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A B S T R A C T   

Phase change materials (PCMs) are successful thermal energy storage mediums in many thermal systems, 
including buildings. Identifying the best PCM candidate is a critical incorporation parameter that influences 
building thermal performance. This paper discusses the selection of potential PCM candidates that could be 
applied for building heating applications in cold locations. A qualitative decision matrix (QDM) is applied for 
several commercial PCMs after an extensive analysis of relevant literature studies. The melting temperature, heat 
of fusion, thermal conductivity, compatibility, flammability and cost of each PCM are considered in the QDM to 
find the most suitable candidates with the best effective properties and features. PCM properties/features are 
assigned with scores and weights in the QDM based on their importance for the application. Three scenarios are 
investigated in this work, including and excluding the PCM cost with varying and equal weights. Results showed 
that RT28HC had the highest score in all scenarios, followed by SavE®HS29 in the first scenario (when the cost is 
included) and PureTemp 32 in the second scenario without considering the cost. The methodology and results 
presented in this work are believed to be as efficient as logical for future studies compared with the traditional 
methods that rely on investigating the PCM thermo-physical properties.   

1. Introduction 

Phase change materials (PCMs) are advanced materials used in 
thermal energy management in nowadays’ thermal energy storage sys-
tems [1]. PCMs have been used in different heat-related applications to 
overcome the mismatch between heat supply and demand [2–4]. In 
building applications, PCMs have been used for thermal management 
when incorporating building envelope and elements [5–7]. PCMs could 
store and release a considerable amount of heat, in a latent form, during 
phase transition by up to 14 times more than construction materials’ 
storage capacity [8]. This property allows controlling the heat entering 
and exiting the building, positively contributing to building energy 
improvements [9,10]. 

Generally, PCMs are categorised, according to their chemical 
composition, as organic, inorganic and eutectics [11]. Amongst others, 
organic PCMs are widely available materials and are mostly used in 
building applications. Organic PCMs are classified into paraffinic and 
non-paraffinic PCMs (such as salt hydrates, fatty acids, esters and 

glycols) [12]. Each PCM category has specific thermo-physical proper-
ties that allow being used for a particular building application, such as 
the melting temperature, heat of fusion, density and thermal conduc-
tivity [13,14]. PCM’s suitability for building applications depends 
highly on the purpose of incorporation (heating/cooling), the passive or 
active incorporation technique adopted, and the building location [15]. 

Generally speaking, the number of publications dealing with PCM 
heating applications is lesser than those considering cooling applications 
[16]. This is because the PCM is more efficient under high solar radia-
tion and hot locations [13,17]. PCMs have been incorporated in many 
forms with the building elements and construction materials for heating 
applications, showing impressive outcomes in heating energy conser-
vation. Unambiguously, PCMs were practically applied with different 
building heating applications, such as:  

• Gypsum-cement boards were used for interior finishing, saving 7.8% 
of heating energy [18]. 

* Corresponding author at: Doctoral School of Mechanical Engineering, Hungarian University of Agriculture and Life Sciences, Szent István campus, Páter K. u. 1, 
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• Form-stable cement plaster has improved the walls thermal storage 
capacity by 51% [19]. 

• Cladding gypsum plaster with PCM has kept the building tempera-
ture in the range of 0.8 ◦C–2.3 ◦C for 48 min compared with the 
traditional gypsum plaster [20]. 

• Hollow plaster panels with PCM have improved the indoor temper-
ature averagely by 0.78 ◦C [21].  

• Wall opposing glazed façade integrated PCM has stored the sun heat 
for 6–8 h after sunset, reducing the daily temperature swing by up to 
10 ◦C, and annual heating load by 17% [22].  

• Solar air collector integrated Trombe wall-like PCM wall has 
improved and extended the heating effect [23].  

• PCM included framed triple-pane window has saved the heating 
energy by up to 20% [24].  

• PCM incorporated ventilated mortar blocks coupled with a hot air 
stream for floor heating has decreased the power consumption for 
heating by up to 41.5% [25].  

• An underfloor heating system and PCM wallboards have saved the 
heating energy and cost by 32% and 42%, respectively, over ten 
testing days [26]. 

On the whole, PCMs are mainly applied for energy storage heating 
systems or incorporated directly with the building envelope elements 
passively or actively within the building structure [27–30]. Fig. 1 shows 
the possible passive and active incorporation of PCMs for building 
heating applications as indicated in studies reviewed in this work. 

