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Abstract. Person re-identification is a challenging task because of the
high intra-class variance induced by the unrestricted nuisance factors of
variations such as pose, illumination, viewpoint, background, and sensor
noise. Recent approaches postulate that powerful architectures have the
capacity to learn feature representations invariant to nuisance factors, by
training them with losses that minimize intra-class variance and maxi-
mize inter-class separation, without modeling nuisance factors explicitly.
The dominant approaches use either a discriminative loss with margin,
like the softmax loss with the additive angular margin, or a metric learn-
ing loss, like the triplet loss with batch hard mining of triplets. Since the
softmax imposes feature normalization, it limits the gradient flow super-
vising the feature embedding. We address this by joining the losses and
leveraging the triplet loss as a proxy for the missing gradients. We further
improve invariance to nuisance factors by adding the discriminative task
of predicting attributes. Our extensive evaluation highlights that when
only a holistic representation is learned, we consistently outperform the
state-of-the-art on the three most challenging datasets. Such represen-
tations are easier to deploy in practical systems. Finally, we found that
joining the losses removes the requirement for having a margin in the
softmax loss while increasing performance.

Keywords: Person Re-Identification · Discriminative Learning · Metric
Learning.

1 Introduction

Person re-identification [2,19,26,44] is the task of assigning the same identity to
tightly cropped images of people, based solely on their whole body appearance
information. The problem is challenging because distinct images of the same
person may look very different, since no restrictions are imposed on the nui-
sance factors of variation, such as pose, illumination, viewpoint, background,
and sensor noise, causing a high intra-class variance.

In order to address that challenge, the research landscape has evolved from
developing feature-based models [8,21] coupled with metric learning [38], to de-
veloping dedicated deep learning architectures [48] trained with classification and
verification losses [18], to developing specialized deep learning schemes [47,41]
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aiming at extracting more robust feature embeddings by leveraging powerful
pretrained backbone architectures like ResNet-50 [11]. In addition to that, some
recent works [20,43,33,4,17] used person attributes such as gender, upper and
lower body clothing colors, carrying handbag and backpack as a powerful com-
plementary information to improve the performance of person re-identification.
These attributes have more discriminative information about person images, and
are invariant to nuisance factors, and they could help with coping with intra-class
variations.

Among the more recent trends, there has been also the idea of learning feature
embeddings directly suitable for re-identification, by improving the ability to
control how losses deal with intra-class and inter-class variances, while giving
much less importance to the explicit modeling of the nuisance factors of variation.
These approaches focus on learning a holistic representation of the image of a
person. They are simpler to deploy, and incorporate in a retrieval system. There
are two main lines of work. The first one has focussed on improving the triplet
loss derived from metric learning [39,13]. The second line of work has focused on
improving the softmax loss used for classification, via normalizing weights and
representations [23,36,6]. However, we note that restricting the embeddings to
live on a hypersphere limits the gradient flow supervising the embedding under
training, which could potentially generate a performance gap.

In this work, we improve the learning of a holistic representation in the form
of a feature embedding for person re-identification. Inspired by the previous
observation, we do so by incorporating the latest findings on the softmax and
triplet losses in a revised combination of such losses, which includes also the
learning of multiple discriminative tasks, given by the identity classification and
the prediction of attributes. The intent is for the triplet loss to help the soft-
max further decrease intra-class variation, and increase inter-class distance by
letting the triplet loss be the proxy for the gradient supervision that the em-
bedding normalization has restricted, and we specify under what conditions this
may happen. We also observe that the same strategy used to form the batch
of triplets can be used in tandem with the softmax loss to prevent issues due
to dataset imbalance, which are common in person re-identification. In addi-
tion, we add the discriminative task of learning attributes to further increase
robustness against nuisance factors. We perform an extensive evaluation of the
proposed combination of losses with and without using person attributes on the
latest person re-identification datasets. We found that this approach can achieve
competitive performance with the state-of-the-art, and that the combined loss
does not require the softmax component to use any margin.

2 Related Work

Person re-identification is a challenging task due to the nuisance factors of vari-
ation, such as pose, illumination, viewpoint, background clutter, spatial mis-
alignment, etc. There is a large literature in this area [42], and two predominant
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directions for tackling the problem are based on metric learning [2,14,19,26,44],
and discriminative feature representation learning [8,21,24].

