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Abstract— Compared to traditional biometric systems, in-air 

signatures are considered more robust and secure than classical 

pen paper. A few datasets capturing in-air signatures have been 

introduced, utilizing various devices such as the Leap Motion and 

the Microsoft Kinect sensor camera. However, these devices are 

not exempt from shortcomings and exhibit certain limitations. The 

expenses associated with their implementation and the 

requirement for technical proficiency in operating them present 

notable challenges for in-air signature analysis. Additionally, 

users may encounter difficulties in adapting their finger 

movements to fit within the device's limited field of view, 

particularly if they lack familiarity with these devices. To address 

these concerns, this paper proposes the creation of three in-air 

signature datasets using solely the camera of a laptop or a 

smartphone, eliminating the need for any additional specialized 

equipment. Our datasets were collected in three ways. The first is 

the In-Air Signature dataset (IAS dataset) and the second is the 

In-Air Signature dataset using a transparent Glass Plate (IASGP 

dataset) while the third is the In-Air Signature dataset using Smart 

Phone (IASSP dataset). Forty volunteers participated in the 

construction of these datasets. Their ages ranged from 21 to 40 

years. Each volunteer signs in the air five signatures and imitates 

five signatures of five other volunteers. Our in-air signatures 

datasets are publicly available and can be used for various 

research tasks like in-air signature verification and identification. 

Keywords— in-air signature dataset, genuine, forgery, 

verification, identification. 

I. INTRODUCTION 

 

Biometric systems are categorized into three branches: 1) 
Physiological biometrics refer to physical measurements of the 
human body like the fingerprint, iris and face [1]–[6]. 2) 
Behavioral biometrics refer to the measure of uniquely 
identifying and measurable patterns in human activities like 
keystroke dynamics, gait, voice and handwriting [7]–[16]. 3) 
Organic biometrics refer to the biological analysis of human 
bodies such as DNA and saliva [17], [18]. Based on these 
different biometric modalities, we will focus on behavioral 
biometrics and, more precisely, the signature task. In fact, the 

latter is an important biometric attribute, occupying a very 
special position in biometric systems. 

The signature is one of the most common methods of 
verifying someone's identity by the general public and 
governmental institutions [19]. The counterfeit can be classified 
as easy if the forger makes no effort to imitate the signature, as 
random if the forger uses his own signature instead of the 
authentic one, or as freehand or expert if the forger makes an 
exact copy of the signature [20]. The acquisition mode of the 
signature can be categorized into three types. 1) offline, where 
only a scanned image of the signature trajectory is available 
[21], 2) online, where the pen movement of the signature over 
time is available [22] and 3) in-air which permits a person to sign 
in the air by allowing free hand movements [23]. 

According to several researchers, the in-air signature will 
have many potentials uses in the identification and verification 
of the person. In addition, the in-air signature will be used in 
many applications like access control. The in-air signature is 
considered one of the principal user biometric identifiers in a 
contactless mode allowing users identification by drawing their 
handwritten signature in the air [24] [25] [26]. 

Indeed, there are a few in-air signature datasets have been 
proposed. All of them use different devices to capture the in-air 
signatures like the Leap Motion and the Microsoft Kinect sensor 
camera. However, these devices are not without flaws and have 
certain limitations. High implementation costs and the need for 
technical expertise in their use pose significant obstacles to in-
air signature analysis. Moreover, users may find it difficult to 
adjust their finger movement within the device's field of view, 
as they may not be well acquainted with the analysis system. In 
this paper, we propose three in-air- signatures datasets using 
only a camera of a laptop or a Smart Phone without any other 
specific device. We make these three in-air- signatures datasets 
available to the research community.  