In all indicated techniques, the main influential parameters that 
affect the PCM thermal performance in buildings are the melting tem-
perature (Tm), PCM position within the building structure, and the 
thickness (quantity) to be incorporated [31,32]. The PCM melting 
temperature is a critical parameter associated with the PCM type and 
building location. Therefore, careful attention should be paid to select-
ing the PCM type for beneficial and effective use. 

The main objective of this work is to specify the best PCM candidates 
suitable for building-integrated heating systems under cold conditions. 
Three scenarios are considered in which the PCM cost is included or 
excluded with diverse and equal weights. More than seventy recent liter-
ature studies are reviewed and analysed to show the contribution of PCM to 
building heating energy-saving and compare the potential of PCM candi-
dates following a unique qualitative decision matrix. The matrix relies on 
several thermo-physical, technical, and economic considerations to select 
the best PCM candidate that fits future work. The methodology followed in 
this work is believed to provide an excellent and logical basis for future 
studies to select the best PCM type simply and efficiently. 

2. Literature review 

Several researchers have investigated the potential of PCMs for 
building heating applications in which most studies were conducted 
passively against limited active applications. The criteria followed by 
researchers to select the appropriate PCM type was by analysing several 
PCM candidates and picking up the best thermally-performing [33,34] 
or a specified candidate chosen based on several desired properties, 
mostly related to its thermo-physical ones [35,36]. In both cases, the 
PCM candidate(s) tested over a specific period, namely for days, season 
or annual basis, and the PCM type is still a critical key parameter in 
many applications. Among studies that considered several PCM types, 
Araújo et al. [37] numerically analysed the thermal performance of a 
110 m2 single-family house in northern Portugal for annual heating and 
cooling applications using EnergyPlus software. The authors studied 
eight PCMs with melting temperatures in the thermal comfort range, 
namely RT 15, RT 18, RT 21, RT 22, RT 24, RT 25, RT 26 and RT 28. 
Results revealed that RT 22 showed the best performance in which the 
heating requirements were reduced by 8.22 kWh/m2/year, equivalent to 
13.2% energy-saving. Seong and Lim [38] numerically studied various 
PCMs had Tm of 20 ◦C, 21 ◦C, 24 ◦C and 29 ◦C, applied to a lightweight 
building in Seol, Korea. For heating purposes, the PCM with a melting 
temperature of 21 ◦C showed the highest heating load reduction annu-
ally. Using this PCM, the building peak heating load decreased by 3.19% 
with an indoor temperature increment of 0.86 ◦C. Saffari et al. [39] 
studied several PCMs combined gypsum boards, having Tm in the range 
of 18 ◦C–27 ◦C, integrated with a four-story building and tested for 
different climates specified by Köppen-Geiger classification. Considering 
the heating dominant climate, they have found that the effective PCM 
temperature lies near 20 ◦C, which showed the best annual heating 
energy-saving. Pirasaci [40] numerically studied the effect of incorpo-
rating eight PCM types (RT12, RT15, RT18HC, RT21, RT21HC, RT22HC, 
RT24 and RT25HC) with building envelope on the winter heating energy 
requirements in Ankara, Turkey. PCMs were placed in different positions 
within surfaces in which the position close to the indoor space was the 
most effective as it is near the heat source (central hot water radiators). 
Numerical results indicated that on an annual basis, RT21HC (Tm =
20 ◦C–23 ◦C) had the maximum heating energy saving of about 6%, 
mainly in a sensible form. In contrast, RT18HC (Tm = 17 ◦C–19 ◦C) 
showed better utilisation of PCM latent storage along with annual 
heating energy-saving of 3%, which was suitable with the fixed indoor 
temperature. 

