of error.
This Taylor plot sees which models learn complex and nonlinear re-
lationships. The powerful performance of the MPR demonstrates that
the proposed model is a good way to model the complex interactions of
input factors, such as volume fraction of nanoparticles, temperature, and
shear rate and viscosity. Models like ELM and ECR that have low R, high
RMSD, and disproportionate STD are bad choices and easily spotted thus
emphasizing a key issue about model choice.

According to the analysis of EC and AP, the best algorithm is the MPR
algorithm. The next goal is to extract the mathematical equations be-
tween the inputs and the output and plot the experimental data along
with the data predicted by the MPR algorithm.
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3.4. Derivation of mathematical equations between inputs and outputs

Machine learning models can address nonlinear viscosity behavior
by capturing complex relationships between the input (nanoparticle
volume fraction, temperature, shear rate) and output variables (viscos-
ity). MPR directly captures nonlinear relationships (such as y? and T°)
and interactions between independent variables (e.g., T-y) and can
closely define the properties of the hybrid nanofluid’s complex viscosity.
Neural Networks like MLP and BPNN approximate non-linear mappings
from input to output via a hidden layer or to avoid overfitting they need
to be tuned carefully. Decision tree-based models (ex, DT, and XGBoost)
construct local trends by recursively partitioning the data into partial
subsets and then modeling the nonlinear relationship. e.g. Gaussian
regression (GPR) and support vector machine (SVM): These methods
take advantage of transformations by translating the data into higher-
dimensional spaces, which lead to nonlinear relationships highlighted
by linear dependencies, thus providing very good approximations of the
viscosity as a function of input variables. This also promotes the use of
adaptive systems like ANFIS, which merges fuzzy and neural networks to
maximize flexibility in modeling the nonlinear nature and uncertainties
in nanofluid behavior. These methods enable nonlinear trends in vis-
cosity prediction to be modeled with high accuracy. Of these, the
multivariate polynomial regression (MPR) method has been identified as
the most efficient model as regressions express polynomial interactions
explicitly.

After it is determined that the MPR algorithm is superior to other
algorithms, it is possible to extract the mathematical relationships be-
tween its inputs and outputs. Equation (42) shows this mathematical
relationship.

Hnf = 542.28 + 2.370462%y+0.059%y%-1.9%e 34542, 44 Oxy4
72.24%T-0.37*T*y+2.2%e~**T*y24 5.3 ~OT*

v347.12%e 8+ Ty 3.94*T24.0,02*T2*y-1.32%e >+ T2+y2.
2.55%¢~7*T23.0.11*T3-3. 1%~ T3*y+4.05% 7 *T3+y%+
1.47%e 3*T412.,02%e ®*T*y-188.01%¢-3.44*¢*y+0.1%¢*y>-
1.3%e 3%¢*y>+6.58*e O*¢*y*+26.37**T-
0.19*(p*T*y+5.7*e_4*(p*T*yz+3.51*e_s*(p*T*yg—
0.88*(*T?45.52%e S *T2*y-1.3%e @ T2+y?+1.11%e 2**T°-
4.74%e S *T3*y-4.24%e>*@*T*-205.36* > +15.98%(>*y-0.11* >y
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7.04%e 52 THy2 1 0.28%2* T2 +6.45%e 2+ T2+y-
2.82%e 32 T34 367.62%¢>17.57**y+0.11*¢>*y2-
3.73*¢>*T+0.01*@>*T*y+0.02*¢>* T2
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It is also possible to draw a graph of the predicted points next to the
experimental points, which is according to Fig. 7. According to this di-
agram, it is clear that the MPR algorithm has a very high performance
and the predicted points are very close to the experimental points and
have a small error. In Fig. 7, we can see how the experimental data
points and the anticipated points from the MPR algorithm are visually
compared. The figure’s value is in the way it graphically shows how well
the MPR algorithm predicts the non-Newtonian hybrid nanofluid’s vis-
cosity (pne) from data collected using iron, copper, water, and ethylene
glycol. The prediction points are more accurate when they are closer to
the experimental points, as shown in Fig. 7, which compares the actual
viscosity values with the predicted viscosity values generated by the
MPR algorithm. The MPR algorithm accurately predicts the nanofluid
viscosity, as seen in Fig. 7, where the predicted points are very
congruent with the observed sites. The ability to visually compare ex-
pected and experimental results gives a clear picture of how well the
model is doing, which is a crucial confirmation of the model’s correct-
ness. Fig. 7’s tightly packed dots demonstrate that the MPR algorithm
achieves a low prediction error, in line with the quantitative error
metrics (RMSE and MAE) mentioned in Table 1.
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From Fig. 7, we can observe a good agreement between the experi-
mental viscosity (jpf) values and those predicted by the MPR algorithm.
The diagonal distribution of the points implies an excellent agreement
between the experimental and predicted values. The low scatter of data
indicates little prediction error, confirming the high performance of
MPR. MPR models the system behavior with great accuracy since it
exploits the data structure and its physical foundations making
it outperform its competitors. Although other algorithms can perform
adequately, some are unable to meet the level of accuracy due to slight
biases or poor variance. Physically, the mathematical equation resul-
ting from MPR describes the fundamental laws of nanofluids’ viscosity
with high accuracy. From a computational perspective, MPR avoids
overfitting by avoiding excessive complexity while allowing just about
the right amount of freedom to model the specifics of the data set. ECR
(Elastic Component Regression) and PLR (Partial Least Squares
Regression) algorithms suffer more errors relying on a simplification of
the problem.

