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Abstract. One of the worst types of cancer is skin cancer. Unrepaired deoxyribonucleic ac-

id (DNA) in skin cells results in genetic errors or mutations on the skin, which is the cause of 

skin cancer. Skin cancer is best diagnosed early because it is more treatable in its early stages 

and tends to spread gradually to other body areas. Early diagnosis of skin cancer signs is imper-

ative due to the disease's rising incidence, high death rate, and cost of care.  The accuracy of 

traditional skin cancer diagnostic techniques, especially those that depend on visual examina-

tions, is limited and not accurate, which could endanger the patient.  As a result, the use 

of Deep Learning (DL) has aided researchers in creating a variety of early detection methods 

for skin cancer. These methods employed characteristics of the lesion, such as color, size, 

shape, symmetry, etc., to identify skin cancer and differentiate it from melanoma. This paper 

proposes a new DL-based skin cancer detection and diagnosis scheme (DL-SCDDS) that uses 

the Human Against Machine 10,000 (HAM10000) dataset, a large and diverse dataset, to en-

sure an accurate yet effective diagnosis through the implementation of DL techniques, specifi-

cally Convolutional Neural Networks (CNN). Before testing, the suggested CNN model un-

derwent training, and it achieved remarkable results, accurately diagnosing seven different 

types of skin lesions with 96.9% accuracy. Additionally, the results obtained were contrasted 

with those of other studies that suggested a slightly different methodology; in these compari-

sons, the suggested model proved to be superior. 
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1 Introduction  

Globally, skin cancer is the most prevalent type of cancer. According to estimations 

from the World Health Organization (WHO), skin cancer accounts for one out of 

every three cancer diagnoses [1]. Over the past few decades, there has been a relative-

ly steady increase in the frequency of skin cancer diagnoses in nations including the 

USA, Canada, and Australia [2], [3] . Melanoma is the worst kind of skin cancer, and 

patients have a far better prognosis if it is discovered early [4]. However, there are 

insufficient medical resources and trained personnel to support the populace, particu-

larly in developing nations and rural areas [5]. Various computer-aided diagnosis 
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(CAD) systems have been presented during the past few decades to address the issue 

of skin cancer detection. With these systems, conventional computer vision tech-

niques are mostly used to extract different features, such as shape, color, and texture, 

and feed them into a classifier [6], [7]. 

 One of the most significant methods for handling this problem is deep learning (DL), 

which has been the subject of numerous studies published recently. CNN in particular 

has achieved outstanding success in this field. In a study published by [8], the authors 

used CNNs to construct a system that can distinguish between benign and skin cancer. 

The CNN method, using random regulators, achieved a 97.49% accuracy in this study 

and was able to distinguish certain skin lesions, such as nevus lesions, carcinoma, and 

melanoma. The ISIC dataset's augmentation data is used in this investigation. This 

dataset is used to distinguish benign cancer from skin cancer lesions. In their model, 

there were three hidden layers and an output channel; the model is also built with 

several optimizers, including Adam, SGD, RMSprop, Nadam, etc. The CNN model 

with the Adam optimizer achieved the best results in dataset classification, with a 

99% accuracy rate. The performance outcome guarantees that medical professionals 

can utilize the suggested model as a tool for diagnosing skin cancer.  

In contrast, a study employing automatic skin cancer detection was suggested by Ha-

san et al., 20197 where CNNs were employed to categorize cancer images as benign 

or malignant. In this study, feature extraction techniques are used to extract features 

of skin cells impacted by cancer while CNNs are used in the next stage to sort the 

extracted features. Using the publicly available data set, this method yields an accura-

cy of 89.5% and a training accuracy of 93.7%. The method can be regarded as a 

standard for the detection of skin cancer based on the experiments and evaluations in 

this work [9].  

In a different study [10], the authors suggested a novel hybrid CNN-NLP (Natural 

language processing) method in which accuracy and efficiency were im-

proved using dense layers, in addition to four convolutional layers. To cut down on 

extraneous data, two max-pooling layers are also employed. In the proposed ap-

proach, the images of skin lesions are uploaded to the system, then, the application 

categorizes the lesion, and the Chabot engages the patient. The proposed system rec-

orded a 99.35% accuracy rate with a 2.25 % training data loss. Also, an accuracy of 

83.93% and a testing data loss of 66.48% were observed. Hence, the image identifica-

tion capability of the new CNN model was accurate and efficient. Patients can easily 

interact with the application via a user-friendly environment created using NLP. 