The majority of literature studies that studied one PCM candidate 
have counted on the suitability of the PCM melting temperature with a 

Fig. 1. Possible PCM techniques for building heating applications.  
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specific location temperature variation. For instance, Barzin et al. [41] 
experimentally studied PT20 (Tm = 20 ◦C) impregnated gypsum board 
installed inside one of two identical Huts (rooms) and tested under 
winter weather conditions of Auckland, New Zealand. Based on previous 
studies considering the exact location, this PCM was explicitly selected 
as the best option for passive building heating. The study was conducted 
for 11 days, and the main results showed that the average energy saving 
was 31% over the experimental days, and as high as 90% for one best 
day performance was achieved. Hu and Yu [42] numerically investi-
gated the thermal response of building walls by integrating micro-
encapsulated PCM boards (60% paraffin has Tm = 21.7 ◦C) in five 
Chines cities. Under Nanjing cold conditions, the PCM boards had 
minimised the heating loads by 14% in November, 10% in December, 
4% in January, and 9%-13% in March. Arkar et al. [43] numerically and 
experimentally studied a solar air heating system coupled with PX-21 
(Tm = 19.6 ◦C) for a lightweight building under weather conditions of 
Ljubljana, Slovenia. The PCM is contained in a concentric tube, placed 
inside the processed space, and connected with a vacuumed solar air 
collector. The heat charged during day hours at constant airflow and 
discharged later in the night. The study findings demonstrated that the 
PCM is highly recommended with solar systems wherein the solar 
heating fraction reached 63%, and 34 kWh/m2 of building heating de-
mand was overcome. Navarro et al. [44] experimentally investigated a 
hybrid system of PCM macroencapsulated aluminium tubes with an air- 
based flat plate solar collector integrated with a hollow concrete slab 
under conditions of Puigverd de Lleida, Spain. RT-21 (Tm =

21 ◦C–22 ◦C) was selected as a compelling candidate with high heat 
storage capacity, long-term stability, no corrosion and suitable for 
thermal comfort applications. The study revealed that the PCM slab 
saved energy by about 20% under partial PCM activation and 55% under 
complete melting/solidification cycles. Furthermore, the energy-saving 
under severe and mild conditions reached 25% and 40% for the PCM 
slab compared with the reference one. Plytaria et al. [45] numerically 
investigated BioPCM Q29/M91 incorporated active floor heating system 
(the PCM layer placed beneath the active concrete floor) for a 100 m2 

office building under Greece weather conditions using TRNSYS soft-
ware. This PCM (Tm = 29 ◦C) was selected among four options, namely 
23 ◦C, 25 ◦C, 27 ◦C and 29 ◦C, based on its performance according to 
previous studies and its suitability with the solar system that produces 
hot water with 45 ◦C. The study outcomes revealed that using the PCM 
layer saved the heating load and grid electricity by 40% and 42%, 
respectively. Besides, an increase in the indoor temperature by 1 ◦C was 

achieved, which improved the comfort conditions of the building. Guo 
et al. [46] experimented with a microencapsulated PCM’s thermal per-
formance (Tm = 28 ◦C–30 ◦C) mixed with mortar concrete blocks for 
floor heating application. The authors involved the same PCM quantity 
(~0.8 kg) into three blocks with different distributions to compare the 
thermal management against reference block without PCM under three 
scenarios; single heating, heating-ventilation and intermittent heating. 
Results demonstrated that PCM distribution within the blocks signifi-
cantly influences the thermal performance of blocks, and the heating- 
ventilation scenario had the best performance. In the heating scenario, 
the PCM blocks consumed 11.4%- 18% more heating energy than the 
reference block, meaning that more heat was stored, which improved 
the storage capacity of blocks. In the heating-ventilation scenario, the 
heating demand was extended by 22.7%-25.6% for the PCM blocks 
compared to the reference one. Kong et al. [47] fabricated and tested a 
novel hybrid solar-PCM system consisting of composite perlite/PCM 
wallboard (a passive system) coupled with a solar water heating active 
system. Paraffin of Tm = 24.92 ◦C was used for the composite wallboard 
preparation due to its low cost and suitability for such building appli-
cations. Two test rooms (one with a traditional heating radiator and the 
other integrated with the hybrid system) were tested over three days 
under Tianjin, China, winter conditions. In the room based hybrid sys-
tem, the water heated during day hours was passing into the wallboard 
via capillaries and heat was stored continuously to be used after sunset. 
Findings indicated that around 44.16% of daily heating energy con-
sumption was minimised in the room with the hybrid system compared 
to the room with radiators. 

3. Methodology 

The methodology followed in this work has considered several steps 
to reach the final decision regarding the best PCM candidate for building 
heating applications integrated with a solar thermal system. The 
methodology is summarised in steps indicated in Fig. 2. 

Step 1: The state-of-the-art literature studies are analysed and dis-
cussed to show the energy contribution of PCM when applied to build-
ings as a passive element or actively integrated with heating and solar 
systems. This step is essential to cope with the PCMs investigated by 
researchers and pick up the best among them. 

