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Abstract. Stochastic differential equations (SDE) represent dynamic systems 

subject to stochastic influences. This paper introduces particle swarm optimiza-

tion programming (PSOP) as an innovative approach to solving SDE systems. 

The optimal solutions are reached by sending simulated particle to navigate in 

the search graph, and particle tours are saved and evaluated using a fitness func-

tion (FF). The PSOP has been developed as a programming algorithm in several 

directions, starting with construct the graph as a solution search space. the vision 

function is defined that depends on the simulated particle velocity in the swarm 

and the node position in the research graph, where the digital particle navigating 

in the research graph from the node to another according to the vision function. 

Finally, a fitness function is constructed to evaluate the expressions that represent 

possible solutions. The most important conclusion lies in obtaining symbolic so-

lutions for the SDE systems studied. The PSOP method has been validated 

through simulations on multi-dimensional SDE systems, showing promising ap-

plications in stochastic processes, modeling, automatic programming, and artifi-

cial intelligence. 

Keywords: Algorithms; Stochastic differential equation systems; Particle 

swarm optimization programming; Dynamical systems; Evolutionary algorithm. 

1 Introduction 

Stochastic differential equation (SDE) systems are dynamical systems that describe 

phenomena that include a random effect, whose effect may be internal to the system or 

external [1], [2]. SDE systems are of great importance in many fields, and are used to 

describe phenomena whose development is affected by random or noise factors over 

time, such as in finance, biology, engineering, physics, and many other fields [3]. The 

solution to the SDE represents a function of a stochastic process [4]. 

Previous studies have explored solutions and applications for some SDE. Research 

has focused on mathematical theories [5], practical applications [6], and numerical 

methods of SDE systems [7], [8], [9]. There are various numerical and analytical meth-

ods for solving a single SDE. Analytical methods are limited to solving some important 

examples of SDEs which are often based on the Itô lemma [10]. In terms of numerical 
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methods for solving SDE, the Euler-Maruyama method [11], [12], [13], the Milstein 

method [14], the Monte Carlo method [15], [16], the Runge-Kutta method [17], and the 

finite difference methods [18], [19]. 

Particle swarm optimization (PSO) is a technique to solve optimization problems 

inspired by the collective behavior of molecules in nature. PSO has received wide at-

tention from various researchers, due to simplicity of implementation and speed of con-

vergence to acceptable solutions, and various aspects have been modified in the initial 

formulation [20]. PSO has been applied to address many problems such as function 

optimization, pattern classification, fuzzy control [21], [22], and artificial neural net-

work training [23]. An important application of the PSO algorithm is the solution of 

systems of nonlinear algebraic equations [24]. Shi and Eberhart introduced the inertia 

weight parameter in the particle swarm algorithm, and simulations demonstrated its 

effective impact and importance in the particle swarm optimizer [25]. Because PSO has 

become a popular heuristic approach to optimization, Bratton and Kennedy designed 

the benchmark as an extension of the original algorithm and took into account devel-

opments to improve performance standard criteria [26]. 

Evolutionary algorithms are one of the automatic programming techniques, which 

works to enhance solutions and reduce errors over successive generations. Koza iden-

tified five basic steps that should be prepared to use an automatic programming ap-

proach to solve a problem [27], which are: 

o Determining the terminals set, 

o Determining the set of functions, 

o Determining the fitness measure, 

o Determining the controlling run parameters and 

o Determining the terminal criteria for ending a run. 

Most of these principles that are used in genetic programming (GP) and that Boryczka 

[28] used in ant colony programming (ACP) [29] will be adapted in particle swarm op-

timization programming (PSOP). 

The PSOP will develop in several directions. First, construct a graph as a search 

space, define the vision function that depends on velocity and position of the particles 

in the graph, construct the particle tours according to the vision function, and finally 

construct a fitness function (𝐹𝐹) to evaluate the expressions representing possible so-

lutions of the SDE system. Finally, the parse trees for optimal particle tours of PSOP 

solutions for SDE systems will be given. 

The 𝑚-dimensional SDE system with respect to a 1-dimensional Wiener process 

𝑊 =  {𝑊𝑡 , 𝑡 ≥ 𝑡0} is given by the form 

𝑑𝑋(𝑡) =  𝑓(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑔(𝑡, 𝑋(𝑡))𝑑𝑊𝑡 , 𝑡 ∈ [𝑡0, 𝑇] (1) 

With vector initial condition 𝑋(𝑡0) = 𝑋0. 