To determine the ability of an algorithm to automatically identify a suspected skin 

cancer location and classify it as malignant or benign, Authors in [11] proposed a 

model that extracts benign lesions from images using region-based CNNs that was 

created using 924,538 potential lesions. These lesions were either manually or auto-

matically annotated in the next step. CNN was trained on 1,106,886 images for skin 

cancer location identification. A data collection of benign and normal images was also 

created using R-CNN technology; the acquired dataset was used to train the disease 

classifier and fine-image selector for the successful identification of malignant faci-

al melanoma.  

A study published in 2021 [12],  reported a study that employed CNNs to identify and 

categorize skin cancer based on historical clinical imaging data. The primary goal of 

the study is to create a CNN model with a precision level of more than 80%, an accu-
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racy of more than 80%, and a false negative rate of less than 10%. Dermatoscopic 

images of skin lesions make up the HAM10000 data set, which was employed in the 

investigation. There were 10,015 colored images in the dataset, with the majority 

having a resolution of 600 x 450. Several research articles and techniques were exam-

ined and tested. Using the HAM10000 dataset, an accuracy of at least 80% was at-

tained. The result demonstrated that the most effective method for detecting skin can-

cer is the standard CNN.  

Rezaoana et al., (2020) suggested an automated method for skin cancer identification 

and categorization that comprises the classification of nine different forms of skin 

cancer in addition to observing and assessing the behavior and capabilities of deep 

CNNs. The dataset used in this work contains 9 types of skin cancer which are nevus, 

actinic keratosis, benign keratosis, basal cell carcinoma, squamous cell carcinoma, 

seborrhoeic keratosis, melanoma, and vascular lesions; hence, this work aims to build 

a model that uses CNNs for skin cancer identification and categorization into any of 

the nine types. Image processing and deep learning methods are used in skin cancer 

diagnosis and for this process, the number of images is increased by applying differ-

ent image segmentation techniques; the accuracy and efficiency of categorization 

tasks were also improved by introducing a transfer learning strategy. The CNN-based 

approach in this study recorded an overall accuracy of 79.45 % [13].  

In their study, Pham et al. (2018) made a significant contribution by using CNNs and 

data augmentation to build a classification model for improving performance dur-

ing skin cancer classification; the study also showed how to employ im-

age augmentation to address the limited data problem. The impact of several aug-

mented samples on the performance of different classifiers was also studied using 

image augmentation; a public dataset comprising 6,162 training and 600 testing imag-

es was also used to train and test the model. Also investigated in this study is the im-

pact of each enhancement on 3 different classes; the results showed differences in the 

impact of each augmentation on the behavior and capabilities of each classified ID. 

Hence, data augmentation is considered a possible way of improving the performance 

of models in skin cancer categorization [14]. 

This study aims to expand the published literature works by developing a new, accu-

rate skin cancer classification model that can identify and differentiate 7 different 

types of skin cancer.; the proposed model was named DL-SCDDS. The model in-

volves three main phases, (i) pre-processing, (ii) building a CNN classifier model, and 

(iii) evaluation process. The proposed DL-SCDDS model uses a large and diverse 

dataset called the HAM10000 dataset. In this study, a CNN model was developed for 

this specific task; the imbalance data was handled, and GPU-accelerated training was 

used.   

This study is organized as follows: Section 2 lists the proposed methodology that aims 

to solve the research problems defined in this paper. Section 3 expresses the results 

achieved using the proposed methodology. This study is concluded in section 4 and 

future work related to the current study is mentioned. 
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2 Methodology  

DL technology has been chosen for the task of detection and diagnosing skin cancer 

in this study due to its capabilities in learning complex features and patterns and cre-

ating relationships between the data which make it possible to generalize the acquired 

knowledge into new unseen data to generate accurate results. For this reason, CNN 

has been selected. The HAM10000 dataset was chosen for training and testing the 

utilized CNN model. The details of the steps of the preparation and implementation of 

the proposed DL-SCDDS mode are presented in Figure 1. 