Recent works use deep learning to learn robust feature representations [42].
[40] proposes to jointly learn features from multiple domains and then finetuning
with domain guided drop out for the specific domain. [1] offers a deep convolu-
tional architecture trained on pairs of images capable of learning features and
similarity metric simultaneously. [3] combines the CRF model with DNN to
learn more consistent multi-scale similarity metrics for person re-identification.
[32] employs partition strategy on convolutional features, and [7] learns em-
bedding of the person image on a hypersphere manifold using a spherical loss.
Differently from [7], our proposed model uses a simpler architecture and fo-
cusses on combining a margin based softmax loss with a triplet loss to expand
feature embedding hypothesis. [45] detects body regions that are discriminative
for person re-identification, while [16] learns full body and body parts features
through a multi scale context aware network. [15] addresses the limitation of
CNNs in representing person images with large variations in body pose and
scale by proposing a module to conclude the receptive fields according to the
pose and scale of the input person image. [41] explores diverse discriminative
visual cues without the assistance of pose estimation and human parsing, and
[34] proposes a Fully Attention Block (FAB) plugged into a CNN to overcome
the misalignment problem and to localize discriminative local features. Genera-
tive adversarial networks (GANs) [10] have been used in person re-identification.
[9,27,47] aim at decoupling pose information from image features via adversarial
learning.

Person attributes have been used in person re-identification leading to im-
proved robustness against variation of viewpoint, illumination and pose. [20]
manually annotated person attributes for the Market-1501 [46] dataset and
the DukeMTMC-ReID [49] dataset. It proposes the attribute-person recognition
(APR) network. [43] transforms attribute recognition from a high level layer to
a mid level layer, and [22] jointly learns appearance and attribute representa-
tions via multi-task learning. To learn discriminative person body parts, [33] uti-
lizes person attribute information by integrating attribute features with identity
and body part classification. [4] proposes a multi task network to learn identity
part-level representation and an attribute global representation. [17] uses person
attributes to detect attribute body parts or handle body parts misalignment.

3 Proposed Approach

For the person re-identification task, given a tightly cropped image sample of
a person, I, we are seeking to learn a feature embedding fθ(I), defined by the
set of parameters θ, which is as invariant as possible to the nuisance factors of
variations. Rather than attempting to model nuisance factors, current deep neu-
ral network architectures have shown the promise to cope with their effects, by
shifting the focus on designing clever training practices, as well as loss functions.
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Fig. 1. Architecture. Simple graphical description of the joint optimization of the
multi-task re-identification loss, based on a multi-class classification (2) (for the iden-
tities), a multi-label classification (3) (for attributes), and a metric learning loss (5).

Here we intend to further explore this holistic-based approach and shed light on
additional aspects of this line of work.

3.1 Classification Losses

A succesful strategy for learning the embedding fθ is through the use of a classi-
fication loss such as the categorical cross-entropy, which entails adding a softmax
layer after the embedding. This leads to the loss

LS(θ,W, b) = −
1

N

N∑

i=1

log
eW

⊤
yi

xi+byi

∑n

j=1 e
W⊤

j xi+bj
, (1)

where xi = fθ(Ii) ∈ R
d is the embedding of Ii, which has identity yi. Moreover,

W = [W1, · · · ,Wc] ∈ R
d×c and b = [b1, · · · , bc] are the weights and biases of the

softmax layer, while N is the batch size.
Given two images Ii and Ij of the same identity, i.e., yi = yj , the softmax

loss (1) will strive to make the target logit in position yi be the highest for both
images. While this should encourage fθ(Ii) and fθ(Ij) to be close, in general,
there is not an explicit effort to impose fθ(Ii) = fθ(Ij). This leads to a perfor-
mance gap, given the large intra-class variability of the person re-identification
task due to nuisance factors, which easily cause identity miss-classifications.

Within the context of face recognition, the issue above has beeen mitigated
by taking several steps. First, every logit is produced by comparing the input
against ℓ2-normalized weights [23,36,35], i.e. ‖Wj‖ = 1. This reduces by one
the degrees of freedom by which two different logits could become equal, when
activated by images Ii and Ij respectively, each of which depicting the same
identity, i.e., yi = yj. Second, the input of every logit is also ℓ2-normalized [36],
i.e. ‖xi‖ = 1, and rescaled to a temperature value s. This further reduces the
degrees of freedom by which different logits could become equal, by imposing
the embeddings to be defined on the hypersphere of radius s. Also, this suggests
using cosine similarity as the metric for comparison between inputs and weights.