The rest of this paper is organized as follows. Section 2 
describes a selection of existing in-air signature datasets. Section 
3 presents our proposed in-air signature datasets. Finally, 
Section 4 concludes the paper. 
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II. OVERVIEW OF EXISTING IN-AIR SIGNATURE DATASETS 

The recognition of in-air hand movements is complicated. 
Consequently, the process of collecting signatures in the air 
from the volunteers is very difficult and requires a great effort 
[27]. For this reason, a few in-air signature datasets have been 
proposed.  Among these, we can cite the dataset created by 
Guerra-Casanova et al., in [28]. In this dataset, fifty participants 
requested to make a signature in the air while holding the mobile 
phone. In [29], Bailador et al., established an in-air signature 
dataset collected from 96 volunteers. The participants were 
given a device with an in-built sensor and requested to do their 
in-air signatures. Jeon et al., in [30]  collected a dataset using 
Microsoft Xbox Kinect sensor. Fifty subjects participated in the 
collection of this dataset containing five hundred video clips of 
in-air signatures. 

 To collect a new in-air signature dataset, Takeuchi et al.,  in 
[31] used a Kinect depth camera.  100 volunteers participated in 
the creation of this database. The authors recorded for each in-
air signature the motion time series in 3-dimensional data (X, Y, 
and Z). In [32], Nigam et al., created a new in-air signature 
dataset called IIITD LS database collected from 60 volunteers 
using Leap  Motion. Another dataset is created by Sajid et al., in 
[33]. In this dataset, ten participants wearing Google Glass 
requested to make a signature in the air. Fang et al., in [34] 
created a new in-air signature dataset collected from 14 
volunteers. Each volunteer signed 10 times. In addition, they 
recorded 30 forgeries for every original signer. The authors used 
a high-speed camera to record the fingertips. The signature files 
were saved in a text file containing the time sequence of the 
signature task which are X coordinates and Y coordinates. 

 Another dataset is created by Behera et al., in [35]. To create 
their dataset, the authors used a Leap Motion device. They 
involved 100 volunteers. Each volunteer signed 20 times. Malik 
et al., in [26] established a new in-air signature dataset called 
3DAirSig collected from 15 volunteers. Each volunteer signed 
15 times. In addition, they recorded 25 forgeries for every 
original signer from 5 impostors. In order to record the hand 
motion in 3D space from different viewpoints, the authors 
placed three GoPro cameras around the signer.  

Behera et al., in [36] collected a dataset using Leap  Motion 
performed by 50 participants. Each participant registered their 
signature 14 times. Therefore, a total of 700 signatures were 
collected. The authors created also another dataset containing 
1600 in-air signatures using Leap Motion collected from 40 
volunteers [37]. In [24], Khoh et al.,  created a new dataset called 
the Hand Gesture Signature (HGS) using a camera sensor 
Microsoft Kinect. Each hand gesture signature was captured as 
a video clip. Sixty-nine males and thirty-one females 
participated in the creation of this dataset. 

 In another work, Malik et al., in [38] collected a new dataset 
called  DeepAirSig_Dataset included 40 volunteers. Jung et al., 
in  [39] created a dataset containing signals distorted by the in-
air handwritten signatures from 100 volunteers. The volunteers 
were asked to draw their signatures in the air while sitting at two 
different positions. At each position, the volunteers were 
requested to face four different directions which are front, right, 

                                                           
1 https://mediapipe.dev 

left and back. A total of 8000 samples were collected in this 
dataset. In [40],  Guerra-Segura et al., created a new in-air 
signature dataset containing 2000 signatures collected from 100 
subjects.  Li et al., in [41] created a new in-air signature dataset 
using the smartwatch motion sensors collected from 22 
participants. 

 All the presented in-air signature datasets are summarized in 
Table I. 

III. PROPOSED IN-AIR SIGNATURE DATASETS 

 We propose three datasets of in-air- signatures collected in 
three ways. The first is the In-Air Signature dataset (IAS dataset) 
and the second is the In-Air Signature dataset using a transparent 
Glass Plate (IASGP dataset) while the third is the In-Air 
Signature dataset using Smart Phone (IASSP dataset). 