Step 2: The best thermally acted PCM candidates are listed in this 
step based on the analysis applied in Step 1. This list shows the thermo- 
physical properties, namely Tm, latent heat of fusion (Hf), and thermal 

Fig. 2. Methodology steps considered in the present work.  
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conductivity (k), for each PCM candidate (as available). Moreover, the 
list provides a range of PCM types and their categories which is neces-
sary to show the main types used and shed light on the other types that 
are not investigated yet. 

Step 3: Many PCM candidates are omitted to finalise the list of po-
tential ones that should not be applied in the qualitative decision matrix 
(QDM). The PCM will be eliminated for the following reasons: 

i. It was used as a composite PCM (mixed with the building mate-
rials), not a pure PCM.  

ii. It has missed information which makes the comparison hard with 
other PCM candidates when applying QDM.  

iii. PCMs prepared/fabricated in the laboratory will be omitted as 
they are not commercially available in most cases. 

iv. PCMs with severe hysteresis (i.e., the PCM melting and solidifi-
cation temperatures are not the same) or showing subcooling 
and/or supercooling. However, all numerical studies assumed 
that the PCM has no hysteresis during phase transition, which 
applied only for pure PCMs [48], also omitted.  

v. Hazardous PCMs have a negative impact on humans and the 
environment in terms of poisoning or severe flammability [49].  

vi. Since this paper aims to select the potential PCMs to be coupled 
with solar heating systems, only those with Tm in the range of 
20 ◦C− 30 ◦C will be included in the modified list. Nevertheless, 
such PCMs are in the range of human indoor functioning tem-
peratures in many cold regions.  

vii. One PCM candidate will be kept in the modified table for studies 
investigating similar PCMs of the similar manufacturer and 
thermo-physical properties. 

Step 4: In this step, the PCMs available in local and international 
markets will only be considered because most companies/manufac-
turers update their product information and specifications from time to 
time. Availability of PCMs that remain after Step 3 will be checked, and 
the information of the new (or alternative) candidate will be applied in 
the QDM. 

Step 5: In this step, the QDM will be applied. QDM will consider 
some properties and features to select the best PCM candidate to be used 
for the building heating application. These features could be set based on 
several thermo-physical, technical, environmental and economic con-
cerns. In this study, the main properties and features that will be 
considered are Tm, Hf, k, compatibility with aluminium containers, 
PCM flammability and cost. A specific weight will be given for each 
property/feature based on its importance, and then, a scoring range 

from 1 to 3 (1-weak, 2-moderate and 3-good) will be assigned to each 
weighted property/feature to present the final total scores. Three sce-
narios will be considered, namely:  

• Scenario A: the weighting values shown in Table 1 will be 
considered.  

• Scenario B (the cost will be excluded and the weighting values 
applied are shown in Table 2)  

• Scenario C (the cost will be excluded and all properties/features have 
the same weight values of 20%). 

The scoring range of PCM properties/features considered in the 
present work are shown in Table 3. 

The thermo-physical properties of PCM candidates considered in this 
work (i.e., Tm, Hf and k) are the most investigated and discussed in the 
literature studies as they are directly influencing the thermal perfor-
mance of PCMs in building applications [14]. 

The appropriate PCM Tm is the topmost property-focused by authors 
as it influences the whole building performance. Accordingly, PCM’s 
effectiveness depends primarily on its Tm and the daily temperature 
range in the passive and active building applications to guarantee 
complete charging/discharging cycles [51]. When a PCM of high 
melting temperature is applied for a specific application, the PCM would 
be partially melted (the other part remains in a solid-state), and the 
sensible heat would be activated more than the latent heat [13]. 
Therefore, part of its thermal storage capacity will be utilised when the 
application’s temperature exceeds the PCM melting temperature. On the 
contrary, the PCM of low melting temperature would be entirely melted 
within a short time (fast charging). This would cause an issue, especially 
for passive applications where the PCM works as a heat source and the 
heat uncontrollably dissipates towards the conditioned space during 
peak hours [17]. According to the above reasons, the Tm of PCMs was 
weighted with 15% (in Scenario A), which is a moderate value, because 
all PCM melting temperatures investigated in the literature studies were 
effective. However, higher PCMs melting temperature is preferable for 
this work considering active heating systems. Although the scope of this 
work is limited to the PCMs application in cold location buildings, it is 
worth mentioning that Tm is also the main property considered to select 
the proper PCM candidate in hot location applications. The PCM Tm 
used in cold locations is usually lower than that used for hot locations. 
This is because Tm is associated with the range of temperatures during 
the day under each location. The Tm of PCMs applied for hot location 
building applications can reach the height of 44 ◦C [52] and 52 ◦C [53]. 