While input and weight normalizations positively contribute towards reduc-
ing intra-class variability, it is possible to further reduce the spread of the embed-
dings of the samples with same identity. This is done by introducing a margin in
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the cosine similarity, cos(α), of the target logit. Doing so would further pull the
embeddings closer to make up for the loss of similarity induced by the margin.
There are at least three basic ways to add a cosine similarity margin [23,6,36].
In [6] it is shown that for face recognition the additive angular margin m is the
most effective, which reduces (1) to

LAM (θ,W ) = −
1

N

N∑

i=1

log
es cos(αyi

+m)

es cos(αyi
+m) +

∑
j 6=yi

es cosαj
, (2)

where we have set b = 0 for simplicity, as in [23]. In the experiments we explore
the effectiveness of (2) for person re-identification. Its action should be to mini-
mize the intra-class variation, while the denominator attempts to maximize the
inter-class discrepancy by distancing the weights on the unit hypersphere.

We further push the training of the embedding to become invariant to the
nuisance factors by leveraging the attribute labels. Assuming that a person im-
age I is described by M binary attributes, the original embedding fθ(I) is now
split into the inputs of two heads, fθid and fθa , for predicting identity and at-
tributes, respectively. The first input fθid will be trained according to (2), which
we indicate more specifically as LAMid

(θid,Wid).
The second input fθa for attribute prediction is still normalized and the head

weights are normalized as well to minimize intra-class variability and maximize
the correct prediction of the attributes. However, since every attribute is binary
(i.e., present or not), in order to implement the normalization strategy, and
leverage the additive angular margin loss [6], we cannot treat this as a multi-
label problem where we use the binary cross-entropy loss for every attribute.
Instead, we must use a categorical cross-entropy loss for every attribute where
the number of categories is 2. Therefore, the corresponding loss for this pool of
M classifiers becomes

LAMattr
(θa,Wa) = −

1

N

N∑

i=1

M∑

k=1

log
es cos(αak,i

+m)

es cos(αak,i
+m) + es cos ᾱak,i

, (3)

where ᾱak,i
indicates the input to the cosine corresponding to the option where

the attribute is not present. The final multi-task classification loss imposed on the
identities and attributes is the sum of LAMid

(θid,Wid) and (3). Also, note that
θid and θa actually share a significant amount of weights, since they only differ
for the weights in the last layer, leading up to the two embedding components
fθid and fθa. They are indicated in that way to limit notation clutter.

3.2 Metric Learning Loss

By learning a metric embedding we directly train a function fθ that maps images
of the same identity as close as possible, effectively minimizing the intra-class
variability of the embeddings, while images of different identities are mapped far
away, creating a large inter-class discrepancy. In [39] they developed a margin
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based approach for k-nearest neighbor classification, which has then inspired the
triplet loss formulation of FaceNet [28] as follows

LT (θ) =
∑

(a,p,n) s.t. ya=yb 6=yn

[m+D(fθ(Ia), fθ(Ip))−D(fθ(Ia), fθ(In))]+ (4)

where D(·, ·) denotes a suitable distance, and [·]+ is the hinge function, but other
surrogates could be used, such as the softplus function ln(1+exp(·)). The triplet
loss (4) operates by ensuring that the distance between a positive sample Ip and
an anchor Ia, which have same identities, is smaller than the distance between
the ancor and a negative sample In, which has a different identity, at least by
a margin m. When the loss is optimized over a large combination of triplets
(Ia, Ip, In), it pulls embeddings of the same identity, while pushing apart those
with different identities.

The challenges in using the triplet loss are related to the cubic growth in the
number of triplets as the dataset size grows, and in forming meaningful triplets.
It turns out that the embedding can quickly learn how to correctly map easy
triplets. Conversely, focusing on selecting very hard triplets may not be very
useful too, because we would teach the embedding how to map outlier cases,
while overlooking how to handle well “average” cases. This is why it is important
to efficiently mine moderate positives and negatives [28,30].