 To create our new in-air signature datasets, we developed 
two systems on laptops and smartphones that can forecast 
human hand movement from a single RGB video image in real 
time. Indeed, the human hand is an illustrative illustration of an 
articulable entity with many characteristics, degrees of freedom, 
self-similarity, and self-occlusion  [42]. Estimating the position 
of a moving hand is a difficult job in the field of human-
computer interface [43]. For this reason, many frameworks are 
proposed by researchers like Modeep [44] and MediaPipe Hands 
framework [45]. To detect hand movement, we adopted the 
MediaPipe Hands framework1, which provides precise finger 
and hand monitoring. Using Machine learning, MediaPipe 
Hands can determine 21 unique 3D locations on a hand from a 
single image. Moreover, the MediaPipe Hands framework runs 
at real-time speeds on a mobile device and can even 
accommodate users with numerous hands. MediaPipe Hands 
makes use of an ML pipeline that consists of several 
interconnected models: An image-wide model for detecting 
palms that provides a 3D enclosing frame for the hand in the 
correct orientation. High-fidelity 3D landmarks of the hand are 
returned by this model, which works on the compressed area of 
the picture as specified by the palm detector. By giving the hand 
landmark model a hand picture that has been precisely trimmed, 
the network is spared the burden of attempting to adjust the data 
in other ways (such as through rotations, translations, or scaling) 
and can instead focus on making precise predictions about the 
hand's coordinates. Our systems allow us to record the images 
and the coordinates x(t) and y(t) to be produced using the hand 
landmarks from the previous frame, and palm recognition is 
only activated to relocalize the hand. Our hand landmark model 
uses regression, or direct coordinate prediction, to precisely 
localize 21 3D hand-knuckle coordinates within the identified 
hand areas as shown in Figure 1. 

 Our systems allow volunteers to sign in the air easily and 
without any complication. The user can use his right hand or his 
left hand in the signing process. We use the index fingertip 
number 8 from the hand landmarks illustrated in Figure 1 during 
the recording of signatures in the air. Figure 2 presents an 
example of in-air signature acquisition. 
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TABLE I.  SUMMARIES OF THE PRESENTED IN-AIR SIGNATURE DATASETS 

Dataset Number 
of users 

Device Number 
of 

signatures 

Advantages Weaknesses 

Dataset of Guerra-
Casanova et al.,  
[28] 

50 3-D 
accelerome
ter 

2350 Gathering data from 50 users facilitates a 
more extensive and comprehensive analysis 
of the in-air signature identification and 
verification system. 

In addition to the financial implications, 3D accelerometers are 
susceptible to noise interference, which can impact the accuracy 
of the measurements. External factors such as vibrations and 
electromagnetic interference can introduce noise. 

Dataset of Bailador 
et al.,  [29] 

96 Embedded 
accelerome
ter mobile 
device 

768 By incorporating 96 participants, a more 
comprehensive analysis of the in-air 
signature identification and verification 
system becomes feasible. 

Embedded accelerometers may have limited spatial resolution, 
meaning they may not be able to accurately measure small or 
subtle movements or vibrations. This can restrict their 
effectiveness in applications requiring high precision. 

Dataset of Jeon et 
al.,  [30] 

50 Microsoft 
Xbox 
Kinect 
sensor 

500 The incorporation of a substantial number of 
participants facilitates a comprehensive 
analysis of the in-air signature identification 
and verification system. This extensive 
participant pool allows for a more in-depth 
examination and evaluation of the system's 
performance and effectiveness. 

The Microsoft Xbox Kinect sensor is designed primarily for 
stationary use, typically placed on a flat surface or mounted on 
a stand. Its lack of portability and flexibility can limit its 
applications in scenarios that require mobility or capturing 
movements in different locations or angles. 

Dataset of  Takeuchi 
et al., [31] 

100 Kinect 
depth 
camera 

2000 By collecting data from 100 users, the 
analysis of the in-air signature identification 
and verification system can be conducted 
more comprehensively. 

The limitation of this dataset is the cost associated with the 
usage of a Kinect depth camera. 

IIITD Leap 
Signature 
Dataset [32] 

60 Leap 
Motion 

900 The IIITD LS Database is prepared in 
ambient indoor lighting with no occlusion of 
either the sensor or the subject’s hand. 

The Leap Motion may have limitations when it comes to 
detecting and accurately tracking precise and subtle finger 
movements or intricate hand. 

SIGAIR dataset [33] 
10 Google-

Glass 
96 The dataset encompasses hand movements 

captured in a three-dimensional space. 
The limited number of participants and the cost of using Google 
Glass 

Dataset of Fang et 
al., [34] 

14 High-
speed 
camera 

560 Real-time fingertip tracking by the authors 
improved the Tracking Learning Detection 
algorithm. 

The limited number of subjects may not fully capture the 
variability and diversity of real-world in-air signatures. 