Where 𝑋(𝑡) is an 𝑚-dimensional stochastic process, the vector functions 

𝑓: [𝑡0, 𝑇] × ℝ𝑚 → ℝ𝑚 and 𝑔: [𝑡0, 𝑇] × ℝ𝑚 → ℝ𝑚 are the drift and diffusion coeffi-

cients, respectively [30]. 

In matrix form, written as 
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[

𝑑𝑋1(𝑡)

𝑑𝑋2(𝑡)
⋮

𝑑𝑋𝑚(𝑡)

] =

[
 
 
 
 
𝑓1(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

𝑓2(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

⋮
𝑓𝑚(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))]

 
 
 
 

𝑑𝑡 +

[
 
 
 
 
𝑔1(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

𝑔2(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

⋮
𝑔𝑚(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))]

 
 
 
 

𝑑𝑊𝑡 (2) 

With vector initial condition 𝑋(𝑡0) = 𝑋0. 

The solution of SDE system (1) is  

𝑋(𝑡) = 𝑋0 + ∫𝑓(𝑠, 𝑋(𝑠))𝑑𝑠

𝑡

0

+ ∫𝑔(𝑠, 𝑋(𝑠))𝑑𝑊(𝑠)

𝑡

0

 (3) 

In the system components form, 

𝑋𝑖(𝑡) = 𝑋𝑖(0) + ∫𝑓𝑖(𝑠, 𝑋1(𝑠), … , 𝑋𝑑(𝑠))𝑑𝑠

𝑡

0

+ ∫ 𝑔𝑖(𝑠, 𝑋1(𝑠), … , 𝑋𝑑(𝑠))𝑑𝑊𝑠

𝑡

0

 (4) 

Where ∫ 𝑓(𝑠, 𝑋(𝑠))𝑑𝑠
𝑡

0
 is Lebesgue integral, and ∫ 𝑔(𝑠, 𝑋(𝑠))𝑑𝑊𝑠

𝑡

0
 is Itô's integral 

[31]. 

2 Particle swarm optimization programming (PSOP) 

Particle swarm optimization (PSO) is a metaheuristic algorithm inspired by the par-

ticle swarm behavior of some natural models, such as birds, fish, and some insects [32]. 

The algorithm aims to find optimal solutions to various problems in mathematics based 

on the experience of each particle and the experience of the rest of the particles in the 

swarm. Such as finding optimal values for single variable or multivariable functions 

[33], [34]. 

The optimal solution to the SDE system is produced from the expressions resulting 

from particle tours through the graph. A dynamic graph 𝐺 = {𝑉, 𝐸} is being constructed 

represents the search space. The nodes are represented by a set of functions and termi-

nals. Functions are defined with sin, cos, log, exp,  and the arithmetic operations +,−,

/,∗ . While the terminals are represented by the constants 0,1, … , 9 and variables. In 

principle, nodes are assigned random positions in the graph. Nodes are connected by 

edges 𝐸, which represent the distance between nodes. The particle velocity is 𝑣𝑖 =
(𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑚), node position is 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚) are where 𝑥𝑖𝑗 ∈ [𝑎, 𝑏] and 𝑚 

are the dimension of the SDE system. 

Each particle in the swarm moves to several places and forms a mathematical expres-

sion during its tour of the graph. The mathematical expression produced by particle 𝑖 
consists of the names of nodes over which the particle passed. In the first generation, 

each particle starts from a random node and moves to the next node according to the 

vision function, and the tour of particle 𝑖 ends until it reaches a terminal node. The 

expression for the particle is saved as 𝑃𝑖 . After completing the tours of all particles in 

generation 𝑡, the parse tree for the particle tours is created, and mathematical expres-

sions are generated. The expressions for each particle are evaluated using the fitness 

function 𝐹𝐹. The best particle 𝑃𝑏𝑒𝑠𝑡 and its corresponding tour that produces the mini-

mum 𝐹𝐹 value are selected.  
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In PSOP, each particle will generate an arithmetic expression 𝜙 with a dimension 

equal to that of the SDE system. If 𝜙 satisfies 𝐹𝐹 equal or closed to zero, then 𝜙 will 

be the optimal solution. If the expression 𝜙 does not satisfy 𝐹𝐹, the velocity 𝑣𝑖 and 

position 𝑥𝑖 will be updated, and regenerating the loop. 