As described in [13], it turns out that there is an effective way to address
both of the issues above. Triplets can be formed out of selecting P identities,
and K samples per identity, with a total of PK samples in a batch. Since we
are operating only within a batch, these hard selections will not be outliers,
but mostly non-trivial moderate cases. In addition, this approach avoids the
overhead induced by mining moderate cases from the full dataset processed by
the latest update of fθ. This procedure, named batch hard [13], changes (4) into

LBH(θ) =

P∑

i=1

K∑

a=1

[m+max
p

D(fθ(I
i
a), fθ(I

i
p))− min

j,n,j 6=i
D(fθ(I

i
a), fθ(I

j
n))]+ . (5)

3.3 Joint Classification and Metric Loss

Besides evaluating the additive angular magin softmax loss (2) and the batch
hard triplet loss (5) on the most recent re-identification datasets, we plan to
study their contribution into a joint loss

LAMBH(θ,W ) = LAM (θ,W ) + γLBH(θ) . (6)

where γ is a hyperparameter balancing the relative strengths of the losses.
There are a couple reasons that motivate the exploration of the join loss (6).

The first one comes from observing that a major drawback of the loss (2) is that
the gradient ∇θLA is proportional to the gradient ∇θ f̃θ, where f̃θ

.
= fθ/‖fθ‖

because of the ℓ2 normalization of the softmax inputs. Since f̃θ lives on the
unit hypersphere, the gradient ∇θ f̃θ will always be tangent to it. Therefore, no
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gradients perpendicular to the hypersphere will be back-propagated to supervise
fθ for reducing the intra-class variability of the embedding, while maximizing
the inter-class discrepancy. This issue suggests that adding a regularizing term
to the loss (2), which allows orthogonal gradients to flow back could increase the
hypothesis space exploration of the embedding fθ, and better become invariant
to nuisance factors of variation.

By adding (5) to (2) as in (6), we are addressing the issue highlighted above.
Indeed, the intent of (5) and (2) is the same, but in (5) we do not have the
requirement for fθ to be ℓ2 normalized. Hence, by picking a distance D(·, ·)
that does not normalize the embedding, (6) enables the gradient to flow in all
directions. In [6] they attempted merging (2) with (4) without success, but there
they used a distance with a normalized embedding, which we advocate not to use
in this case. In our experiments, we picked D(·, ·) to be the Euclidean distance.

The second reason for using (6) comes from the composition of a batch, which
has certain requirements because of the batch hard mining. We note that the
same batch made of N = PK samples can actually be used for the loss (2). More
importantly, this approach may prevent issues related to imbalanced data. Since
datasets for person re-identification may have identities with a lot more samples
than others, sampling a constant number of identities, from which we sample
a constant number of images, imposes the embedding to be trained uniformly
across the identities, rather than being under/over trained on some of them. In
all of our experiments we sample the batches as it is done for the batch hard
mining, regardless of the loss that we use.

Moreover, we note that since the loss (5) exercises a set of push-pull forces,
it might be that when used as in (6), the effect of the additive angular margin
in (2) could become less relevant. Indeed, this is one of our conclusions.

In addition to (6), we also replace the classification loss with the multi-
task loss including the identity component LAMid

(θid,Wid), and the attribute
component (3). This leads to the full re-identification training model, given by

LAMBHAttr
(θ,W ) = LAM (θid,Wid) + λLAMAttr

(θa,Wa) + γLBH(θid) , (7)

where λ and γ are hyperparameters that stryke a balance between the identity,
the attributes, and the metric learning terms.

3.4 Network Architecture

As in most of the recent literature on person re-identification, we use a pretrained
ResNet-50 [11] as backbone network. We simply discard the fully connected
layer, and we change the stride of the last convolutional stage from 2 to 1.
We then add a global average pooling (GAP) layer and a batch normalization
layer (BN). The dimensionality of the embedding features is 2048. At this point
weight normalization and ℓ2 feature normalization is applied before entering the
additive angular margin softmax loss (3), while no normalization is needed for
the batch hard triplet loss component (5). Figure 1 is a simple exemplification of
the architecture. During testing, unless otherwise specified, we perform all the
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Table 1. Comparison with the sate-of-the-art methods on Market-1501 and
DukeMTMC-reID. The best and second best are shown in red and blue respectively.