4. Conclusion

This study systematically developed twenty machine-learning algo-
rithms to predict the viscosity of non-Newtonian iron-CuO/water-
ethylene glycol hybrid nanofluids. The impact of the solid volume
fraction (SVF), temperature, and shear rate on viscosity was studied, and
it was found that SVF is the most dominant parameter affecting vis-
cosity, followed by shear rate and temperature. Of the tested algorithms,
Multivariate Polynomial Regression (MPR) yielded the highest corre-
lation coefficient (R2 = 0.992) and lowest error metrics (RMSE = 1.66,
MAE = 1.146). In terms of accuracy, however, although the Extreme
Learning Machine (ELM) algorithm fared poorly, this serves to reinforce
that appropriate algorithms must be selected for tasks such as these. The
main contribution of this study is the mathematical equation derived
from MPR, to express the relationship between input variables and
viscosity in a few words. This is used for engineers and researchers to be
able to find the viscosity of a fluid without computational models. The
analysis and interpretation of model performance and results required
the use of advanced data visualization techniques, including heatmaps,
box plots, error histograms, kernel density estimation (KDE) plots and
Taylor diagrams. While it was invaluable to see the strengths and
weaknesses of each particular algorithm, it was even more valuable to
realize the features of the tools available for the complete evaluation of
predictive models. Accurate prediction of viscosity affects all parameters
such as pumping power, Reynolds number, and heat transfer coefficients
used when optimizing heat transferring systems. Though this study
targeted iron-CuO/water-ethylene glycol hybrid nanofluids, the meth-
odologies developed here are applicable to be employed in other
nanofluid systems. In future studies, more features like nanoparticle
size, shape, and surface chemistry may be included, and more sophis-
ticated approaches, such as ensemble methods and deep learning, may
be used to achieve better prediction accuracy. In summary, the current
paper demonstrates the suitability of MPR (machine learning) as a tool
for predicting the viscosity of non-Newtonian hybrid nanofluids which
could have significant theoretical and practical engineering system
implications.