 

 
 

Fig 1. The workflow of the proposed DL-SCDDS model 

Initially, the HAM1000 dataset is acquired, containing 7 different classes of 

skin cancer, namely “MEL”, “BKL”, “BCC”, “VASC”, “AKIEC”, “NV”, and “DF”. 

Before feeding the acquired data to the proposed DL-SCDDS model, data pre-

processing was performed which involved many procedures; the first one is data 

augmentation [14], data normalization [12], and The last process is data resizing [14] 

(See section 2.2.). After the data pre-processing stage, the proposed DL-SCDDS 

model is fed with the processed dataset which it uses for training and learning features 

of various skin cancer legions; this will enable the model to recognize these features 

in the testing stage. During the testing stage, the trained DL-SCDDS model is chal-

lenged with new previously unknown datasets to perform classification on them; this 

is a way of evaluating the classification performance of the proposed DL-SCDDS 

model. The evaluation takes into consideration several factors such as precision, re-

call, accuracy, and F1 score. 

2.1. Dataset  

For the classifier to be able to classify skin cancer types, it must already know the 

special features of each type through prior training on a suitable dataset. In this study, 

the chosen dataset is the HAM10000 dataset which originally contained 10000 images 

[12]. The HAM10000 dataset was developed by the Department of Dermatology at 

the Medical University of Vienna, where 10,000 high-resolution images of skin can-
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cer were collected. In fact, the dataset now comprises 10015 images of pigmented 

skin cancer tissues, as 15 new images were added to the original dataset. The images 

within the dataset were collected through multiple dermo scopes, and they cover sev-

en different types of pigmented skin cancer. Furthermore, each image within the da-

taset also shows metadata including the gender of the patient from whom it was taken, 

as well as their age, and the annotation relative to the skin cancer type. The seven 

different types/classes of skin cancer are vascular lesions “VASC” such as pyogenic 

granulomas, angiokeratomas, angiomas, and hemorrhage, melanoma “MEL”, benign 

keratosis-like lesions “BKL”, melanocytic nevi “NV” (commonly known as moles), 

melanoma “MEL”, actinic keratoses “AKIEC”, basal cell carcinoma “BCC”, and 

dermatofibroma “DF”. To show samples from the dataset of all the skin lesion types, 

Figure 2 presents 16 images that were randomly selected from the HAM10000 da-

taset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Randomly Selected Samples of Images from HAM10000 Dataset [12] 

2.2. Data Pre-Processing 

Pre-processing phase of the data to be input into any image diagnosing and classifying 

system is an essential step; it improves the quality of the images such that they be-

come free of distortions and with enhanced features so that it becomes easier for the 

scheme identify the features and use them for classification. Aside from ensuring the 

high quality of the images in the dataset, data pre-processing also helps in identifying 

important features to be learned through analysis and creating correlations between 

the features. As mentioned earlier, data pre-processing in this paper involves data 

normalization, data augmentation, and data resizing.   
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In the HAM10000 dataset, data augmentation took place through random transfor-

mation of the images in the training dataset, such as rotation_range, width_shift, and 

height_shift as means of random rotations and random translations, respectively; 

shear_range and zoom_range were used as means of random shearing transformations 

and random zooming, respectively (See equations no. 1,2,3,4, and 5).  In addition to 

data augmentation, a data normalization step took place, where the data was trans-

formed into values ranging between 0 and 1.  Data normalization serves to avoid fea-

ture dominance so that the learning process is not dominated by one feature as a result 

of its scale (See equation no. 6). In addition, data normalization promotes conver-

gence and enhances the model’s performance. After that, the size of the augmented 

dataset is allocated as 244 𝑥 244 pixels, which is the data resizing step. Data resizing 

ensures that all the input data has the same uniform size since CNN models require 

that the input data has a fixed size which enables efficient batch processing and com-

patibility (See equation no. 7).  

Finally, the pre-processed images of the dataset were divided into 80% of the images 

assigned for the utilised CNN model training, and 20% assigned for model testing. 

This is to guarantee that there is sufficient data for training the model while keeping 

adequate data for testing the scheme's performance. 