The Hf of PCMs (also called heat storage capacity [54]) is another 
crucial property because it determines the amount of heat stored and 
released in the PCM within building applications. PCMs have different 
heat storage capacity range based on their types and chemical compo-
sition. All PCMs have Hf within the range of 120–280 kJ/kg, regardless 
of the PCM category [55]. However, inorganic PCMs have higher ther-
mal storage capacity than organics (at the same Tm). Moreover, salt 
hydrates have higher Hf than other types [55]. In this work, PCMs of 
high Hf are preferred to store as much heat as possible from the solar 

Table 1 
Weight values of QDM for Scenario A.  

Feature/ property Tm Hf k Compatibility Flammability Cost Total 

Weight 15% 20% 10% 20% 10% 25% 100%  

Table 2 
Weight values of QDM for Scenario B.  

Feature/ 
property 

Tm Hf k Compatibility Flammability Total 

Weight 20% 25% 15% 25% 15% 100%  

Table 3 
Scoring of studied properties/features (based on authors’ experience and [50]).  

Tm Hf k Compatibility Flammability Cost ($/kg) 

20–23 1 <160 1 Up to 0.2 1 Not compatible 1 Low flammable 1 1–6 1 
24–26 2 160–200 2 >0.2 and < 0.5 2 — — — — >6 and < 12 2 
27–30 3 > 200 3 0.5 or more 3 Compatible 3 Non-flamable 3 > 12 3  
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thermal system during sunshine hours. Therefore, 20% of the total 
weight was assigned to this property (in Scenario A). 

PCMs are generally characterised by their low thermal conductiv-
ity due to their crystal structure [56]. This issue causes time delay to 
reach a completed charging and discharging phases [57], which then 
influences the thermal performance of building applications. However, 
the PCM behaves as insulation under hot weather conditions by inter-
rupting heat flow towards the indoor environment, and low thermal 
conductivity might be considered an advantage [13]. Organic PCMs 
have a low thermal conductivity ranging from 0.2 to 0.25 W/m.K [28]. 
Different enhancement techniques have been applied to overcome this 
issue, such as mixing conductive nanoparticles, adding metal foam 
structures, expanded graphite carriers, adopting extended fins geome-
tries and macroencapsulation techniques [58–64]. Although PCM ther-
mal conductivity is still one of the main properties that should be 
adequately studied, it was weighted with only 10% in Scenario A, as it is 
considered to be macroencapsulated by high thermal conductivity 
containers made of aluminium (the most popular macroencapsulation 
material). 

The compatibility of PCMs with the encapsulation containers is 
among the most important features because it affects their long-term 
effectiveness [65]. Some PCMs have a negative compatibility effect on 
metal containers, and others have less in terms of the corrosion rate 
[66,67]. In the current work, the compatibility of PCMs with aluminium 
containers will be considered (with 20% weight in Scenario A) because 
aluminium has high thermal conductivity, available widely in different 
shapes and sizes, and have a low bearing effect on buildings due to its 
lightweight. 

PCM flammability is another critical feature in building applica-
tions as the PCM is applied to serve for a long term and may experience 
leakage. High flammable PCMs will be eliminated, as mentioned in Step 
3, and only those with low flammability (or non-flammable) will be 
considered. This feature weighted 10% in Scenario A, which is relatively 
low compared with the others, considering that PCMs would be well 
encapsulated. Both compatibility and flammability of PCMs will be 

Table 4 
Summary of studies applied QDM/MCDM for different PCM applications.  

Application(s) Considered properties/ 
features 

No of PCMs 
investigated 

Ref. 

Thermal storage for 
cooling, heating and 
domestic hot water 

Tm, enthalpy, availability, 
maximum working 
temperature, cost 

19 [50] 

Building façade Tm, Hf, k, specific heat, 
density, cycling stability, 
supercooling, toxicity, 
flammability, corrosiveness, 
recyclability and embodied 
energy, initial cost. 