Market-1501 DukeMTMC-reID

Method Backbone Rank-1 mAP Rank-1 mAP

FD-GAN [9] ResNet 90.5 77.7 80.0 65.4
Part-aligned [31] GoogleNet 91.7 79.6 84.4 69.3
SGGNN [29] ResNet 92.3 82.8 81.1 68.2
PCN+PCP [4] ResNet 92.8 78.8 85.7 71.2
Mancs [34] ResNet 93.1 82.3 84.9 71.8
APDR [17] ResNet 93.1 80.1 84.3 69.7
DeepCRF [3] ResNet 93.5 81.6 84.9 69.5
PCB [32] ResNet 93.8 81.6 83.3 69.2
AA-Net [33] ResNet 93.9 83.4 87.7 74.3
IA-Net [15] ResNet 94.4 83.1 87.1 73.4
SphereReID [7] ResNet 94.4 83.6 83.9 68.5
CAMA [41] ResNet 94.7 84.5 85.8 72.9
DG-Net [47] ResNet 94.8 86.0 86.6 74.8

AM0BH (Ours) ResNet 94.6±0.21 85.9 ±0.28 89.2±0.40 76.7±0.26

AM0BHAttr (Ours) ResNet 94.9±0.13 86.3±0.10 89.3±0.19 77.4±0.14

experiments with the ℓ2 normalized embedding fθ/‖fθ‖, and re-identification is
done via cosine similarity. Specifically θ is actually θid, when the network has
been trained with the full model (7).

4 Experiments

We evaluate our model on three person re-identification datasets. Every evalu-
ation was repeated 10 times. We report the average performance metrics with
their standard deviations for the following datasets.

Market-1501: contains 32668 images of 1501 identities captured by six cam-
eras [46].

DukeMTMC-reID: contains 36441 images of 1812 identities captured by
eight high resolution cameras [49].

MSMT17: is the most recent and challenging person re-identification dataset.
It contains 126441 images of 4101 identities captured by 15 cameras [37].

We use the data provided in [20] as attribute labels for Market-1501 and
DukeMTMC. These attributes are manually annotated at the identity level.
There are 27 attributes for Market-1501 and 23 attributes for DukeMTMC.
Some examples of attributes include: gender, hair length, carrying backpack,
carrying handbag, wearing hat, different upper body and lower body clothing
colors, length and type of lower body clothing, shoe type and shoes color.

4.1 Implementation Details

We implemented our approach with PyTorch [25], and for the backbone network
we use ResNet-50 [12] pre-trained on ImageNet [5]. The batch size is 32 where
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Table 2. Comparison with the-sate-of-the-art methods on the MSMT17 dataset. The
best and second best are shown in red and blue respectively.

Method Backbone Rank-1 Rank-5 Rank-10 mAP

PCB [32] ResNet 68.2 81.2 85.5 40.4
IA-Net [15] ResNet 75.5 85.5 88.7 46.8
DG-Net [47] ResNet 77.2 87.4 90.5 52.3

AM0BH (Ours) ResNet 78.1±0.40 88.3±0.13 91.2±0.19 53.4±0.32

P = 4 and K = 8. For the Market-1501 dataset the input image size is 256×128
while it is 288× 144 for DukeMTMC-reID and the MSMT17 datasets.

For data augmentation, training images are randomly flipped and erased.
The model is trained using the Adam optimizer with default hyper parameters
for 150 epochs. The learning rate is linearly increased from 10−5 to 10−3 for the
first 20 epochs to help the network bootstrap. Then the learning rate is set to
10−3 after the first 20 epochs, and it decreases to 10−4 and 10−5 after epochs
90, and 130, respectively.

There are two settings for our proposed approach. The first one, AM0BH,
uses the joint loss (6) with no attributes. γ is 0.43, 0.5 and 0.4 for Market-1501,
DukeMTMC-reID and MSMT17, respectively. The second setting, AM0BHAttr,
leverages the full model (7). The 2048 embedding features are divided into fθa
and fθid . fθa has size M ×Q, where M is the total number of attributes and Q
is the size of the input features to each of the attribute classifiers. Q is set to 16.
The rest of the embedding features, fθid , is the input to the identity classifier
and triplet loss. In (7) we set λ to 0.25 and γ to 0.54 for Market-1501. While for
DukeMTMC-reID, we set λ to 0.2 and γ to 0.33.

4.2 Comparison with State-of-the-Art Methods

The performance is evaluated by CMC (Cumulative Matching Characteristic)
and mAP (Mean Average Precision) after computing the matching score between
the probe image and gallery images. We discard the score if the probe image and
galley image are from the same view.