[
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1

]                 (3) 

𝑝′ =  𝑝, 𝑞′ = −𝑞                             (4) 

𝑅 =  [
  cos(𝑞)   sin(𝑞)     0

−sin(𝑞)   cos(𝑞)    0
               0               0      1      

]            (5) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 =  
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑖𝑥𝑒𝑙 𝑣𝐴𝑙𝑢𝑒

255
           (6) 

𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑠𝑖𝑧𝑒𝑑 =  𝑟𝑒𝑠𝑖𝑧𝑒(𝑖𝑚𝑎𝑔𝑒, (224, 224))            (7) 

2.3. The Proposed DL-SCDDS Model 

For the skin lesion diagnosis task, CNNs [13] were chosen, being a DL architecture. 

CNNs are well known for their capabilities in image classification and recognition. 

The architecture of different CNNs may vary according to the task required, yet all of 

them have the same basic structures which are the convolutional layers and the pool-

ing layers. Each of the multiple layers within the CNN architecture performs essential 

functions in extracting hierarchical features from input images.  

The CNN model utilised in this work contained two Conv2D layers; these layers aid 

in extracting spatial features through convolutional operations; the convolutional lay-

ers in this study utilize 3x3 kernels, as well as the ReLU activation function to intro-

duce non-linearity. The 'padding' parameter was set to 'same' to ensure consistent 

spatial dimensions of the feature maps. The next layers are the MaxPooling2D layers 

which aid in reducing the spatial dimensions of the feature maps while retaining the 
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important features; the aim of the pooling procedure is to help in achieving translation 

invariance; it also reduces computational complexity via feature maps down-

sampling. To increase the number of filters, the Conv2D- MaxPooling2D layers se-

quence is repeated frequently to arrive at a hierarchical structure that allows the pro-

posed model to capture intricate patterns at different scales; it also facilitates effective 

feature learning. In the proposed model, the role of the Flatten layer is to aid in the 

transformation of the 3D spatial information into a 1D vector; this prepares the data 

for the fully connected layers. These layers, represented by Dense, perform classifica-

tion based on the learned features and introduce global dependencies. A Dense layer 

with 512 neurons is included in the proposed model, in addition to another Dense 

layer with 32 neurons; both layers are coded with the ReLU activation function. The 

Dense layer is the final layer; it consists of 7 neurons and is coded with the Softmax 

activation function; it generates the probability distributions across the 7 classes to 

enable multi-class classification. 

CNNs are efficient because they can learn hierarchical features from raw pixel values; 

this implies that there is no need for manual feature engineering. This capability 

makes CNNs particularly effective in tasks related to images, such as skin cancer 

classification. The proposed scheme, with its stack of convolutional and pooling lay-

ers, is well-suited to capture intricate patterns within dermatoscopic images, thereby 

contributing to accurate and robust skin cancer classification. 

Figure 3 illustrates the details of the layers within the proposed CNN model architec-

ture, where convolutional and pooling layers are implemented to extract features, 

whereas fully connected layers are employed for classification. The introduction of 

non-linearity is achieved through the use of Rectified Linear Unit (ReLU) activation 

functions. In the output layer, the softmax activation function generates class proba-

bilities for the multi-class classification task. 

 

3. Results and Discussions  
3.1. Training Environments  

 

Google Colab was used as the training environment employing a Tesla T4 GPU with 

15 GB of dedicated VRAM. Furthermore, the training process benefited from the 

system's 15 GB of RAM, which facilitated efficient utilization of resources. To devel-

op and implement the DL model, the TensorFlow library, along with the Keras API, 

was utilized. 
 

3.2. Testing Evaluation Metrics 
 

After the development of the CNN architecture and its training, the proposed model is 

tested on 20% of the dataset to evaluate its performance. The evaluation process al-

lows an objective assessment of the effectiveness and reliability of the tested model in 

performing the task, which in this case is classifying skin lesions. Different metrics 

can be used to assess how the model is performing during the training phase as well 

as the testing phase. 