Air Signature 
DataSet_ICPR 
[35] 

100 Leap 
motion 
interface 

2000 The large number of participants allows for a 
more comprehensive analysis of signature 
recognition and verification algorithms, as it 
captures a wide range of individual variations 
in signature execution and style. 

Participants may find it difficult to adjust their finger movement 
within the field of view of the Leap motion, as they may not be 
well acquainted with the system. 

3DAirSig [26] 
15 Three 

GoPro 
cameras 

600 The dataset contains the hand motion in 3D 
space from different viewpoints. 

The limited number of participants and the cost of using three 
GoPro cameras, along with any necessary accessories such as 
mounts, memory cards, and batteries, can add up significantly. 
This can be a barrier for individuals or organizations with 
limited budgets. 

Dataset of Behera et 
al., [36] 

50 Leap 
Motion 

600 The dataset encompasses hand movements 
captured in a three-dimensional space. 

In addition to the financial implications, the Leap Motion 
controller's performance can be affected by factors such as 
lighting conditions, reflective surfaces, and background clutter. 

Dataset of Behera et 
al., [37] 

40 Leap 
Motion 

1600 The dataset contains hand movements 
captured in three-dimensional space. 

Apart from the financial cost associated with using Leap 
Motion, the latter can be sensitive to occlusion, where objects 
or other body parts obstruct the view of the hands. This can lead 
to inaccurate or incomplete tracking when hands are partially or 
fully hidden from the device. 

HGS dataset [24] 
100 Microsoft 

Kinect 
sensor 
camera 

2000 The inclusion of a large number of 
participants enables a more thorough analysis 
of the in-air signature identification and 
verification system. 

The Microsoft Kinect sensor camera relies on infrared and 
depth-sensing technology to track movements. However, 
factors such as low lighting conditions, bright sunlight, or 
reflective surfaces can impact its performance. 

DeepAirSig_Dataset 
[38] 

40 Senz3D 
depth 
camera 

1800 The dataset comprises 3D hand motions 
captured from various viewpoints. 

One limitation of using the Senz3D depth camera is its cost, 
which may be a factor for some users or organizations with 
budget constraints. 

Wi-Fi in-air 
signature 
dataset [39] 

100 Wi-Fi-
based in-
air 
handwritte
n signature 
signals 

8000 To examine the influence of geographical 
locations, the dataset was gathered at a 
distinct site, with the user positioned between 
the transmitting (Tx) side and the receiving 
(Rx) side.  

The dataset contains a limited number of samples acquired from 
a single orientation at each position, which may not fully 
capture the variations in in-air Wi-Fi handwritten signatures at 
different positions and orientations 

Dataset of Guerra-
Segura et al.,  
[40] 

100 Leap 
motion 

2000 Collecting data from a sample of 100 users 
enables a more thorough analysis of the in-air 
signature identification and verification 
system. 

In addition to the financial implications, utilizing Leap Motion 
can involve certain drawbacks. Participants may find it difficult 
to adjust their finger movement within the field of view of the 
Leap motion, as they may not be well acquainted with the 
system. 

Dataset of Li et 
al.,[41] 

22 Smartwatc
h motion 
sensors 

2465 The dataset contains hand movements 
captured in three-dimensional space. 

The constrained number of subjects may not adequately 
encompass the wide range of variations and diversity present in 
real-world in-air signatures. 
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Fig. 1. Hand landmarks extracted from MediaPipe Hands 
framework 

  

Fig. 2. Example of in-air signature acquisition 

 Forty subjects voluntarily participated in the database 
construction. The participants had normal or corrected-to-
normal vision. Their age ranged from 21 to 40 years. Table II 
shows the characteristics of the participants in data collection. 