Sequential updating of the particle velocities and node positions during successive 

generation helps increase the particle velocity and reduce the distance between nodes 

on the best tours. The value of the vision function increases for the nodes that form an 

optimal solution and decreases for the other nodes, thus forming the optimal path for 

the particles. The flowchart of the PSOP algorithm is shown in Fig. 1. 

Boryczka and Wiezorek identified four essential steps in the research process [29], 

choice of functions and terminals, graph construction, construction of the fitness func-

tion, and defining terminal criteria. 

 

Fig. 1. PSOP Flowchart  

2.1 Functions and terminals 

The first important step in initializing the PSOP algorithm is the selection of func-

tions and terminals, depending on the problem under study.  
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In the PSOP approach, the terminal symbols include variables {𝑡, 𝑥, 𝑦, … }, constants 

{0, 1, … , 9, 𝜋, 𝑒}, and functions {𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑙𝑜𝑔, ^
𝑚

𝑛
} where 𝑚, 𝑛 are integers and 

𝑛 ≠ 0. Functions can be designated as arithmetic operations {+,−,∗,÷}, Boolean oper-

ations {∨,∧,⇒,⇔}, or functions defined with a particular form appropriate to the prob-

lem. 

In the SDE system formula (1), which includes 𝑑𝑡 and 𝑑𝑊𝑡 in the deterministic and 

stochastic parts, we note that the system variables are time 𝑡 and Wiener process 𝑊𝑡, 

so will be included as variables in the terminal symbols. The functions and terminals 

are chosen as in Table 1. 

Table 1. The terminal symbols and functions. 

Terminal symbol or function  

𝑡𝑖 ∈ 𝕋 𝕋 = {0,1,2,3,4,5,6,7,8,9, 𝑡,𝑊𝑡} 

𝑓𝑖 ∈ 𝔽 𝔽 = { 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑙𝑜𝑔, 𝑠𝑞𝑟𝑡, +, −,∗,/, ), (} 

2.2 Construction of graph 

In PSOP, the graph represents the search 

space, provides structure for particles to 

navigate, and search for solutions. A graph 

𝐺 consists of nodes and edges. Each node 

indicates a terminal symbol, which repre-

sents a function 𝑓𝑖 ∈ 𝐹 or terminal 𝑡𝑖 ∈ 𝑇. 

The edges in 𝐺 connect the nodes and are 

weighted by the distance between the node 

positions. An illustrative graph in Fig. 2. 

2.3 Fitness function 

 The fitness function (𝐹𝐹) is the main focus of the PSOP algorithm, and its construc-

tion depends on the nature of the problem to be solved. 

In the PSOP approach, 𝐹𝐹 is a norm used to evaluate the convergence or fitness of 

a solution generated by particle tours. In our study, the objective of 𝐹𝐹 is to filter out 

the best solution among the available solutions and to determine the fitness value of 

each solution and guide the search process towards finding the optimal solution. If a 

particle produces 𝑎 stochastic process 𝜙(𝑡, 𝑋(𝑡)), the Itô-formula for the component 𝑠 

of 𝜙(𝑡, 𝑋(𝑡)) takes the form 

𝑑𝜙𝑠 = 𝑓𝑠(𝑡, 𝑋1, … , 𝑋𝑚)𝑑𝑡 + ∑𝑔̂𝑠𝑟(𝑡, 𝑋𝑟)𝑑𝑊𝑟(𝑡)

𝑚

𝑟=1

 (5) 

The fitness function is defined by the form 

Fig. 2. An illustrative PSOP graph 
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𝐹𝐹 = ∑(𝑓𝑠(𝑡, 𝑋1, … , 𝑋𝑚) − 𝑓𝑠(𝑡, 𝑋1, … , 𝑋𝑚))
2

+ ∑(𝑔̂𝑠𝑟(𝑡, 𝑋𝑟) − 𝑔𝑠𝑟(𝑡, 𝑋𝑟))
2

𝑚

𝑟=1

𝑚

𝑠=1

 (6) 

2.4 Terminal criteria 

The terminal criteria refer to the conditions that determine when the PSOP algorithm 

stops searching for solutions. In each generation, a number of particles are sent to trav-

erse the graph. If a particle finds an expression that gives a fitness function close to zero 

and satisfies the initial conditions, the program stops. Otherwise, velocity and position 

updating rules are applied and the process is repeated until a fitness function value equal 

to or close to zero is obtained. 