To show the performance of our proposed approach, we compare it with the
state-of-the-art methods on three person re-identification dataset. However, we
are not able to implement AM0BHAttr on MSMT17 since there is no attributes
annotation available. Table 1 shows the results on Market-1501 and DukeMTMC-
reID. For Market-1501, AM0BH outperforms most of the state-of-the-art and
the performance is close to the best, i.e., DG-Net [47] in terms of rank-1 and
mAP. While for DukeMTMC-reID, AM0BH outperforms the state-of-the-art by
achieving 89.2% on rank-1 and 76.7% mAP. Table 2 shows results on MSMT17.
The proposed AM0BH outperforms DG-Net [47] by a gap of 0.9%, 0.9%, 0.7%
and 1.1% for rank-1, rank-5, rank-10 and mAP respectively. By using attributes,
AM0BHAttr further improves the performance over AM0BH by 0.3% and 0.4%
for rank-1 and mAP for Market-1501, and by 0.1% and 0.7% for rank-1 and
mAP for DukeMTMC-reID.



10 S. I. Sabri et al.

Table 3. Ablation study. Shows the effect of different loss combinations. Losses: a)
AM0 - softmax loss (2) when margin is set to 0; b) AM - softmax loss (2) when margin
is set to 0.5; c) BH - batch hard triplet loss (5); d) AM0BH1 - softmax loss when
margin is set to 0 combined with batch hard triplet loss with feature normalization; e)
AMBH - softmax loss when margin is set to 0.5 combined with batch hard triplet loss;
f) AM0BH - softmax loss when margin is set to 0.0 combined with batch hard triplet
loss; g) AM0BHsp - softmax loss when margin is set to 0.0 combined with batch hard
triplet loss with softplus function instead of hinge loss.

Loss Market-1501 DukeMTMC-reID MSMT17

Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP
AM0 92.86±0.34 97.57±0.12 98.47±0.04 83.67±0.17 87.74±0.29 94.06±0.17 95.62±0.35 74.60±0.30 77.50±0.25 87.80±0.30 90.78±0.18 51.82±0.19

AM 94.16±0.23 98.04±0.21 98.92±0.08 84.54±0.22 88.31±0.18 94.34±0.48 95.78±0.24 75.51±0.16 78.20±0.28 88.15±0.42 91.15±0.35 53.00±0.49

BH 84.74±0.23 94.64±0.36 96.74±0.13 67.40±0.46 81.60±0.49 91.02±0.38 93.46±0.18 65.16±0.31 56.34±0.92 73.26±0.99 79.30±0.70 30.86±0.67

AM0BH1 94.28±0.13 97.90±0.20 98.80±0.07 84.52±0.16 88.02±0.18 93.96±0.27 95.48±0.26 74.56±0.32 77.46±0.13 87.64±0.15 90.60±0.19 51.86±0.22

AMBH 93.29±0.40 97.80±0.11 98.70±0.14 84.00±0.09 88.18±0.46 94.62±0.17 96.19±0.18 76.71±0.21 77.93±0.47 88.07±0.47 91.07±0.38 52.70±0.53

AM0BH(Ours) 94.64±0.21 98.22±0.16 99.02±0.11 85.90±0.28 89.20±0.40 94.72±0.33 96.26±0.17 76.68±0.26 78.14±0.40 88.34±0.13 91.24±0.19 53.44±0.32

AM0BHsp(Ours) 94.42±0.15 98.22±0.19 99.02±0.13 85.76±0.19 88.79±0.31 94.85±0.22 96.32±0.19 77.42±0.3 78.26±0.27 88.38±0.11 91.20±0.14 53.36±0.40

4.3 Ablation Study

In the ablation study we compare different loss combinations on all three datasets
used in Section 4.2. First, we examine how the identity classification loss (2), and
the metric loss (5) behave independently. The summary results of this experiment
are included in Table 3. Then we examine different combinations.

Identity classification loss. We start by examining the additive angular
loss applied for identity classification (2). When the margin is set to 0 (row AM0
in Table 3), this case is equivalent to the loss described in [7]. Then, we use the
loss (2) when the margin is set to 0.5, as in [6] (row AM in the Table 3). We
observe a significant improvement of all metrics, which proves that the additive
angular margin has a positive effect when the softmax loss is used alone.

Metric learning loss. We continue by examining batch hard triplet loss (5).
This is the row BH in Table 3. It can be seen that this loss alone underperforms
the identity classification losses in rows AM, and AM0.