 During in-air signature data acquisition, participants were 
seated in a comfortable chair directly in front of the camera 
leaving a distance of 60 cm between their dominant hand and 
the camera. The participants were asked to close all the fingers 
of the hand leaving only the index finger. After that, they were 
requested to perform their signature in the air at their preferred 
speed. After completing the signature, the participants were 
asked to open all the fingers of the used hand. The purpose of 
this protocol is to control the beginning and the end of the 
signature in the air. To ensure that the participants had well 
understood the requested task, the experimenter displayed the 
task. The participants were allowed to practice the task before 
recording the data for five minutes. Custom-made software 
developed in Python for laptops and a mobile application with 
Android studio for smartphones were used to record the data. 

- The first is a CSV file that contains the coordinates of the 
signature in the air (x(t) and y(t)).  

- The second is a jpg file that contains the image of the signature.  

TABLE II.   CHARACTERISTICS OF PARTICIPANTS IN DATA COLLECTION 

 

 Each volunteer signs in the air five signatures and imitates 
five signatures of five other volunteers. Table III provides a brief 
description of the datasets created.  

TABLE III.  DETAILS OF OUR IN-AIR SIGNATURE DATASETS 

 

 In the following, we present our three proposed datasets.  

A.  In-Air Signature dataset (IAS dataset) 

Figure 3 presents an example of data acquisition for IAS dataset. 

Fig. 3. Example of data acquisition for IAS dataset 

Figure 4 displayed examples of genuine and forgery in-air 
signatures extracted from the IAS dataset for the same user. 

 
 
 
 
 
 
 
 
Fig. 4. Examples of in-air signatures extracted from IAS for the 
same user (A): genuine in-air signatures, (B): forgery in-air 
signatures 

Total number of samples collected 40 

Men 31 

Women 9 

Age 

21-23 10 

24-27 8 

28-30 8 

31-35 7 

36-40 7 

Right  hand 32 

Left hand 8 

 Signature type Number of signatures 

In-Air Signature dataset 
(IAS dataset) 

Genuine 200 

Skilled forgeries 200 

In-Air Signature dataset 
using  a transparent Glass 
Plate (IASGP dataset) 

Genuine 200 

Skilled forgeries 200 

In-Air Signature dataset 
using Smart Phone 
(IASSP dataset) 

Genuine 200 

Skilled forgeries 200 
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B. In-Air Signature dataset using Glass Plate (IASGP 

dataset) 

The experimental protocol for IASGP dataset acquisition is 
the same as in the IAS  dataset. The only difference is that we 
put a transparent glass plate in front of the camera away 30 cm. 
This glass plate, with dimensions of 60 cm in both length and 
width, is placed inside a wooden frame and fixed on the table 
in front of the volunteers as shown in Figure 5. 

 

 

 

 

 

 

 

 
 

Fig. 5. Example of data acquisition for the IASGP dataset 

C. In-Air Signature dataset using Smart Phone (IASSP 

dataset) 

Our In-Air Signature dataset using Smart Phone (IASSP 
dataset) permits us to record the coordinates of the signature in 
the air (x(t) and y(t)) from our mobile application. During in-
air signature data acquisition, participants were seated in a 
comfortable chair directly in front of the camera of Smart Phone 
leaving a distance of 7 cm between their dominant hand and the 
camera.   

Figure 6 presents an example of data acquisition for the 
IASSP dataset. 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Example of data acquisition for the IASSP dataset 

 

IV. CONCLUSION 

 We presented in this paper three datasets of in-air signatures 
collected in three ways. In the IAS dataset, the volunteer signs 
in the air directly in front of the camera of the laptop. In the 
IASGP dataset and to make the task more challenging, the 
volunteers sign in the air with a transparent Glass Plate between 
them and the camera. In the IASSP dataset, the volunteers sign 
in the air using Smart Phone. Our in-air signatures datasets are 
publicly available after contacting the authors and signing a user 
agreement. These datasets can serve as a foundation for further 

research and development in the field of in-air signature 
verification and identification. We plan to enlarge our datasets 
by adding other participants. Having a diverse set of users helps 
in evaluating the robustness and generalizability of the systems 
across different individuals that may have different writing 
habits, hand sizes, and motor skills. Furthermore, it is possible 
to capture other biometric modalities, such as the human face, 
while recording the in-air signing action. Therefore, the 
integration of these additional modalities with the signature 
through multimodal fusion is anticipated to enhance the 
performance of biometric systems. 
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