3 PSOP methodology 

To solve an SDE system using the PSOP algorithm, the initialization starts with:  

o Choose the appropriate functions and terminals for the problem. 

o Choose the number of nodes, and construct the graph. 

o Choose the number of simulated particles. 

o Determine the maximum number of generations. 

o Define the values of the parameter. 

Simulated particles are sent to search for available solutions of a given SDE system. 

The particle navigates through the graph 𝐺(𝑉, 𝐸), where the nodes 𝑉 represent the func-

tions 𝑓𝑖 and terminal symbols 𝑡𝑖, and 𝐸 is the set of edges connecting nodes, weighted 

by the distance between nodes. Each particle 𝑘 moves from node 𝑖 to node 𝑗 on the 

graph 𝐺 at time 𝑡 according to the vision law: 

Υ𝑖,𝑠𝑟(𝑡) =
𝑣𝑖

𝑑𝑠𝑟

 (7) 

Where 𝑣𝑖 is the velocity of particle 𝑖 and 𝑑𝑠𝑟  is the distance between positions 𝑠 and 𝑟. 

When each generation is finished and the particle tours are saved, the parse tree is 

performed for each tour. after that, the mathematical expressions are generated, evalu-

ate the expressions, and exclude unwanted ones. For example, if a particle produces 

𝑙𝑜𝑔(2 ∗ 𝑊𝑡)/𝑡 and another particle produce 𝑊𝑡/) ∗ 𝑒^𝑡, if we fixed the values of 𝑡 and 

𝑊𝑡 are arbitrary, the first expression is evaluable while the second cannot. Table 3 il-

lustrates the expressions corresponding for 6 particle tours and the possibility of their 

evaluation. Only evaluable mathematical expressions will be directed to substituted into 

𝐹𝐹. If the value of 𝐹𝐹 is equal to or close to zero and satisfies the initial conditions of 

the SDE system, then the generation of tours stops. Otherwise, perform an update of 

the velocity of particles and position of nodes on the graph according to the following 

laws: 

𝑣𝑖(𝑡 + 1) = 𝜃𝑣𝑖(𝑡) + 𝑐𝑟(𝐹𝐹𝑏𝑒𝑠𝑡 − 𝐹𝐹𝑖) (8) 

𝑥𝑗(𝑡 + 1) = 𝜃𝑥𝑗(𝑡) + (1 − 𝜃)𝑣𝑖(𝑡 + 1) (9) 

Where 𝑐 is a positive integer 2, 𝑟 is a random value distributed uniformly in [0, 1], 𝑡 is 

the generation number, 𝐹𝐹𝑏𝑒𝑠𝑡 and 𝐹𝐹𝑖 are the fitness function values at the best particle 

and particle 𝑖, respectively. The parameter 𝜃 is an inertia weight that balanced the global 
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exploration and local exploitation of the swarm [35], and descends linearly from 0.9 to 

0.4. 

After updating the velocity and position and determining the best tour in the previous 

generation, send the same particles back through the best tour. 

Table 2. Tours and expressions. 

Particle Tours Expressions Status 

exp(𝑊𝑡) ∗ sin)𝑡 𝑒𝑊𝑡 ∗ sin)𝑡 Not evaluable 

exp(𝑊𝑡 𝑠𝑞𝑟𝑡 3⁄ ) + sin 𝑊𝑡 e
𝑊𝑡

√3 + sin 𝑊𝑡  Evaluable 

cos(𝑊𝑡 ∗ 3 ∗ 𝑡/4) cos (
3𝑡𝑊𝑡

4
) Evaluable 

sin+(5/𝑊𝑡 sin +(
5

𝑊𝑡

 Not evaluable 

log exp(𝑊𝑡) 𝑊𝑡  Evaluable 

exp(𝑊𝑡/𝑡) ∗ 7 ∗ 𝑡^2 7𝑡2𝑒
𝑊𝑡
𝑡  Evaluable 

The PSOP algorithm  

Step 1. Start with input the SDE system, parameters, and terminal symbols. 