Identity classification and metric learning losses. We analyze four
cases: the combination of AM0 and BH, the combination of AM and BH, the
combination of AM0 and BH with feature normalization for BH, and the com-
bination of AM0 and BH with softplus instead of hinge loss.

Combination of AM0 and BH. The combination of the softmax loss (2) with
margin set to 0 and batch hard triplet loss (5) is presented in the row AM0BH
of Table 3. We observe improvement on almost all metrics compared to AM0 or
BH individually, which signifies that they complement each other.

Combination of AM and BH. The combination of the additive angular mar-
gin softmax loss (2) with margin set to 0.5 and the batch hard triplet loss (5) is
presented in the row AMBH of Table 3. We observe that it does not provide im-
provement compared to AM0BH. This means that the angular margin becomes
less relevant, since the batch hard triplet loss exercises a set of push-pull forces
that is likely comparable to the effect of the margin, and might even generate
conflicts when this is present, leading in this case, to results closer to AM alone.



Joint Discriminative and Metric Embedding Learning for Person Re-ID 11

Market-1501

4 8 16 24 32

Q

80

85

90

95

100

P
e
rf

o
rm

a
n
c
e
 (

%
)

Market-1501

4 6 8 10

P

80

85

90

95

100
Market-1501

4 6 8 10 12 14

K

80

85

90

95

100

DukeMTMC-ReID

4 8 16 24 32

Q

70

80

90

100

P
e
rf

o
rm

a
n
c
e
 (

%
)

DukeMTMC-ReID

4 6 8 10

P

70

80

90

100
DukeMTMC-ReID

4 6 8 10 12 14

K

70

80

90

100

Fig. 2. Ablation study. Shows the effect of Q, P and K on the performance of
AM0BHAttr. Q is the size of embedding features fed to each attribute classifier, P is
the number of identities in each mini-batch (P is fixed to 4) and K is the number of
samples per identity in each mini-batch (K is fixed to 8).

Combination of AM0 and BH with normalized features. The combination of
the softmax loss (2) with margin set to 0, and the batch hard triplet loss (5) with
normalized features is presented in row AM0BH1 of Table 3. We note a decreased
performance, when compared with row AM0BH. As described in Section 3.3, this
might be due to the feature normalization prior to the triplet loss, which forces no
gradients perpendicular to the hypersphere to be back-propagated to supervise
fθ. Removing that constraint would allow the orthogonal gradients flow that
could increase the hypothesis space exploration of the embedding fθ.

Combination of AM0 and BH with softplus. The combination of the softmax
loss (2) with margin set to 0 and batch hard triplet loss (5) with softplus function
instead of the hinge loss is presented in row AM0BHsp of Table 3. It shows overall
similar performance to AM0BH, but slightly higher mAP, while slightly lower
rank1-10 metrics. We speculate that hinge loss concentrates only on the triplets
within the margin, ignoring the tail of the distribution, which is beneficial for
rank-1 - rank-10 metrics, while with softplus the whole distribution of triples is
accounted in the loss, which is beneficial for the mAP metric.

Identity and attribute classification with metric learning losses.
Here we present the ablation study that supports the addition of the attribute
classification task to further improve the robustness against nuisance factors, as
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previously suggested. We study the influence of Q and batch size on the perfor-
mance of AM0BHAttr. Figure 2 shows the effect of the size, Q, of the embedding
features fed to each attribute classifier. The best performance is achieved when
Q is 16. Figure 2 also shows the effect of the batch size by examining different
values of P and K respectively on the performance.

5 Conclusions

We have further studied the learning of a feature embedding for person re-
identification via a joint optimization of a discriminative and a metric learning
loss to minimize the intra-class variation and maximize the inter-class separation.
Our approach was motivated by observing untapped limitations imposed by a
margin based softmax loss onto the gradient flow that supervises the training of
the embedding. We have verified that adding a triplet loss as regularizer serves as
proxy for the missing gradient directions, and enables learning a better embed-
ding. Moreover, we have shown that adding a discriminative semantic task like
predicting attributes, further strengthens the robustness of the representation.
We have verified that on the three most challenging datasets by setting new
state-of-the-art performance for the case of holistic representations for person
re-identification that do not leverage explicit modeling of nuisance factors (e.g.,
pose). Moreover, we found that the joint loss achieves its best performance when
we do not require a margin in the softmax portion, showing the importance of
the contribution added by the triplet component, when it is used to expand the
directions of the gradient flow.
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