5. Limitation and future direction

The analysis performed in this study only targets iron-CuO/water-
ethylene glycol hybrid nanofluids, so it might not be extended to
other incipient nanofluids or base fluids. Nanofluids with different
nanoparticle materials (e.g., graphene oxide, silver) or even completely
different base fluids (e.g., oil-based systems) may have different
behavior. Generally, y is called input parameters in the study, the study
takes only three input parameters, solid volume fraction (SVF), tem-
perature and shear rate. The model does not account for factors like
nanoparticle size, shape, surface chemistry, and aggregation effectsl
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that could affect viscosity predictions under specific conditions. Range
of Conditions Although the experimental data cover a relatively narrow
range of SVF, temperature, and shear rate values, the model is not able
to make predictions outside the ranges of the training data. If Multi-
variate Polynomial Regression (MPR) is modeled very successfully
within fitted limits, the model might tend to lose its ability to capture
non-linear trends at the tails, where complex interactions have domi-
nance. At very high temperatures for example, the rheological properties
of the nanofluid may become erratic due to thermal degradation or
phase changes. At sufficiently high shear rates, shear thinning may
enter more complex regimes that MPR cannot do justice to. While MPR
does not grapple with polynomial overfitting like polynomial regression,
there can be an overfitting risk if the underlying relationships are
particularly complex and/or noisy outside the training data range.
Since important factors like pumping power, Reynolds number, and
heat transfer coefficients are directly affected by viscosity, it is crucial to
accurately anticipate viscosity to optimize heat transfer systems. To help
engineers create coolers and heat exchangers that work better, the MPR
model provides a trustworthy and effective technique for predicting
viscosity. The simplified prediction method made possible by the
developed mathematical equation also makes it applicable to real-world
scenarios. There are a few caveats to be aware of, even if this work does
provide some great improvements in viscosity prediction. The research
only looked at one kind of hybrid nanofluid—iron-CuO/water-ethylene
glycol—so the findings may not apply to other types of nanofluids. The
SVF, temperature, and shear rate were the only variables that could be
entered. To improve the accuracy of predictions, future research may
take into account other characteristics including the size, shape, and
surface chemistry of nanoparticles. Improving prediction accuracy
might be a future research focus by investigating advanced machine
learning approaches like ensemble methods and deep learning. To
confirm the MPR model’s applicability, the research should be expanded
to include a broader variety of nanofluid compositions and operating
circumstances. One way to make the MPR model more useful in indus-
trial heat transfer applications is to include it in control and monitoring
systems that work in real-time. The paper highlights the possibility of
using machine learning methods, namely Multivariate Polynomial
Regression, to forecast the viscosity of hybrid nanofluids that do not
adhere to Newton’s laws. This study helps improve heat transfer tech-
nology by developing a strong mathematical model and determining the
main components that affect viscosity. The results provide valuable in-
sights into the behavior of nanofluids and provide practical methods for
improving engineering systems, which in turn leads to better energy
efficiency and overall performance. By utilizing deep learning models
like Convolutional (RNNs) or CNNs, it can capture those relatively
complex higher-order interactions and temporal dependencies which
might enhance the prediction performance. These models work best for
large data sets containing complex patterns. Challenges: Since deep
learning requires a lot of data and time to train molds, it does If one does
not apply data correctly, it may be said to be unnecessary. Larger models
with additional layers might not generalize effectively given the small
amount of available data (204 samples), so MPR might train sufficiently
and will outcompete more complex methods (deep learning approaches)
for this amount of data. Better Predictive Power: A model trained on
another but closely related dataset can achieve better performance on
small datasets (transfer learning). As an example, for a prediction of the
viscosity of mono-nanofluids, the same pre-trained neural network can
be fine-tuned for hybrid nanofluids. This tactic could enable more pre-
cise techniques while not asking for vast quantities of additional data.
Transfer learning would be especially beneficial in cases where one
would need to extend the model to new combinations of nanofluid
compositions or new operating regimes. The mathematical formula
obtained from the experimental results from MPR was verified and
confirmed for use in practical real-time control for heat exchangers,
cooling systems, and other industrial applications. This enables engi-
neers to change the parameters (flow rate, temperature, etc.)
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dynamically depending on predicted viscosity values. It is vital to
validate over a range of operational scenarios to deploy this model in
wide-scale industrial use. This involves testing at different flow re-
gimes, pressure levels, and contamination effects. Integrating into
Monitoring Systems: You could integrate the model into monitoring
systems with feedback loops to continuously optimize system perfor-
mance. For instance, you could set alerts or automatically adjust con-
ditions in real time based on viscosity predictions to manage the process
for optimal operation. Answers could refer to historical data recorded
during operation, which could retrain that model.
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