During training, the accuracy and loss metrics were utilized to assess the proposed 

model’s classification. The accuracy is a measure of how many incidents the model 

achieves compared to the total number of classification incidents. This means that the 
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accuracy metric directly determines how well the model classifies the different clas-

ses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. CNN architecture visual representation 
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On the other hand, the loss metric is a quantitative measure of the mismatches per-

formed by the model.  It also measures the fitting capabilities of the model. The accu-

racy and loss of the proposed CNN model are shown in Figure 4. According to the 

figure, the training and validation accuracy increases gradually as the ephocs number 

increases, until it reaches the maximum at 15 epochs, where the model reaches a peak 

training accuracy of approximately 100%, with a corresponding validation accuracy 

of around 97.9%. 

On the other hand, the training and validation loss decreases gradually as the number 

of ephocs increases, until it reaches the maximum value at 15 epochs. The training 

was stopped early during epoch 26 due to minimal further improvement. The learning 

rate was reduced at specific points marked by vertical dashed lines, responding to 

plateaus observed in validation performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  Accuracy and Loss evaluation during training and validation 

In testing process, many metrics were be used to assess the proposed model’s perfor-

mance including recall, accuracy, f1-score, and precision [15], [16], [17]. All these 

metrics rely on True Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN).  Equations 8,9,10,and 11 illustrate the utilized performance 

metrics. 

   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 
                    (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃 
(9)  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁 
                                      (10) 
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𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2× (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
            (11) 

The testing results in terms of recall, accuracy, f1-score, and precision are portrayed 

in Table 1, such that the accuracy of the proposed model was 96.955% indicating that 

out of all the instances or samples in the dataset, the CNN classifier accurately classi-

fied 96.9% of them correctly. Whereas the precision was 1.00 and the recall was 0.96. 

A precision of 1.00 indicates that all the positive predictions made by the classifier 

were correct. In other words, there were no false positives in the predicted positive 

instances, while a recall of 0.96 signifies that the classifier correctly identified 96% of 

the actual positive instances in the dataset. The achieved F1 score was 0.98, represent-

ing a high overall performance in classifying different skin lesions. An F1 score of 

0.98 suggests that the classifier achieved a high level of accuracy in both correctly 

identifying positive instances (precision) and capturing a large proportion of the actu-

al positive instances (recall). It indicates that the classifier is performing very well in 

terms of both lessening false positives and false negatives. 

 
Table 1. Testing Accuracy, Precision, Recall, and F1 Score of the Proposed Scheme. 

Metric type Accuracy Precision  Recall  F1-Score  

Proposed model 96.955% 1.00 0.96 0.98 

 

Additionally, a confusion matrix was generated, presenting a visual summary of 

the model's performance for each class. This matrix showcases the counts of false 

negatives, true negatives, false positives, and true positives. Figure 5 shows the 

confusion matrix of the performance of the Proposed DL-SCDDS model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Confusion matrix of the performance of the proposed model. 

 

In Figure 5, the rows represent the true class labels, while the predicted labels are 

represented in columns. The numbers within each cell designate the number of in-
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stances. The matrix is color-coded as a heatmap, where lighter shades represent high-

er counts. This matrix serves as a diagnostic tool, offering a clear overview of the 

classification accuracy and potential misclassifications across various classes. In more 

detail, the confusion matrix in Figure 5 shows the following classes were perfectly 

predicted by the model: DF, VASC, AKIEC, BCC, and BKL, where each class was 

always classified correctly as itself. Conversely, the MEL class was incorrectly classi-

fied once (1 time) as NV. However, NV was the class with the highest misclassifica-

tion rate, where 1311 instances were correctly classified, 34 were incorrectly classi-

fied as MEL, 21 were incorrectly classified as BKL, 4 were incorrectly classified as 

BCC, 2 were incorrectly classified as AKIEC, and 2 others were incorrectly classified 

as VASC.  The heatmap associated with the counts emphasizes and highlights them 

visually, allowing for a clear comprehension of the model's strengths and areas that 

need improvement. This visual tool is essential for evaluating the overall accuracy of 

the classification and identifying specific challenges in the model's predictive abili-

ties. 
 