29 [77] 

ground source heat 
pump 

Hf, k, specific heat (liquid and 
solid), density, volume 
change, vapour pressure, 
supercooling, phase 
separation, recyclability, 
toxicity, flammability, cost. 

8 [78] 

Electronic devices 
cooling 

Tm, Hf, k, specific heat 
(liquid and solid), density, 
cost 

10 [79] 

Thermal Energy 
Storage in Solar Air 
Conditioning 
Systems 

Tm, Hf, k, specific heat 
(liquid and solid), density 

10 [80] 

Domestic water 
heating 

Hf, k (liquid and solid), 
specific heat (liquid and 
solid), density (liquid and 
solid), cost 

15 [81] 

Low-temperature heat 
storage 

Tm, Hf, k, specific heat, 
density, cycle stability, 
compatibility, melting/ 
solidification time 

5 [82] 

Thermal comfort in 
buildings 

Tm, Hf, k, specific heat, 
density (solid) 

8 [83] 

Electronic devices 
thermal 
management 

Hf, k, specific heat, density, 
subcooling, stability, 
Incongruent melting, 
corrosion, toxicity, volume 
expansion, cost 

30 [84]  

Table 5 
Thermo-physical properties of PCMs based on analysed literature studies.  

PCM type Category Tm (◦C) Hf (kJ/kg) k (W/m.K) (Liquid/Solid) Ref. 

RT18HC Organic (paraffin) 17–19 N/A 0.2 [40] 
CA–MA–PA (capric-myristic-palmitic acid) Organic (Fatty acid) 18.61 128.2 0.45 [86] 
PX-21 Organic (paraffin) 19.6 170 0.05 [43] 
CA–PA–SA (capric-palmitic-stearic) Organic (Fatty acid) 19.93 129.4 N/A [87] 
PT20 Organic (BioPCM) 20 180 N/A [41] 
RT 22 Organic (paraffin) 20–23 190 0.2 [37] 
Heptadecane Organic (paraffin) 21 230 0.33 [38] 
RT 21 Organic (paraffin) 21 148 0.2 [88,89] 
RT-21 Organic (paraffin) 21–22 134 N/A [44] 
TIM-PCM Eutectic 21.3 152 0.182 [90] 
PureTemp 23 Organic (BioPCM) 22.23–24.17 170.71 0.15/0.25 [91 92] 
CaCl2⋅6H2O Organic (Fatty acid) 24 140 0.54/1.09 [93] 
Paraffin wax Organic 24.92 153.06 0.23 [47] 
Q25/M91 Organic (BioPCM) 25 175 0.15 [94] 
SP-25 A8 Inorganic 26 180 0.6 [95] 
CA–PA (capric acid/palmitic acid) Organic (Fatty acid) 26.2 177 2.2 [96] 
CADE (capric acid/1-dodecanol) Organic (Fatty acid) 26.5 126.9 0.2/0.12 [97] 
HS29 Organic (paraffin) 26–29 190 0.55/1.05 [98] 
Paraffin wax Organic 27–29 245 0.2 [99] 
RT 27 Organic (paraffin) 28 179 0.2 [100] 
TH-ME28 Organic 28.54 102.67 N/A [46] 
RT 27 Organic (paraffin) 28–30 179 0.15/0.24 [101] 
SP 29 Inorganic 28–30 190 0.6 [102] 
TH29 Organic (Fatty acid) 29 175 1.0 [103] 
Q29/M91 Organic (BioPCM) 29 180 N/A [45] 
LA–MA–SA (lauric–myristic–stearic acid ternary eutectic mixture) Organic (Fatty acid) 29.05 137.1 0.26 [104] 
CaCl2⋅6H2O Organic (Fatty acid) 29.9 187 0.53/1.09 [53]  
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gathered from the technical datasheet (or safety sheet) provided by the 
manufacturer for each PCM. 

The cost of PCMs is the essential feature considered in this work, 
with 25% of the total weight in Scenario A, and equal to 0% in Scenario 
B and C. PCM cost significantly impacts system feasibility, especially in 
building applications due to the vast incorporated PCM amount 
[68–70]. The cost will be defined based on direct contact (via email) 
with the leading companies selling such products for each PCM candi-
date remaining in the modified list. The well-known companies in this 
regard are Rubitherm® Technologies GmbH [71] in Germany, Pluss® 
LLC [72] in India, Phase Change Solution (PCS) [73], PureTemp® LLC 
[74] and its partner Microtek laboratories inc. [75] in the US. The cost 
will be identified for each kg of pure PCM product (without packaging or 
encapsulation) in the dollar (USD) currency. 