Step 2. Construct the graph. 

Step 3. As a starting point, set equal velocities for the particles and random positions 

for the nodes on the graph. 

Step 4. Construct tours, particles moving to the next node according to the vision 

law (7). 

Step 5. Save the tours and construct parse trees for it. 

Step 6. Extract expressions and exclude unwanted ones. 

Step 7. Evaluate the expressions, substitute the value of time 𝑇 and Wiener process 

𝑊𝑡 into the expressions. 

Step 8. Evaluate fitness function 𝐹𝐹, and identify 𝐹𝐹𝑏𝑒𝑠𝑡 

Step 9. Check, if 𝐹𝐹 close to zero and satisfying initial conditions; stop and go to 

Step 13. 

Step 10. Otherwise, identify the best tour. 

Step 11. Perform an update of the velocity and position by applying laws (8), (9). 

Step 12. Passing the same particles through the best tour and go back to Step 4. 

Step 13. Display the solution. End. 
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4 Simulation results of PSOP 

In this work, a PSOP algorithm will be designed to simulate SDE systems with 1, 2, 

3 and 4 dimensions. The parse trees generated by the PSOP algorithm for the optimal 

particle tours will be given, as well as the optimal solution with the corresponding 𝐹𝐹 

value. Finally, the PSOP solutions will be proven to satisfy the SDE systems studied. 

4.1 𝟏-dimensional SDE 

First example 

. Consider a homogeneous SDE with multiplica-

tive noise Wt 

With initial condition 𝑋(0) = 1, and 𝑡 ∈ [0,1]. 

The optimal particle tour 1 ∗ 𝑒𝑥𝑝 (1 2⁄ ∗ 𝑡 + 𝑊𝑡) 

with 𝐹𝐹 = 0 is reached at generation 43, and the 

parse tree for the optimal tour is given in Fig. 3. 

The PSOP algorithm produced the following opti-

mal solution for the SDE (10): 

According to the Itô formula, the stochastic pro-

cess (11) is an Itô process, and 𝑋𝑡 satisfy 

𝑑𝑋𝑡 =
1

2
exp (

1

2
𝑡 + 𝑊𝑡) 𝑑𝑡 + exp (

1

2
𝑡 + 𝑊𝑡) 𝑑𝑊𝑡 +

1

2
exp (

1

2
𝑡 + 𝑊𝑡) 𝑑𝑊𝑡

2 

where 𝑑𝑊𝑡
2 = 𝑑𝑡 then we get  

𝑑𝑋𝑡 = exp (
1

2
𝑡 + 𝑊𝑡) 𝑑𝑡 + exp (

1

2
𝑡 + 𝑊𝑡) 𝑑𝑊𝑡 

Thus, the stochastic process (11), is the solution of the 

SDE (10), and satisfy the initial conditions 𝑋𝑡(0) = 1. 

Second example  

Consider an SDE with respect to a 1-dimensional Wiener 

process Wt 

With initial condition 𝑋(0) = 1. 

The optimal particle tour 𝑒𝑥𝑝 (0 − (𝑊𝑡 − 𝑙𝑛 1)^2) with 

𝐹𝐹 = 0 is reached at generation 52, and the parse tree for 

the optimal tour is given in Fig. 4. 

𝑑𝑋𝑡 = 𝑋𝑡𝑑𝑡 + 𝑋𝑡  𝑑𝑊𝑡  (10) 

𝑋𝑡 = exp (
1

2
𝑡 + 𝑊𝑡) 

(11) 

𝑑𝑋𝑡 = −𝑋𝑡(2 ln𝑋𝑡 + 1)𝑑𝑡 − 2𝑋𝑡√− ln𝑋𝑡  𝑑𝑊𝑡 (12) 

 

∗

1

+

∗ 𝑊𝑡

/ 𝑡

1 2

Fig. 3. Parse tree for the solution 

of SDE (10) by PSOP method 

𝑊𝑡

Fig. 4. Parse tree for the 

solution of SDE (12) by 

PSOP method 
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The PSOP algorithm produced the following optimal solution for the SDE (12): 

𝑋𝑡 = exp(−𝑊𝑡
2) (13) 