3.3. Results and Discussion 

In classifying various skin lesions, the proposed DL-SCDDS model achieved im-

pressive results, scoring 96.9% classifying accuracy. The efficiency of the proposed 

model has also been backed up by the high precision, recall, and F1-score values dur-

ing the testing stages. Notably, the model even achieves perfect scores in multiple 

class classifications, such as the DF class, VASC class, BCC class, and others. 

Whereas in the challenging classes such as the NV class, the model was able to 

achieve 1.00 precision and 0.96 recall, which also indicates the high capabilities of 

the CNN model in identifying the 7 different classes of skin lesions.  

To gain a better overview of the performance of the proposed model, it is possible 

to compare its results with results achieved by other models in other studies. For in-

stance, the study by [18]aimed to classify skin lesions using an incremental CNN 

model. Their approach relies on training the classifier by incremental method rather 

than being trained all at once. The process includes 4 different steps to ensure that the 

model is well-trained. To perform the classification task, their model was trained on 

the International Skin Imaging Collaboration (ISIC) 2018 challenge Dataset which 

also includes the seven skin lesion classes, similar to the HAM10000 dataset. Their 

approach with the incremental CNN model was able to achieve good results, which 

were better than the results of regular CNN using the same dataset. Their achieved 

accuracy was 90% compared to 64% achieved by the regular CNN model.   

Another study by [19]also discussed the task of skin lesion classification using a 

CNN architecture and utilizing the HAM10000 dataset as well. The study aimed to 

classify all 7 seven types of skin lesions as well. Their developed CNN model was 

made up of 4 layers (4-CNN) with 2 max-pooling layers (Pool1, Pool2), 6 batch nor-

malization layers, 4 dropout layers, and 4 fully connected layers. Their model was 

able to achieve good results overall with 93% accuracy.  

In comparison to the results achieved by these two papers, the proposed DL-

SCDDS model achieves much better results in terms of accuracy, precision, recall, 

and F1 score. The comparison of the results is shown in Table 2. 
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Table 2. Comparison of the performance of proposed model opposed to other models 

References  Accuracy Precision  Recall  F1-Score  

Proposed model 96.955% 1.00 0.96 0.98 

[18] 90% 0.88 0.87 0.86 

[19] 93.6% 0.91 0.98 0.95 

 

The model by [18]achieved 90% accuracy, 0.88 precision, 0.87 recall, and 0.86 F1-

score, as opposed to the model by UdriȘtoiu AL et al. which achieved 93.6% accura-

cy, 0.91 precision, 0.98 recall, and 0.95 F1-score as shown in Table 3.  

Table 2 shows that the proposed model performs better than the models of [18]and 

[19] in terms of precision, f1 score, Recall, and accuracy. It is clear that the proposed 

model achieved 96.9% accuracy, which is the highest accuracy followed by UdriȘtoiu 

AL model (93.6%), then the Ankir model (90%). Furthermore, the proposed model 

scored higher precision (1) compared to UdriȘtoiu AL (0.91) than Ankir (0.87). The 

recall values were slightly lower for the proposed model (0.96) as opposed to a higher 

score for the UdriȘtoiu AL model (0.98) followed by the lowest recall value scored by 

the Ankir model (0.87). Finally, the F1-score was highest for the proposed model 

(0.98) followed by the UdriȘtoiu AL model (0.95) then the Ankir model (0.86). Col-

lectively, the proposed model performed better than most of the mentioned models in 

this study. 

 

3.4. Conclusion 
Timely detection and diagnosis of skin cancer is important for its proper manage-

ment; it facilitates more efficient and faster treatment. CNNs have been discovered as 

advanced techniques for skin lesion diagnosis as they can learn complex patterns and 

features from skin images; they are mostly trained on large datasets for accurate skin 

lesion classification; the training enables automated and efficient screening of skin 

lesions, thereby assisting in reducing human error. A DL model, specifically the CNN 

model, was developed in this work for skin cancer classification using dermatoscopic 

images; the proposed DL-SCDDS scheme performed excellently by achieving 

96.955% test accuracy on the HAM10000 dataset the comparative study with two 

referenced studies also showed the proposed model to record the best test accuracy; it 

also recorded better precision and recall across various skin lesion classes. The preci-

sion-recall balance achieved in our model highlights the potential for reliable and 

accurate skin cancer diagnosis.  
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