It is worth mentioning that the QDM, also referred to as “multi- 
criteria decision-making (MCDM) method”, is a popular method applied 
to select the best PCM candidate in many applications. This method 
generally has better and reasonable results for selecting the best option 
compared with the traditional ones, especially when several properties/ 
features are considered [76]. Table 4 lists some of the recently studied 
PCMs using this method for different applications. 

4. Results and discussion 

Based on the literature review analysed in Section 2, the PCM can-
didates and their main thermo-physical properties are shown in Table 5. 
The table included only PCMs within the range of 17 ◦C–30 ◦C that are 
suitable for thermal comfort in building heating applications [28]. 
Moreover, only the best-performed PCM for studies investigating several 
PCM types has been included in the table, such as those indicated in 
[37–40,85]. 

Table 5 indicate that most of the studied PCMs were organics. Par-
affins and fatty acids were studied extensively against a limited number 
of BioPCMs, due to their high cost and limited manufacturers compared 
with the organics [105]. This table shows the suitability of organic PCMs 
for passive and active building heating applications due to their 
appropriate melting range and other desired properties [106–109]. 

As mentioned in Section 3 (Step 3), some PCMs should be eliminated 
from the table for different reasons to reach the final list of potential 
candidates that could be applied in the QDM. Accordingly, PCMs with 
missed information, such as RT18HC, PT20, RT-21, TH-ME28 and Q29/ 
M91, were omitted as they are hard to be compared in the QDM. 
Moreover, PCMs prepared in the laboratories, such as CA–MA–PA, 
CA–PA–SA, CA–PA, CADE and LA–MA–SA, also omitted as they have 
only their thermo-physical studies with no information regarding their 
stability and cost, not to mention some reported hazardous issues about 

Table 6 
Modified PCM candidates, alternatives and their properties applied in the QDM.  

PCM type (from Table 5) Commercial PCM alternative (Category) Manufacturer Tm (◦C) Hf (kJ/kg) k (W/m. K) Ref. 

RT 21 RT21 (Organic) Rubitherm® 18–23 155 0.2 [89] 
RT 22 RT22HC (Organic) Rubitherm® 20–23 190 0.2 [89] 
PureTemp 23 PureTemp 23 (BioPCM) PureTemp® 23 201 0.15/0.25 [74] 
SP-25 A8 SP25E2 (Inorganic) Rubitherm® 24–26 180 0.5 [114] 
HS29 SavE® HS29 (Inorganic) Pluss® 29 190 0.382/0.478 [72] 
Paraffin wax 27, RT 27 RT28HC (Organic) Rubitherm® 27–29 250 0.2 [89] 
SP 29 SP29E2 (Inorganic) Rubitherm® 29–30 160 0.5 [114]  

Fig. 3. Final QDM scores of all weighted properties/features in all scenarios.  
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them [110]. Besides, for PCMs that have the same thermo-physical 
properties, such as Paraffin wax and RT 27, only one of them was 
counted after careful checking for their similar properties in the 
manufacturer database. Some omitted PCMs are sold with special 
packages that are unsuitable for future applications, such as Q25/M91, 
produced by Avarvio Australia Co. [111]. Salt hydrates were omitted 
from Table 5 because some studies indicated that they are suffering from 
segregation issues after many cycles [55,112], as well as supercooling 
issues in most products [113], and health hazard concerns [49]. The 
final modified list of PCM candidates, including their alternatives and 
manufacturers, are presented in Table 6. 

Fig. 3 shows the results obtained by applying the QDM method on the 
PCM candidates indicated in Table 6 for Scenario A, Scenario B and 
Scenario C. These results were generated by multiplying the scores and 
weights in all scenarios for each PCM property/feature individually and 

then divided by the highest score and weight. 
According to the results, RT28HC has the highest score in all sce-

narios with 78.3% in Scenario A and 80% in Scenario B. SavE®HS29 has 
the second high score in Scenario A with 76.67%, and PureTemp 23 has 
the second-best score in Scenario B. Furthermore, all these PCMs indi-
cated the highest score of 73.3% in Scenario C compared with the other 
PCM candidates. Conversely, RT21, RT22HC and SP29E2 had the lowest 
QDM scores in all scenarios. 