According to the Itô formula, the stochastic process (13) is an Itô process, and 𝑋𝑡 

satisfy 

𝑑𝑋𝑡 = −2𝑊𝑡 exp(−𝑊𝑡
2) 𝑑𝑊𝑡 +

1

2
[(−2𝑊𝑡)(−2𝑊𝑡) exp(−𝑊𝑡

2) − 2 exp(−𝑊𝑡
2)]𝑑𝑊𝑡

2 

By simplifying the last equation, we obtain: 

𝑑𝑋𝑡 = −(−2𝑊𝑡
2 + 1) exp(−𝑊𝑡

2) 𝑑𝑡 − 2𝑊𝑡 exp(−𝑊𝑡
2) 𝑑𝑊𝑡 

Therefore, the stochastic process (13) satisfies SDE (12) and the initial condition 

𝑋(0) = 1. 

Third example 

Consider an SDE with respect to a 1-dimensional 

Wiener process Wt 

With initial condition 𝑋(0) = 1. 

The optimal particle tour 𝑙𝑛 (𝑒𝑥𝑝(1 +
1

3
𝑊𝑡) ^3) with 

𝐹𝐹 = 0 is reached at generation 47, and the parse tree 

for the optimal tour is given in Fig. 5. 

The PSOP algorithm produced the following optimal 

solution for the SDE (14): 

Applying the Itô formula to the stochastic process 

(15), we get 

𝑑𝑋𝑡 =
1

3
(1 +

1

3
𝑊𝑡) 𝑑𝑡 + (1 +

1

3
𝑊𝑡)

2

𝑑𝑊𝑡  

Hence, the stochastic process (15) satisfies SDE (14) and the initial condition 𝑋(0) =

1. 

Therefore, Equation (15) is the exact solution of SDE (14). 

𝑑𝑋𝑡 =
1

3
√𝑋𝑡
3 𝑑𝑡 + √𝑋𝑡

23
 𝑑𝑊𝑡 (14) 

𝑋𝑡 = (1 +
1

3
𝑊𝑡)

3

 (15) 

 

𝑊𝑡

Fig. 5. Parse tree for the solu-

tion of SDE (14) by PSOP 

method 
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4.2 𝟐-dimensional SDE system 

 Consider the 2-dimensional SDE system with respect to a 1-dimensional Wiener pro-

cess 𝑊𝑡, 

With initial conditions 𝑋1(0) = 1, 𝑋2(0) = 0 and 𝑡 ∈ [0,1]. 
The optimal particle tours 𝑐𝑜𝑠(𝑊𝑡) , 𝑠𝑖𝑛(𝑊𝑡) are reached at generation 57, and the 

parse tree for the optimal tours are given in Fig. 6. 

The PSOP algorithm produced the following optimal solution for the SDE (16): 

 

 

According to the Itô formula, the 

stochastic process (17) is an Itô pro-

cess, and the components 𝑋1 , 𝑋2 sat-

isfy 

𝑑𝑋1(𝑡) = −
1

2
cos𝑊𝑡 𝑑𝑡 − sin𝑊𝑡 𝑑𝑊𝑡

𝑑𝑋2(𝑡) = −
1

2
sin𝑊𝑡 𝑑𝑡 + cos𝑊𝑡 𝑑𝑊𝑡

  

Thus, the stochastic process 𝑋 = [
𝑋1

𝑋2
], is the solution of the SDE system (16), and 

satisfy the initial conditions 𝑋1(0) = 1 and 𝑋2(0) = 0. 

4.3 𝟑-dimensional SDE system 

Consider the 3-dimensional SDE system with respect to a 1-dimensional Wiener 

process 𝑊𝑡, 

𝑑𝑋1(𝑡) = (
2 − 𝑡

2𝑡
)𝑋1(𝑡)𝑑𝑡 − 𝑋2(𝑡)𝑑𝑊𝑡  

𝑑𝑋2(𝑡) = (
2 − 𝑡

2𝑡
)𝑋2(𝑡)𝑑𝑡 + 𝑋1(𝑡)𝑑𝑊𝑡 

𝑑𝑋3(𝑡) = (
1

𝑡
𝑋2(𝑡) −

1

2
𝑋3(𝑡)) 𝑑𝑡 + (𝑋1(𝑡) −

1

𝑡
𝑋2(𝑡)) 𝑑𝑊𝑡 

(18) 

With initial conditions 𝑋1(0) = 0 , 𝑋2(0) = 0 and 𝑋3(0) = 1. 