In Scenario A, RT28HC has the best Tm, Hf and compatibility, while 
SavE®HS29 has a better score considering the Tm and PCM cost. SP25E2 
was the best third candidate in this scenario, and it showed the best 
scores in terms of the thermal conductivity and the cost, as shown in 
Fig. 4. 

Regardless of the high scores obtained above, the Enthalpy- 
Temperature relation provided in the manufacturers’ technical data-
sheet shows that the RT28HC has a much higher enthalpy value 
compared with SavE®HS29 and SP25E2, not only in terms of the pre-
sented QDM, as shown in Fig. 5. This PCM property is essential with the 
Hf as they influence the heat charging and discharging throughout the 
PCM working period [50]. 

As mentioned before, the PCM cost is essential in building applica-
tions due to the large amount of PCM applied, which influences system 
feasibility. However, this feature has been excluded in Scenario B and C 
to investigate the PCM selection from the technical side of view. In 
Scenario B, the weight of each property/feature has increased by 5% (as 
indicated in Table 2), and the top 3 PCM candidates became RT28HC, 
PureTemp23 and SavE®HS29 with respectively 80%, 76.67% and 70%. 
The detailed weighted scores of these PCMs are shown in Fig. 6. 

As shown in Fig. 6, RT28HC has the highest scores for Tm, Hf and 
[CM compatibility. In contrast, PureTemp 23 has the best scores for Hf, 
compatibility and flammability, the common desired properties of Bio-
PCMs [105]. Moreover, SavE®HS29 showed the highest scores in terms 
of Tm and flammability only. These results show that RT28HC and 
SavE®HS29 are the best candidates with or without cost consideration. 

The QDM results for Scenario C (where the cost feature is excluded 
and all properties/features have the same weight) are shown in Fig. 7. 

Fig. 4. Weighted scores of properties/features for the top three PCM candidates in Scenario A.  

Fig. 5. Enthalpy value of SP25E2, SavE®HS29 and RT28HC as indicated in 
their technical datasheet [72,115,116]. 
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The results indicated that the top 3 candidates of Scenario B are repeated 
with the same score of 73.3%. 

Overall, regardless of applying QDM, the top 3 PCM candidates ob-
tained in each scenario have better thermo-physical properties and 
features than the others, allowing them to be used successfully and 

efficiently in building applications. 

5. Conclusion 

The current paper investigates the best PCM candidates that could be 

Fig. 6. Weighted scores of properties/features for the top three PCM candidates in Scenario B.  

Fig. 7. Weighted scores of properties/features for the top three PCM candidates in Scenario C.  
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applied for building heating applications under cold weather conditions. 
A QDM has applied for several commercial PCM candidates. After 
careful and extensive analysis of the state-of-the-art literature studies. 
The PCM melting temperature, the heat of fusion, and thermal con-
ductivity were considered in the QDM as effective properties in PCM 
building heating applications. Moreover, the PCM compatibility, flam-
mability and cost are also considered in the QDM as essential features. 
Scores and weights were assigned for each property/feature based on 
their importance. The total scores obtained were presented according to 
three scenarios (Scenario A, including the PCM cost with different 
weights, Scenario B excluding the cost with different weights and Sce-
nario C excluding the PCM cost with equal weights for the properties/ 
features). The results showed that RT28HC has the best potential in this 
application in all scenarios with 78.3%, 80% and 73.3% in Scenario A, 
Scenario B and Scenario C. SavE®HS29 and SP25E2 showed the best 
second and third PCM candidates in Scenario A with scores of 76.67%, 
and 68.33%, respectively. PureTemp 23, the BioPCM, showed the 
second-best PCM candidate in Scenario B and C. However, this PCM (i.e., 
PureTemp 23) has the highest cost compared with all investigated PCMs, 
limiting its use in PCM practical building applications. 

This methodology could also be applied to select the best PCM 
candidate under hot weather locations. In this case, the melting tem-
perature range would be different (usually higher), and the preferable 
Tm depends on the position of the PCM layer concerning the other en-
velope materials. Moreover, the weights of PCM properties/features 
could also be different, especially the PCM thermal conductivity as the 
PCM serves as insulation under hot location applications. 

The results presented in this work also can be extended to include 
more properties and features such as the PCM density, specific heat, 
enthalpy, crystallisation, subcooling/supercooling and safety concerns, 
supported with simulation tools. 
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