𝑑𝑋1(𝑡) =
−1

2
𝑋1(𝑡)𝑑𝑡 − 𝑋2(𝑡)𝑑𝑊𝑡  

𝑑𝑋2(𝑡) =
−1

2
𝑋2(𝑡)𝑑𝑡 + 𝑋1(𝑡)𝑑𝑊𝑡

 
(16) 

𝑋 = [
cos𝑊𝑡

sin𝑊𝑡
] (17) 

𝒲𝑡 𝒲𝑡

 𝑋2 = 𝑠𝑖𝑛 𝒲𝑡  𝑋1 = 𝑐𝑜𝑠 𝑊𝑡 

Fig. 6. Parse tree for the solution of SDE system (16) 

by PSOP method 
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The optimal particle tours 𝑡 ∗ 𝑐𝑜𝑠(𝑊𝑡) , 𝑡 ∗ 𝑠𝑖𝑛(𝑊𝑡) , 𝑐𝑜𝑠(𝑊𝑡) + 𝑡 ∗ 𝑠𝑖𝑛(𝑊𝑡) is 

reached at generation 61, and the parse tree for the optimal tours is given in Fig. 7. 

The PSOP algorithm produced the following optimal solution for the SDE system 

(18): 

𝑋(𝑡) = [

𝑡 cos𝑊𝑡

𝑡 sin 𝑊𝑡

cos𝑊𝑡 + 𝑡 sin𝑊𝑡

] (19) 

By the Itô formula, the stochastic process (19) is an Itô process. The components 

𝑋1 , 𝑋2 and 𝑋3 satisfy 

𝑑𝑋1(𝑡) = (
2 − 𝑡

2𝑡
) 𝑡 cos𝑊𝑡 𝑑𝑡 − 𝑡 sin 𝑊𝑡 𝑑𝑊𝑡   

𝑑𝑋2(𝑡) = (
2 − 𝑡

2
) sin 𝑊𝑡 𝑑𝑡 + 𝑡 cos𝑊𝑡 𝑑𝑊𝑡 

𝑑𝑋3(𝑡) = (sin 𝑊𝑡 −
1

2
cos𝑊𝑡 −

1

2
𝑡 sin𝑊𝑡) 𝑑𝑡 + (𝑡 cos𝑊𝑡 − sin𝑊𝑡)𝑑𝑊𝑡 

Hence, the stochastic process (19) is the solution of the SDE system (18) and satisfies 

the initial conditions. 

4.4 𝟒-dimensional SDE system 

Consider the 4-dimensional SDE system with respect to a 1-dimensional Wiener pro-

cess 𝑊𝑡, 

 𝑑𝑋1 = (𝑋3(𝑡) − 𝑋2(𝑡) −
1

2
𝑋1(𝑡)) 𝑑𝑡 + 𝑡(𝑋1(𝑡) −  𝑋4(𝑡))𝑑𝑊𝑡  

𝑑𝑋2 = (𝑋4(𝑡) − 𝑋1(𝑡) −
1

2
𝑋2(𝑡)) 𝑑𝑡 +  𝑋1(𝑡)𝑑𝑊𝑡  

𝑑𝑋3 = (
1

𝑡
𝑋2(𝑡) −

1

2
𝑋3(𝑡)) 𝑑𝑡 + (𝑋4(𝑡) −

2

𝑡
𝑋2(𝑡)) 𝑑𝑊𝑡  

𝑑𝑋4 = (
1

𝑡
𝑋1(𝑡) −

1

2
𝑋4(𝑡)) 𝑑𝑡 + (

2

𝑡
𝑋1(𝑡) − 𝑋3(𝑡)) 𝑑𝑊𝑡 

(20) 

𝑋1 = 𝑡 𝑐𝑜𝑠 𝒲𝑡 𝑋2 = 𝑡 𝑠𝑖𝑛 𝒲𝑡 

𝑋3 = 𝑐𝑜𝑠 𝒲𝑡 + 𝑡 𝑠𝑖𝑛 𝒲𝑡  

𝑡

𝒲𝑡

𝑡

𝒲𝑡
𝑡

𝒲𝑡

𝒲𝑡

Fig. 7. Parse tree for the solution of SDE system (18) by PSOP method 
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With initial conditions 𝑋1(0) = 0 , 𝑋2(0) = 0 , 𝑋3(0) = 1 and 𝑋4(0) = 0. 

The optimal particle tours 𝑡 ∗ 𝑐𝑜𝑠(𝑊𝑡) , 𝑡 ∗ 𝑠𝑖𝑛(𝑊𝑡) , 𝑐𝑜𝑠(𝑊𝑡) + 𝑡 ∗ 𝑠𝑖𝑛(𝑊𝑡) ,
𝑠𝑖𝑛(𝑊𝑡) + 𝑡 ∗ 𝑐𝑜𝑠(𝑊𝑡) is reached at generation 61, and the parse tree for the optimal 

tours is given in Fig. 8. 

The PSOP solution of the SDE system (20) is given by 

𝑋(𝑡) = [

𝑡 cos𝑊𝑡

𝑡 sin 𝑊𝑡

cos𝑊𝑡 + 𝑡 sin𝑊𝑡

t cos𝑊𝑡 + sin 𝑊𝑡

] (21) 

By the Itô formula, the stochastic process (21) is an Itô process, and 𝑋1 , 𝑋2 , 𝑋3, 𝑋4 

satisfy 

𝑑𝑋1(𝑡) = (cos 𝑊𝑡 −
1

2
𝑡 cos𝑊𝑡  ) 𝑑𝑡 − 𝑡 sin𝑊𝑡 𝑑𝑊𝑡  

𝑑𝑋2(𝑡) = (sin𝑊𝑡 −
1

2
𝑡 sin 𝑊𝑡) 𝑑𝑡 + 𝑡 cos𝑊𝑡 𝑑𝑊𝑡 

𝑑𝑋3(𝑡) = (sin𝑊𝑡 −
1

2
cos𝑊𝑡 −

1

2
𝑡 sin𝑊𝑡) 𝑑𝑡 + (𝑡 cos𝑊𝑡 − sin𝑊𝑡)𝑑𝑊𝑡 

𝑑𝑋4(𝑡) = (cos𝑊𝑡 −
1

2
(𝑡 cos𝑊𝑡 + sin𝑊𝑡)) 𝑑𝑡 + (cos𝑊𝑡 − 𝑡 sin𝑊𝑡)𝑑𝑊𝑡 

Therefore, the stochastic process (21) is a solution of the SDE system (20), and it 

satisfies the initial conditions. 

 

5 Conclusions  

This paper presents the PSOP method as an innovative computational approach to solv-

ing SDE systems, which has been applied using simulation and yielded significant re-

sults.  Improvements to PSOP as an automatic programming algorithm have enabled to 

𝑡

𝒲𝑡

𝒲𝑡

𝑡

𝒲𝑡 𝑡

𝒲𝑡

𝒲𝑡

𝑋1 = 𝑡 𝑐𝑜𝑠 𝒲𝑡 𝑋2 = 𝑡 𝑠𝑖𝑛 𝒲𝑡 

𝑋4 = 𝑡 𝑐𝑜𝑠 𝒲𝑡 + 𝑠𝑖𝑛 𝒲𝑡  

𝑡

𝒲𝑡

𝑋3 = 𝑐𝑜𝑠 𝒲𝑡 + 𝑡 𝑠𝑖𝑛 𝒲𝑡 

Fig. 8. Parse tree for the solution of SDE system (20) by PSOP method 
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produce symbolic solutions for SDE systems. The FF values for the optimal solutions 

of the studied SDE systems are equal to zero, which means that the optimal solutions 

are exact. Therefore, the PSOP method is appropriate for solving systems of multidi-

mensional stochastic differential equations with respect to a 1-dimensional Wiener pro-

cess. 

The particle swarm algorithm can be developed as an automatic programming algo-

rithm to produce and evaluate symbolic stochastic processes. More precisely, the PSOP 

algorithm can be used to generate symbolic solutions to various complex mathematical 

problems for which it is difficult to obtain analytical solutions that are appropriate to 

the nature of the problem to be addressed. 

What distinguishes the PSOP method is that it generates symbolic mathematical ex-

pressions according to the functions that are chosen in the initialization step, so it is not 

limited to the type of SDE system, whether linear or non-linear, nor by the type of 

stochastic process. As future work, the PSOP algorithm can be developed to solve SDE 

systems with respect to an 𝑚-dimensional Wiener process. 
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